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ABSTRACT

One of the major challenges of offline reinforcement learning (RL) is dealing
with distribution shifts that stem from the mismatch between the trained policy
and the data collection policy. Prior offline RL algorithms have addressed this
issue by regularizing the policy optimization with f -divergence between the state-
action visitation distributions of the data collection policy and the optimized pol-
icy. While such regularization provides a theoretical lower bound on performance
and has had some practical success, it is not affected by the optimality of state-
actions and can be overly pessimistic, especially when valuable state-actions are
rare in the dataset. To mitigate the problem, we introduce and analyze a weighted
f -divergence regularized RL framework that can less regularize valuable but rare
state-actions as long as sampling error allows. This leads to an offline RL al-
gorithm with iterative stationary distribution correction estimation while jointly
re-adjusting the regularization for each state-action. We show that the presented
algorithm with weighted f -divergence performs competitively with the state-of-
the-art methods.

1 INTRODUCTION

Recent advances in reinforcement learning (RL) have enabled agents to make sophisticated decisions
under complex environments. However, it assumes free exploration of the agent in the environment
to learn from the trial-and-error experiences. Such online interactions can be expensive, unsafe, and
even impossible in many real-world applications such as autonomous driving and surgical operation.
As a result, the practicality of standard online RL has been questioned due to the high cost of online
interaction.

To this end, offline RL has been proposed to train the agent only with the fixed dataset, excluding
any online interaction between the environment while training. This is similar to other machine
learning schemes from computer vision and natural language processing, where models are trained
only with a large-scale offline dataset. However, offline RL suffers from the distributional shift
when the trained policy deviates from the policy used to collect the dataset. The shift can cause
overestimation during the training step when the agent encounters samples that are not present in
the dataset.

Diverse approaches in offline RL were made as a countermeasure for the distribution shift, and one
method we focus on in this paper is about regularizing the f -divergence between the state-action
visitation distributions of the trained policy and the data collection policy (Wu et al., 2019; Lee
et al., 2021). In these algorithms, f -divergence plays a significant role by regulating the distribution
shift and enabling safe estimation of the RL objective without sampling from the target policy, by
establishing approximate lower bounds on performance. Also known as behavior regularization,
they encourage the learned policy to visit states within the data distribution in practice and have
proven its effectiveness over a wide range of domains.

However, f -divergence regularization is independent of how valuable state-actions are, and it can
cause offline RL policies to be overly pessimistic about the rare but valuable state-actions in the
dataset. It is highly likely in practice where the data collection policy is far from being optimal,
causing the agent to neglect important and rare state-actions just like other non-important and rare
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state-actions. The resulting performance loss is inevitable due to the nature of f -divergence regular-
ization.

To address this issue, we present a weighted f -divergence regularized reinforcement learning frame-
work, where we aim to regularize differently based on the optimality of each state-action pair. We
apply perspective function to f -divergence to add weights while preserving its convexity, and an-
alyze the possibility of performance gain based on the weighted regularization. Building upon the
stationary distribution correction estimation algorithms (Nachum et al., 2019b; Lee et al., 2021),
we present an algorithm that solves the optimization with weighted regularization jointly while es-
timating the weights that can better regularize the policy optimization. We show empirically that
the optimized weights correctly adjust the degree of regularization to strengthen rare yet valuable
state-actions and suppress common yet deleterious state-actions, and demonstrate the performance
of the proposed algorithm in the D4RL benchmark (Fu et al., 2020).

2 PRELIMINARIES

Markov decision process (MDP) We assume the reinforcement learning problem under an
infinite-horizon discounted Markov Decision Process (MDP) framework. MDP can be represented
as a tuple M = ⟨S,A, T,R, µ0, γ⟩, where S is a set of states s and A is a set of actions a.
T (s′|s, a) : S × A → ∆(S) is a transition probability from the state-action pair (s, a) to the next
state s′. R(s, a) : S×A → [0, rmax] is a reward function of the state-action pair (s, a). µ0 ∈ ∆(S)
is an initial state distribution and γ ∈ [0, 1) is the discount factor.

A policy π(a|s) : S → ∆(A) gives a distribution of actions a of the agent given the state
s. For given policy π, the state-action and state value function is defined as Qπ(s, a) :=
Eat∼π(st),st+1∼T (st+1|st,at) [

∑∞
t=0 γ

tR(st, at)|s0 = s, a0 = a] and V π(s) := Ea∼π(s)[Qπ(s, a)].
Qπ(s, a) and V π(s) represent expected sum of discounted rewards when the agent with policy
π starts from (s, a) and s. The state-action visitation probability of π is defined as dπ(s, a) :=
(1 − γ)

∑∞
t=0 γ

t Pr(st = s, at = a). dπ(s, a) represents discounted sum of probabilities of the
agent with policy π visiting (s, a). Reinforcement learning aims to learn a policy that maximizes
expected return J(π), an expected sum of discounted rewards:

max
π

J(π) = (1− γ)Es0∼µ0,a0∼π(s0)[Q
π(s0, a0)]

= (1− γ)Es0∼µ0
[V π(s0)] = E(s,a)∼dπ(s,a)[R(s, a)], (1)

Linear Programming form By using linear programming (LP) characterization of V-function
(V-LP) (Puterman, 1994; Bertsekas, 1995; Bertsekas & Tsitsiklis, 1996; Nachum & Dai, 2020),
evaluation of J(π) can be seen as solving the following optimization problem:

min
V

(1− γ)Es0∼µ0
[V (s)] (2)

s.t. V (s) ≤ R(s, a) + γEs′∼T (s,a)[V (s′)] ∀s, a.

The dual of V-LP gives equivalent optimization problem with respect to state-action visitation dis-
tribution (Nachum & Dai, 2020). Using LP duality, dual of V-LP is defined as

max
d

E(s,a)∼d(s,a) [R(s, a)] (3)

s.t.
∑
ã

d(s, ã) = (1− γ)µ0(s) + γ
∑
s̃,ã

T (s|s̃, ã)d(s̃, ã) ∀s, (4)

d(s, a) ≥ 0 ∀s, a,

where Bellman flow constraints (4) are relaxed to be only on states. Using Lagrangian or Fenchel-
Rockafellar duality, the optimization problem (3) can be reformulated to unconstrained optimization
problem.

Regularized objective in offline RL In this paper, we focus on offline reinforcement learning
(RL), where the interaction between the agent and the environment is not allowed. Instead, the
dataset D = {(si, ai, ri, s′i)}Ni consisting of single-step transitions is given to optimize the policy
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π. We denote the empirical distribution of dataset D as dD. In offline RL, the main purpose is
to obtain a policy that can perform better than behavior patterns observed in the dataset D. Such
attempt can cause distribution shift, where the offline RL agent is trained under one distribution,
while being evaluated on a different distribution to optimize its behavior (Levine et al., 2020).

One way to mitigate the distribution shift is to regularize the f -divergence between state-action
visitation distribution dπ and empirical distribution dD. It corresponds to additionally minimize the
f -divergence term with the primal optimization problem (1), resulting in the following regularized
policy optimization:

max
π

E(s,a)∼dπ [R(s, a)]− αDf (d
π∥dD), (5)

where f is continuously differentiable and strictly convex function and α determines the amount of
regulation to impose. Df denotes the f -divergence Df (d

π∥dD) = E(s,a)∼dD
[
f
(
dπ(s,a)
dD(s,a)

)]
. In

previous studies, it has been relaxed to expected divergence between policies EdD [Df (π∥πD)] to
derive a practical algorithm, e.g. KL-regularized RL (Fox et al., 2016). On the other hand, Nachum
et al. (2019b) and Lee et al. (2021) have made use of the duality to optimize (5) directly. We follow
the latter approach.

3 DICE VIA WEIGHTED f -DIVERGENCE

3.1 REINFORCEMENT LEARNING WITH WEIGHTED f -DIVERGENCE REGULARIZATION

Regularized policy optimization objective (5) consists of two terms: reward maximization and dis-
tribution shift control. Reward maximization is expressed as inner product of state-action visi-
tation distribution dπ(s, a) and the reward R(s, a), while distribution shift control corresponds to
f -divergence between dπ(s, a) and the dataset distribution dD(s, a). The resultant policy π after op-
timizing equation 5 can also be understood as a policy optimized with respect to augmented rewards
R(s, a) − αf ′

(
dπ(s,a)
dD(s,a)

)
(Nachum et al., 2019b). By choosing appropriate α, this regularization

encourages conservative behavior, penalizing rare or nonexistent state-action pairs in the dataset.

In current framework, however, the degree of regularization is only determined by the scarcity of
state-action in the dataset. As f -divergence is independent to the value of state-actions, rare yet
valuable state-actions are equally penalized. Motivated by this, we hypothesize that alleviating
regularization on those special state-actions can lead to better performance. It requires to manipulate
the degree of regularization differently for each state-action pairs, and it can not be achieved in
standard regularized policy optimization framework (5)—where a single hyperparameter α only
controls the overall balance between reward maximization and distribution shift prevention.

To this end, we propose a weighted f -divergence regularization framework by introducing state-
action weighting k(s, a). Note the convexity preservation property of a perspective function:
Lemma 1 (Joint convexity of perspective function). If f is a convex function and x > 0, the per-
spective function g(x, y) = xf

(
y
x

)
is jointly convex in x and y. (Proof in Appendix A.)

Above results implies that by using the weighted f -divergence of a form Dk
f (p∥q) =

Eq
[
k · f

(
p
k·q

)]
, we can still keep the favorable properties of f -divergence regularization based

on convexity. Based on the proposed regularization, we restate the policy optimization objective:

max
d

E(s,a)∼d[R(s, a)]− αE(s,a)∼dD

[
k(s, a)f

(
d(s, a)

k(s, a)dD(s, a)

)]
(6)

s.t.
∑
ã

d(s, ã) = (1− γ)µ0(s) + γ
∑
s̃,ã

T (s|s̃, ã)d(s̃, ã) ∀s,

d(s, a) ≥ 0, k(s, a) > 0 ∀s, a,
which extends the optimization problem (3). As proposed in Lee et al. (2021), the Bellman flow
constraints only on states are applied so that we can optimize policy implicitly by optimizing the
induced state-action distribution d instead. The optimal d∗ that solves the problem will be a valid
state-action visitation distribution due to the constraints, while maximizing the objective (6). After
solving for d∗, the policy π∗ that induces d∗ can be extracted by various different algorithms.
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(a) Dataset dist. dD (b) Weighted dist. k∗ · dD (c) f -divergence reg. d∗ (d) Weighted reg. d∗

Figure 1: (Four Rooms) This figure is an illustrative example showing the difference between the f -
divergence regularization and weighted f -divergence regularization in Four Rooms domain (Sutton
et al., 1998). The red filled squares represent the walls in the environment that cannot be passed,
and the orange and green empty squares represent the initial state and the goal state, respectively.
The saturation of color in each state represents the state visitation probability d(s) =

∑
a∈A d(s, a)

based on a state-action distribution denoted below each figure. The policy π(a|s) based on a state-
action distribution is represented by the red arrows. We collected the dataset using a uniform random
policy, which forms the dataset distribution dD(s, a) shown in (a). (c) shows the resultant state-
action visitation distribution of f -divergence regularized RL obtained by running OptiDICE (Lee
et al., 2021). (b) shows the multiplication of dD(s, a) and k∗(s, a) obtained by proposed algorithm,
which is the distribution we are regularizing towards with weighted f -divergence. (d) shows the
resultant state-action visitation distribution of proposed algorithm.

Note that the proposed weighted regularization can be also seen as penalizing a f -divergence toward
the unnormalized density k · dD. In other words, high k will make regularization less penalize the
state-actions as if we had more samples of those in the dataset D. Similarly, small k will make
regularization severe on the corresponding state-actions as if we had less samples. The usual f -
divergence regularization framework (5) can be recovered by setting k(s, a) = 1 ∀s, a.

Illustrative examples In Figure 1, we demonstrate the effectiveness of weighted f -divergence
regularization in four rooms environment (Sutton et al., 1998). (a) shows the dataset distribution
used in this example. We emphasize that the dataset is collected using a uniform random policy,
which has not been considered in previous studies (Lee et al., 2021; Nachum et al., 2019b) on f -
divergence regularization. When f -divergence regularization is imposed on a flat dataset distribution
dD, it results in an overly conservative policy, inducing visitations over unnecessary state-actions as
shown in (c). On the other hand, (b) shows the result of weighting as a weighted dataset distribution
k∗ · dD that weighted f -divergence regularization (6) regularizes towards. k∗ used to weight the f -
divergence is optimized based on the algorithm that will be introduced later in this paper. (d) shows
the resultant state-action visitation distribution based on k∗-weighted f -divergence regularization.
It is clearly visible that (d) gives far more focused state-action visitation compared to (c), which
directly translates to the performance of the policy. More details can be found in Appendix D.

3.2 DICE VIA WEIGHTED f -DIVERGENCE

In this subsection, we derive an alternative form of the problem (6) that can be practically optimized.
We assume the weight k to be fixed and optimize state-action visitation distribution d respect to a
given fixed k. We start by obtaining the Lagrangian of (6) where ν(s) is the Lagrangian multiplier
for the equality constraints for valid state-action visitation distribution d.

max
d≥0

min
ν

Lα,k(d, ν) := E(s,a)∼d[R(s, a)]− αE(s,a)∼dD

[
k(s, a)f

(
d(s, a)

k(s, a)dD(s, a)

)]

+
∑
s

ν(s)

(1− γ)µ0(s) + γ
∑
s̃,ã

T (s|s̃, ã)d(s̃, ã)−
∑
ã

d(s, ã)

 (7)
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Interchanging the inner summation over d(s, a) and outer summation over ν(s), we group the terms
that are integrated over d(s, a).

Lα,k(d, ν) =
∑
s

(1− γ)µ0(s)ν(s)− αE(s,a)∼dD

[
k(s, a)f

(
d(s, a)

k(s, a)dD(s, a)

)]

+
∑
s,a

d(s, a)

(
R(s, a) + γ

∑
s̃

T (s̃|s, a)ν(s̃)− ν(s)

)
(8)

We apply change of variable w(s, a) = d(s,a)
dD(s,a)

and eν(s, a) = R(s, a)+γ
∑
s̃ T (s̃|s, a)ν(s̃)−ν(s)

to derive the equivalent objective Lα,k(w, ν) respect to w, ν. Note that eν(s, a) is an advantage
function of state-action pair (s, a).

max
w≥0

min
ν

Lα,k(w, ν) := (1− γ)Es∼µ0 [ν(s)]

− αE(s,a)∼dD

[
k(s, a)f

(
w(s, a)

k(s, a)

)]
+ E(s,a)∼dD [w(s, a)eν(s, a)] (9)

Due to the strong duality of (6) with fixed k, it is possible to change the order of optimization.
By reordering (9) from maximin to minimax optimization of w and ν, the closed form solution of
w with respect to k and ν, w∗

ν,k := argmaxw Lα,k(w, ν) can be obtained by solving the inner
maximization as shown below. The detailed derivation of w∗

ν,k is deferred to Appendix B.

max
w≥0

min
ν

Lα,k(w, ν) = min
ν

max
w≥0

Lα,k(w, ν)

w∗
ν,k(s, a) = max

(
0, k(s, a)(f ′)−1

(
eν(s, a)

α

))
(10)

We can observe that w∗
ν is directly affected by k(s, a). This derivation is an extension of objective

derivation of Lee et al. (2021) to weighted f -divergence regularized problem (6).

Policy extraction After optimizing minν Lα,k(w
∗
ν,k, ν), it is possible to compute the optimal

state-action visitation distribution d∗ = dD·w∗
ν∗,k. While the optimal policy π∗ that induces d∗ given

by above can be easily obtained by performing marginalization π∗(a|s) =
dD(s,a)w∗

ν∗,k(s,a)∑
ã d

D(s,ã)w∗
ν∗,k(s,ã)

, it
is not straightforward to compute in continuous control domains. For continuous domains, we use
the information projection (i.e. I-projection) proposed by Lee et al. (2021):

min
ψ

DKL(d
D(s)πψ(a|s)∥dD(s)π∗(a|s))

= min
ψ

−Es∼dD,a∼πψ(s)[logw
∗
ν∗,k(s, a)−DKL(πψ(·|s)∥πD(·|s))] + C. (11)

3.3 ANALYSIS ON THE SUBOPTIMALITY OF THE ALGORITHM ON k

So far, we have derived an stationary distribution correction algorithm for policy optimization with
a weighted f -divergence regularization. In this subsection, we analyze how weighting f -divergence
with k affects the suboptimality of weighted regularized policy optimization framework. We show
that the suboptimality of resultant policy can be bounded by two different terms, the regularization
loss and the sampling error, that are affected by k in different ways. Based on these results, we show
that there is a possibility of improving the optimality of resultant policy with a careful choice of k,
which motivates the algorithm to optimize for the right k. Our results are adaptation of the results
presented by Zhan et al. (2022).

For further analysis, we denote three policies assuming k fixed: the optimal policy π∗ of true MDP
M, the regularized optimal policy π∗

α,k from optimizing the objective (6) under true MDP, and
the policy π̂α,k obtained from optimizing Lα,k(w, ν) of (9) estimated from samples in the dataset.
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Recall that J(π) =
∑
s,a dπ(s, a)R(s, a) corresponds to the expected return we can get by executing

policy π. With the policies defined as above, it can be seen that J(π∗) is the optimal expected return,
and J(π∗)− J(π∗

α,k) is the loss we get by adopting regularization. We denote it as a regularization
loss. On the other hand, J(π∗

α,k)− J(π̂α,k) gives the sampling error we get by using samples from
an offline dataset instead of using true MDP. We analyze each contribution to policy suboptimality
below. 1

Regularization loss Regularization loss J(π∗)− J(π∗
α,k) is the difference in the expected return

between the optimal policy π∗ of true MDP M and the optimal policy π∗
α,k from (6). The difference

is caused by regularizing the unregularized objective (3) with weighted f -divergence. Since π∗
α,k is

the optimal policy in problem (6), we can derive the following inequality.

J(π∗
α,k)− αE(s,a)∼dD

[
k(s, a)f

(
dπ

∗
α,k(s, a)

k(s, a)dD(s, a)

)]

≥ J(π∗)− αE(s,a)∼dD

[
k(s, a)f

(
dπ

∗
(s, a)

k(s, a)dD(s, a)

)]
(12)

Combined with the optimality of π∗ that J(π∗) ≥ J(π∗
α,k), the regularization loss can be bound by:

0 ≤ J(π∗)− J(π∗
α,k) ≤ αE(s,a)∼dD

[
k(s, a)f

(
dπ

∗
(s, a)

k(s, a)dD(s, a)

)]
(13)

In other words, the suboptimality of a regularized optimal policy π∗
α,k is bounded by the weighted

f -divergence itself. This implies that k can be optimized to tighten the upper bound of regularization
loss by minimizing the f -divergence between dπ

∗
(s, a) and k(s, a)dD(s, a). While this regulariza-

tion loss (13) will be reduced to 0 when k(s, a) = dπ
∗
(s,a)

dD(s,a)
or α = 0, we will see in the below that

the sampling error can be arbitrarily large in those cases, so they are not what we want to accomplish.

Sampling error Sampling error J(π∗
α,k)−J(π̂α,k) is the difference in the expected return between

the regularized optimal policy π∗
α,k and the policy π̂α,k extracted from the optimal w of Lα,k(w, ν)

of (9). The performance of π̂α,k approximately corresponds to the performance of our algorithm,
before substituting in the closed form solution of w into the objective (9). We first give L̂α,k(w, ν)
as the sample estimate of Lα,k(w, ν):

L̂α,k := (1− γ)
1

n0

n0∑
j=1

ν(s0,j) +
1

n

n∑
i=1

[
−αk(si, ai)f

(
w(si, ai)

k(si, ai)

)
+ w(si, ai)eν(si, ai, ri, s

′
i)

]
(14)

where n and n0 is the number of all transitions and the number of initial states in the dataset.
The difference between Lα,k(w, ν) and its estimate corresponds to statistical error |L̂α,k(w, ν) −
Lα,k(w, ν)|, which we can bound as below:

Theorem 1 (Upper bound of statistical error). Under some mild assumptions, the statistical error
satisfies

∣∣∣L̂α,k(w, ν)− Lα,k(w, ν)
∣∣∣ ≤ E:

E := O

√ logN + log 1
δ1

N

+ Õ

√ logN + log 1
δ2

N

 , (15)

where N is the number of samples and δ1 and δ2 can be lower-bounded in terms of pseudo-
dimension.(Proof in Appendix C.)

1The analysis on policy suboptimality is made over the objective (9), and is not exact for the objective (10)
where w is maximized in a closed form. This is because eν will be biased when computed based on samples,
unless we adopt a double-sampling (Baird, 1995; Farahmand & Szepesvári, 2011). The analysis we make here
is exact for our algorithm when the environment is deterministic, and is an approximate error bound otherwise.

6



Under review as a conference paper at ICLR 2023

Now, we bound the sampling error of weighted regularized policy optimization framework in Theo-
rem 2. Theorem 2 is the adaptation of Theorem 3 in Zhan et al. (2022), where f has been replaced
with kf(xk ).

Theorem 2 (Sampling error). With at least probability 1− δ, the sampling error satisfies:

J(π∗
α,k)− J(π̂α,k) ≤

1

1− γ
E
s∼dπ

∗
α,k (s)

[∥π∗
α,k(·|s)− π̂α,k(·|s)∥1] ≤

4

1− γ

√
kmaxE
αMf

, (16)

where dπ
∗
α,k(s) =

∑
a d

π∗
α,k(s, a) is state-action visitation distribution induced by the policy π∗

α,k,

and Mf is the strong convexity coefficient of f . We show that kf
(
x
k

)
is Mf

k -strongly convex in
Appendix C.1. Combining the result from Theorem 1 and Theorem 2, we derive new upper bound
for sampling error that depends on kmax. Note that the upper bound increases as k increases, which
motivate limiting the maximum of k for suppressing the upper bound of statistical error.

The total suboptimality of applying weighted f -divergence can be approximately given as a sum of
the regularization loss and sampling error:

J(π∗)− J(π̂α,k) = J(π∗)− J(π∗
α,k) + J(π∗

α,k)− J(π̂α,k). (17)

The analysis motivates us to optimize k according to minimize the upper bound of the regulariza-
tion loss given by the inequality (13) while bounding kmax to bound the sampling error with high
probability. We derive the practical algorithm below based on this motivation.

3.4 OPTIMIZATION OF k

Based on the analysis, we aim to optimize k by minimizing the weighted f -divergence while keeping
its maximum value bounded. The corresponding optimization problem can be written as:

min
k

E(s,a)∼dD

[
k(s, a)f

(
d(s, a)

k(s, a)dD(s, a)

)]
(18)

s.t. 0 < k(s, a) < kmax ∀s, a

While it is itself a challenging optimization problem that depends on d that is being optimized,
fortunately, we have an unconstrained solution for this problem: w = d

dD
, and setting k = w does

make the objective to be 0, which is the minimum. As we update k, the optimal d will change
in a way that it becomes the visitation distribution induced by the optimal policy on a problem
regularized by weighted f -divergence. Nevertheless, d is only represented via w and w = d

dD
will

mostly hold for implicit d unless the Bellman flow constraint is violated.

Therefore, we simply train k to become a clipped version of w by optimizing:

min
k

1

2
E(s,a)∼dD

[(
k(s, a)− stopgrad[w∗

ν,k(s, a)]
)2]

(19)

s.t. 0 < k(s, a) < kmax, ∀s, a

where w∗
ν,k was defined in Equation (10). The stopgrad detaches gradient computation, and it

is applied to stabilize the learning since k is included in the definition of w∗
ν,k. The constrained

optimization is done by clipping the k(s, a) itself in the tabular case, and by restricting the output of
the neural network itself by clipping. By jointly optimizing k based on the objective (19) and ν based
on the objective (10), we look for the optimal regularized policy and improve the regularization at
the same time such that we seek for the policy with the best optimality we can get from the given
dataset.

4 RELATED WORK

In few offline stationary distribution correction estimation algorithms (DICE) algorithm, Linear Pro-
gramming (LP) characterization of state-action value function and value function (i.e., Q-LP and V-
LP) have been used to reformulate the objective into a more tractable form for both policy evaluation
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and policy optimization ((Nachum et al., 2019a;b; Lee et al., 2021)). We focus on policy optimiza-
tion problem with regularized objective using DICE algorithms. As far as we know, AlgaeDICE
(Nachum et al. (2019b)) is the first paper that formulates the regularized policy optimization frame-
work by adding f -divergence to the standard RL objective. They derive an unconstrained Lagrangian
form objective based on Q-LP. Dual problem of Q-LP has state action dependent Bellman flow con-
straints and is over-constrained. This works as a big advantage because even if the objective of
optimization is changed, it has the same optimal solution (Nachum & Dai (2020)). Through this,
AlgaeDICE is possible to reduce the instability of original LP by selecting a tractable object to ap-
ply Lagrangian duality. This enabled on-policy policy gradient, without using importance sampling.
However AlgaeDICE includes maximin term in derivations because of maximizing under the pol-
icy (i.e., maximizing the estimated value of the policy), which is susceptible to unstable. V-LP can
address this issue by covering the policy optimization problem easy-to-handle. Unlike Q-LP, dual
of V-LP has constraints that only depend to the state and is not over-constrained. While OptiDICE
(Lee et al. (2021)) shares the same objective with AlgaeDICE, they apply V-LP and reformulate the
objective more tractable form. Therefore, the policy optimization problem is redefined as a single
minimization problem which can considerably improve the stability.

5 EXPERIMENTS

In this section, we compare DICE via weighted f -divergence to past offline reinforcement learning
algorithms in tabular and continuous domains. We use random MDPs for tabular domains and a
D4RL offline RL dataset (Fu et al. (2020)) for the continuous domain. In D4RL benchmarks, we
use 3 tasks of Maze2d and 12 tasks of Gym-MuJoCo. For f -divergence, we follow the choice made
by Lee et al. (2021): f(x) = 1

2 (x − 1)2, which is a χ2-divergence, is used for finite MDPs, and a
relaxed χ2-divergence is used for continuous control, which is defined as:

f(x) :=

{
x log x− x+ 1 if 0 < x < 1
1
2 (x− 1)2 if x ≥ 1

(20)

5.1 RANDOM MDPS

1 5 10 20 50 100
dataset_size

1.0

0.5

0.1

0.05

0.01

0.005

al
ph

a

1.37 1.36 1.26 1.2 1.06 1.04

1.72 1.65 1.39 1.26 1.07 1.02

1.78 1.63 1.31 1.21 1.0 0.99

1.78 1.65 1.41 1.22 1.0 1.0

1.93 1.86 1.56 1.24 0.99 0.99

2.09 2.03 1.58 1.2 1.0 1.0

Figure 2: The random MDP experiment showing
performance improvement from using weighted
f -divergence regularization over different αs and
different dataset sizes. The ratios of expected re-
turn between DICE with weighted f -divergence
and the unweighted version is shown in the figure.

We follow the randomly generated finite MDP
experiment previously used to benchmark of-
fline RL algorithms (Laroche et al., 2019;
Lee et al., 2020) to compare the perfor-
mance of DICE via weighted f -divergence and
unweighted case, which corresponds to Op-
tiDICE (Lee et al., 2021).

To construct MLE MDP, we generate N tra-
jectories with a uniform random policy. We
run finite version of DICE via weighted f -
divergence, which is described in Appendix D,
and unweighted version of it on MLE MDP
to optimize policies. We set kmax = 10 for
DICE via weighted f -divergence. We test over
two types of parameters: the regularization co-
efficient α and number of trajectories in the
dataset. We run the experiment for 30 times and
plot the ratio between the average performance
of unweighted and weighted cases in Figure 2.

The plot shows that DICE via weighted f -
divergence always performs similar to or better
than the unweighted case with its robustness to
wider range of hyperparameters. Since α that performs well vary by the property of datasets and
environments in offline RL, and considering that it is difficult to optimize over hyperparameters
in offline RL problems in practice, we argue that the widened coverage of DICE via weighted f -
divergence can be quite beneficial.
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Table 1: (D4RL benchmark) Normalized scores of our algorithm compared with model-free offline
reinforcement learning algorithms ((Haarnoja et al., 2018; Kumar et al., 2020; Lee et al., 2021))
on D4RL benchmark (Fu et al. (2020)). DICE via weighted f -divergence attains state-of-the-art
performance on 7 tasks and outperforms the unweighted case (OptiDICE) on 13 tasks. For DICE
with weighted-f and unweighted f -divergences, we average the score and get the standard error
with 95% confidence interval by repeating the experiments 5 times.

Env Type BC SAC BRAC-v CQL Unweighted-f Weighted-f

Maze2d Umaze 3.8 88.2 -16.0 5.7 97.2 ± 27.4 135.7 ± 11.5
Maze2d Medium 30.3 26.1 33.8 5.0 150.0 ± 16.9 159.3 ± 12.4
Maze2d Large 5.0 -1.9 40.6 12.5 177.8 ± 16.8 216.2 ± 7.6
Hopper Random 9.8 11.3 12.2 10.8 11.3 ± 0.1 11.4 ± 0.3
Hopper Medium 29.0 0.8 31.1 58.0 71.0 ± 24.4 90.0 ± 14.1
Hopper Med-replay 11.8 3.5 0.6 48.6 29.3 ± 2.8 28.3 ± 2.2
Hopper Med-expert 111.9 1.6 0.8 98.7 109.2 ± 3.6 111.9 ± 0.1
Walker2d Random 1.6 4.1 1.9 7.0 7.8 ± 3.2 11.6 ± 5.4
Walker2d Medium 6.6 0.9 81.1 79.2 20.9 ± 7.2 26.4 ± 6.6
Walker2d Med-replay 11.3 1.9 0.9 26.7 21.8 ± 4.1 18.2 ± 2.9
Walker2d Med-expert 6.4 -0.1 51.6 111.0 66.7 ± 22.5 72.0 ± 17.6
Halfcheetah Random 2.1 30.5 31.2 35.4 11.6 ± 1.6 13.0 ± 1.1
Halfcheetah Medium 36.1 -4.3 46.3 44.4 38.2 ± 0.1 38.6 ± 0.2
Halfcheetah Med-replay 38.4 -2.4 47.7 46.2 39.6 ± 0.9 40.6 ± 0.2
Halfcheetah Med-expert 35.8 1.8 41.9 62.4 69.8 ± 8.0 78.1 ± 7.8

5.2 D4RL BENCHMARK

We experiment DICE via weighted f -divergence in continuous domain on Datasets for Deep Data-
Driven Reinforcement Learning, i.e, D4RL benchmark (Fu et al., 2020). We evaluate the algorithm
using Maze2D and Gym-MuJoCo tasks and the normalized scores are presented in Table 1. We
compared with BC, offline SAC (Haarnoja et al., 2018), BRAC-v (Wu et al., 2019), CQL (Kumar
et al., 2020) and OptiDICE (Lee et al., 2021), which corresponds to the unweighted case of our
algorithm. See more experiment details in Appendix E.

In Table 1, it can be found DICE via weighted f -divergence achieve state-of-the-art performance
in all of the maze2d domain. When compared to the unweighted case, it can be found that the
adoption of k(s, a) which depends on state-action pair turns out to be beneficial in most of the
cases. In particular, when the type of environment is random or medium, we can see that our
algorithm outperforms the unweighted case overall. This empirically proves that adopting learnable
parameters k to f -divergence reduces the impact of suboptimality of dataset and results in a better
performance especially when the quality of the given dataset is low.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented DICE via weighted f -divergence, a framework to control the degree of
regularization on each state-action by adopting weight k to f -divergence. Based on the analysis
on how the total suboptimality of a policy is affected by the adoption of k, we jointly optimized
weight k and stationary distribution correction w to extract offline RL policy based on weighted f -
divergence regularization. We demonstrated in both finite and continuous domain that the adoption
of weighting k does result in a large performance gain over the unweighted algorithm.

While we have only analyzed and demonstrated the weighted f -divergence for the DICE framework
in this paper, there is a wide variety of different algorithms that adopts f -divergence regularization
differently, e.g. KL-regularized RL. It would be also interesting to adopt a weighted regularization
in the other algorithmic frameworks.
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A PROOF OF LEMMA 1

Lemma 1 (Joint convexity of perspective function). If f is a convex function and x > 0, the per-
spective function g(x, y) = xf

(
y
x

)
is jointly convex in x and y. (Proof in Appendix A.)

Proof. Suppose that f is convex function, the perspective function is jointly convex in the sense that
if x = cx1 + (1 − c)x2 and y = cy1 + (1 − c)y2 where [xi, yi] = 0 (i = 1, 2), and 0 ≤ c ≤ 1,
then g(x, y) ≤ cg(x1, y1) + (1 − c)g(x2, y2) (Effros (2009)). Where λ = c

(
x1

cx1+(1−c)x2

)
and

1− λ = c
(

x2

cx1+(1−c)x2

)
satisfy 0 ≤ λ ≤ 1,

g(x, y) = xf

(
x

y

)
= xf

(
cy1

cx1 + (1− c)x2
+

(1− c)y2
cx1 + (1− c)x2

)
= xf

(
c
y1
x1

(
x1

cx1 + (1− c)x2

)
+ (1− c)

y2
x2

(
x2

cx1 + (1− c)x2

))
= xf

(
λ
y1
x1

+ (1− λ)
y2
x2

)
≤ xλf

(
y1
x1

)
+ x(1− λ)f

(
y2
x2

)
= cx1f

(
y1
x1

)
+ (1− c)x2f

(
y2
x2

)
= cg(x1, y1) + (1− c)g(x2, y2).

B PROOF OF OPTIMAL w∗

We solve inner maximization problem maxw≥0 Lα,k(w, ν) by using KKT condition, since the
strong duality holds for the optimization problem. Lagrangian of the optimization is given as,

max
w

min
λ

Lα,k,ν(w, λ) := Lα,k(w, ν) +
∑
s,a

λ(s, a)w(s, a) (21)

To satisfy stationarity condition, we obtain the derivative of Lk,ν(w, λ) with respect to w(s, a).

∂

∂w(s, a)
Lk,ν(w

∗, λ∗) = dD(s, a)[−αf ′(
w∗(s, a)

k(s, a)
) + eν(s, a)] + λ∗(s, a) = 0, ∀s, a (22)

w∗(s, a) = k(s, a)(f ′)−1

(
eν(s, a)

α
+

λ∗(s, a)

αdD(s, a)

)
∀s, a (23)

The combination of primary feasibility(w∗(s, a) ≥ 0 ∀s, a), dual feasibility (λ∗(s, a) ≥ 0 ∀s, a)
and complementary slackness (w∗(s, a)λ∗(s, a) = 0) gives two conditions: w∗ > 0, λ∗ = 0 and
w∗ = 0, λ∗ ≥ 0. Based on the two conditions, the optimal w∗ is given as

w∗(s, a) = max

(
0, k(s, a)(f ′)−1

(
eν(s, a)

α

))
(24)

where αf ′(0) − eν(s, a) ≥ 0 should be satisfied when w∗(s, a) = 0. This condition is quite
challenging to achieve since most f used in f -divergence has negative gradient at 0. Therefore, we
refrain from making w(s, a) = 0, just as OptiDICE (Lee et al. (2021)) did.
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C PROOF OF THEOREM 1

Theorem 1 (Upper bound of statistical error). Under some mild assumptions, the statistical error
satisfies

∣∣∣L̂α,k(w, ν)− Lα,k(w, ν)
∣∣∣ ≤ E:

E := O

√ logN + log 1
δ1

N

+ Õ

√ logN + log 1
δ2

N

 , (15)

where N is the number of samples and δ1 and δ2 can be lower-bounded in terms of pseudo-
dimension.(Proof in Appendix C.)

Proof. To follow a proof protocol of Nachum et al. (2019a), we introduce some assumptions and
lemmas for calculating the upper bound of statistical error using covering number and pseudo-
dimension.

Assumption 1. ν0(s) > 0, r(s, a) ∈ [0, 1],∀s ∈ S, ∀a ∈ A.

Assumption 2 (Boundedness of w). suppose 0 ≤ w(s, a) ≤ BW for any s ∈ S, a ∈ A,w ∈ W ,
where W is parameterization family of w.

Assumption 3 (Boundedness of k). suppose kmin ≤ k(s, a) ≤ kmax for any s ∈ S, a ∈ A, k ∈ K,
where K is parameterization family of k.

Assumption 4 (Properties of f ). Suppose f satisfies the following properties:

1) Boundness:

|f ′(x)| ≤ Bf ′ ,∀0 ≤ x ≤ Bw

|f(x)| ≤ Bf ,∀0 ≤ x ≤ Bw

2) L-Lipschitz continuous: f is L-Lipschitz continuous function on 0 ≤ x ≤ Bw.

Assumption 5 (Boundedness of ν). Suppose ∥v∥∞ ≤ BV :=
αBf′+1

1−γ for any ν ∈ V , where V is
parameterization family of ν.

We recall Lα,k(w, ν) and its empirical version for convenience:

Lα,k(w, ν) := (1− γ)Es∼µ0 [ν(s)]

− αE(s,a)∼dD

[
k(s, a)f

(
w(s, a)

k(s, a)

)]
+ E(s,a)∼dD [w(s, a)eν(s, a)] , (25)

and

L̂α,k := (1−γ)
1

n0

n0∑
j=1

ν(s0,j)+
1

n

n∑
i=1

[
−αk(si, ai)f

(
w(si, ai)

k(si, ai)

)
+ w(si, ai)eν(si, ai, ri, s

′
i)

]
.

(26)

The statistical error can be decomposed to

∣∣∣L̂α,k − Lα,k

∣∣∣ ≤ ∣∣∣∣∣ 1n
n∑
i=1

lw,ν,ki − E[lw,ν,k]

∣∣∣∣∣︸ ︷︷ ︸
ϵ1

+(1− γ)

∣∣∣∣∣∣ 1n0

n0∑
j=1

ν(s0,j)− Es∼µ0
[ν(s)]

∣∣∣∣∣∣︸ ︷︷ ︸
ϵ2

, (27)

where lw,ν,k = −αk(s, a)f
(
w(s,a)
k(s,a)

)
+ w(s, a)eν(s, a, r, s

′).
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We’ll find each terms ϵ1 and ϵ2 separately, for defining the upper bound of error.

We will need Pollard’s tail inequality that relates maximum deviation to the covering number of a
function class:

Lemma 2 (Pollard (2012)). Let G be a permissible class of Z → [−M,M ] functions and {Zi}Ni=1
are i.i.d. samples from some distribution. Then, for any given ϵ > 0,

P

(
sup
g∈G

∣∣∣∣∣ 1N
N∑
i=1

g(Zi)− E[g(Z)]

∣∣∣∣∣ > ϵ

)
≤ 8E

[
N1

( ϵ
8
,G, {Zi}Ni=1

)]
exp

(
−Nϵ2

512M2

)
.

The covering number can then be bounded in terms of the function class’s pseudo-dimension:

Lemma 3 (Corollary 3, Haussler (1995)). For any set X , any points x1:N ∈ XN , any class F of
functions on X taking values in [0,M ] with pseudo-dimension DF < ∞, and any ϵ > 0.

N1(ϵ,F , x1:N ) ≥ e(DF + 1)

(
2eM

ϵ

)DF

.

With the above technical lemmas, we are ready to bound
∣∣∣L̂α,k − Lα,k

∣∣∣.
To bound the term

∣∣∣L̂α,k − Lα,k

∣∣∣, we first define the statistical error ϵ2 and then ϵ1 for convenience.

Lemma 4 (Statistical error ϵ1). Under Assumption 1 to 5, with at least probability 1− δ,

ϵ1 = O

√ logN + log 1
δ

N

 . (28)

Proof. Recall lw,ν,k(s, a, s′) = −αk(s, a)f
(
w(s,a)
k(s,a)

)
+ w(s, a)eν(s, a, s

′), we use lemma 2 with

Z = S ×A× S, Z = (si, ai, s
′
i) and G = lW×V×K. We first show that ∀lw,ν,k ∈ G is bounded:

∥lw,ν,k∥∞ ≤ α∥k∥∞∥f(w
k
)∥∞ + ∥w∥∞∥eν∥∞ (29)

≤ αkmax

(
∥f(w

k
)− f(0)∥∞ + |f(0)|

)
+Bw ((1 + γ)Bν + 1) (30)

≤ αkmax(L∥
w

k
∥∞ + |f(0)|) +Bw ((1 + γ)Bν + 1) (31)

≤ α
Lkmax

kmin
∥w∥∞ + αkmax|f(0)|+Bw ((1 + γ)Bν + 1) (32)

≤ α
LkmaxBw

kmin
+Bw ((1 + γ)Bν + 1) + αkmax|f(0)| = M1 (33)

Applying lemma 2,

P

(
sup
g∈G

∣∣∣∣∣ 1N
N∑
i=1

g(Zi)− E[g(Z)]

∣∣∣∣∣ > ϵ

)
≤ P

(
sup
g∈G

∣∣∣∣∣ 1N
N∑
i=1

lw,ν,k(Zi)− E[lw,ν,k]

∣∣∣∣∣ > ϵ

)
(34)

≤ 8E
[
N1

( ϵ
8
,G, {Zi}Ni=1

)]
exp

(
−Nϵ2

512M2

)
. (35)
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We bound the distance in G,

1

N

N∑
i=1

∣∣lw1,ν1,k1(Zi)− lw2,ν2,k2(Zi)
∣∣

≤ 1

N

αLBw
kmin

N∑
i=1

|k1(si, ai)− k2(si, ai)|+
1

N

(
αLkmax

kmin
+Beν

) N∑
i=1

|w1(si, ai)− w2(si, ai)|

+
Bw
N

N∑
i=1

|ν1(si)− ν2(si)|+
γBw
N

N∑
i=1

|ν1(s′i)− ν2(s
′
i)|. (36)

This leads to following inequality:

N1

(((
αL

kmin
+ 1 + γ)

)
Bw +

αLkmax

kmin
+Beν

)
ϵ′,G, {Zi}Ni=1

)
≤ N1

(
ϵ′,K, {si, ai}Ni=1

)
N1

(
ϵ′,W, {si, ai}Ni=1

)
N1

(
ϵ′,V, {si}Ni=1

)
N1

(
ϵ′,V, {s′i}Ni=1

)
. (37)

Using lemma 3, we bound the covering number. Denote pseudo-dimension of W,V and K as
DW , DV and DK, we have

N1

(((
αL

kmin
+ 1 + γ

)
Bw +

αLkmax

kmin
+Beν

)
ϵ′,G, {Zi}Ni=1

)
≤ e4(DK + 1)(DW + 1)(DV + 1)2

(
4eM1

ϵ′

)DK+DW+2DV

. (38)

This leads to following inequality:

N1

( ϵ
8
,G, {Zi}Ni=1

)
≤ e4(DK + 1)(DW + 1)(DV + 1)2

32
((

αL
kmin

+ 1 + γ
)
Bw + αLkmax

kmin
+Beν

)
eM1

ϵ

DK+DW+2DV

(39)

:= C1

(
1

ϵ

)D1

, (40)

where C1 = e4(DK+1)(DW +1)(DV +1)2
(
32
((

αL
kmin

+ 1 + γ
)
Bw + αLkmax

kmin
+Beν

))D1

and
D1 = DK +DW + 2DV .

Combine this result with equation 35, we immediately obtain the statistical error,

P

(
sup

w∈W,ν∈V,k∈K

∣∣∣l̂(w, ν, k)− l(w, ν, k)
∣∣∣ ≥ ϵ

)
≤ 8C1

(
1

ϵ

)D1

exp

(
−Nϵ2

512M2
1

)
. (41)

By setting ϵ =

√
C2(logN+log 1

δ )

N with C2 = max
(
(8C1)

2
D1 , 512M1D1, 512M1, 1

)
, we have

8C1

(
1

ϵ

)D1

exp

(
−Nϵ2

512M2
1

)
≤ δ. (42)

Therefore, we have ϵ1 = O
(√

logN+log 1
δ

N

)
, with 1− δ probability.
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Lemma 5 (Statistical error ϵ2). With at least probability 1− δ,

ϵ2 = O

√ logN + log 1
δ

N

 (43)

Proof. We first recall that ∀ν ∈ V , ν is bounded by M2 = Bν . Then, we apply the lemma 2 with
Z = S, Zi = (s0i), and G = ν,

P
(
sup
ν∈V

∣∣∣ÊZ [(1− γ)ν]− E[(1− γ)ν]
∣∣∣ ≥ ϵ

)
≤ 8E

[
N1

( ϵ
8
,G, {Zi}Ni=1

)]
exp

(
−Nϵ2

512M2
2

)
. (44)

Similarly with derivation of Lemma 4, we have

1− γ

N

N∑
i=1

|ν1(Zi)− ν2(Zi)| =
1− γ

N

N∑
i=1

|ν1(s0i)− ν2(s0i)|, (45)

leading to

N1

(
(1− γ)ϵ′,G, {Zi}Ni=1

)
≤ e(DV + 1)

(
2eM2

ϵ′

)DV

. (46)

This leads to following inequality:

N1

( ϵ
8
,G, {Zi}Ni=1

)
≤ e(DV + 1)

(
16(1− γ)eM2

ϵ

)DV

:= C3

(
1

ϵ

)D2

, (47)

with C3 := e(DV + 1)(16(1− γ)eM2)
D2 and D2 = DV .

We can obtain the statistical error,

P(ϵ1 ≥ ϵ) ≤ 8C3

(
1

ϵ

)D2

exp

(
−Nϵ2

512M2
2

)
. (48)

By setting ϵ =

√
C4(logN+log 1

δ )

N with C4 = max
(
(8C3)

2
D2 , 512M2D2, 512M2, 1

)
, we have

8C3

(
1

ϵ

)D2

exp

(
−Nϵ2

512M2
2

)
≤ δ. (49)

Therefore, we have ϵ2 = O
(√

logN+log 1
δ

N

)
, with 1− δ probability.

By using Lemma 4 and 5, we can define the total statistical error 27:

∣∣∣L̂α,k − Lα,k

∣∣∣ ≤ O

√ logN + log 1
δ1

N

+ Õ

√ logN + log 1
δ2

N

 , (50)

where 8C1

(
1
ϵ1

)D1

exp
(

−Nϵ21
512M2

1

)
≤ δ1 and 8C3

(
1
ϵ2

)D2

exp
(

−Nϵ22
512M2

2

)
≤ δ2.
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C.1 STRONG CONVEXITY OF PERSPECTIVE FUNCTION

If f is a Mf -strongly convex function and k > 0, the perspective function g(x) = kf
(
x
k

)
is a

Mf

k -strongly convex in x, where k is fixed.

Proof. Mf -strongly convex f satisfy following inequality for all points x, y in its domain:

∥f ′(x)− f ′(y)∥ ≥ Mf∥x− y∥, (51)

where f ′
x and f ′

y are partial derivative of function f of x and y. Instead of x, y, inserting x
k ,

y
k is also

valid, where k is constant and positive:∥∥∥f ′
(x
k

)
− f ′

(y
k

)∥∥∥ ≥ Mf

∥∥∥x
k
− y

k

∥∥∥ . (52)

The abbreviation of 1/k on the left and right equation is as follows:∥∥∥f ′
(x
k

)
− f ′

(y
k

)∥∥∥ ≥ Mf

k
∥x− y∥ . (53)

Note that g′(x) = f ′ (x
k

)
. We have

∥g′(x)− g′(y)∥ ≥ Mf

k
∥x− y∥ . (54)
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D WEIGHTED f -DIVERGENCE FOR TABULAR CASE

In tabular settings, MLE MDP M̂ = ⟨S,A, T,R, µ0, γ⟩ can be obtained from samples in the dataset
as in (Laroche et al., 2019; Lee et al., 2020). From MLE MDP, we obtain the following parameters
needed for DICE via f -divergence: initial state distibution µ0(s) ∈ R|S|, transition probability
T (s′|s, a) ∈ R|S||A|×|S|, reward R(s, a) ∈ R|S||A| and dataset distribution dD(s, a) ∈ R|S||A|. We
also define diagonalized dD(s, a) as D = diag(dD(s, a)) ∈ R|S||A|×|S||A|.

Based on given parameters and weighted f -divergence regularization framework 6, we obtain DICE
via weighted f -divergence for finite case. We assume f(x) = 1

2 (x − 1)2 for f -divergence to ease
vector derivative.

max
K,w≥0

min
ν

Lα,K(w, ν) = (1− γ)µ⊤
0 ν − α

2
K(K−1w − 1)⊤D(K−1w − 1) + w⊤Deν (55)

where K = diag(k(s, a)) ∈ R|S||A|×|S||A| is set to represent element-wise multiplication. ν, w ∈
R|S||A| are represented as |S||A|-dimensional vectors. We denote T ∈ R|S||A| and B ∈ R|S||A| as a
matrix, which satisfy (T ν)((s, a)) =

∑
s′ T (s

′|s, a)ν(s′) and (Bν)((s, a)) = ν(s) respectively.

First, we assume K is fixed and optimize over w and ν. We switch maxw and minν using strong
duality, then obtain optimal w∗

ν,K of inner maximization of w.

w∗
ν,K = max(0,K(

eν
α

+ 1)) (56)

Given w∗
ν,K and K, we minimize 55 over ν. The minimization problem is given as:

min
ν

L(w∗
ν,K , ν) = (1− γ)µ⊤

0 ν − α

2
K(K−1w∗

ν,K − 1)⊤D(K−1w∗
ν,K − 1) + w∗

ν,k
⊤Deν (57)

However, unlike w, the closed form solution of ν is difficult to find. Therefore, we compute gradient
of L(w∗

ν,K , ν). We also obtain gradient of eν and w∗
ν,K

∂eν
∂ν

= γT − B, (58)

∂w∗
ν,K

∂ν
= K

(
1

α
γT − B

)
⊙ 1(K(

eν
α

+ 1) ≥ 0). (59)

By using 58 and 59, we can calculate

∂Lα,K(w, ν)

∂ν
= (1− γ)µ0 − α

∂w∗
ν,K

∂ν

⊤

D(K−1w∗
ν,k − 1)

+
∂w∗

ν,K

∂ν

⊤

Deν + (γT − B)⊤Dw∗
ν,k, (60)

where 1 denotes one vector and ⊙ denotes row-wise masking. Now we maximize over K, and it is
equivalent to minimizing weighted divergence term in 55. The optimal solution of K is given as

K∗ = diag(w) (61)

One can replace K with diag(w) or gradually update K toward diag(w) with loss function of (k −
w)2. However, for both cases, it is important to keep each elements K upper-bounded by kmax, to
limit upper bound of sampling error. With given update rules for w, ν and K, we iterate DICE via
weighted f -divergence in finite domain until convergence.
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E EXPERIMENT DETAILS FOR D4RL

For DICE via weighted f -divergence in continuous domain, we have two types of parameterized
model: value network and policy network. Both networks have fully-connected multi-layer per-
ceptrons (MLP) with two hidden layers which has 256 hidden units on each layers that takes the
state-action pairs as input and outputs network value through the ReLU activation functions. We use
value networks to estimate value functions ν(s0), eν(s, a) and k(s, a) and policy networks to esti-
mate data collection policy πD and behavior policy πψ . For policy network, we use tanh-squashed
mixture of normal distributions where their means and standard deviation are obtained from the
MLP.

We adopt stochastic gradient descent with Adam optimizer with learning rate {3e-4, 3e-5} to update
the networks. For training, we use 1,200,000 total iteration and 200,000 warm-up iterations, where
policy network for behavior policy πψ will start its training after the warm-up. We choose between
the two types of k, which takes state-action or state as input to obtain weight k. k(s) is introduced to
prevent over-parameterization where additional |S||A| variables can be excessive for the optimiza-
tion. We clipped k using kmin and kmax. kmax is set to bound the sampling error, while kmin is set
to ensure positivity of k. In addition, when learning k, additional regularization to one ((k − 1)2)
was given to the original loss function of k. With its degree scaled by a hyperparameter kreg , the
regularization can provide gradient to clipped k and prevent excessive deviation of k(s, a)dD(s, a)
from dD(s, a). K denotes the number of mixtures for tanh-squashed mixture of Gaussians policy.
For discount factor γ, we use 0.99. Table 2 includes the details of settings and hyperprameters that
we used on experiments of D4RL benchmark (Fu et al. (2020)). We follow the settings of K and α
proposed by OptiDICE(Lee et al. (2021)).

Table 2: (D4RL benchmark) Hyperparampeters and detail settings on the experiments of D4RL
benchmark (Fu et al. (2020)).

Env Type K α k kmin kmax kreg lr

Maze2d Umaze 5 0.001 k(s) 0.5 2 0.1 3e-5
Maze2d Medium 5 0.0001 k(s) 0.5 2 0.1 3e-5
Maze2d Large 1 0.01 k(s) 0.5 2 0.1 3e-5
Hopper Random 5 1 k(s,a) 0.0001 2 100 3e-4
Hopper Medium 9 0.1 k(s) 0.5 2 0.1 3e-4
Hopper Med-replay 9 10 k(s) 0.5 2 0.1 3e-4
Hopper Med-expert 9 1 k(s,a) 0.5 2 1 3e-5
Walker2d Random 9 0.0001 k(s,a) 0.001 2 10 3e-4
Walker2d Medium 9 0.01 k(s,a) 0.8 1.2 1 3e-4
Walker2d Med-replay 9 0.1 k(s,a) 0.5 2 0.1 3e-4
Walker2d Med-expert 5 0.01 k(s,a) 0.5 2 0.1 3e-5
Halfcheetah Random 5 0.0001 k(s,a) 0.0001 2 0.1 3e-4
Halfcheetah Medium 1 0.01 k(s,a) 0.0001 2 1 3e-4
Halfcheetah Med-replay 9 0.01 k(s,a) 0.0001 2 1.0 3e-5
Halfcheetah Med-expert 9 0.01 k(s) 0.8 1.2 100 3e-4
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Figure 3: (D4RL benchmark) Performance of our algorithm compare to OptiDICE (Lee et al.
(2021)) on D4RL benchmark (Fu et al. (2020)). We run 5 times and show means and standard errors
with 95 % confidence intervals. x-axis and y-axis represent normalized score and the number of
iteration, respectively.
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F ABLATION STUDY
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Figure 4: Performance of our algorithm compare to OptiDICE on antmaze-umaze of gym-mujoco
with same hyperparameters.
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Figure 5: Performance of our algorithm compare to OptiDICE for f = 1
2 (x− 1)2 (i.e, chi-square),

on maze2d-umaze, maze2d-medium and maze2d-large of D4RL benchmark.
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Figure 6: Performance of our algorithm for (kmax, kmin) ∈ {(2.0, 0.1), (2.0, 0.5), (5.0, 0.5)} on
maze2d-umaze, maze2d-medium and maze2d-large of D4RL benchmark.
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Figure 7: Performance of our algorithm compare to OptiDICE with respect to α with fixed bound on
(kmax, kmin) = (2.0, 0.5) on maze2d-umaze, maze2d-medium and maze2d-large of D4RL bench-
mark. We set α ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1}.
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