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ABSTRACT

Vision-Language Models (VLMs) have demonstrated impressive performance
across various multimodal tasks. However, deploying large teacher models in
real-world applications is often infeasible due to their high computational cost. To
address this, knowledge distillation has been widely explored to transfer knowl-
edge from a large teacher model to a smaller student model. In this paper, we
propose a novel distillation framework that integrates Transfer Entropy (TE) as a
regularization term to enhance information flow from the teacher to the student
model. TE quantifies the directional dependency between teacher and student em-
beddings, encouraging the student model to effectively capture structural knowl-
edge from the teacher. To efficiently approximate TE in high-dimensional embed-
ding spaces, we introduce two surrogate formulations based on cosine similarity:
(1) TE via cosine similarity of directional changes in embeddings and (2) TE
via concatenated differences across modalities. Our experiments, conducted on
the MSCOCO 2014 and Flickr8k datasets using CLIP-based teacher and student
architectures, demonstrate that incorporating TE significantly improves retrieval
performance. Through extensive analysis, we show that TE-based regularization
enhances the student model’s ability to capture multimodal associations and main-
tain representational consistency. Our findings suggest that TE is an effective tool
for improving knowledge transfer in VLM distillation, bridging the performance
gap between compact student models and their larger teacher counterparts.

1 INTRODUCTION

Vision-Language Models (VLMs) have emerged as a powerful framework for learning joint repre-
sentations of images and text, enabling applications such as image captioning, visual question an-
swering, and cross-modal retrieval (Radford et al., 2021; Jia et al., 2021). However, state-of-the-art
VLMs are often computationally expensive, making them impractical for deployment in resource-
constrained environments. To address this challenge, knowledge distillation (Hinton et al., 2015) has
been widely adopted to transfer knowledge from a large teacher model to a smaller, more efficient
student model while maintaining performance.

Existing approaches to VLM distillation primarily rely on contrastive learning (Li et al., 2022;
Yang et al., 2024) and divergence-based losses, such as Kullback-Leibler (KL) divergence (Li et al.,
2024b), to align the student model’s probability distribution with that of the teacher. However, these
methods do not explicitly quantify the directed information flow between the teacher and student
representations. As a result, traditional distillation losses may overlook the sequential and structural
dependencies present in the learning dynamics of multimodal embeddings.

To overcome these limitations, we propose a novel distillation framework that integrates Transfer
Entropy (TE) as a regularization mechanism to enhance the student model’s ability to mimic the
teacher’s information transfer patterns. TE is a measure of directed information flow between two
systems, originally developed in information theory (Schreiber, 2000). In the context of VLM dis-
tillation, TE quantifies how much additional knowledge the teacher provides to the student beyond
what the student has already learned from past states. This allows us to explicitly encourage mean-
ingful knowledge transfer, ensuring that the student model captures the evolving structure of the
teacher’s representations.

The key contributions of this work are as follows:
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• We introduce TE as a regularization method for VLM distillation, explicitly capturing the
directed information flow from the teacher model to the student.

• We theoretically show that the first-order (linear) expansion of TE leads to a computable
surrogate based on a cosine similarity between the teacher and student-process Jacobians.

• We propose two novel TE approximations based on cosine similarity, enabling efficient
computation of information transfer in high-dimensional multimodal embeddings.

• We demonstrate that integrating TE into the distillation loss function leads to significant im-
provements in retrieval performance, outperforming traditional contrastive, KL-divergence,
Mean Squared Error (MSE), and Interactive Contrastive Learning (ICL) distillation meth-
ods.

• We provide extensive empirical validation on the MSCOCO and Flickr8k datasets using
different teacher-student distillation setups, showing that TE-based regularization enhances
multimodal representation learning and improves student model alignment with the teacher.

2 RELATED WORK

2.1 KNOWLEDGE DISTILLATION

Knowledge distillation enables the transfer of learned representations from a large teacher network
to a smaller student model (Hinton et al., 2015). Building on this idea, techniques utilizing interme-
diate representations have been developed to guide the training of deeper yet more efficient networks
(Romero et al., 2015). Other approaches have leveraged attention mechanisms by emphasizing spa-
tial attention maps (Zagoruyko & Komodakis, 2017) or addressed scenarios where original training
data is unavailable through data-free methods (Huang & Wang, 2017).

Further research has focused on aligning internal representations between teacher and student net-
works. Contrastive methods harmonize feature spaces (Tian et al., 2019), while attention-based
strategies have been tailored for transformer architectures (Touvron et al., 2021). Information-
theoretic approaches have also emerged, either by maximizing mutual information (Ahn et al., 2019)
or by capturing inter-sample relationships (Park et al., 2019). In addition, leveraging the probability
distribution of the teacher network has proven effective in guiding the student (Passalis & Tefas,
2018). In (Liu et al., 2022), mutual relation distillation was proposed as a face recognition dis-
tillation method called CoupleFace. In (Chen et al., 2023), an objective function in multimodal
representation learning was proposed to preserve the mutual information between the teacher and
the auxiliary modality model for knowledge distillation.

Recent studies have ventured into the frequency domain. Frequency attention modules enable stu-
dents to adjust feature representations under teacher guidance (Pham et al., 2024), and semantic
frequency prompts have been employed to enhance dense prediction tasks (Zhang et al., 2024).
Moreover, methods optimizing frequency representations have been proposed to generate compact
synthetic datasets (Shin et al., 2023).

Other contributions in the area include self-distillation techniques for generating versatile text em-
beddings (Chen et al., 2024), strategies that synthesize minimal training samples to reduce compu-
tational overhead while preserving accuracy (Liu et al., 2024), dual-teacher frameworks (Li et al.,
2024c), and the use of orthogonal projections to bolster knowledge transfer (Miles et al., 2024). An
additional framework has been introduced to search for optimal distillation strategies tailored for
object detection tasks (Li et al., 2024a).

2.2 VISION-LANGUAGE MODEL DISTILLATION

In the vision-language domain, early work aligned object semantics with textual descriptions to
improve model performance (Li et al., 2020), while large-scale pre-training methods have been
employed to learn universal image-text representations (Chen et al., 2020). Techniques adapting
image-based models to video data have been proposed by leveraging high-quality pseudo-captions
(Zhao et al., 2024), and methods to condense large datasets into smaller, information-rich synthetic
sets have also been developed (Wu et al., 2023b).
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Subsequent efforts have focused on enhancing reasoning and retrieval capabilities. Instruction-
tuning frameworks have been devised to enable models to solve complex visual tasks through dis-
tilled reasoning abilities (Hu et al., 2024), and methods for open-vocabulary object detection via
multimodal knowledge transfer have been explored (Gu et al., 2021). Approaches targeting video-
language retrieval tasks (Pei et al., 2023) and incorporating frequency information to boost out-of-
distribution generalizability (Li et al., 2023) further extend these ideas. Complementary techniques
include methods leveraging vision-language models to enhance image classification performance in
diverse domains (Addepalli et al., 2024).

Recent efforts to compress and specialize multimodal models have led to techniques that reduce
model size while maintaining strong performance on multimodal tasks (Fang et al., 2021). Some
approaches enable multimodal generation by distilling vision-language knowledge (Dai et al., 2022),
while others refine student models for specific applications through targeted distillation techniques
(Wang et al., 2022). Additionally, a method incorporating affinity mimicking and weight inheritance
has been proposed to compress CLIP models while preserving their strong zero-shot performance
(Wu et al., 2023a).

Very recently, a Mixture-of-Visual-Encoder Knowledge Distillation (MoVE-KD) (Cao et al., 2025)
was proposed to distill the unique proficiencies of multiple vision encoders into one efficient encoder
model. A model Align-KD was proposed to guide the student model in VLM distillation to learn
the cross-modal matching in the shallow layers (Feng et al., 2025). Several loss functions have been
explored for CLIP distillation. Yang et al. (Yang et al., 2024) utilized ICL and MSE loss, while
Li et al. (Li et al., 2024b) applied KL divergence for VLM distillation. In this work, we propose
leveraging TE as a reward function to enhance VLM distillation.

3 INTRODUCTION TO TRANSFER ENTROPY

Transfer Entropy is an information-theoretic measure introduced by Schreiber (Schreiber, 2000) to
quantify the directed transfer of information between two stochastic processes. It is particularly use-
ful for detecting asymmetrical interactions and causal relationships, as it measures the influence that
the past of one process, X , has on the future of another process, Y , beyond what can be explained
by the past of Y alone.

For two discrete-time stochastic processes X(t) and Y (t), the transfer entropy from X to Y is
formally defined as (Schreiber, 2000):

TX→Y =
∑
t

p(yt+1, yt, xt) log
p(yt+1 | yt, xt)

p(yt+1 | yt)
, (1)

where p(·) represents probability distributions of the respective random variables.

Transfer entropy is closely related to conditional mutual information. It can be rewritten as the
conditional mutual information between Yt+1 and Xt, conditioned on Yt (Shahsavari Baboukani
et al., 2020):

TX→Y = I(Yt+1;Xt | Yt), (2)

where I(Yt+1;Xt | Yt) is the mutual information between Yt+1 and the history of X , conditioned
on the history of Y . The proof is provided in Appendix A. This formulation reveals that transfer
entropy measures the additional information that Xt provides about the future state Yt+1, over and
above the information provided by Y ’s own history Yt. In Appendix B, we present an overview of
prior work on mutual information and TE estimation.

4 METHOD

4.1 WHY IS TRANSFER ENTROPY BENEFICIAL FOR VLM DISTILLATION

In the context of VLM distillation, we aim to maximize the information flow from a teacher model
to a student model across both text and image modalities. To formalize this process, we define the
following components:
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• V
(T )
t : The teacher’s intermediate visual representation (i.e., image features) at optimization

step t.

• S
(T )
t : The teacher’s intermediate textual representation at optimization step t.

• V
(S)
t : The student’s current visual representation at optimization step t.

• S
(S)
t : The student’s current textual representation at optimization step t.

• V
(S)
t+1 : The student’s updated visual representation at optimization step t+ 1 after incorpo-

rating guidance from the teacher.

• S
(S)
t+1: The student’s updated textual representation at optimization step t+1 after incorpo-

rating guidance from the teacher.

The key idea is to quantify how much additional information from the teacher’s guidance comprising
both the teacher’s textual representation S

(T )
t and the teacher’s visual features V (T )

t contributes to
predicting the student’s next states V (S)

t+1 and S
(S)
t+1, beyond what is already present in the student’s

current states V (S)
t and S

(S)
t . This can be expressed using transfer entropy as

T
(S

(T )
t ,V

(T )
t )→(S

(S)
t ,V

(S)
t )

= I
(
(V

(S)
t+1 , S

(S)
t+1); (V

(T )
t , S

(T )
t ) | (V (S)

t , S
(S)
t )

)
, (3)

where I(·; · | ·) denotes the conditional mutual information. This formulation measures the extent
to which the teacher’s combined text and image signals provide new information that drives the
refinement of the student’s textual and visual representations.

A high value of T
(S

(T )
t ,V

(T )
t )→(S

(S)
t ,V

(S)
t )

indicates that the teacher’s guidance significantly influ-

ences the student’s update. In the early stages of distillation, when the student’s representations V (S)
t

and S
(S)
t are still underdeveloped, the influence of S(T )

t and V
(T )
t is expected to be strong, resulting

in a high transfer entropy. By analyzing T
(S

(T )
t ,V

(T )
t )→(S

(S)
t ,V

(S)
t )

, we gain valuable insights into
the balance and effectiveness of the information flow between the text and image modalities during
distillation. Such insights can inform improvements in both the teacher’s conditioning mechanism
and the student’s learning strategy, ultimately leading to more faithful and robust VLM distillation.

One might argue that since data samples within a batch are typically shuffled and independent,
the assumption of temporal dependence between states may not hold. However, in (3), we do not
interpret the index t as wall-clock time or as referring to temporally correlated samples (e.g., in
videos). Instead, t represents the learning step of the student model, while the teacher remains fixed
throughout training:

• Forward pass (step t): The teacher generates modality-specific hidden representations
(S

(T )
t , V

(T )
t ) for a given mini-batch. These remain constant, as the teacher’s weights are

frozen.

• Backward + parameter update: The student parameters are updated, producing new hidden
states (S(S)

t+1, V
(S)
t+1) for the same mini-batch during the next forward pass.

Therefore, TE is computed across optimization steps for the same data examples, rather than across
different samples within a shuffled batch. This approach is consistent with prior work in information-
theoretic analyses of learning dynamics (Goldfeld et al., 2019)(Achille & Soatto, 2018).

4.2 APPROXIMATING TE USING COSINE SIMILARITY

In the context of VLM distillation, computing exact transfer entropy poses significant challenges
due to the inherently high dimensionality of image and text representations. For example, in CLIP
ResNet-50, the image and text embedding dimension is 1024 (Radford et al., 2021). Transfer en-
tropy, a measure of the directed information flow between two systems, requires estimating condi-
tional mutual information between high-dimensional feature spaces of teacher and student models.
However, the joint distribution of image features (e.g., pixel-level data or patch embeddings) and text
tokens (e.g., contextualized word embeddings) leads to an exponential increase in computational
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complexity. This issue, often referred to as the curse of dimensionality (Köppen, 2000), renders
exact computation of transfer entropy intractable. In (Gowri et al., 2025), it shows the difficulty of
estimating mutual information in high dimensions. As represented in (2), TE is a conditional mu-
tual information of two stochastic processes, which is more challenging. We propose the following
Theorem to serve as the theoretical basis for approximating TE.
Theorem 1 (First-order TE–Jacobian relation). Let x ∈ Rd be an input (image–caption pair), and
let fT , fS : Rd → RD denote the teacher and student encoders with Jacobians

JT (x) = ∇xfT (x), JS(x) = ∇xfS(x) ∈ RD×d. (4)

Under a first-order linear–Gaussian approximation of the conditional mutual information, the one-
step transfer entropy from the teacher to the student satisfies

TS
T (x) ∝ cos

(
J̃S(x), J̃T (x)

)
, (5)

where the Frobenius-normalized Jacobians are

J̃S(x) =
JS(x)

∥JS(x)∥F
, J̃T (x) =

JT (x)

∥JT (x)∥F
, (6)

and cos(A,B) = ⟨A,B⟩F denotes the cosine similarity (Frobenius inner product) between matrices
A and B.

In Appendix C, we provide the proof for this theorem.

In practice, we approximate the Jacobians using finite differences (Nocedal & Wright, 1999)(Baydin
et al., 2018):

JSδx⇝ fS(x+ δx)− fS(x), JT δx⇝ fT (x+ δx)− fT (x),

where δx is a small input perturbation. Based on the these theoretical results, we propose two
approximations on TE using cosine similarity.

4.2.1 TE APPROXIMATION VIA COSINE SIMILARITY OF DIFFERENCES

Let v(S) and s(S) denote the image and text embeddings from the student model, and v(T ) and s(T )

denote the corresponding embeddings from the teacher model. The TE approximations are based
on computing the cosine similarity between the directional changes in embeddings of the student
and teacher models. The surrogate methods effectively captures how well the student follows the
teacher’s representation evolution.

To approximate TE, the method first calculates the difference between consecutive embeddings for
both image and text modalities. This process assumes that batch ordering approximates temporal
ordering, meaning that consecutive samples in the batch correspond to incremental states of repre-
sentation learning. The embedding differences are computed as

∆v
(S)
i = v

(S)
i+1 − v

(S)
i , ∆v

(T )
i = v

(T )
i+1 − v

(T )
i (7)

for images, and
∆s

(S)
i = s

(S)
i+1 − s

(S)
i , ∆s

(T )
i = s

(T )
i+1 − s

(T )
i (8)

for text embeddings.

Once the differences are obtained, the next step involves computing the cosine similarity between the
student’s and teacher’s directional changes. Cosine similarity (Xia et al., 2015) serves as a measure
of alignment between the two models, ensuring that if the student’s representation updates closely
follow the teacher’s, meaningful information transfer is occurring. The cosine similarity for images
is given by

cos θ
(v)
i =

⟨∆v
(S)
i ,∆v

(T )
i ⟩

∥∆v
(S)
i ∥∥∆v

(T )
i ∥+ ϵ

, (9)

where ϵ is a small constant to prevent division by zero. While for text embeddings, it is given by

cos θ
(s)
i =

⟨∆s
(S)
i ,∆s

(T )
i ⟩

∥∆s
(S)
i ∥∥∆s

(T )
i ∥+ ϵ

. (10)
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To approximate the overall TE for each modality, the method computes the mean cosine similarity
across all batch elements. The image-based TE is computed as

TEimg =
1

B − 1

B−1∑
i=1

cos θ
(v)
i , (11)

while the text-based TE follows the same formulation:

TEtxt =
1

B − 1

B−1∑
i=1

cos θ
(s)
i . (12)

The final TE approximation is obtained by averaging the image and text TE values:

TE =
1

2
(TEimg + TEtxt) . (13)

4.2.2 TE APPROXIMATION VIA COSINE SIMILARITY OF CONCATENATED DIFFERENCES

An alternative approach to approximate TE involves combining the directional changes from both
image and text modalities before computing the cosine similarity. In this method, we first calculate
the differences between consecutive embeddings for both modalities, same as (7)(8). Instead of
computing the cosine similarity for each modality independently and then averaging the results, we
concatenate the difference vectors from both modalities into a single vector. That is, for each index
i, we define the concatenated difference vectors as

∆c
(S)
i =

[
∆v

(S)
i ∥∆s

(S)
i

]
, (14)

∆c
(T )
i =

[
∆v

(T )
i ∥∆s

(T )
i

]
, (15)

where ∥ denotes concatenation along the feature dimension.

The cosine similarity between the concatenated difference vectors is then computed as

cos θ
(cat)
i =

⟨∆c
(S)
i ,∆c

(T )
i ⟩

∥∆c
(S)
i ∥ ∥∆c

(T )
i ∥+ ϵ

, (16)

with ϵ being a small constant for numerical stability. Finally, the overall TE approximation is ob-
tained by averaging these cosine similarities over all consecutive pairs in the batch:

TE =
1

B − 1

B−1∑
i=1

cos θ
(cat)
i . (17)

This concatenation-based surrogate for TE captures the joint evolution of image and text represen-
tations, providing a single metric that reflects how well the student model’s combined modality
updates align with those of the teacher.

In Appendix D, we present evaluation results for our two TE approximation methods and compare
them with exact TE computation in simple experimental settings. In Appendix E, we analyze the
computational cost of exact TE versus TE approximations.

4.3 LOSS FUNCTIONS FOR VLM DISTILLATION

To effectively transfer knowledge from the teacher model to the student model in a VLM distillation
setting, we employ a combination of Contrastive Loss (CL), KL divergence, MSE, ICL, and TE. The
first four loss functions are introduced in Appendix F. These components ensure that the student
model aligns its representations with the teacher while maintaining structural consistency across
modalities.

To integrate the transfer entropy component, we subtract the surrogate TE reward from the overall
loss. Combining these terms, the total loss function becomes:

Ltotal = Lcontrastive + αLKL + β LMSE + δLICL − γ TE, (18)

6
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where α, β, δ and γ are weighting factors that balance the contributions of the KL divergence loss,
the MSE loss, the ICL loss, and the TE reward, respectively. This composite loss encourages the
student model to not only align with the teacher’s predictions but also to capture the directional evo-
lution of feature representations, resulting in more faithful distillation of multi-modal interactions.

By integrating CL, KL divergence, MSE loss, ICL loss, and TE-based regularization, we construct a
comprehensive loss function that balances distributional alignment and information transfer, leading
to a more effective VLM distillation process.

5 EXPERIMENTS

Our experiments consist of the following configurations: (1) Teacher: ResNet-50, Student: ResNet-
34; (2) Teacher: ViT-B/16, Student: ResNet-34; (3) Teacher: ResNet-50, Student: ResNet-18. We
evaluate these settings on two datasets: MSCOCO 2014 (Lin et al., 2014) and Flickr8k (Hodosh
et al., 2013)(Marco et al., 2023). We also include one application in classification based on Food
101 dataset (Bossard et al., 2014) in Appendix G.5.

In this Section, the teacher model employed in our experiments is OpenAI’s CLIP RN50 (Radford
et al., 2021), which integrates both an image encoder and a text encoder. The image encoder is
based on a modified ResNet-50 architecture, comprising approximately 38.3 million parameters.
The text encoder is a 12-layer Transformer (Vaswani et al., 2017) with a hidden dimension of 512,
contributing around 63.1 million parameters (Radford et al., 2021). Combined, the CLIP RN50
model encompasses approximately 102 million parameters, positioning it as a moderately large-
scale vision-language model well-suited for knowledge distillation tasks.

In contrast, the student model is based on RN34 for the image encoder and a lightweight Trans-
former for the text encoder. The RN34 architecture contains approximately 21.8 million parameters,
and the final fully connected layer is modified to output 1024-dimensional features, keeping the pa-
rameter count relatively stable (He et al., 2016). The text encoder consists of an embedding layer
with a vocabulary size of 49,408 and a hidden dimension of 1024, contributing approximately 25.3
million parameters (Mehta et al., 2020). Additionally, the student Transformer has only 2 encoder
layers with an 8-head attention mechanism, leading to an estimated total of 5-10 million parame-
ters (Vaswani et al., 2017). Combining both encoders, the total parameter count of the student model
is approximately 55-60 million, significantly smaller than the teacher model while maintaining ef-
fective knowledge representation capabilities.

Our experiments are conducted on the MSCOCO 2014 dataset (Lin et al., 2014), which comprises
approximately 82,783 training images and 40,504 validation images, each paired with multiple tex-
tual descriptions. This dataset is widely adopted in vision-language research due to its extensive and
diverse image-caption pairs.

For clarity, we refer to the TE approximation introduced in Section 4.2.1 as TE1 and the approx-
imation in Section 4.2.2 as TE2. The student model is trained using various combinations of loss
functions, including Contrastive Loss (CL), KL divergence, MSE loss, ICL loss, and our proposed
TE rewards. The total loss function is defined in (18). We conducted experiments using different
combinations of these loss components. Our TE-based regularization is designed to capture the di-
rectional information flow between the teacher and student feature encoders, thereby encouraging
the student to mimic the teacher’s behavior more closely.

The hyperparameters α, β, δ, and γ in (18) are designed to balance the contributions of the CL,
KL, MSE, ICL, and TE terms in the overall objective. We assign larger values to hyperparameters
associated with loss components that naturally exhibit smaller magnitudes, ensuring that each term
contributes comparably to the optimization process. The training losses and TE for different loss
functions are provided in Fig. 3.

In this experiment, we used weighting factors α = 1.0, β = 50, δ = 1.0, γ = 1.0, and a temperature
parameter τ = 0.07. These hyperparameters were carefully selected to balance the contributions of
each loss component, ensuring effective knowledge transfer from the teacher to the student model
while maintaining training stability. The batch size was set to |B| = 64, and the training data was
shuffled to eliminate correlations between neighboring samples.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

We utilized Google Colab Pro with a T4 GPU and High-RAM for training and performance evalua-
tion. Due to time and budget constraints, we trained the student model, RN34, for only 10 epochs in
each loss function combination scenario. The training and evaluation process for each experimental
setup took approximately 14 hours.

Figure 3 illustrates that the total training loss decreases steadily over epochs while the TE rewards
show an increasing trend. This behavior indicates that the model effectively minimizes the overall
objective and progressively captures the directional information flow between teacher and student
representations. The TE-based regularization plays a key role in maintaining structured alignment
during training, which is critical for effective knowledge transfer. For experiments with TE1 and
TE2 such as Fig. 3f and Fig. 3l, the TE1 and TE2 monotonically increase with very close but
different values. However, the KL loss and MSE don’t decrease clearly with more training epochs. In
loss functions with KL, ICL, MSE, TE, different combinations may impact each other. For example,
in Contrastive + TE1 (Fig. 3d), TE1 achieved average value 0.7242 at epoch 10; in Contrastive +
KL + TE1 (Fig. 3g), TE1 achieved average value 0.7865 at epoch 10; and in Contrastive + KL +
ICL + TE1 (Fig. 3j), TE1 achieved average value 0.4611 at epoch 10. So this demonstrated that KL
promotes TE, but ICL discourages TE.

We evaluated the performance of the trained student models using Recall@k for both image-to-
text (I2T) and text-to-image (T2I) retrieval tasks. Recall@k measures the percentage of queries
for which the correct match appears in the top-k retrieved results (Manning et al., 2008). A higher
Recall@1 indicates stronger alignment between images and texts, as the correct match is ranked first,
while Recall@5 and Recall@10 provide insight into broader retrieval accuracy. We summarized the
performance of the evaluation of the trained student model RN34 in Table 1.

Table 1: Comparison of zero-shot retrieval performance (Recall@k) of student RN34 with teacher
RN50 for different loss function combinations in VLM distillation using MSCOCO. All Loss Func-
tion: CL + KL + MSE + ICL - TE1 - TE2.

Model and Loss Function I2T Retrieval (R) T2I Retrieval (R)
R@1 R@5 R@10 R@1 R@5 R@10

Teacher Model (RN50) 15.27% 30.73% 39.05% 11.68% 25.52% 33.50%

Student Models (RN34)
CL Only (Oord et al., 2018) 4.94% 14.60% 22.51% 3.96% 12.67% 19.45%
CL + MSE (Yang et al., 2024) 5.13% 15.41% 23.17% 4.00% 12.79% 19.53%
CL + KL (Li et al., 2024b) 5.42% 16.20% 24.55% 5.06% 15.35% 22.92%
CL + ICL (Yang et al., 2024) 5.75% 16.86% 24.83% 5.07% 15.14% 22.44%
CL - TE1 6.91% 19.48% 28.12% 5.68% 16.33% 23.93%
CL - TE2 7.04% 19.22% 27.97% 5.46% 15.90% 23.49%
CL - TE1 - TE2 8.24% 22.43% 31.73% 6.53% 18.13% 26.02%
CL + KL - TE1 7.81% 21.31% 30.65% 6.42% 18.18% 26.33%
CL + KL - TE2 7.77% 21.10% 30.22% 6.21% 17.95% 26.03%
CL + KL + MSE - TE1 7.62% 21.05% 30.34% 6.53% 18.48% 26.66%
CL + KL + ICL - TE1 7.59% 20.87% 29.95% 6.78% 19.11% 27.33%
CL + KL + MSE + ICL - TE1 7.51% 20.62% 29.81% 6.76% 19.02% 27.32%
All Loss Function 8.11% 22.05% 31.57% 7.18% 19.75% 28.14%

Table 1 clearly demonstrates that incorporating transfer entropy (TE1 and TE2) into the VLM distil-
lation objective leads to substantial performance gains in both I2T and T2I retrieval. We incremen-
tally added each loss component to the base contrastive loss and observed that the introduction of
TE1 or TE2 resulted in the most significant performance improvements. The best-performing mod-
els all include TE components, underscoring their effectiveness in enhancing the student model’s
ability to capture structured information flow from the teacher. Notably, the configuration using the
loss function CL - TE1 - TE2 achieves the highest I2T Recall@1, while the full loss combina-
tion CL + KL + MSE + ICL - TE1 - TE2 yields the best T2I performance. This suggests
that TE terms not only provide strong standalone regularization but also complement traditional dis-
tillation objectives when integrated holistically. As shown in Figure 3f, both TE1 and TE2 exhibit
similar trends with monotonically increasing values during training. This indicates that their influ-
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ence becomes more prominent over time, effectively guiding the optimization of the CL–TE1–TE2
objective. We highlight the best-performing scores in bold in Table 1.

Table 2 reports the sensitivity of retrieval performance to different hyperparameter settings. A clear
trend emerges: the parameter γ, which controls the strength of the TE term, has a pronounced
influence on the results. When γ = 0 (i.e., TE is omitted), performance drops sharply across both
I2T and T2I tasks, highlighting the necessity of including TE in the loss. Introducing TE (γ > 0)
consistently improves Recall@k, with different values favoring different tasks: smaller γ yields the
strongest T2I results, while larger γ (e.g., 7.5) achieves the best I2T scores. This demonstrates that
TE regularization is not only beneficial overall but also tunable for task-specific gains. In particular,
moderate values of γ strike a favorable balance, confirming that TE plays a critical role in enhancing
the transfer of knowledge during distillation.

Table 2: Comparison of zero-shot retrieval performance (Recall@k) in percentage of student RN34
with teacher RN50 on MSCOCO.

α β δ γ I2T R@1 I2T R@5 I2T R@10 T2I R@1 T2I R@5 T2I R@10

1 50 1 0 6.08% 18.14% 26.93% 5.92% 17.06% 24.89%
1 50 1 1 8.11% 22.05% 31.57% 7.18% 19.75% 28.14%
1 50 1 2.5 9.48% 24.68% 34.54% 7.57% 20.55% 29.03%
1 50 1 5 10.02% 25.80% 35.74% 7.32% 20.04% 28.50%
1 50 1 7.5 10.27% 26.36% 36.30% 6.98% 18.95% 26.95%
1 50 1 10 9.77% 25.25% 35.04% 6.94% 18.78% 26.67%
5 50 1 5 10.19% 26.15% 36.09% 6.81% 18.84% 26.88%
1 100 1 5 10.25% 25.76% 35.69% 7.30% 20.55% 29.03%
1 50 5 5 8.20% 22.14% 31.63% 7.14% 19.61% 28.05%

In Appendix G, we present the experimental results for four more experiments: 1) teacher: RN50,
student: RN34, dataset: Flick8k; 2) teacher: ViT-B/16, student: RN34; Datasets: MSCOCO and
Flick8k; 3) teacher: RN50, student: RN18, dataset: MSCOCO; 4) teacher: RN50, student: RN34,
dataset: Food-101, for classification. We evaluate zero-shot retrieval performance across multiple
VLM distillation settings and find that incorporating transfer entropy (TE1 and TE2) consistently
improves both I2T and T2I retrieval.

6 CONCLUSIONS AND FUTURE WORK

In this work, we introduced TE as a regularization technique for VLM distillation, aiming to enhance
knowledge transfer from a teacher model to a student model. Direct computation of TE is intractable
due to the high dimensionality of image and text representations. To address this, we demonstrated
that a first-order (linear) expansion of TE yields a practical surrogate based on the cosine similarity
between the Jacobians of the teacher and student processes. Building on this insight, we proposed
two TE approximation strategies that leverage cosine similarity to quantify and enforce directional
information flow between teacher and student embeddings across both image and text modalities. By
integrating TE-based regularization into the distillation loss, we showed that the student model more
effectively captures structured multimodal information, resulting in improved retrieval performance.

Our experiments were conducted using CLIP RN50 and ViT-B/16 as teacher models, and RN34 and
RN18 as student models, evaluated on the MSCOCO 2014 and Flickr8k datasets. The experimental
results underscore the importance of TE-based regularization for achieving improved feature align-
ment. Student models trained with TE consistently outperform those trained without TE, exhibiting
notable gains in Recall@k for both image-to-text and text-to-image retrieval tasks.

This work primarily focuses on static teacher-student distillation, where the teacher model remains
fixed during training. Future directions include extending our approach to co-distillation scenarios,
wherein both teacher and student are jointly optimized to mutually enhance knowledge transfer.
Additionally, exploring TE-based reinforcement learning strategies may provide an alternative opti-
mization framework, enabling the student model to actively maximize meaningful information flow
throughout training.
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A RELATIONS BETWEEN TRANSFER ENTROPY, ENTROPY, AND MUTUAL
INFORMATION

For two discrete-time stochastic processes X(t) and Y (t), the transfer entropy from X to Y is
formally defined as (Schreiber, 2000):

TX→Y =
∑
t

p(yt+1, yt, xt) log
p(yt+1 | yt, xt)

p(yt+1 | yt)
, (19)

where p(·) represents probability distributions of the respective random variables.

Transfer entropy can also be expressed in terms of conditional entropy and mutual informa-
tion (Shahsavari Baboukani et al., 2020). Specifically, the transfer entropy from X to Y , denoted
TX→Y , measures the reduction in uncertainty about the future state Yt+1 given the joint past of X
and Y , compared to the uncertainty given the past of Y alone. Based on (19), this difference can be
expressed as:

TX→Y =
∑
t

p(yt+1, yt, xt) log
1

p(yt+1 | yt)
+∑

t

p(yt+1, yt, xt) log p(yt+1 | yt, xt)

=
∑
t

p(yt+1, yt) log
1

p(yt+1 | yt)
+∑

t

p(yt+1, yt, xt) log p(yt+1 | yt, xt)

= H(Yt+1 | Yt)−H(Yt+1 | Yt, Xt) (20)
= I(Yt+1;Xt | Yt) (21)

where H(Yt+1 | Yt) is the conditional entropy of Yt+1 given its own history Yt, H(Yt+1 | Yt, Xt) is
the conditional entropy of Yt+1 given both the history of Y and the history of X , and I(Yt+1;Xt |
Yt) is the mutual information between Yt+1 and the history of X , conditioned on the history of Y .
In this formulation, the transfer entropy quantifies the amount by which the uncertainty about the
future of Y is reduced by incorporating information from X .

B PRIOR WORK ON MUTUAL INFORMATION AND TRANSFER ENTROPY
ESTIMATION

Mutual Information (MI) techniques have been employed to capture shared information between
variables (Hjelm et al., 2018)(Oord et al., 2018). MINE (Belghazi et al., 2018) offers a differen-
tiable estimator for mutual information, and information-theoretic regularization has been applied
in generative models for disentanglement and improved control (Chen et al., 2016). In (Gao et al.,
2015), a mutual information estimator was proposed based on modified k-nearest neighbor (KNN)
that is robust to local non-uniformity with limited data. A diverse set of distributions with known
MI values were introduced to evaluate the performance of different MI estimators beyond tradi-
tional normal distributions (Czyż et al., 2023). McAllester and Stratos (McAllester & Stratos, 2020)
highlighted the inherent difficulties in estimating mutual information from finite data, demonstrat-
ing that any distribution-free high-confidence lower bound on MI cannot exceed O(lnN), thereby
underscoring the fundamental challenges in accurate mutual information estimation without strong
assumptions about the data distribution. Goldfeld and Greenewald (Goldfeld & Greenewald, 2021)
introduced Sliced Mutual Information, a scalable measure that projects high-dimensional distribu-
tions onto one-dimensional subspaces, effectively capturing complex dependencies while reducing
computational complexity. Approximating mutual information of high-dimensional variables using
learned representations was studied in (Gowri et al., 2025).

Transfer entropy is a conditional mutual information from two stochastic processes, so it’s more
challenging in TE estimation. In (Zhang, 2018), Low-dimensional approximation in the searching
procedure was applied to transfer entropy from non-uniform embedding. In (Zhu et al., 2015), KNN
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was used for TE estimation. However, KNN-based approach doesn’t work well if the data are noisy
and long ranged. To overcome this weakness, a perturbation model based on locality sensitive hash
function was proposed for TE estimation (Garg et al., 2022). Three estimators were used for TE
estimation (Lee et al., 2012), namely fixed-binning with ranking, kernel density estimation, and
the Darbellay-Vajda (D-V) adaptive partitioning algorithm extended to three dimensions. In (Ma,
2019), copula entropy was applied to TE estimation. To overcome the curse of dimensionality in
TE estimation, TE was decomposed into a sum of finite-dimensional contributions in (Runge et al.,
2012). Recently, transformer was used for TE estimation (Luxembourg et al., 2024). In this paper,
we propose TE approximation approaches which can tremendously reduce the computation cost and
overcome the curse of dimensionality.

C PROOF OF THEOREM 1

This section shows how a first-order (linear) expansion of TE leads to a computable surrogate based
on a cosine similarity between the teacher– and student-process Jacobians. Our derivation follows
the linear–Gaussian surrogate technique proposed in (Goldfeld et al., 2019).

Proof. Let x ∈ Rd be an input image–caption pair, and fT (x), fS(x) ∈ RD denote the teacher
and student embeddings, respectively. Denote their Jacobians as JT (x) = ∇xfT (x) and JS(x) =
∇xfS(x), both in RD×d.

To study the local behavior around x, consider a small perturbation δx ∼ N (0, σ2Id), and define

u := fT (x+ δx), vt := fS(x), vt+1 := fS(x+ δx).

The one-step transfer entropy from teacher to student becomes:

TS
T (x) = I

(
vt+1; u | vt

)
. (22)

Using a first-order Taylor expansion around x:

u ≈ u0 + JT δx, vt+1 ≈ v0 + JSδx, vt = v0 = fS(x), (23)

where u0 = fT (x). Since v0 is a constant shift, subtracting it from both sides does not change the
conditional mutual information. Therefore:

TS
T (x) ≈ I

(
JSδx; JT δx

)
. (24)

Because δx ∼ N (0, σ2Id) and both JS and JT are linear maps, the pair (JSδx, JT δx) is jointly
Gaussian. Define the covariances:

ΣS = σ2JSJ
⊤
S , ΣT = σ2JTJ

⊤
T , ΣST = σ2JSJ

⊤
T .

The mutual information between jointly Gaussian vectors is (Cover, 1999):

I
(
JSδx; JT δx

)
= h

(
JSδx

)
+ h

(
JT δx

)
− h

(
JSδx, JT δx

)
(25)

=
1

2
log

detΣS detΣT

det

(
ΣS ΣST

ΣTS ΣT

) (26)

= −1

2
log det

(
I − Σ

−1/2
S ΣSTΣ

−1/2
T

)
. (27)

If ΣST is small compared to the product Σ1/2
S Σ

1/2
T (which is often true in early training), we can use

the approximation log det(I − A) ≈ − tr(A) (Magnus & Neudecker, 1999). This gives (Goldfeld
et al., 2019):

TS
T (x) ≈ σ2

2
tr
(
(JSJ

⊤
S )−1/2JSJ

⊤
T (JTJ

⊤
T )−1/2

)
. (28)

We can normalize both Jacobians by their Frobenius norms:

J̃S =
JS

∥JS∥F
, J̃T =

JT
∥JT ∥F

,
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so that equation equation 28 becomes:

TS
T (x) ∝ ⟨J̃S , J̃T ⟩F = cos

(
J̃S , J̃T

)
, (29)

i.e., the Frobenius inner product (cosine similarity) of the two Jacobians.

D PERFORMANCE COMPARISON: TE APPROXIMATIONS VERSUS EXACT TE

We evaluated our two approximations of TE in Section 4.2 against the exact TE computed from a
synthetic Gaussian channel. Specifically, teacher embeddings T ∈ RD are sampled from a standard
normal distribution T ∼ N (0, I) , and student embeddings are generated as

S = αT+
√
1− α2 N, (30)

where N ∼ N (0, I) and α ∈ [0, 0.99] controls the teacher–student correlation. So each correspond-
ing pair of teacher and student components forms a jointly Gaussian random pair with Pearson
correlation coefficient α (Lee Rodgers & Nicewander, 1988). It is a classical result in informa-
tion theory that for two jointly Gaussian random variables X and Y with correlation α, the mutual
information is given by (Cover, 1999)

I(X;Y ) = −1

2
log

(
1− α2

)
. (31)

In our setting, the exact transfer entropy is defined as (Shahsavari Baboukani et al., 2020)

TEexact = I(Yt+1;Xt | Yt), (32)

where Yt+1 represents the student’s updated representation, Xt is the teacher’s representation at time
t, and Yt is the student’s current representation. Under the common assumption that these variables
are jointly Gaussian and the update of Yt+1 depends linearly on Xt (after conditioning on Yt), a
closed-form expression for the conditional mutual information can be derived. In particular, if the
effective correlation between Xt and Yt+1 (after accounting for Yt) is given by α, then the mutual
information per embedding dimension becomes

I(Yt+1;Xt | Yt) = −1

2
log

(
1− α2

)
. (33)

When the embeddings have D independent dimensions, this yields

TEexact =
D

2
log

(
1

1− α2

)
. (34)

For ease of comparison with our cosine similarity–based approximations, we further normalize this
exact TE value via a logarithmic transformation to map it into the interval [0, 1] using the following
transformation (Han et al., 2012):

TEnorm =
log(1 + TEexact)

log(1 + TEmax)
, (35)

where TEmax is computed using αmax = 0.99 to define the upper bound for normalization.

For the two approximation methods proposed in Sections 4.2.1 (Method 1) and 4.2.2 (Method 2), we
conducted experiments by varying α from 0 to 0.99, and computed the two approximation results
and the normalized exact TE. The results are summarized in Fig. 1. The Pearson correlation between
the normalized exact TE and both TE approximations was found to be 0.994, indicating a very strong
linear relationship. These findings suggest that both approximation methods reliably track the exact
TE, capturing the relative information flow from the teacher to the student in this synthetic setting.

We also examined the robustness of our two TE approximation methods as we varied two key factors
in a synthetic teacher–student setting:

• Batch size (B), which affects the stability of sample-based estimates.
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Figure 1: Comparison of TE Approximations vs. Normalized Exact TE.

• Embedding dimension (D), which influences the amount of representational capacity.

We fixed the teacher–student correlation coefficient at α = 0.8 in (30). Two separate experiments
were performed:

1. Varying batch size: We fix D = 500 and consider batch sizes B ∈
{10, 20, 50, 100, 200, 500, 1000}.

2. Varying embedding dimension: We fix B = 500 and let D ∈
{10, 20, 50, 100, 200, 500, 1000}.

In both cases, we computed the TE Approximation Method 1 and Method 2, and the normalized
exact TE.

(a) (b)

Figure 2: (a) TE approximations versus batch size (B) at fixed D = 500. (b) TE approximations
versus embedding dimension (D) at fixed B = 500.

Figure 2a shows the behavior of these metrics as a function of batch size. Observe that both approx-
imation methods rapidly converge to a stable estimate near the normalized exact TE (green dashed
line). For very small B (around 10–20), the sample-based cosine measures show slight deviations
but still remain close to the exact TE. As B grows, the variance diminishes and both approximations
tightly match the theoretical reference.
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Figure 2b illustrates the impact of varying embedding dimension D. Since the exact TE increases
with D (due to additional degrees of freedom), its normalized value (green line) also increases.
By contrast, the two TE approximations remain relatively stable, hovering around 0.75–0.80 for all
tested dimensions. This highlights a key property of the approximate measures: they capture the
relative alignment between teacher and student (controlled by α), but they do not grow with the
embedding dimensionality as the exact mutual information does. In practice, this makes them com-
putationally efficient and robust to high-dimensional data, though they are not designed to quantify
the absolute amount of information transferred. Overall, these results confirm that both approxima-
tion methods track the ground-truth TE trend (in terms of relative comparisons), while offering a
simpler and more scalable alternative to exact TE in high-dimensional settings.

The underlying intuition behind these approximation is that if the student’s directional changes
closely match those of the teacher, then information transfer is effectively occurring. Traditional
transfer entropy measures rely on probability distributions over time, but this approach circumvents
such computational overhead by leveraging geometric similarity in embedding space. By treating
the batch as a sequence of evolving representations, the method estimates how well the teacher’s
influence propagates to the student. However, unlike traditional TE, which explicitly models in-
formation transfer through probability distributions, our approximation purely relies on directional
alignment. Additionally, equal weighting of image and text modalities may not always be ideal, as
one modality may contribute more to the learning process than the other.

The cosine-based TE approximations are highly effective in capturing the relative information flow
in VLM distillation – they are easy to compute, robust across high dimensions, and correlate well
with true information transfer. They confirm the intuition that a student embedding space matching
the teacher’s geometry is a good sign of successful knowledge distillation. However, these ap-
proximations do not measure exact information volume. They compress the notion of “how much
knowledge” into a bounded similarity score. As a result, they are best used for comparing models or
monitoring training (where the scale can be assumed fixed and only relative changes matter) rather
than for absolute information quantification.

E COMPUTATIONAL COST ANALYSIS: EXACT TE VERSUS TE
APPROXIMATIONS

Computational Complexity:

Exact TE often involves O(N2d) operations, where N is the number of samples and d is the feature
dimension. This is due to the need for joint probability estimation over multiple variables, which
scales poorly as data size and dimensionality increase. In contrast, TE Approximation Method 1
in Section 4.2.1 uses cosine similarity to estimate TE by focusing on local neighborhoods (differ-
ence of neighbors) in the embedding space. Instead of constructing a full joint probability table,
for each observation one can find a set of “similar” past states (e.g. nearest neighbors in terms of
cosine distance) and approximate conditional probabilities from those neighbors. The neighbor-
based cosine similarity approximation reduces complexity by considering only local neighborhoods
in the embedding space. By focusing on a limited number of similar past states instead of the en-
tire dataset, this method lowers the computational cost to approximately O(N logN) with efficient
neighbor searches. TE Approximation Method 2 in 4.2.2 uses cosine similarity to concatenate the
high-dimensional states, thereby reducing the state space before computing TE. The concatenation-
based approximation further reduces complexity by grouping similar data points into clusters and
treating each cluster as a discrete state, leading to an effective time complexity of O(Nd) for the
clustering process and O(N) for TE calculation.

Memory Usage: Exact TE requires storing large joint probability distributions, which grow ex-
ponentially with dimensionality. This makes exact computation infeasible for high-dimensional
embeddings, as it demands large storage space for probability tables or expensive nearest-neighbor
searches. The approximations mitigate this issue by avoiding explicit density estimation. The TE
Approximation Method 1 only stores similarity measures and a small set of neighbors for each data
point, keeping memory usage at O(Nd). The TE Approximation Method 2 concatenates data into a
limited number of clusters, further reducing storage requirements to O(Cd), where C is the number
of clusters, much smaller than N . These approximations thus enable TE computation in large-scale
deep learning applications without overwhelming memory constraints.
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Scalability in High Dimensions: Exact TE suffers from the curse of dimensionality. As dimen-
sionality increases, joint probability estimation becomes unreliable because high-dimensional data
points become sparse, making density estimation difficult. This often results in TE values that are
biased towards zero. In contrast, cosine similarity-based methods are much more scalable, as cosine
similarity is well-defined even in high dimensions and can be computed efficiently. The TE Approx-
imate method 1 relies on approximate nearest-neighbor searches, which remain feasible even as d
grows, while the TE Approximate method 2 concatenates high-dimensional data into a manageable
number of clusters, making TE estimation practical even for very large embeddings.

In summary, using cosine similarity approximations for transfer entropy enables analysis of high-
dimensional and large-scale data that would be otherwise impossible with exact methods. The ap-
proaches significantly improve computational feasibility and can even enhance statistical reliability
in data-limited situations (Zhang, 2018). The cost, however, is that we must accept an approximate
measure that may overlook complex nuances of the data’s information dynamics. Since the priority
in CLIP is to handle very rich embeddings and get a fast, actionable estimate of information flow,
the TE approximation methods are invaluable.

F LOSS FUNCTIONS IN VLM DISTILLATION

F.1 LOGIT REPRESENTATION IN VLM DISTILLATION

In our framework, logits represent the similarity scores between image and text embeddings, which
are fundamental to contrastive learning. Given a batch of image-text pairs, let v(S), s(S) denote
the image and text embeddings from the student model, and v(T ), s(T ) denote the corresponding
embeddings from the teacher model. The logit computation follows these steps.

First, we normalize the embeddings to unit norm:

v̂(S) =
v(S)

∥v(S)∥2
, ŝ(S) =

s(S)

∥s(S)∥2
, (36)

v̂(T ) =
v(T )

∥v(T )∥2
, ŝ(T ) =

s(T )

∥s(T )∥2
. (37)

The similarity logits for the student and teacher models are then computed as the dot product be-
tween the corresponding image and text embeddings, scaled by a temperature parameter τ :

z(S) =
v̂(S) · (ŝ(S))⊤

τ
, z(T ) =

v̂(T ) · (ŝ(T ))⊤

τ
. (38)

Here, z(S) and z(T ) are |B| × |B| matrices, where each entry z
(S)
ij represents the similarity between

the i-th image embedding and the j-th text embedding in the batch for the student model, and
similarly for the teacher model. The temperature parameter τ controls the sharpness of the similarity
distribution, with lower values making the distribution more peaky.

These logits are subsequently used in the contrastive loss and KL divergence computation to align
the student’s feature representations with those of the teacher, ensuring effective knowledge trans-
fer during distillation. Several studies have explored the computation and utilization of these
logits in image-text contrastive frameworks (Radford et al., 2021)(Jia et al., 2021)(Yang et al.,
2022)(Hasegawa et al., 2023)(Xiao et al., 2024).

F.2 CONTRASTIVE LOSS FOR VLM DISTILLATION

We employ a contrastive loss based on the InfoNCE loss formulation to align the student model’s
image and text representations effectively. Given a batch of |B| image-text pairs, we define the con-
trastive loss using the computed logits. The contrastive loss for image-to-text alignment is defined
as (Oord et al., 2018) (Yang et al., 2024):

LI→T = − 1

|B|

|B|∑
k=1

log
exp(z

(S)
kk )∑|B|

j=1 exp(z
(S)
kj )

(39)
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z
(S)
kj represents the similarity between the k-th image embedding and the j-th text embedding in the

batch for the student model, and z
(S)
kk represents the similarity logit between the k-th image and its

corresponding text in the batch for the student model.

Similarly, the contrastive loss for text-to-image alignment is given by:

LT→I = − 1

|B|

|B|∑
k=1

log
exp(z

(S)
kk )∑|B|

j=1 exp(z
(S)
jk )

(40)

z
(S)
jk represents the similarity between the j-th image embedding and the k-th text embedding in the

batch for the student model, and z
(S)
kk is the same as that in (39).

The total contrastive loss, which balances both image-to-text and text-to-image objectives, is com-
puted as:

Lcontrastive =
1

2
(LI→T + LT→I). (41)

This loss function encourages the student model to align its multi-modal representations by bringing
matching pairs closer in the embedding space while pushing apart non-matching pairs. Contrastive
loss has been extensively applied to knowledge distillation (Tian et al., 2019)(Chen et al., 2021)(Gao
et al., 2021)(Peng et al., 2022)(Zhu et al., 2021)(Guo et al., 2023).

To enhance the effectiveness of distillation, we extend this contrastive loss with additional terms
such as KL divergence and transfer entropy-based regularization. These terms further refine the
student model’s learning dynamics by ensuring information flow from the teacher’s embeddings to
the student’s representations while preserving structural consistency across modalities.

F.3 KL DIVERGENCE FOR VLM DISTILLATION

To ensure that the student model effectively mimics the probability distributions of the teacher
model, we include a Kullback-Leibler (KL) divergence loss term. KL divergence measures how
much the student’s predicted distribution deviates from the teacher’s distribution, enforcing a closer
alignment between their logits. KL divergence has been applied to VLM distillation (Li et al.,
2024b)(Sun et al., 2024).

For a given batch of image-text pairs, let z(S) and z(T ) represent the similarity logits of the student
and teacher models, respectively. The soft probability distributions are obtained via the softmax
function:

P
(S)
i =

exp(z
(S)
i /τ)∑|B|

j=1 exp(z
(S)
j /τ)

, (42)

P
(T )
i =

exp(z
(T )
i /τ)∑|B|

j=1 exp(z
(T )
j /τ)

, (43)

where τ is the temperature parameter that controls the sharpness of the distributions.

The KL divergence loss is computed as:

LKL =
1

2

(
DKL

(
P

(S)
image ∥ P

(T )
image

)
+DKL

(
P

(S)
text ∥ P

(T )
text

))
, (44)

where the KL divergence between two probability distributions P (S) and P (T ) is defined as:

DKL(P
(S) ∥ P (T )) =

|B|∑
i=1

P
(T )
i log

P
(T )
i

P
(S)
i

. (45)

This loss encourages the student model to produce probability distributions that closely resemble
those of the teacher, effectively preserving the knowledge distilled from the teacher while allowing
the student to generalize efficiently.
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F.4 MSE LOSS FUNCTION FOR VLM DISTILLATION

To further align the feature representations of the teacher and student models, we include MSE
loss that minimizes the discrepancy between their intermediate embeddings (Yang et al., 2024).
The MSE loss is computed as the sum of the squared differences between the student and teacher
embeddings for both modalities:

LMSE = Limage
MSE + Ltext

MSE, (46)

where

Limage
MSE =

1

|B|

|B|∑
i=1

∥∥∥v̂(S)
i − v̂

(T )
i

∥∥∥2 , (47)

Ltext
MSE =

1

|B|

|B|∑
i=1

∥∥∥ŝ(S)
i − ŝ

(T )
i

∥∥∥2 . (48)

Here, |B| represents the batch size, and ∥ ·∥2 denotes the squared Euclidean norm. This loss ensures
that the student model’s learned embeddings remain close to the teacher’s representations in the
feature space, facilitating effective knowledge transfer. MSE has been applied to VLM loss function
in (Yang et al., 2024), and was called feature distillation.

F.5 INTERACTIVE CONTRASTIVE LEARNING

Interactive Contrastive Learning (ICL) was proposed in (Yang et al., 2024) to aligns the student
model’s feature representations with those of the teacher by treating the student embeddings as
anchors and contrasting them with the teacher embeddings.

Given a batch of image-text pairs, let v(S)
k be the image embedding from the student model, and

{s(T )
b }|B|

b=1 denote the contrastive text embeddings from the teacher model. The image-to-text ICL
loss is formulated as:

LI→T
ICL = − log

exp(v
(S)
k · s(T )

k /τ)∑|B|
b=1 exp(v

(S)
k · s(T )

b /τ)
, (49)

where τ is the temperature parameter.

Similarly, for a student text embedding s
(S)
k and contrastive image embeddings from the teacher

model {v(T )
b }|B|

b=1, the text-to-image ICL loss is:

LT→I
ICL = − log

exp(s
(S)
k · v(T )

k /τ)∑|B|
b=1 exp(s

(S)
k · v(T )

b /τ)
. (50)

The final ICL loss is a combination of the two:

LICL =
1

2

(
LI→T

ICL + LT→I
ICL

)
. (51)

By integrating ICL, the student model effectively learns from the teacher’s structured feature space,
leading to improved representation learning and knowledge transfer.

G MORE EXPERIMENTAL RESULTS

G.1 TEACHER: RN50, STUDENT: RN34, DATASET: MSCOCO

Figure 3 shows the training losses and TE rewards over epochs for various configurations in the
experiment with teacher RN50 and student RN34.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3: The training losses and TE for different loss functions in the training of Student Model
RN34 using MSCOCO dataset. (a) Contrastive + MSE, (b) Contrastive + KL, (c) Contrastive + ICL,
(d) Contrastive - TE1, (e) Contrastive - TE2, (f) Contrastive - TE1 - TE2, (g) Contrastive + KL -
TE1, (h) Contrastive + KL - TE2, (i) Contrastive + KL + MSE - TE1, (j) Contrastive + KL + ICL -
TE1, (k) Contrastive + KL + ICL +MSE - TE1, (l) Contrastive + KL + ICL +MSE -TE1 - TE2.

G.2 TEACHER: RN50, STUDENT: RN34, DATASET: FLICK8K

We further evaluate our approach on the Flickr8k dataset (Marco et al., 2023), using 85% of the data
for training and 15% for testing. Performance results for various loss functions are summarized in
Table 3. The loss function employs weighting factors α = 1.0, β = 100, δ = 1.0, γ = 5.0, and a
temperature parameter τ = 0.07. These parameters were selected based on the relative contribution
of each loss term to the total loss during training, ensuring balanced optimization. Given the modest
size of Flickr8k, all experiments were conducted on a Google Colab instance equipped with an A100
GPU and limited system RAM. Each experiment (i.e., each row in Table 3) required approximately
20 minutes of training time. Notably, incorporating TE1 or TE2 into the loss function consistently
improves both image-to-text (I2T) and text-to-image (T2I) retrieval performance compared to base-
lines that rely solely on standard distillation losses such as CL + KL or CL + MSE. These results
underscore the effectiveness of transfer entropy approximations in guiding student model updates
during distillation.

Table 4 presents the sensitivity analysis of the hyperparameters α, β, δ, and γ in the loss function
(18) for zero-shot retrieval on Flickr8k. A consistent trend emerges: setting γ = 0 (i.e., omitting the
TE term) leads to notably lower performance across both I2T and T2I tasks. By contrast, introducing
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Table 3: Zero-shot retrieval performance (Recall@k) on Flickr8k of student RN34 using teacher
RN50 under different loss functions. All Loss Function: CL + KL + MSE + ICL - TE1 - TE2.

Model and Loss Function I2T Retrieval (R) T2I Retrieval (R)
R@1 R@5 R@10 R@1 R@5 R@10

Teacher Model (RN50) 51.65% 78.17% 87.73% 47.28% 75.21% 84.60%

Student Models (RN34)
CL Only (Oord et al., 2018) 22.73% 48.19% 60.87% 18.47% 43.76% 56.77%
CL + MSE (Yang et al., 2024) 22.98% 49.92% 62.52% 17.84% 44.71% 57.99%
CL + KL (Li et al., 2024b) 27.51% 56.51% 69.19% 23.20% 50.12% 62.82%
CL + ICL (Yang et al., 2024) 24.55% 52.06% 64.50% 19.87% 47.97% 61.24%
CL - TE1 30.48% 62.52% 74.05% 24.42% 54.25% 68.39%
CL - TE2 31.80% 61.37% 72.90% 25.19% 54.66% 68.70%
CL - TE1 - TE2 32.29% 62.36% 75.29% 24.50% 54.56% 68.14%
All Loss Function 34.76% 63.43% 74.14% 24.50% 55.14% 68.29%

TE with γ > 0 yields substantial gains in Recall@k, confirming that TE contributes complementary
information beyond the standard loss terms. For example, increasing γ from 0 to 7.5 improves I2T
Recall@1 by over 5% (from 29.00% to 34.10%) and T2I Recall@1 by nearly 5% (from 22.59% to
27.10%). Interestingly, moderate γ values (5–7.5) provide the strongest improvements, while exces-
sively large weights (e.g., γ = 10) slightly degrade performance, likely due to over-regularization.
These results highlight that TE not only enhances distillation but also allows for task-specific tuning
of the retrieval objectives.

Table 4: Comparison of zero-shot retrieval performance (Recall@k) of student RN34 with teacher
RN50 on Flickr8k.

α β δ γ I2T R@1 I2T R@5 I2T R@10 T2I R@1 T2I R@5 T2I R@10

1 100 1 0 29.00% 55.60% 69.85% 22.59% 51.07% 64.66%
1 100 1 1 33.20% 62.19% 73.72% 26.85% 55.32% 68.34%
1 100 1 5 34.76% 63.43% 74.14% 24.50% 55.14% 68.29%
1 100 1 7.5 34.10% 63.92% 75.29% 27.10% 55.45% 69.03%
1 100 1 10 33.77% 63.92% 73.81% 25.06% 54.40% 67.22%
5 100 1 7.5 31.88% 62.52% 72.82% 23.16% 52.09% 66.00%
1 50 1 7.5 34.93% 63.59% 74.88% 25.12% 54.79% 68.11%
1 50 5 7.5 31.38% 61.20% 74.55% 25.47% 55.45% 68.34%

G.3 TEACHER: VIT-B/16, STUDENT: RESNET-34

CLIP ViT-B/16 is a dual-encoder vision-language model (Radford et al., 2021), consisting of a Vi-
sion Transformer (ViT-B/16) (Dosovitskiy et al., 2020) as the image encoder and a 12-layer Trans-
former as the text encoder. The image encoder processes 224 × 224 images using 16×16 patches
with a hidden dimension of 768, while the text encoder operates on tokenized text sequences with a
hidden dimension of 512. Together, the model has approximately 151 million parameters, with 86M
in the image encoder and 63M in the text encoder.

The loss function incorporates weighting factors α = 1.0, β = 100, δ = 1.0, γ = 5.0, along with
a temperature parameter τ = 0.07. These weighting parameters were chosen based on the relative
contribution of each loss term to the total loss during training. For the experiments on the MSCOCO
dataset, due to the large scale of both the model and the dataset, we trained the student model for 6
epochs. Each experiment (i.e., each row in Table 5) required approximately 10 hours on a Google
Colab T4 GPU with high-RAM. For the Flickr8k experiments, we used a Google Colab A100 GPU
and trained for 10 epochs. Given the smaller dataset size, each experiment (i.e., each row in Table 7)
took around 30 minutes to complete.
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Our experiments (Tables 5 and 7) show that maximizing the information flow from teacher to student
via TE delivers the single largest boost among all losses. Loss functions with TE leading to the
3–4 percentage point (pp) gains on MSCOCO and the 8–12pp gains on the low-resource Flickr8k
benchmarks. These results establish TE as a principled and highly effective regularizer for cross-
modal knowledge distillation.

Table 5: Comparison of zero-shot retrieval performance (Recall@k) of student RN34 with teacher
ViT-B/16 on MSCOCO in VLM distillation with different loss functions. All Loss Function: CL +
KL + MSE + ICL - TE1 - TE2.

Model and Loss Function I2T Retrieval (R) T2I Retrieval (R)
R@1 R@5 R@10 R@1 R@5 R@10

Teacher Model (ViT-B/16) 17.80% 34.10% 42.44% 14.71% 29.87% 38.26%

Student Models (RN34)
CL Only (Oord et al., 2018) 4.66% 14.10% 21.28% 3.78% 11.95% 18.40%
CL + MSE (Yang et al., 2024) 4.55% 14.27% 21.36% 3.79% 11.99% 18.44%
CL + KL (Li et al., 2024b) 4.70% 14.46% 22.21% 4.58% 14.15% 21.32%
CL - TE1 7.24% 19.88% 28.55% 5.68% 16.22% 23.71%
CL - TE2 7.02% 20.26% 29.46% 5.83% 16.54% 24.27%
CL - TE1 - TE2 7.44% 20.24% 29.01% 5.78% 16.35% 23.90%
ALL Loss Function 7.87% 21.47% 30.74% 5.98% 17.21% 24.96%

Table 6 shows the hyperparameter sensitivities for different choices of α, β, δ, and γ in the loss
function (18). The parameter γ controls the strength of the transfer entropy (TE) term. When γ = 0,
corresponding to the absence of TE, the student model performs poorly, with Recall@1 scores of
only 5.81% for image-to-text (I2T) and 5.60% for text-to-image (T2I). Introducing a nonzero γ
immediately leads to substantial improvements across all metrics. For example, setting γ = 1 raises
I2T Recall@1 to 7.32% and T2I Recall@1 to 6.75%, showing that even a small weighting of TE
contributes significantly to knowledge transfer.

Table 6: Comparison of zero-shot retrieval performance (Recall@k) of student RN34 with teacher
ViT-B/16 on MSCOCO (α = 1, β = 50, δ = 1).

γ I2T R@1 I2T R@5 I2T R@10 T2I R@1 T2I R@5 T2I R@10

0 5.81% 17.30% 25.89% 5.60% 16.64% 24.46%
1 7.32% 20.41% 29.58% 6.75% 18.74% 26.91%

2.5 7.68% 21.16% 30.20% 6.70% 18.74% 26.78%
5 7.87% 21.47% 30.74% 5.98% 17.21% 24.96%

7.5 7.90% 21.27% 30.22% 5.92% 16.69% 24.42%
10 7.49% 20.56% 29.51% 5.47% 16.01% 23.38%

Performance continues to improve as γ increases up to 5, with the best I2T results observed at
γ = 7.5 (7.90% Recall@1, 30.22% Recall@10). However, the T2I results peak earlier, with γ = 1
providing the strongest Recall@1 and Recall@5 values, while larger γ values cause a mild decline.
This indicates that while TE is generally beneficial, excessively weighting it can distort the loss
balance and harm retrieval performance on certain tasks. Overall, these results demonstrate two key
points: (i) TE is a crucial component of the loss, consistently lifting performance above the no-TE
baseline, and (ii) the optimal γ value is task-dependent, suggesting that moderate TE weighting is
sufficient to maximize the gains from information-theoretic regularization.

G.4 TEACHER: RN50, STUDENT MODEL: RN18

In addition to using RN34 as the student model, we also conduct experiments with RN18 as the
student image encoder. The RN18 architecture is a more compact variant, containing approximately
11.7 million parameters (He et al., 2016). Similar to RN34, the final fully connected layer is modified
to output 1024-dimensional features, keeping the overall parameter count stable. Given that the text
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Table 7: Zero-shot retrieval performance (Recall@k) on Flickr8k. The student model (RN34) is
distilled from the teacher model (ViT-B/16). All Loss Function: CL + MSE + KL + ICL - TE1 -
TE2.

Model and Loss Function I2T Retrieval (R) T2I Retrieval (R)
R@1 R@5 R@10 R@1 R@5 R@10

Teacher Model (ViT-B/16) 57.41% 82.70% 90.61% 55.02% 81.63% 87.64%

Student Models (RN34)
CL 21.09% 46.95% 59.47% 17.53% 42.59% 55.26%
CL + KL 24.38% 51.32% 63.84% 19.59% 46.97% 60.03%
CL + MSE 21.17% 46.46% 58.98% 16.26% 42.83% 55.37%
CL + ICL 26.44% 52.14% 65.32% 20.44% 47.69% 61.61%
CL - TE1 28.91% 57.17% 69.19% 22.98% 50.69% 63.79%
CL - TE2 30.07% 57.41% 68.45% 23.67% 52.04% 65.44%
CL - TE1 - TE2 28.42% 58.90% 70.02% 22.59% 51.10% 64.79%
All Loss Function 33.28% 64.33% 73.97% 26.36% 56.18% 69.64%

encoder remains unchanged, the total number of parameters for the RN18-based student model is
approximately 45-50 million. This reduction in model size compared to the RN34-based student
allows for a more lightweight design while still leveraging the benefits of contrastive learning and
effective knowledge transfer from the teacher model.

We applied the same loss components and hyperparameter settings as in Section 5: α = 1.0, β = 50,
δ = 1.0, γ = 1.0, and a temperature parameter τ = 0.05. Figure 4 presents the training losses and
TE rewards over epochs for various configurations. Compared to RN34, RN18 exhibits a similar
trend where the total training loss steadily decreases, and TE rewards increase over epochs, in-
dicating effective optimization and knowledge transfer. However, due to the smaller capacity of
RN18, the absolute TE rewards remain slightly lower than those observed for RN34, suggesting a
less expressive feature alignment between teacher and student. Furthermore, the KL loss and MSE
components show even less significant reductions over training epochs, likely due to the more lim-
ited representational capacity of RN18. This highlights that while TE-based regularization remains
effective in guiding knowledge distillation, the overall learning dynamics are constrained by the
smaller network size, making RN34 a more effective student model in terms of retaining structured
alignment with the teacher.

We used Google Colab Pro with a T4 GPU and High-RAM for training and evaluating RN18. Due to
its significantly fewer parameters compared to RN34, the student model RN18 required less training
time. We trained it for 10 epochs in each loss function combination scenario, with the training and
evaluation process taking approximately 11 hours per experimental setup.

We summarize the zero-shot retrieval performance for the trained RN18 student model in Table 8.
Similar observations we can make that the experiment with loss function (Contrastive - TE1 -TE2)
achieved the best performance for Image-to-Text retrieval, while the experiment with loss function
(Contrastive + KL + MSE + ICL - TE1 - TE2) achieved the best performance in Text-to-Image
Retrieval. Comparing Table 8 with Table 1, the results indicate that while RN18 achieves competi-
tive performance across different loss function combinations, it underperforms compared to RN34
for all loss configurations, with RN34 consistently yielding higher Recall@k values. However, the
best-performing RN18 model (Contrastive - TE1 - TE2) achieves Recall@1 of 6.65% for image-
to-text retrieval, which is not far behind RN34’s highest Recall@1 values of 8.24% under the same
loss formulation. This suggests that while RN18 is a lighter-weight alternative, RN34 remains a
better choice for preserving retrieval performance during distillation. The trade-off between model
complexity and retrieval accuracy highlights the importance of selecting an appropriate student ar-
chitecture based on deployment constraints and performance requirements.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: The training losses and TE for different loss functions in the training of Student Model
RN18. (a) Contrastive only, (b) Contrastive + MSE, (c) Contrastive + KL, (d) Contrastive + ICL, (e)
Contrastive - TE1, (f) Contrastive - TE2, (g) Contrastive + KL - TE1, (h) Contrastive - TE1 - TE2,
(i) Contrastive + KL + ICL + MSE - TE1 - TE2.

Table 8: Comparison of zero-shot retrieval performance (Recall@k) of student RN18 with teacher
RN50 for different loss function combinations in VLM distillation using MSCOCO. All Loss Func-
tion: CL + KL + MSE + ICL - TE1 - TE2.

Model and Loss Function I2T Retrieval (R) T2I Retrieval (R)
R@1 R@5 R@10 R@1 R@5 R@10

Teacher Model (RN50) 15.27% 30.73% 39.05% 11.68% 25.52% 33.50%

Student Models (RN18)
CL Only (Oord et al., 2018) 4.38% 13.28% 20.40% 3.39% 11.07% 17.22%
CL + MSE (Yang et al., 2024) 4.27% 13.29% 20.15% 3.47% 11.17% 17.28%
CL + KL (Li et al., 2024b) 4.89% 15.23% 22.90% 4.58% 13.99% 21.05%
CL + ICL (Yang et al., 2024) 5.39% 15.48% 22.95% 4.32% 13.23% 19.96%
CL - TE1 5.48% 16.43% 24.59% 4.60% 13.86% 20.80%
CL - TE2 5.57% 16.67% 24.78% 4.67% 14.08% 20.97%
CL - TE1 - TE2 6.65% 18.75% 27.33% 5.18% 15.09% 22.35%
CL + KL - TE1 6.49% 18.37% 26.83% 5.18% 15.17% 22.52%
All Loss Function 6.52% 18.60% 27.16% 5.79% 16.78% 24.47%

G.5 TEACHER: RN50, STUDENT: RN34, APPLICATION IN CLASSIFICATION

We have evaluated our TE-based distillation on Food-101 (Bossard et al., 2014), a challenging
benchmark dataset for large-scale food recognition. Food-101 contains 101 categories with a to-
tal of 101,000 images, split into 75,750 images for training and 25,250 images for testing. This
dataset is particularly suitable for evaluating knowledge transfer since it combines significant intra-
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class variation with a large number of categories, which makes direct zero-shot transfer difficult for
a smaller-capacity student network.

In our setup, the teacher is a ResNet-50 (RN50) model, and the student is a smaller ResNet-34
(RN34). Importantly, during distillation, the student is trained without direct access to the ground
truth labels. Instead, it learns only from the outputs of the teacher, thereby relying entirely on the
transferred information. This design allows us to directly measure the effectiveness of the proposed
TE-based framework in capturing and transferring generalizable knowledge from teacher to student.

Table 9 summarizes the zero-shot classification accuracy of the student RN34 under different weight-
ings of the loss components (cf. Eq. 18), alongside the teacher RN50 baseline. Several key obser-
vations emerge. First, the naive baseline where γ = 0 (i.e., without TE) performs better than the
teacher in terms of Top-1 accuracy but slightly underperforms in Top-5 accuracy. Second, once TE
is introduced (γ > 0), we observe consistent improvements across both Top-1 and Top-5 accuracy.
For instance, setting γ = 2.5 increases the student’s Top-1 accuracy to 82.46% and Top-5 accuracy
to 96.23%, surpassing the teacher by significant margins. Larger γ values generally sustain these
gains, with γ = 7.5 yielding the best Top-5 performance (96.62%), and an alternative setting with
α = 5 and γ = 2.5 providing the overall best Top-1 accuracy (82.91%). These trends suggest that
TE contributes complementary signal during distillation that is not fully captured by conventional
loss terms. Each experiment (each row) in Table 9 takes around 45 minutes using Colab with GPU
A100.

Table 9: Zero-shot classification accuracy (%) of student RN34 and teacher RN50 on Food-101.

α β δ γ Top-1 Acc. Top-5 Acc.

1 50 1 0 80.23% 95.22%
1 50 1 2.5 82.46% 96.23%
1 50 1 5 82.37% 96.44%
1 50 1 7.5 82.27% 96.62%
1 50 1 10 82.01% 96.38%
5 50 1 2.5 82.91% 96.47%
1 100 1 2.5 82.54% 96.10%
1 50 5 2.5 81.07% 95.30%

Teacher - - - 79.80% 96.17%

Overall, our results demonstrate that the student RN34, despite its smaller capacity, is able to not
only match but even surpass the teacher RN50 under several configurations. This improvement
cannot be attributed to overfitting, since no ground truth labels are used during distillation, but
instead highlights the effectiveness of TE-based distillation in transferring structured, generalizable
information. This experiment thus provides strong evidence that TE is a valuable component for
enhancing knowledge transfer in classification tasks.

H USAGE OF LARGE LANGUAGE MODELS

In preparing this paper, we used ChatGPT 5 to assist with both writing and experimentation. Specif-
ically, it supported text refinement tasks such as grammar correction, spelling, word choice, and
stylistic polishing. In addition, it facilitated our experiments by helping to identify and resolve bugs
in Python code implementations.
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