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Abstract

As the vision foundation models like the Segment Anything Model (SAM) demon-
strate potent universality, they also present challenges in giving ambiguous and
uncertain predictions. Significant variations in the model output and granularity
can occur with simply subtle changes in the prompt, contradicting the consensus
requirement for the robustness of a model. While some established works have
been dedicated to stabilizing and fortifying the prediction of SAM, this paper takes
a unique path to explore how this flaw can be inverted into an advantage when
modeling inherently ambiguous data distributions. We introduce an optimization
framework based on a conditional variational autoencoder, which jointly models the
prompt and the granularity of the object with a latent probability distribution. This
approach enables the model to adaptively perceive and represent the real ambiguous
label distribution, taming SAM to produce a series of diverse, convincing, and
reasonable segmentation outputs controllably. Extensive experiments on several
practical deployment scenarios involving ambiguity demonstrates the exceptional
performance of our framework. Project page: https://a-sa-m.github.io/.

1 Introduction

The advent of Visual Foundational Models (VFMs) such as the Segment Anything Model (SAM) [22]
has been unprecedented, largely due to the availability of vast datasets and computational resources.
These models have exhibited remarkable generalization capabilities in zero-shot scenarios and the
capacity to interact with human feedback. SAM, in particular, employs a specialized data engine to
manage 11 million image masks, using a unique prompt-based segmentation framework to generate
accurate masks for any object within a visual context, largely extending the capacity and generality of
segmentation [27]. Such successes have been widely extended to various domains, such as medical
imaging analysis [8, 35, 28], remote sensing [48], etc.

However, it has been observed that SAM suffers from severe predictive ambiguity to segment desired
concepts [22] in practical scenarios. To uncover the factual basis, we delve into this ambiguity
and detail it into two flaws according to experimental insight. Specifically, the first flaw lies in
that SAM prediction is sensitive to slightly different prompt variants. As shown in Fig. 1 (a), we
ground SAM into a realistic clinical scenario to segment the lesion in CT images. Even though three
medical experts uniformly give rational box prompts covering the lesion, SAM, unfortunately, makes
enormous differences among them, even including one wrong case. Further, we provide detailed
statistics regarding IoU over the small perturbation (only 5 pixels) of box prompts, as shown in Fig. 1
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Figure 1: Analysis of Inherent Ambiguity in SAM. (a): Feeding SAM with slightly different
prompts from multiple experts for a single image can significantly alter the segmentation output.
(b)(c): We evaluate SAM using canonical box prompts and various perturbed versions, measuring the
mean and variance of segmentation IoU on LIDC. Perturbations involve shifting the box five pixels
in different directions and employing various granular outputs within SAM. Results highlight SAM’s
sensitivity to prompt variations and granularity.

(b). We can observe a significant IoU fluctuation over small prompt differences, which reveals that
SAM prediction is highly sensitive to the prompt variants caused by such small perturbation3.

The second flaw lies in the susceptibility of SAM output to the inherent structural granularity of
the object. Despite the fact that VFMs like SAM gain generalizable knowledge and abilities from
extensive datasets, they frequently forfeit the capacity to segment specific visual concepts as they
are class agnostic, making the model unable to discern the difference between objects with different
levels of semantic granularity. Consequently, for targets that are challenging to define, particularly
those with rich internal hierarchical granularity, they are inclined to produce multiple candidate
results at different granularities and amalgamate them, rather than directly outputting a definitive
result. As depicted in Fig. 1 (c), we also discern that the multiple candidate results captured by
SAM often exhibit significant differences, and the segmentation precision of outputs at different
granularities diverges greatly when compared to the final integrated SAM output that incorporates
multiple candidates.

Nonetheless, every coin has two sides. While these observations reveal SAM’s faults regarding
the output sensitivity, we explore a different perspective: could this sensitivity flaw become an
advantage in other cases, such as ambiguous segmentation, which requires the model to learn from
a set of ambiguous object annotations caused by imaging noise, ambiguous tissue boundaries, and
different annotator preferences? Specifically, we are particularly interested in the following: ➊
Given the segmentation result’s sensitivity to prompts, can we probabilistically model this prompt
variation to tame prompt-sensitive SAM to controllably yield multiple likely results close to the actual
fuzzy distribution? ➋ Considering the segmentation result’s sensitivity to object structure, can we
probabilistically model this granularity variation to tame granularity-sensitive SAM to controllably
yield multiple likely results close to the actual ambiguous distribution?

Driven by these questions, we propose an innovative strategy, which flips the inherent category-
agnostic ambiguity induced in SAM into a controlled ability to generate a range of feasible results
for ambiguous segmentation tasks. Specifically, to simulate segmentation ambiguity under different
prompts, we introduce context-aware prompt ambiguity modelling. This method probabilistically
models the uncertainty of the prompts inputted into SAM using a latent learnable distribution, which
adaptively perceives the specific ambiguity of different contexts. Furthermore, to simulate ambiguity
caused by complex object structures at different granularities, we introduce granularity-aware object
ambiguity modelling. This method introduces and enhances the visual ambiguity of objects at
different granularities into SAM’s original image embedding via a learnable embedding distribution.
While establishing these two levels of ambiguity modelling, we introduce an efficient optimization
strategy based on posterior constraints, allowing the model to mimic models that can perceive the
actual ambiguous distribution. Our contributions can be summarized as follows:

3In practice, such perturbation commonly exists and cannot be controlled by users, even for medical experts.
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• We explore the inherent ambiguity in SAM to flip this commonly seen disadvantage in deter-
ministic segmentation tasks into an advantage for more practical ambiguous segmentation
tasks that allow multiple possible outputs.

• We propose a A-SAM framework that employs a learnable latent distribution to encapsulate
the ambiguity at two strata, from prompts and object granularity.

• We introduce an optimization architecture based on variational autoencoders, which effec-
tively represents ambiguity by constraining the sample embedding to align with those from
a series of practically feasible annotations.

• Rigurous benchmarked experiments across a wide range of potential scenarios demonstrate
that our method produces more accurate, diverse, and reasonable segmentation outputs.

2 Related Work

Prompting Foundational Models for Segmentation. There has been a surge in the advancement
of large-scale vision models for image segmentation, drawing inspiration from language foundation
models [62, 4, 25, 39]. Segmentation Foundation Models (SFMs), such as the Segment Anything
Model (SAM) [22] and SEEM [66], have delivered significant segmentation results across various
downstream datasets [17, 38, 54]. SAM, leveraging a data engine incorporating model-in-the-loop
annotation, learns a promotable segmentation framework that generalizes to downstream scenarios
in a zero-shot manner. Meanwhile, other models like Painter [56] and SegGPT [57] introduce
a robust in-context learning paradigm that enables segmenting any images given an image-mask
prompt. On the contrary, SEEM [66] presents a general segmentation model prompted by multi-modal
references, such as language and audio, thereby incorporating a wide range of semantic knowledge.
These advancements in SFMs, driven by promptable segmentation design, involve two types of
prompts: semantic prompts (e.g., free-form texts) and spatial prompts (e.g., points or bounding boxes)
[22, 57, 40, 41, 43, 26].

Recently, the practice of adapting vision foundation models such as SAM [22] for application in
medical image segmentation is garnering increasing interest [46, 10, 12, 44, 33]. A prevalent and cost-
effective approach involves adapter techniques, which necessitate the inclusion of bottleneck modules
with a finite number of parameters within the model. By fine-tuning these diminutive adapters,
SAM can bridge the domain discrepancy between medical and natural images while preserving
stellar performance. For instance, models like MSA [58], SAM-Med2D [9], and SAM-adapter [6]
utilize adapter strategies to transfigure SAM for medical imaging, thereby achieving significant
segmentation outcomes. Despite these advancements, acquiring suitable prompts for SFMs remains
largely under-explored. This work aims to explore generating effective prompts for SAM, focusing
on harnessing pre-training knowledge to complete ambiguous image segmentation.

Ambiguous Image Segmentation. Ambiguous image segmentation aims to model a range of,
rather than single, segmentation labels [31, 65, 45]. A wealth of existing research has proposed
various techniques to quantify uncertainty. Initial research focused on enhancing a traditional U-
Net[51, 16, 29, 5] with a probabilistic component to generate multiple predictions for the same image.
This was typically achieved by incorporating a conditional variational autoencoder (cVAE) [53], with
the low-dimensional latent space encoding potential segmentation variations. Subsequent work further
extended this setup to a hierarchical variant [3, 24, 64, 15]. Other research has utilized normalizing
flows to allow for distribution in the cVAE [52, 55] to represent a discrete latent space [49] or
incorporated variational dropout and directly used inter-grader variability as a training target. Several
other methods [34] do not rely on the Probabilistic U-Net [47, 21, 32, 11, 60]. Monteiro et al. [47]
proposed a network utilizing a low-rank multivariate normal distribution to model the logit distribution.
Kassapis et al. [21] leveraged adversarial training to learn potential label maps based on the logits
of a trained segmentation network. Zhang et al. [63] employed an autoregressive PixelCNN to
model the conditional distribution between pixels [37, 36]. Finally, Gao et al. [13] used a mixture of
stochastic experts, where each expert network estimates a mode of uncertainty, and a gating network
predicts the probabilities of an input image being segmented by one of the experts. Unlike previous
efforts [1, 42, 59, 7], our approach signifies the first exploration of leveraging the inherent properties
in vision foundation models for ambiguous image segmentation.
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Figure 2: A-SAM Training Pipeline. We probabilistically model the prompt and object-level
ambiguity by jointly probabilities the SAM embeddings with PGN and IGN, respectively.

3 Method

3.1 Revisiting SAM by Probabilistic Perspective

SAM: Segment Anything Model. Given an image I and a set of user-given prompts P , which
could be a point, a box, or a rough mask, the Segment Anything Model (SAM) [22] employs a vision
transformer-based image encoder EncI to extract salient image feature FI and deploy a prompt
encoder EncP with length k to encode prompt embeddings TP , which are denoted as follows,

FI = EncI(I), TP = EncP (P ), (1)

where FI ∈ Rh×w×c and TP ∈ Rk×c, where the resolution of the image feature map is represented
by h,w, and the feature dimension is denoted by c. Subsequently, the encoded image and prompts are
introduced into the decoder DecM for interaction based on attention mechanisms. SAM constructs
the decoder’s input tokens by concatenating several learnable mask tokens TM as prefixes to the
prompt tokens TP . These mask tokens are accountable for generating the mask output M

M = DecM (FI , TP , TM ), (2)

A-SAM: Lifting SAM to Distributional Space. Unlike the one-to-one deterministic mapping in
SAM, we formulate a probabilistic latent distribution to enable the one-to-many ambiguous mapping
named A-SAM, with each observation being a sample from this hidden distribution. To this end, the
prompt and image embedding can be probabilistically formulated as a distribution:

T̃P ∼ PP (Θ), F̃I ∼ PI(Φ), (3)

where PP and PI denote a latent distribution for prompt embedding and image embedding, respec-
tively. T̃P and F̃I denotes a prompt at one sampling from the defined latent distribution at one time.
Formally, by implementing multiple rounds of sampling, we can construct a distributional mapping
of segmentation outputs with respect to their prompts, formulated as the format of expectation,

M̃ = DecM

(
F̃I , T̃P , TM

)
, st. T̃P ∼ PP (Θ), F̃I ∼ PI(Φ), (4)

where M̃ denotes the SAM output corresponding to one prompt sampling, which can also be
interpreted as the sampling from a virtual distribution PM (Ω) for the segmentation results obeying
parameters Ω. As a result, we can construct an optimized probability distribution T̃P ∼ PP (Θ) and
F̃I ∼ PI(Φ) by narrowing the gap between M̃ ∼ PM (Ω) and ground-truth distribution.

A-SAM: Inference Stage. After the training, A-SAM can model two types of latent distribution,
representing the ambiguity of the prompt variation and the varied object granularity, respectively.
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Based on this formulation, each latent sample drawn from the distribution represents a segmentation
candidate. Concretely, to predict a set of m segmentations, we apply the network m times to the
same input image. In each iteration i ∈ {1, . . . ,m}, we draw a random sample regarding prompt
embedding T̃P ∈ RNP and image embedding F̃I ∈ RNI respectively from PP (Θ) and PI(Φ). The
final prediction maps M̃ ∼ PM (Ω) can be obtained by Eq. 4. In what follows, we will primarily
focus on the methodology of training our overall ambiguous segmentation framework.

3.2 Context-aware Prompt Ambiguity Modeling

Distributional Prompt Representation. To model the distribution of prompt embedding, it is
imperative to estimate the parameters Θ of this distribution. We adopt an axisymmetric Gaussian
distribution to characterize the prompt embedding, which is dictated by two crucial parameters,
including mean µ and standard deviation σ. Then, we can sample a prompt embedding from the
given Gaussian distribution, which is shown as

T̃P ∼ PP (Θ) = N (µP ,diag(σP )), (5)

where µP and σP denotes the parameters characterized for prompt P . µP and σP respectively denote
the mean and standard deviation of the Axis Gaussian Distribution generated by the network, where
µP , σP ∈ RNP . This simple yet effective formulation enables the discrete prompt to be continuously
represented in the probabilistic latent space, making the uncertainty estimation available.

Context-aware Prompt Embedding Generation. To parameterize the latent prompt distribution,
we propose a prompt generation network (PGN) to effectively model the aforementioned Gaussian
related to prompt embedding. This network is simply designed to include several convolution blocks.
Considering the variation in salient regions within the image context, the required prompt positions
and sizes should also be varied. Therefore, we incorporate image context as prior knowledge into
PGN during the forward inference process. By integrating this prior knowledge, the network can
customize a unique prompt-associated axial Gaussian distribution for each image I , thereby achieving
adaptive and infinite sampling in the latent prompt distribution:

[µP , σP ] = FPGN (TP , FI ; Θ), (6)

where the parameters of the prompt generation network FPGN are modeled by the parameters Θ of
our desired distribution, as each set of generated mean and variance uniquely specifies a distribution.
Previous research indicates that allowing the model to conditionally perceive the ground truth label
distribution during the training phase enhances training stability for such tasks that exhibit significant
uncertainty. Thus, a posterior version for prompt generation network F post

PGN , parameterized by
ΘT , is further introduced during training, learning to generate the effective distribution for prompt
embedding when accessing the ground-truth label distribution:

[µT
P , σ

T
P ] = F post

PGN (TP , FI , GT ; ΘT ) (7)

We only employ this posterior network during training and guide the standard network, which cannot
perceive the true labels during testing, to achieve viable performance via a KL loss.

LPKL = DKL

(
N (µT

P ,diag(σ
T
P )) ∥ N (µP ,diag(σP ))

)
(8)

3.3 Granularity-aware Object Ambiguity Modeling

Distributional Object Representation. The model integrates object ambiguity from a probabilistic
perspective, enhancing its ability to solve problems in innovative ways. We instantiate various
segmentation labels to represent ambiguity levels and incorporate them as priors in visual feature
extraction, influencing object-related feature modeling for the input image I ,

F̃I = Concat(FI , F̃I ′), F̃I ′ ∼ PI(Φ) = N (µI ,diag(σI)), (9)

where µI and σI respectively denote the mean and standard deviation of the Axis Gaussian Distribu-
tion generated by the network, where µI , σI ∈ RNI . This approach enhances our understanding and
depiction of object diversity and uncertainty in a more profound and lucid manner, enabling better
adaptability and handling of variation and uncertainty.
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Granularity-aware Image Embedding Generation. SAM generates multiple candidate segmen-
tation masks for the same object at different granularities and levels, demonstrating the inherent
ambiguity of SAM related to object granularity. This inspires us to leverage this aspect to enhance the
model’s perception of ambiguous objects. We subsequently introduce an image generation network
(IGN) for object embedding to model this distribution:

[µI , σI ] = FIGN (FI ; Φ), (10)

where the parameters of the image generation network FIGN are modeled by the parameters Φ of
our desired distribution, as each set of generated mean and variance uniquely specifies a distribution.
Similar to the previous introduction of a posterior network to enhance learning in modeling prompt
ambiguity, we introduce a posterior version of IGN, denoted as F post

IGN , for perceptible labels.

[µT
I , σ

T
I ] = F post

IGN (FI , GT ; ΦT ) (11)

We only employ this posterior network during training and guide the standard network, which cannot
perceive the true labels during testing, to achieve viable performance via a KL loss.

LIKL = DKL

(
N (µT

I ,diag(σ
T
I )) ∥ N (µI ,diag(σI))

)
(12)

3.4 Overall Optimization

In line with current SAM techniques that generate segmentation masks for the same object at
different granularity levels, the present approach utilizes this feature to enhance the model’s capture
of multi-level object concepts through a common ensemble strategy. Specifically, given the multiple
candidate outputs from SAM, represented as {M̃1, M̃2..., M̃n}, where n is the number of scales. By
introducing a set of learnable mask weights W = {w1, w2..., wn} ∈ Rn, the final mask output can
be fine-tuned and obtained through a weighted sum calculation:

M̃ = Σn
i=1wi ⊙ M̃ i, (13)

where w1, w2, ..., wn are initialized to 1
n and subsequently fine-tuned to enable the model effectively

being aware of the object scales. By adaptively integrating multiple scale masks, the model’s
perception and modeling capabilities for complex target diversity are further enhanced.

When the representation from SAM is combined with the ground-truth segmentation GT from
the training samples, a guide-providing teacher prediction segmentation M̃T is created. A cross-
entropy loss CE(·, ·) is employed to penalize the discrepancies between the distribution of M̃T and
GT , i.e., PM (Ω) and PGT , where the distribution of GT is a constant value that does not need to
be parameterised, as: LSeg = CE(GT, M̃). Additionally, the KL losses introduced to regularize
training in prompt ambiguity and image ambiguity, respectively, in Eq. 8 and Eq. 12, are amalgamated
into a weighted sum with weight coefficient of αP and αI :

LAll = LSeg + αP · LPKL + αI · LIKL. (14)

The model is trained from scratch using randomly initialized weights. Parameters requiring update
include the prompt encoder and image encoder within SAM as well as PGN, posterior PGN, IGN, and
posterior IGN. The KL loss during training aligns the distribution of perceptually true segmentation
labels (encoded segmentation variants) with the distribution that is imperceptible at inference time.
Adhering to this training objective, the eventual distribution is adjusted to encompass all segmentation
variants for a specific input image.

4 Experiment

4.1 Experimental Setup

Dataset. Four datasets are utilized for comparison. The LIDC-IDRI dataset [2] is used for lung lesion
segmentation, consisting of lung computed tomography scans from 1010 subjects with annotations
from four domain experts. This dataset accurately captures the typical ambiguity found in CT imaging.
The BraTS 2017 dataset [18] is used for 3D brain tumor segmentation, comprising 285 cases of 3D
MRI images. Each image includes 155 slices and four modes (T1, T1ce, T2, and Flair). These slices
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SAM w/ Box Shift SEEM w/ Mask Shift Ours Ground Truth

Figure 3: Qualitative comparison with prompted segmentation models adapted for ambiguous
segmentation. Examples include three ground-truth expert labels and sampled segmentation masks.

Table 1: Comparison with prompted segmentation models adapted for ambiguous segmentation.

Metric GED ↓ HM-IOU ↑ Dmax ↑ Dmean ↑ GED ↓ HM-IOU ↑ Dmax ↑ Dmean ↑
Method LIDC BRATS

SegGPT w/ Point shift 0.462 0.280 0.573 0.153 0.451 0.032 0.144 0.046
SegGPT w/ Box shift 0.392 0.354 0.638 0.325 0.348 0.082 0.224 0.146
SEEM w/ Mask shift 0.381 0.401 0.692 0.272 0.210 0.228 0.281 0.194

SAM w/ Point shift 0.377 0.365 0.650 0.337 0.252 0.169 0.334 0.238
SAM w/ Box shift 0.361 0.380 0.673 0.253 0.239 0.242 0.344 0.246
A-SAM (Ours) 0.228 0.717 0.948 0.356 0.193 0.610 0.864 0.423

Method ISBI Sim10K

SegGPT w/ Point shift 0.649 0.662 0.659 0.323 0.259 0.128 0.151 0.127
SegGPT w/ Box shift 0.527 0.772 0.874 0.536 0.272 0.152 0.220 0.183
SEEM w/ Mask shift 0.522 0.821 0.908 0.760 0.238 0.271 0.344 0.246
SAM w/ Point shift 0.513 0.782 0.886 0.681 0.265 0.155 0.229 0.189
SAM w/ Box shift 0.491 0.792 0.896 0.685 0.255 0.160 0.239 0.199
A-SAM (Ours) 0.276 0.835 0.926 0.904 0.233 0.637 0.851 0.327

are annotated into four classes: Background, Non-enhancing/Necrotic Tumor Core, Edema, and
Enhancing Tumor Core. The ISBI 2016 dataset [14] contains 900 dermoscopic images for training
and 379 images for testing, all annotated by an expert with the lesion area. The images are resized and
padded to maintain a uniform scale. The SIM 10k dataset [19] consists of 10,000 images rendered by
the gaming engine Grand Theft Auto, providing bounding boxes of 58,701 cars in training images.

Implementation Details. For the LIDC dataset, we use the included four expert annotations to
represent different ambiguous segmentation labels. In the case of the BraTS dataset, we amalgamate
annotations from different categories into a binary mask, creating multiple segmentation masks to
mimic real-world ambiguous segmentation scenarios. For the ISBI dataset, we use the single label
provided. All three datasets are optimized using the Adam optimizer, with a learning rate of 1e-4,
over 100 epochs. For the SIM 10k dataset, we select images where pixels from two instances overlap,
creating three potential masks. Optimization for this dataset is carried out with Adam optimizer over
500 epochs, with a learning rate of 1e-4. The trade-off coefficients are set as αP = αI = 1.

Evaluation Metrics. Four metrics are used for evaluation: Generalized Energy Distance (GED),
Hungarian-Matched Intersection over Union (HM-IoU), Maximum Dice Matching (Dmax), and
Average Dice Matching (Dmean). GED is a metric used in ambiguous image segmentation tasks that
compares the distribution of segmentations. It leverages the distance between observations, where
lower energy signifies a better match between prediction and the ground truth. HM-IoU calculates the
optimal match of Intersection over Union (IoU) between annotations and predictions using Hungarian
algorithm, providing an accurate representation of sample fidelity. Dmax and Dmean represent the
best and average Dice scores between each prediction result and each ground truth, respectively.

4.2 Comparison to Prompted Segmentation Models

Tab. 1 presents the quantitative results on four datasets, offering a comparison with the current
state-of-the-art prompting-based segmentation models adapted for ambiguous segmentation tasks.
Specifically, we have adapted SegGPT [57], a SAM-like prompt-based segmentation approach that
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PixelSeg Mose Ours Ground Truth

Figure 4: Qualitative comparison with efforts specially designed for ambiguous segmentation.
Examples include four ground-truth expert labels and sampled segmentation masks.

Table 2: Quantitative comparison on ambiguous
segmentation on the LIDC dataset.

Method GED ↓ HM-IOU ↑ Dmax ↑
Prob UNet 0.324 0.423 -
HProb UNet 0.270 0.530 -
PHiseg 0.262 0.595 -
SSN 0.259 0.555 -
CAR 0.252 0.549 0.732
PixelSeg 0.243 0.614 0.814
CIMD 0.234 0.587 -
Mose 0.234 0.623 0.702
A-SAM (Ours) 0.230 0.763 0.959

Table 3: Quantitative comparison on ambiguous
segmentation on the BraTS dataset.

Method GED ↓ HM-IOU ↑ Dmax ↑ Dmean ↑
Prob UNet 0.225 0.521 0.645 0.364
PixelSeg 0.419 0.528 0.785 0.361
A-SAM (Ours) 0.192 0.603 0.886 0.438

Table 4: Quantitative comparison on ambiguous
segmentation on the ISBI dataset.

Method GED ↓ HM-IOU ↑ Dmax ↑ Dmean ↑
UNet - 0.815 0.902 0.902
Prob UNet 0.329 0.824 0.914 0.894
PHiseg 0.289 0.788 0.912 0.871
cFlow 0.306 0.822 0.918 0.892
A-SAM (Ours) 0.267 0.834 0.918 0.905

supports multimodal prompt input [30]. To simulate the actual scenario of prompt-based segmentation,
we use the smallest box containing all segmentation labels in each image’s mask as the standard
prompt. The standard prompt is then randomly perturbed multiple times by scaling [0.8,1.2] and
shifting up, down, left, or right by [-8,8] pixels to obtain different ambiguous segmentation results.
We have also adapted SEEM [66], a segmentation model that follows the in-context learning paradigm.
Given a reference image and a reference segmentation mask, it segments the object in the query
image. We select an image with multiple mask labels and apply random perturbations on the
reference segmentation mask by shifting [-8,8] pixels left, right, up, or down, resulting in multiple
different results on the query image. Comparing with SAM, we employ the same paradigm for
prompt acquisition and perturbation as SegGPT. We find that A-SAM outperforms the state-of-the-art
segmentation foundational models based on point or box in terms of diversity and accuracy. In
addition, A-SAM surpasses SEEM, a segmentation paradigm directly based on masks, in all aspects.
This indicates that our designed strategy accurately captures the ambiguous attributes present in
different images and objects, effectively achieving a balance between diversity and accuracy in
ambiguous segmentation tasks. Fig. 3 further illustrates the qualitative results of our method in
comparison with existing techniques. Our proposed A-SAM yields segmentations that preserve a
greater degree of accurate object detail, particularly boundary specifics, and offers an exceptional
visual representation of potential diversity, as compared to other technologies.

4.3 Comparison to Conventional Ambiguous Segmentation Models

Table 5: Quantitative comparison on ambiguous seg-
mentation on the SIM 10k dataset.

Method GED ↓ HM-IOU ↑ Dmax ↑ Dmean ↑
Prob UNet 0.292 0.391 0.462 0.229
PixelSeg 0.398 0.525 0.644 0.358

A-SAM (Ours) 0.241 0.596 0.833 0.421

The numerical outcomes across the four
datasets are delineated in Tab. 2, 3, 4, and
5, where we draw comparisons with con-
temporary leading-edge classical ambigu-
ous segmentation methodologies. Precisely,
the comparative method results on the LIDC
and ISBI datasets are direct quotations from
their respective papers, while outcomes on
other datasets are predicated on our reimple-
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mentation of their official code. The methods compared encompass recent ambiguous segmentation
methodologies that amalgamate a conditional variational autoencoder and UNet: Probabilistic U-
Net [23], Hierarchical Probabilistic U-Net (HProb UNet) [24], PhiSeg [3], Stochastic Segmentation
Networks (SSN) [47], PixelSeg [63], and the ambiguous segmentation endeavor of Calibrated Ad-
versarial Refinement (CAR) [20] and Collective Intelligence Medical Diffusion (CIMD) [50] that
integrate generative models. It also includes ensemble-based techniques utilizing a Mixture-of-
expert like the Mix of Stochastic Experts (Mose) [13]. We observe that the A-SAM transcends
state-of-the-art methodologies that amalgamate a conditional variational autoencoder and UNet in
terms of diversity and precision. Additionally, the A-SAM outstrips segmentation paradigms based
on generative models or ensembles in all dimensions. This suggests that our strategy accurately
apprehends the ambiguous characteristics inherent in varied images and objects, effectively attaining
equilibrium between diversity and precision in the ambiguous segmentation task. Fig. 4 further
elucidates the qualitative outcomes of our methodology juxtaposed with extant technologies. In
contrast to other technologies, the segmentations engendered by our proposed A-SAM preserve a
higher degree of exact object detail, particularly boundary details, and provide a distinctive visual
representation of potential diversity.

4.4 Further Empirical Results
Table 6: Ablation study on the proposed key components.

No Key Components GED ↓ HM-IOU ↑ Dmax ↑ Dmean ↑
No Ambiguity Modeling 0.361 0.380 0.673 0.253
No Object Ambiguity 0.370 0.389 0.691 0.230
No Prompt Ambiguity 0.308 0.674 0.930 0.336
No Posterior Distillation 0.266 0.385 0.805 0.341
A-SAM (Ours) 0.228 0.717 0.948 0.356

Ablation Study. Tab. 6 delineates
the consequences of eliminating vari-
ous principal strategies of the A-SAM.
No Ambiguity Modeling precludes all
ambiguous modeling, including both
prompt embedding and image embed-
ding levels. At this stage, we employ
the smallest box encompassing all seg-
mentation labels within each image mask as the standard prompt. This standard prompt is then
randomly perturbed numerous times by scaling [0.8, 1.2] and shifting up, down, left, or right by [-8,
8] pixels, yielding different ambiguous segmentation outcomes. No Object Ambiguity and No Prompt
Ambiguity either eradicates the ambiguity related to the object or the prompt, that is, it alters its object
embedding or prompt embedding to a regular deterministic rather than an ambiguous characteristic.
No Posterior Distillation eliminates a process of network training guided by a teacher network that
can perceive the actual labels. We discover that when any component is excised, the performance
correspondingly deteriorates, which underscores the effectiveness of our proposed several strategies.
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Figure 5: Robustness analysis of our A-
SAM framework over the SAM baseline
against prompt perturbation.

Robustness Analysis. Fig. 5 reports the IoU perfor-
mance of A-SAM under a variety of instantaneous
perturbations. The blue and red solid lines respec-
tively illustrate the performance changes of the SAM
model and our method when prompted by different
disturbances, while the dashed lines depict the perfor-
mance of both models under standard prompts, serv-
ing as an upper bound. We selected both light and
severe degrees of perturbation. Specifically, ’Shift’
indicates a random offset of the box by [0,5] pixels,
’Scale’ represents a random scaling of the box by
[0.85,1.15], ’Shift+’ denotes a random offset of the
box by [0,8] pixels, and ’Scale+’ implies a random
scaling of the box by [0.7,1.3]. Compared to the
vanilla SAM baseline, A-SAM demonstrates robust-
ness against various instantaneous perturbations.

5 Conclusion

The continued evolution of vision foundation models like the Segment Anything Model (SAM)
demonstrates impactful universality, while also posing challenges in producing ambiguous and uncer-
tain predictions. Minor changes in the prompt can cause significant variations in the model’s output,
challenging its required robustness. While many works aim to stabilize SAM’s prediction capabilities,

9



this paper uniquely explores leveraging this perceived flaw to advantageously model inherently
ambiguous data distributions. We introduce an innovative optimization framework grounded in a
conditional variational autoencoder, which cohesively models the prompt and the object granularity
with a latent probability distribution. This approach endows the model with the capacity to adaptively
perceive and represent the genuine ambiguous label distribution, thereby enabling SAM to generate a
controlled series of diverse, persuasive, and reasonable segmentation outputs. Our comprehensive
experiments across multiple practical deployment scenarios involving ambiguity underscore the
exceptional performance of our framework, thereby illuminating the need for increased focus on
addressing related challenges and opportunities.
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A Appendix

The following contents are provided in the supplements:

• Limitation and Border Impact.

• More experimental details (Sec. 4.1 in main paper).

• Details of network architecture of A-SAM.

• More visualization about our experiments. (Sec. 4.2 and Sec. 4.3 in the main paper).

A.1 Limitation and Border Impact

Limitation. The current approach is constrained by the uncontrolled and unquantifiable nature of uncertainty.
This limitation means that the accuracy of handling uncertainty varies across different scenarios. Further
systematic analysis is required to comprehend the underlying factors that result in some scenarios being more
manageable than others in terms of uncertainty.

Broader Impacts. Ambiguous segmentation and uncertainty handling are essential in fields such as image
processing and medical diagnostics. Fuzzy segmentation improves our understanding of complex or unclear
image content. Proper uncertainty management can enhance prediction accuracy and decision-making, especially
in medical diagnostics, aiding in precise disease diagnosis and treatment planning. Ensuring image processing
safety is also critical for user privacy and data security, thereby building trust and satisfaction.

A.2 Detailed Experimental Setup

Dataset. Four datasets are used for comparison. LIDC-IDRI [2] is a dataset for lung lesion segmentation, which
encompasses a voluminous collection of lung computed tomography scans from 1010 distinct subjects, with
manual annotations provided by a panel composed of four domain experts. A diversified panel of 12 radiologists
leveraged their expertise to provide annotation masks for the dataset, a characteristic that allows the dataset to
reflect the typical ambiguity frequently encountered in CT imaging, thereby ensuring comprehensive, accurate
annotations that represent a broad range of expert opinions. The resolution of all images is 128×128. BraTS
2017 [18] is a dataset for 3D brain tumor segmentation, which consists of 285 cases of 3D MRI images, each
image comprising 155 slices. Each slice exhibits four modes (T1, T1ce, T2, and Flair) and is meticulously
annotated by professional radiologists into four classes: Background (BG), Non-enhancing/Necrotic Tumor
Core (NET), Edema (OD), and Enhancing Tumor Core (ET). The resolution of all images is 240×240. ISBI
2016 [14] is a dermoscopy dataset containing 900 dermoscopic images for training and 379 images for testing.
Each image is 8-bit RGB and is annotated by an expert with the lesion area. To keep each image at the same
scale, we follow [61] to resize the images to 256×192 and pad the top and bottom with 32 pixels, respectively,
to get 256×256 images. SIM 10k [19] consists of 10,000 images that are rendered by the gaming engine Grand
Theft Auto. In SIM 10k, bounding boxes of 58,701 cars are provided in the 10,000 training images. All images
are used in the training.

Implementation Details. For LIDC, we directly employ the four expert annotations included in the dataset to
represent four different ambiguous segmentation labels [2]. For BraTS, we overlay and amalgamate annotations
from disparate categories, subsequently transforming the outcome into a binary mask that comprises solely
the foreground and background [18]. This process is geared towards generating multiple segmentation masks
to mimic real-world ambiguous segmentation scenarios, thereby augmenting the rigor and reliability of the
experiment. For ISBI, we directly use the single label included in the dataset [14]. For the aforementioned three
datasets, we carry out optimization using the Adam optimizer, with a learning rate of 1e-4, over 100 epochs. For
the SIM 10k dataset, we contemplate a practical overlap setting. Specifically, we select images in which pixels
from two instances within a frame overlap, thereafter creating three potential masks from the two overlapping
instances. These masks could represent the first object, the second object, or the union of both. For SIM 10k [19],
we carry out optimization using the Adam optimizer with a learning rate of 1e-4, over 500 epochs. The trade-off
coefficients in Eq. 14 are set as αP = αI = 1.

Evaluation Metrics. Four metrics are used for strict evaluation. Generalized Energy Distance (GED) is a
commonly used metric in ambiguous image segmentation tasks that leverages distance between observations
by comparing the distribution of segmentations [23], as D2

GED(Pgt, Pout) = 2E[d(S, Y )] − E[d(S, S′)] −
E[d(Y, Y ′)], where d corresponds to the distance measure d(x, y) = 1− IoU(x, y), Y and Y ′ are independent
samples of Pgt and S and S′ are sampled from Pout. Lower energy indicates better agreement between
prediction and the ground truth distribution of segmentations. Hungarian-Matched Intersection over Union
(HM-IoU) is used by calculating the optimal match of Intersection over Union (IoU) between annotations and
predictions, which is searched by Hungarian algorithm. This metric offers a more accurate representation of
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Figure 6: More visualization on the LIDC dataset, displaying only the first 4 samples.

sample fidelity, contrasting the Generalized Energy Distance (GED) which tends to over-reward sample diversity.
The Hungarian algorithm identifies the best one-to-one correspondence between objects in two sets. In this
context, we utilize IoU(Y, Y ′) to determine the similarity between two samples. Maximum & Average Dice
Matching (Dmax & Dmean) is respectively the best and average results over the Dice scores between each
prediction result and each ground truth.

A.3 Network Architecture

A.3.1 Prompted SAM

In the experiment, we adopted the Vit-b version of the SAM model and accommodated EncI by reducing the
size of the output feature map FI by 1

8
compared with the original. This change is expected to reduce the

required memory usage during the training process and accelerate the inference speed of the model. In addition,
we adjusted the SAM model to multi output mode with 8 outputs, and set the pixel mean and pixel std parameters
to 0 and 1, respectively.

A.3.2 Prompt Generation Network (PGN)

The network mainly consists of two parts. (1) Encoder: This part contains 4 convolutional blocks, each with
3 convolutional layers inside. These 4 convolutional blocks have channel numbers of 32, 64, 128 and 192,
respectively, to gradually extract and deepen features. (2) Axis Gaussian Generation Network: This network
consists of a 1x1 convolutional layer with 256 channels and an axial Gaussian distribution generator. This design
first increases the dimensionality of the feature map output by the Encoder through a 1x1 convolutional layer to
obtain 256 dimensional µ and σ, and then these two parameters are fed into a Gaussian generator to generate the
distribution of T̃P .

A.3.3 Diversity-aware Assembling Module

In our experimental design, we set the number of mask weights W to 8 and initialize each weight to 1
8

. This
setting aims to correspond to 8 outputs of SAM model. In the first stage of the experiment, these weight W
will be trained to meet the model requirements. In the second stage, we will freeze these weights. This is to
enable the prompt generation network to generate more diverse and representative segmentation results, thereby
effectively guiding the modeling of T̃P .

A.4 More Visualization about Experiments

As demonstrated in Fig. 6 and Fig. 7, these illustrations provide an extensive visualization of our research
outcomes. These figures meticulously depict various aspects of our data, aiding readers in gaining a profound
understanding of our research findings.

16



Input

Ground Truth

Pro. U-net

PixelSeg

P²SAM

Input

Ground Truth

Pro. U-net

PixelSeg

P²SAM

Figure 7: More visualization on the BraTS2017 dataset, displaying only the first 4 samples.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction sections offer a comprehensive discussion of the
manuscript’s context, intuition, and ambitions, as well as its contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the work are discussed by authors at the end of the paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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• The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?
Answer: [Yes]
Justification: For each theoretical result, the paper provides the full set of assumptions and a complete
(and correct) proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The pipeline of the methods and the details of experiments are presented with corre-
sponding reproducible credentials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: All utilized data are sourced from open-access platforms. The code, which will be made
publicly available, is uploaded as a zip file.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The pipeline of the methods and the details of experiments are presented with corre-
sponding reproducible credentials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results contain the standard deviation of the results over several random runs.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The details of experiments are presented with corresponding reproducible credentials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [Yes]

Justification: Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, by requiring that users adhere to usage
guidelines or restrictions to access the model or implementing safety filters.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The original owners of assets, including data and models, used in the paper, are properly
credited and are the license and terms of use explicitly mentioned and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets

21

paperswithcode.com/datasets


Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well documented and provided alongside the
assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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