Published as a conference paper at ICLR 2022

NOISY FEATURE MIXUP

Soon Hoe Lim* N. Benjamin Erichson* Francisco Utrera

Nordita, University of Pittsburgh University of Pittsburgh

KTH and Stockholm University erichson@pitt.edu and ICSI

soon.hoe.lim@su.edu utrerf@berkeley.edu

Winnie Xu Michael W. Mahoney

University of Toronto ICSI and UC Berkeley

winniexu@cs.toronto.edu mmahoney@stat.berkeley.edu
ABSTRACT

We introduce Noisy Feature Mixup (NFM), an inexpensive yet effective method
for data augmentation that combines the best of interpolation based training and
noise injection schemes. Rather than training with convex combinations of pairs of
examples and their labels, we use noise-perturbed convex combinations of pairs
of data points in both input and feature space. This method includes mixup and
manifold mixup as special cases, but it has additional advantages, including better
smoothing of decision boundaries and enabling improved model robustness. We
provide theory to understand this as well as the implicit regularization effects of
NFM. Our theory is supported by empirical results, demonstrating the advantage
of NFM, as compared to mixup and manifold mixup. We show that residual
networks and vision transformers trained with NFM have favorable trade-offs
between predictive accuracy on clean data and robustness with respect to various
types of data perturbation across a range of computer vision benchmark datasets.

1 INTRODUCTION

Mitigating over-fitting and improving generalization on test data are central goals in machine learning.
One approach to accomplish this is regularization, which can be either data-agnostic or data-dependent
(e.g., explicitly requiring the use of domain knowledge or data). Noise injection is a typical example
of data-agnostic regularization (Bishop) |1995), where noise can be injected into the input data
(An.|1996)), or the activation functions (Gulcehre et al.l 2016), or the hidden layers of deep neural
networks (Camuto et al.} [2020; |ILim et al., [2021). Data augmentation constitutes a different class
of regularization methods (Baird, |1992; |Chapelle et al., [2001}; |DeCoste & Scholkopf, [2002), which
can also be either data-agnostic or data-dependent. Data augmentation involves training a model
with not just the original data, but also with additional data that is properly transformed, and it has
led to state-of-the-art results in image recognition (Ciresan et al.l [2010; |Krizhevsky et al., [2012)).
The recently-proposed data-agnostic method, mixup (Zhang et al., 2017), trains a model on linear
interpolations of a random pair of examples and their corresponding labels, thereby encouraging
the model to behave linearly in-between training examples. Both noise injection and mixup have
been shown to impose smoothness and increase model robustness to data perturbations (Zhang
et al.,|2020; |Carratino et al., 2020; [Lim et al., |2021)), which is critical for many safety and sensitive
applications (Goodfellow et al.,[2018;|Madry et al., 2017).

In this paper, we propose and study a simple yet effective data augmentation method, which we call
Noisy Feature Mixup (NFM). This method combines mixup and noise injection, thereby inheriting
the benefits of both methods, and it can be seen as a generalization of input mixup (Zhang et al.,
2017) and manifold mixup (Verma et al.,|2019). When compared to noise injection and mixup, NFM
imposes regularization on the largest natural region surrounding the dataset (see Fig.[I]), which may
help improve robustness and generalization when predicting on out of distribution data. Conveniently,
NFM can be implemented on top of manifold mixup, introducing minimal computation overhead.

*Equal contribution
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Contributions. Our main contributions are as follows.

* We study NFM via the lens of implicit regulariza- o) T
tion, showing that NFM amplifies the regularizing
effects of manifold mixup and noise injection, im-

plicitly reducing the feature-output Jacobians and P R (N _3;2 .
Hessians according to the mixing level and noise e a-- o "/ ¢

7 - /
levels (see Theorem|I). NN P -

* We provide mathematical analysis to show that
NFM can improve model robustness when com-  Fjgyre 1: An illustration of how two
pared to manifold mixup and noise injection. In  data points, x; and x», are transformed
particular, we show that, under appropriate assump- i mixup (top) and noisy feature mixup
tions, NFM training approximately minimizes an (NFM) with S := {0} (bottom).
upper bound on the sum of an adversarial loss and
feature-dependent regularizers (see Theorem 2).

* We provide empirical results in support of our theoretical findings, showing that NFM improves
robustness with respect to various forms of data perturbation across a wide range of state-of-the-
art architectures on computer vision benchmark tasks.

In the Supplementary Materials (SM), we provide proofs for our theorems along with additional
theoretical and empirical results to gain more insights into NFM. In particular, we show that NFM
can implicitly increase classification margin (see Proposition |I|in SM |C)) and the noise injection
procedure in NFM can robustify manifold mixup in a probabilistic sense (see Theorem [5|in SM D).
We also provide and discuss generalization bounds for NFM (see Theorem [6| and [7]in SM [E).

Notation. I denotes identity matrix, [K] := {1,..., K}, the superscript 7 denotes transposition, o
denotes composition, ® denotes Hadamard product, 1 denotes the vector with all components equal
one. For a vector v, v* denotes its kth component and ||v||,, denotes its I, norm for p > 0. conv(X)
denote the convex hull of X. M) (a,b) := Aa+ (1 — \)b, for random variables a, b, \. §, denotes the
Dirac delta function, defined as 0, (z) = 1 if z = z and §,(z) = 0 otherwise. 1 4 denotes indicator

function of the set A. For o, 8 > 0, Dy := QLHBBeta(a +1,8) + %iBBeta(ﬁ + 1, ) denotes

a uniform mixture of two Beta distributions. For two vectors a, b, cos(a,b) := (a,b)/||a||2]|b]2
denotes their cosine similarity. A'(a, b) is a Gaussian distribution with mean a and covariance b.

2 RELATED WORK

Regularization. Regularization refers to any technique that reduces overfitting in machine learning;
see (Mahoney & Orecchia, 201 1;|Mahoney, [2012) and references therein, in particular for a discussion
of implicit regularization, a topic that has received attention recently in the context of stochastic
gradient optimization applied to neural network models. Traditional regularization techniques such
as ridge regression, weight decay and dropout do not make use of the training data to reduce the
model capacity. A powerful class of techniques is data augmentation, which constructs additional
examples from the training set, e.g., by applying geometric transformations to the original data
(Shorten & Khoshgoftaar, 2019). A recently proposed technique is mixup (Zhang et al.l 2017), where
the examples are created by taking convex combinations of pairs of inputs and their labels. Verma
et al.| (2019) extends mixup to hidden representations in deep neural networks. Subsequent works
by |Greenewald et al.|(2021); Y1n et al. (2021)); Engstrom et al.|(2019); |Kim et al.[(2020a); |Yun et al.
(2019); Hendrycks et al.|(2019) introduce different variants and extensions of mixup. Regularization
is also intimately connected to robustness (Hoffman et al.,|2019; |Sokoli¢ et al.,[2017; |Novak et al.,
2018 [Elsayed et al., 2018 |[Moosavi-Dezfooli et al., 2019). Adding to the list is NFM, a powerful
regularization method that we propose to improve model robustness.

Robustness. Model robustness is an increasingly important issue in modern machine learning.
Robustness with respect to adversarial examples (Kurakin et al.,2016) can be achieved by adversarial
training (Goodfellow et al., [2014; Madry et al., 2017; [Utrera et al.| 2020). Several works present
theoretical justifications to observed robustness and how data augmentation can improve it (Hein &
Andriushchenko, [2017; | Yang et al., [2020b; |Couellan, 2021} [Pinot et al., [2019a; 2021; |Zhang et al.,
2020; 2021} |Carratino et al., [2020; [Kimura, [2020; |Dao et al., 2019; Wu et al., [2020; |Gong et al.}
2020; |Chen et al., [2020). Relatedly, Fawzi et al.[(2016)); Franceschi et al.[(2018); [Lim et al.|(2021)
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investigate how noise injection can be used to improve robustness. Parallel to this line of work, we
provide theory to understand how NFM can improve robustness. Also related is the study of the
trade-offs between robustness and accuracy (Min et al.l 2020; [Zhang et al.| [2019; Tsipras et al.,|2018;;
Schmidt et al., |2018; |Su et al., 2018 |Raghunathan et al.l 2020} |Yang et al.| 2020a).

3 NoOISY FEATURE MIXUP

Noisy Feature Mixup is a generalization of input mixup (Zhang et al.,|2017) and manifold mixup
(Verma et al.,|2019). The main novelty of NFM against manifold mixup lies in the injection of noise
when taking convex combinations of pairs of input and hidden layer features. Fig.[I]illustrates, at
a high level, how this modification alters the region in which the resulting augmented data resides.
Fig.|2|shows that NFM is most effective at smoothing the decision boundary of the trained classifiers;
compared to noise injection and mixup alone, it imposes the strongest smoothness on this dataset.

Formally, we consider multi-class classification with K labels. Denote the input space by X' C R?
and the output space by ) = R The classifier, g, is constructed from a learnable map f : X — RX,
mapping an input z to its label, g(r) = argmaxy f¥(x) € [K]. We are given a training set,
Z, = {(z4,y:)},, consisting of n pairs of input and one-hot label, with each training pair
zi = (x4,y;) € X x Y drawn i.i.d. from a ground-truth distribution D. We consider training a deep
neural network f := fj o gx, where g : X — gr(X) maps an input to a hidden representation at
layer k, and f, : g5 (X) — g (X) := ) maps the hidden representation to a one-hot label at layer L.
Here, gi(X) C R%* for k € [L], dr, := K, go(z) = z and fo(z) = f(x).

Training f using NFM consists of the following steps:

1. Select a random layer k from a set, S C {0} U [L], of eligible layers in the neural network.

2. Process two random data minibatches (x,y) and (2’, y') as usual, until reaching layer k. This
gives us two immediate minibatches (g (), y) and (gx(z), y').

3. Perform mixup on these intermediate minibatches, producing the mixed minibatch:

(1, 9) = (Mx(gr(2), gr(2")), Mx(y, ")), (D
where the mixing level A ~ Beta(c, 3), with the hyper-parameters «, 5 > 0.

4. Produce noisy mixed minibatch by injecting additive and multiplicative noise:

(91, 9) = (L4 O™ © My (gr(2), g1 (2)) + 0agali™, Mx(y,y')), 2

where the £29¢ and £"!* are R -valued independent random variables modeling the additive
and multiplicative noise respectively, and 0444, Omyuir > 0 are pre-specified noise levels.
5. Continue the forward pass from layer k& until the output using the noisy mixed minibatch (ék, 7).

6. Compute the loss and gradients that update all the parameters of the network.

. .:..::.. . . . -::::- . . S ::.. . . . -::::.. . .
B;l;eline (.85‘.5%). D?)pout (.87TO%). Wei;gl.lt deca'y (.88.0%). Noise i.njectio.ns'(87.0%).
I;/I.ixup (8.4.;%). Mani%o.ld mix.up.(88.5%). Noi;;/ mixu;) (;%9.0%). ‘N.FM (9;).(;%).

Figure 2: The decision boundaries and test accuracy (in parenthesis) for different training schemes on
a toy dataset in binary classification (see Subsection @for details).
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At the level of implementation, following (Verma et al.||2019), we backpropagate gradients through
the entire computational graph, including those layers before the mixup layer k.

In the case where 0440 = Opmuir = 0, NFM reduces to manifold mixup (Verma et al.,[2019)). If in
addition S = {0}, it reduces to the original mixup method (Zhang et al.,2017). The main difference
between NFM and manifold mixup lies in the noise injection of the fourth step above. Note that
NEM is equivalent to injecting noise into gy (), gi (z’) first, then performing mixup on the resulting
pair, i.e., the order that the third and fourth steps occur does not change the resulting noisy mixed
minibatch. For simplicity, we have used the same mixing level, noise distribution, and noise levels
for all layers in S in our formulation.

Within the above setting, we consider the expected NFM loss:

LNFM(F) = Ea), (0,9 ~DEk~SErm Beta(a,8) Eenmal (fe (Mg, (g (2), gi(2"))), Ma(y, 1)),

where [ : RE x RE — [0, 00) is a loss function (note that here we have suppressed the dependence
of both [ and f on the learnable parameter 6 in the notation), & := ( gdd, ,T“”) are drawn from

some probability distribution Q with finite first two moments, and

M)u,ﬁk (gk($)7gk(-r/)) = (l + O-multglygnu”) O] M)\(gk(ﬂ?),gk(.’lil)) + O-addé-l{gldd~

NFM seeks to minimize a stochastic approximation of LN ( f) by sampling a finite number of
k, A, & values and using minibatch gradient descent to minimize this loss approximation.

4 THEORY

In this section, we provide mathematical analysis to understand NFM. We begin with formulating
NFM in the framework of vicinal risk minimization and interpreting NFM as a stochastic learning
strategy in Subsection[4.1] Next, we study NFM via the lens of implicit regularization in Subsection
Our key contribution is Theorem [I] which shows that minimizing the NFM loss function is
approximately equivalent to minimizing a sum of the original loss and feature-dependent regularizers,
amplifying the regularizing effects of manifold mixup and noise injection according to the mixing and
noise levels. In Subsection[4.3] we focus on demonstrating how NFM can enhance model robustness
via the lens of distributionally robust optimization. The key result of Theorem 2] shows that NFM
loss is approximately the upper bound on a regularized version of an adversarial loss, and thus
training with NFM not only improves robustness but can also mitigate robust over-fitting, a dominant
phenomenon where the robust test accuracy starts to decrease during training (Rice et al., [2020).

4.1 NFM: BEYOND EMPIRICAL RISK MINIMIZATION

The standard approach in statistical learning theory (Bousquet et al., [2003) is to select a hypothesis
function f : X — ) from a pre-defined hypothesis class F to minimize the expected risk with
respect to D and to solve the risk minimization problem: inf;c » R(f) := E; ,)~p[l(f(2),y)], for
a suitable choice of loss function . In practice, we do not have access to the ground-truth distribution.
Instead, we find an approximate solution by solving the empirical risk minimization (ERM) problem,
in which case D is approximated by the empirical distribution P,, = % >, 62,. In other words, in

ERM we solve the problem: inf re 7 Ry, (f) := 2 30 1(f (%), vi)-

However, when the training set is small or the model capacity is large (as is the case for deep neural
networks), ERM may suffer from overfitting. Vicinal risk minimization (VRM) is a data augmentation
principle introduced in (Vapnik, [2013) that goes beyond ERM, aiming to better estimate expected
risk and reduce overfitting. In VRM, a model is trained not simply on the training set, but on samples
drawn from a vicinal distribution, that smears the training data to their vicinity. With appropriate
choices for this distribution, the VRM approach has resulted in several effective regularization
schemes (Chapelle et al., 2001)). Input mixup (Zhang et al.,|2017) can be viewed as an example of
VRM, and it turns out that NFM can be constructed within a VRM framework at the feature level (see
Section[A]in SM). On a high level, NFM can be interpreted as a random procedure that introduces
feature-dependent noise into the layers of the deep neural network. Since the noise injections are
applied only during training and not inference, NFM is an instance of a stochastic learning strategy.
Note that the injection strategy of NFM differs from those of |An| (1996)); Camuto et al.| (2020); Lim;
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et al.| (2021). Here, the structure of the injected noise differs from iteration to iteration (based on the
layer chosen) and depends on the training data in a different way. We expect NFM to amplify the
benefits of training using either noise injection or mixup alone, as will be shown next.

4.2 IMPLICIT REGULARIZATION OF NFM

We consider loss functions of the form I(f(x),y) := h(f(x)) — yf(x), which includes standard
choices such as the logistic loss and the cross-entropy loss, and recall that f := fj o gx. Denote
Lstd .= L5 1(f(x;),y;) and let D, be the empirical distribution of training samples {; };c(y,)-
We shall show that NFM exhibits a natural form of implicit regularization, i.e., regularization imposed
implicitly by the stochastic learning strategy, without explicitly modifying the loss.

Let € > 0 be a small parameter. In the sequel, we rescale 1 — A — e(1 — A), 04dd — €Tadds
Omult M €0mait, and denote Vi f and Vﬁ f as the first and second directional derivative of f; with
respect to g respectively, for k € S. By working in the small parameter regime, we can relate the
NFM empirical loss LY M to the original loss L:¢ and identify the regularizing effects of NFM.

Theorem 1. Let € > 0 be a small parameter, and assume that h and f are twice differentiable. Then,

LNFM — o LNTME) opere
LNFM@) — pstd o pk) 4 20 L 2R 42 (3)
WZh R( ) — R(k) +o ddRadd(k) +0-multR;nu”( ) and Ri(ik) = R( )+Uadngdd( )+0multRmUIt(k)
wnere
R - L Z W) Vit (9n(2:)) B, (62639 T1V . g 1), @

Ry = o Z B (f(:))Vif (gs(@:) " (Ee, (67 (7)) © gi(wi)gn ()T ) Vi f (gr (1)),
i=1

4)

R = S (F(0) — wi)Ee, (69T S (gm0 1), ©®
=1

Ryt = ;n Z(h’(f@m y)Ee (6" © gi(2:) " Vi (gr(@) (" © gl@)) (D)

Here, R¥, R and RE are the regularizers associated with the loss of manifold mixup (see Theorem
in SM for their explicit expression), and ¢ is some function such that lim._,o ¢(e) = 0

Theorem [T]implies that, when compared to manifold mixup, NFM introduces additional smoothness,
regularizing the directional derivatives, Vi f(gx(z;)) and V3 f(gx(z;)), with respect to gx(;),
according to the noise levels 0,44 and o,,41¢, and amplifying the regularizing effects of manifold
mixup and noise injection. In particular, making V2 f(z;) small can lead to smooth decision
boundaries (at the input level), while reducing the confidence of model predictions. On the other hand,
making the V, f (g (x;)) small can lead to improvement in model robustness, which we discuss next.

4.3 ROBUSTNESS OF NFM

We show that NFM improves model robustness. We do this by considering the following three lenses:
(1) implicit regularization and classification margin; (2) distributionally robust optimization; and (3)
a probabilistic notion of robustness. We focus on (2) in the main paper. See Section|[CH{D]in SM and
the last paragraph in this subsection for details on (1) and (3).

We now demonstrate how NFM helps adversarial robustness. By extending the analysis of Zhang
et al.| (2017); |[Lamb et al.|(2019), we can relate the NFM loss function to the one used for adversarial
training, which can be viewed as an instance of distributionally robust optimization (DRO) (Kwon
et al., [2020; [Kuhn et al.| 2019; Rahimian & Mehrotral 2019) (see also Proposition 3.1 in (Staib &
Jegelkal |2017)). DRO provides a framework for local worst-case risk minimization, minimizing
supremum of the risk in an ambiguity set, such as in the vicinity of the empirical data distribution.
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Following (Lamb et al.,[2019), we consider the binary cross-entropy loss, setting h(z) = log(1 + e7),
with the labels y taking value in {0, 1} and the classifier model f : R? — R. In the following, we
assume that the model parameter 6 € © := {0 : y; f(z;) + (y; — 1) f(z;) > O forall i € [n]}. Note
that this set contains the set of all parameters with correct classifications of training samples (before
applying NFM), since {0 : 1{¢(z,)>0} = ¥: foralli € [n]} C ©. Therefore, the condition of § € ©
is satisfied when the model classifies all labels correctly for the training data before applying NFM.
Since, in practice, the training error often becomes zero in finite time, we study the effect of NFM on
model robustness in the regime of 6 € ©.

Working in the data-dependent parameter space O, we have the following result.

Theorem 2. Let 0 € © := {0 : y; f(x;) + (ys — 1) f(x:) > 0 for alli € [n]} such that V. f (gr ()
and V3 f(gx(;)) exist for all i € [n], k € S. Assume that fr(gr(z:)) = Vif(gr(:))T gr(z:),
ka(gk( i) =0foralli € [n), k € S. In addition, suppose that ||V f(x;)||2 > 0 for all i € [n),

Epop, [g6(r)] = 0 and ||gi(z:)||2 > ) V/dx for alli € [n], k € S. Then,

LNFM > — Z max  (f(zi+65),us) + LI + ¢(e), (8)
116 |2 <emie
mix k) (k T; re
where €| = By p, 1 - )\] - Epos f ) g)‘lvllfvfg‘g(ig)|\))l‘2 \/dfk} and L7¢9
£ ST R (@) (€69)2, with 7" = | cos(Vi f(gr (1)), gr(:))] and

(€)% = [V f (gr ()3 <EA[(1 = NPEq, [llgr(@2)[13 cos(Vif (g1 (), i (21))?]
+02aaEe, (10713 cos (Vi f (gr(22)), €5)]

02 (10 © g ()2 cos(V f (g1 (@), W@gm»ﬂ), ©)

and ¢ is some function such that lim._,q ¢(e) = 0.

The second assumption stated in Theorem@] is similar to the one made inLamb et al.|(2019)); Zhang
et al. (2020), and is satisfied by linear models and deep neural networks with ReLU activation function
and max-pooling. Theorem [2] shows that the NFM loss is approximately an upper bound of the
adversarial loss with I, attack of size €™* = min;e () € €M plus a feature- dependent regularization
term L7°9 (see SM for further discussions). Therefore, we see that minimizing the NFM loss not
only results in a small adversarial loss, while retaining the robustness benefits of manifold mixup, but
it also imposes additional smoothness, due to noise injection, on the adversarial loss. The latter can
help mitigate robust overfitting and improve test performance (Rice et al.| [2020; [Rebuffi et al., 2021).

NFM can also implicitly increase the classification margin (see Section [C|of SM). Moreover, since
the main novelty of NFM lies in the introduction of noise injection, it would be insightful to isolate
the robustness boosting benefits of injecting noise on top of manifold mixup. We demonstrate these
advantages via the lens of probabilistic robustness in Section [D]of SM.

5 EMPIRICAL RESULTS

In this section, we study the test performance of models trained with NFM, and examine to what
extent NFM can improve robustness to input perturbations. We demonstrate the tradeoff between
predictive accuracy on clean and perturbed test sets. We consider input perturbations that are common
in the literature: (a) white noise; (b) salt and pepper; and (c) adversarial perturbations (see Section[F).

We evaluate the average performance of NFM with different model architectures on CIFAR-
10 (Krizhevsky, 2009), CIFAR-100 (Krizhevskyl 2009), ImageNet (Deng et al., 2009), and CIFAR-
10c (Hendrycks & Dietterich, 2019). We use a pre-activated residual network (ResNet) with depth
18 (He et al.,[2016) on small scale tasks. For more challenging tasks, we consider the performance of
wide ResNet-18 (Zagoruyko & Komodakis,|2016) and ResNet-50 architectures, respectively.

Baselines. We evaluate against related data augmentation schemes that have shown performance
improvements in recent years: mixup (Zhang et al., 2017); manifold mixup (Verma et al., [2019);
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cutmix (Yun et al., 2019); puzzle mixup (Kim et al., |2020b); and noisy mixup (Yang et al.| 2020b).
Further, we compare to vanilla models trained without data augmentation (baseline), models trained
with label smoothing, and those trained on white noise perturbed inputs.

Experimental details. All hyperparameters are consistent with those of the baseline model across
the ablation experiments. In the models trained on the different data augmentation schemes, we keep
« fixed, i.e., the parameter defining Beta(q, o), from which the A\ parameter controlling the convex
combination between data point pairs is sampled. Across all models trained with NFM, we control
the level of noise injections by fixing the additive noise level to 0,44 = 0.4 and multiplicative noise
to oyt = 0.2. To demonstrate the significant improvements on robustness upon the introduction of
these small input perturbations, we show a second model (‘**) that was injected with higher noise
levels (i.e., 04qq = 1.0, 0ppuie = 0.5). See SM (Section for further details and comparisons
against NFM models trained on various other levels of noise injections.

5.1 CIFARI10

Pre-activated ResNet-18. Table |1| summarizes the performance improvements and indicates a
consistent robustness across different o values. The model trained with NFM outperforms the
baseline model on the clean test set, while being more robust to input perturbations (Fig. [3} left). This
advantage is also displayed in the models trained with mixup and manifold mixup, though in a less
pronounced way. Notably, the NFM model is also robust to salt and pepper perturbations and could
be significantly more so by further increasing the noise levels (Fig. [3} right).

5.2 CIFAR-100

Wide ResNet-18. Previous work indicates that data augmentation has a positive effect on performance
for this dataset (Zhang et all 2017). Fig.[d] (left) confirms that mixup and manifold mixup improve
the generalization performance on clean data and highlights the advantage of data augmentation.
The NFM training scheme is also capable of further improving the generalization performance. In
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Figure 3: Pre-actived ResNet-18 evaluated on CIFAR-10 with different training schemes. Shaded
regions indicate one standard deviation about the mean. Averaged across 5 random seeds.

Table 1: Robustness of ResNet-18 w.r.t. white noise (o) and salt and pepper () perturbations
evaluated on CIFAR-10. The results are averaged over 5 models trained with different seed values.

Scheme Clean (%) o (%) v (%)

01 02 03002 004 01
Baseline 94.6 904 767 563 | 863 76.1 552
Baseline + Noise 94.4 940 875 712|893 825 649
Baseline + Label Smoothing 95.0 913 775 569 | 877 79.2 60.0
Mixup (o = 1.0) Zhang et al.|(2017) 95.6 932 854 718|871 76.1 552
CutMix |Yun et al.|[(2019) 96.3 86.7 60.8 324|909 81.7 547
PuzzleMix |Kim et al.|(2020b) 96.3 91.7 781 599|914 818 544
Manifold Mixup (o = 1.0)|Verma et al.|(2019) 95.7 9277 827 676|889 802 57.6
Noisy Mixup (a = 1.0)|Yang et al.|(2020b) 78.9 78.6 66.6 46.7 | 66.6 534 259
Noisy Feature Mixup (o = 1.0) | 954 |950 91.6 83.0|919 874 733
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Figure 4: Wide ResNets evaluated on CIFAR-100. Averaged across 5 random seeds.

Table 2: Robustness of Wide-ResNet-18 w.r.t. white noise (o) and salt and pepper () perturbations
evaluated on CIFAR-100. The results are averaged over 5 models trained with different seed values.

Scheme Clean (%) o (%) v (%)

01 02 03002 004 01
Baseline 76.9 64.6 420 235|581 39.8 15.1
Baseline + Noise 76.1 752 605 376|649 513 230
Mixup (o = 1.0)|[Zhang et al.|(2017) 80.3 725 540 334|625 438 162
CutMix |Yun et al.|(2019) 77.8 583 281 138|703 58. 2438
PuzzleMix (200 epochs) |Kim et al.|(2020b) 78.6 662 41.1 226 | 694 563 233
PuzzleMix (1200 epochs) Kim et al.[(2020b) 80.3 53.0 191 62 | 693 519 157
Manifold Mixup (o = 1.0)|Verma et al.|(2019) 79.7 70.5 450 238 | 62.1 428 148
Noisy Mixup (o = 1.0)|Yang et al.|{(2020b) 78.9 78.6 66.6 46.7 | 66.6 534 259
Noisy Feature Mixup (o = 1.0) | 809 |81 721 553|728 621 344

Table 3: Robustness of ResNet-50 w.r.t. white noise (o) and salt and pepper () perturbations
evaluated on ImageNet. Here, the NFM training scheme improves both the predictive accuracy on
clean data and robustness with respect to data perturbations.

Scheme Clean (%) o (%) ¥ (%)

01 025 05 [006 01 015
Baseline 76.0 735 67.0 50.1 | 532 504 45.0
Manifold Mixup (o = 0.2) |Verma et al.|{(2019) 76.7 749 703 575|581 54.6 495
Noisy Feature Mixup (a = 0.2) 77.0 765 72.0 60.1 | 583 56.0 523
Noisy Feature Mixup (o = 1.0) 76.8 762 717 60.0 | 60.9 588 544

addition, we see that the model trained with NFM is less sensitive to both white noise and salt and
pepper perturbations. These results are surprising, as robustness is often thought to be at odds with
accuracy (Tsipras et al., 2018]). However, we demonstrate NFM has the ability to improve both
accuracy and robustness. Table [2]indicates that for the same «, NFM can achieve an average test
accuracy of 80.9% compared to only 80.3% in the mixup setting.

5.3 IMAGENET

ResNet-50. Table |3| similarly shows that NFM improves both the generalization and robustness
capacities with respect to data perturbations. Although less pronounced in comparison to previous
datasets, NFM shows a favorable trade-off without requiring additional computational resources.
Note that due to computational costs, we do not average across multiple seeds and only compare
NFM to the baseline and manifold mixup models.

5.4 CIFAR-10c

In Fi gure@we use the CIFAR-10C dataset (Hendrycks & Dietterich,2019) to demonstrate that models
trained with NFM are more robust to a range of perturbations on natural images. Figure|[6](left) shows
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Figure 5: Pre-actived ResNet-18 evaluated on CIFAR-10 (left) and Wide ResNet-18 evaluated on
CIFAR-100 (right) with respect to adversarially perturbed inputs.
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Figure 6: Pre-actived ResNet-18 evaluated on CIFAR-10c.

the average test accuracy across six selected perturbations and demonstrates the advantage of NFM
being particularly pronounced with the progression of severity levels. The right figure shows the
performance on the same set of six perturbations for the median severity level 3. NFM excels on
Gaussian, impulse, speckle and shot noise, and is competitive with the rest on the snow perturbation.

5.5 ROBUSTNESS TO ADVERSARIAL EXAMPLES

So far we have only considered white noise and salt and pepper perturbations. We further consider
adversarial perturbations. Here, we use projected gradient decent (Madry et al. with 7 iterations
and various € levels to construct the adversarial perturbations. Fig.|5|highlights the improved resilience
of ResNets trained with NFM to adversarial input perturbations and shows this consistently on both
CIFAR-10 (left) and CIFAR-100 (right). Models trained with both mixup and manifold mixup do not
show a substantially increased resilience to adversarial perturbations.

In Section we compare NFM to models that are adversarially trained. There, we see that
adversarially trained models are indeed more robust to adversarial attacks, while at the same time
being less accurate on clean data. However, models trained with NFM show an advantage compared
to adversarially trained models when faced with salt and pepper perturbations.

6 CONCLUSION

We introduce Noisy Feature Mixup, an effective data augmentation method that combines mixup and
noise injection. We identify the implicit regularization effects of NFM, showing that the effects are
amplifications of those of manifold mixup and noise injection. Moreover, we demonstrate the benefits
of NFM in terms of superior model robustness, both theoretically and experimentally. Our work
inspires a range of interesting future directions, including theoretical investigations of the trade-offs
between accuracy and robustness for NFM and applications of NFM beyond computer vision tasks.
Further, it will be interesting to study whether NFM may also lead to better model calibration by

extending the analysis of [Thulasidasan et al.|(2019);Zhang et al.|(2021).
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Supplementary Material (SM) for ‘“Noisy Feature Mixup”
Organizational Details. This SM is organized as follows.

* In Section[A] we study the regularizing effects of NFM within the vicinal risk minimization
framework, relating the effects to those of mixup and noise injection.

* In Section [B] we restate the results presented in the main paper and provide their proof.

* In Section [C] we study robutsness of NFM through the lens of implicit regularization,
showing that NFM can implicitly increase the classification margin.

* In Section D] we study robustness of NFM via the lens of probabilistic robustness, showing
that noise injection can improve robustness on top of manifold mixup while keeping track
of maximal loss in accuracy incurred under attack by tuning the noise levels.

* In Section [Ef we provide results on generalization bounds for NFM and their proofs,
identifying the mechanisms by which NFM can lead to improved generalization bound.

* In Section[F] we provide additional experimental results and their details.

We recall the notation that we use in the main paper as well as this SM.

Notation. I denotes identity matrix, [K] := {1,..., K}, the superscript 7 denotes transposition, o
denotes composition, ® denotes Hadamard product, 1 denotes the vector with all components equal
one. For a vector v, v* denotes its kth component and ||v||,, denotes its I, norm for p > 0. conv(X)
denote the convex hull of X'. M) (a,b) := Aa+ (1 — \)b, for random variables a, b, \. §, denotes the
Dirac delta function, defined as 0, (z) = 1 if z = z and §,(z) = 0 otherwise. 1 4 denotes indicator

function of the set A. For ar, § > 0, Dy := aipBeta(a+1,8) + O%BBeta(ﬁ + 1, «), a uniform

mixture of two Beta distributions. For two vectors a, b, cos(a, b) := (a,b)/||al|2||b||2 denotes their
cosine similarity. N'(a, b) denotes the Gaussian distribution with mean a and covariance b.

A NFM THROUGH THE LENS OF VICINAL RISK MINIMIZATION

In this section, we shall show that NFM can be constructed within a vicinal risk minimization (VRM)
framework at the level of both input and hidden layer representations.

To begin with, we define a class of vicinal distributions and then relate NFM to such distributions.

Definition 1 (Randomly perturbed feature distribution). Let Z,, = {z1, ..., 2, } be a feature set. We
say that P}, is an e;-randomly perturbed feature distribution if there exists a set {2}, ...,z } such
that P}, % Z?zl 525, with z = z; + e;, for some random variable e; (possibly dependent on Z,,)
drawn from a probability distribution.

Note that the support of an e;-randomly perturbed feature distribution may be larger than that of Z.

If Z,, is an input dataset and the e; are bounded variables such that ||e;|| < £ for some S > 0, then P},
is a S-locally perturbed data distribution according to Definition 2 in (Kwon et al.|[2020). Examples
of B-locally perturbed data distribution include that associated with denoising autoencoder, input
mixup, and adversarial training (see Example 1-3 in (Kwon et al.,[2020)). Definition [T]can be viewed
as an extension of the definition in (Kwon et al.| [2020), relaxing the boundedness condition on the
e; to cover a wide families of perturbed feature distribution. One simple example is the Gaussian
distribution, i.e., when ¢; ~ N (0, af), which models Gaussian noise injection into the features.
Another example is the distribution associated with NFM, which we now discuss.

To keep the randomly perturbed distribution close to the original distribution, the amplitude of
the perturbation should be small. In the sequel, we let € > 0 be a small parameter and rescale
1 =X €e(l=X), 0udd = €0add and Opuir — €0mult-

Let F}, be the family of mappings from g (X) to ) and consider the VRM:

sinf R f) = By (2 ,yympt [L(Fr(g0(2))), 4], (10)
where P = 1570 gy o)) With g () = gia) +ee

. NFM(k
random variables e, *'*) and ¢V

and y, = y; + ee?, for some
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In NFM, we approximate the ground-truth distribution D using the family of distributions {P&f ) tress
with a particular choice of (e fVFM(k) ). In the sequel, we denote NFM at the level of kth layer as
NFM(k) (i.e., the particular case when S := {k}).

The following lemma identifies the (e, NEM(K) o ¥) associated with N F'M (k) and relates the effects
of NFM (k) to those of mixup and noise 1nJect10n for any perturbation level € > 0.

Lemma 1. Let € > 0 and denote z;(k) := gr(z;). Learning the neural network map f using

NFM (k) is a VRM with the (eeNFM(k) ee!)-randomly perturbed feature distribution, pk) =

1 Zz 102! (k) 1) With 2{(k) == z;(k) + eeNFM(k), yi := y; +ee?, as the vicinal distribution. Here,
62 - (1 - )‘)(yz yi)’
€,§VFM(’C) (1 + €Umult§mult) o emzwup(k:) + e;r.wise(k)7 (1 1)

where emmup(k) = (1= X)(Zi(k) — zi(k)), and e nmse(k) = Opmuit&muit © (k) + 0addbadd, With
zi(k), Z (k) € gi(X), A ~ Beta(a, 8) and y;, §; € Y. Here, (2;(k), §;) are drawn randomly from
the training set.

Therefore, the random perturbation associated to NFM is data-dependent, and it consists of a
randomly weighted sum of that from injecting noise into the feature and that from mixing pairs
of feature samples. As a simple example, one can take £,44, {muit to be independent standard

Gaussian random variables, in which case we have 7" ~ N/(0, 02,1 + 02,,,,diag(zi(k))2),
and e; ~ N(0,02,, + 02, ... Mx(zi(k), Z(k))?) in Lemma

We now prove LemmalT]

Proof of Lemmall] Let k be given and set e = 1 without loss of generality. For every i € [n],
NF M (k) injects noise on top of a mixed sample z}(k) and outputs:

Z;/(k) = (1 + Jmultgmult) O] Z;(k’) + O—addgadd (12)
= (1 + Jmultfmuult) © (Azz(k) + (1 - )‘)gi(k)) + Jaddgadd (13)
= zi(k) + e M, (14)
NFM(k)

where e; = (1= XN)(Zi(k) — 2i(k)) + OmuitEmuir @ (Azi(k) + (1 — N)Z(k)) + 04ddadd-

mizup(k)

Now, note that applying mixup to the pair (z;(k), Z;(k)) results in z(k) = z;(k) + ¢, , with
e k) — (1 = X)(3(k) — 2(k)), where z;(k), % (k) € ge(X) and A ~ Beta(q, 3), whereas

7

applying noise injection to z; (k) results in (1 + 0pnuie&mutt) © 2i(k) + 0adalada = 2i(k) + ezmse(k)
with em“p(k) = Omutt&muit © 2i(k) + 0wddfadd- Rewriting eiVFM(k) in terms of em”u’)(k) nd
nozse(k)

; gives

eqNFM(k) _ (1 + Umultgmult) o e;m'mup(k) + e?oise(k). (15)

Similarly, we can derive the expression for ¢! using the same argument. The results in the lemma
follow upon applying the rescaling 1 — A — €(1 — \), 044d — €0qdd and Guuir — €0muit, for

B STATEMENTS AND PROOF OF THE RESULTS IN THE MAIN PAPER

B.1 COMPLETE STATEMENT OF THEOREM [I]IN THE MAIN PAPER AND THE PROOF

We first state the complete statement of Theorem [I]in the main paper.

Theorem 3 (Theorem [I]in the main paper). Let ¢ > 0 be a small parameter, and assume that h and
f are twice differentiable. Then, LTJYFM = EkNSLTJYFM(k), where

LNFM0) — pstd (g 2RO 2RI L 20 (16)
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with
Rék) = R(k) addR2dd(k) + o'multR;nult(k)7 (17)
Ré ) = R(k) + aaddRadd(k) + UmuZtR;nu”( )7 (18)
where
(k) _ EANDX 1-A & T _
Ry = Z —Yi)Vif(gr(:))" Bz np, gk (2r) — gr(24)], (19)
i=1
E, = [(1— n
ry — BenlUZ V] [;n > (F @) Vif (gn()"
=1
X EITND [(gk( ) = 91(2:) (g (2r) — g (@) IV f (gr(24)), (20
E n
Rék) _ )\ND)\ Z — )
i=1
X Esz [(gr(zr) — gr(@:) " Vi f (g (@) (gr(@r) = gr(:))], 21
Ry = o Zh" () Vi f (a1 () "B [61° (€2 IV f (om(0)), (22)

R;n"lt(k) = % Z R (f(2:))Vief (g ()T (Eg, (€7 (€7 )T © gr(@i) g (2:)T) Vi f (gr(24)),

(23)

Ry %Z(h’(f( D) = 9)Ee (€8 T3 f(gn(2:))€0), @4
=1

R _ % Z(h/(f(m)) Yi)Ee [(€8" © gi (i) VEf (g (2:)) (€7 © gi(@:))], (25)

and p(€) = E, _p, Eu,~p, Eg,nolp(€)], with ¢ some function such that lim._,q ¢(€) = 0.

Following the setup of Zhang et al.|(2020), we provide empirical results to show that the second order
Taylor approximation for the NEM loss function is generally accurate (see Figure[7).

LNFM _ EkNSLNFM(k)

b}

Recall from the main paper that the NFM loss function to be minimized is
where

1 n n
LrijM(k) = 2 Z Z EANBeta(a,ﬁ)EﬁkNQl(fk(M)\,ﬁk (9K (‘rz)7 9k (wj)))a M (v, yj))a (26)
i=1 j=1

—— with NFM 074 ! —— with NFM
=== with approximated loss === with approximated loss

= o ra
wn = wn

testing loss

training loss

=
n

=)
o

0 P P 0 8 100 0 P P 0 8 100
epoch epoch

Figure 7: Comparison of the original NFM loss with the approximate loss function during training
and testing for a two layer ReLU neural network trained on the toy dataset of Subsection @
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where [ : RE x RE — [0,00) is a loss function of the form I(f(x),y) = h(f(z)) — yf(z),
&), = (&gdd ¢mult) are drawn from some probability distribution Q with finite first two moments
(with zero mean), and

My g, (95(2), ge () := (L + omure&l™) © M (gi(2), g (2')) + 0gaa&i®®. 27)

Before proving Theorem 3] we note that, following the argument of the proof of Lemma 3.1 in[Zhang
et al.|(2020), the loss function minimized by NFM can be written as follows. For completeness, we
provide all details of the proof.

Lemma 2. The NFM loss @) can be equivalently written as LnNFM = EkNSLTIYFM(k), where
1 NFM(k NFM(k
Ly = I > By, Eayon, Eeomo B (gr (@) +ee M)~y filgi (i) +eel T ],
i=1
(28)
with NFM(k ‘ k ise(k
ei (k) — (l + GUmultflTult) @e;nz:cup( )_|_e;w”€( ) (29)

Here ¢ P(R) (1= XN (gx(xr) — gr(x;)) and eneise(k) _ Jmultf,’;”“lt O gr(z;) + Jaddfgdd, with

% %

9k(zi), g (zr) € gr(X) and X\ ~ Beta(a, f5).

Proof of Lemma2] From (26), we have:

LYPVE = 2SS By perato s Bl (i (M (00(0), 04 (53))), Ma(wi,3)- - GO)
We can rewrite: ’

Ex~Beta(o,s) ! (fe (Mg, (9r (i), 95 (25)))s M (Y3, y;))
= Ex~Beta(a,)[P(fx (M g, (95 (), gr (7)) — M (i, y5) e (M g, (95 (74), gx (75)))] (31
= Ex~Beta(a,8)[MNA(fi (Mg, (95(74), 91(75)))) — i fro(Mx g, (98 (4), gre (7))

+ (1= N)(h(fi (Mg, (g (i), 91 (25)))) — ¥ frs (Mg, (95(23), gr(25))))] (32
= Ex~Beta(a,8)EB~Bern() [B(Mfre (M g, (g1 (2:), 95 (75)))) — i fe (Mg, (9% (7:), gr.(25))))

)]s

+ (1= B)(h(fi (Mg, (9x (i), 9(5)))) = y5 fu (Mg, (9r (), 9k (25))))] (33)
where Bern(A) denotes the Bernoulli distribution with parameter A (i.e., P[B = 1] = X and
P[B=0]=1-M.

Note that A ~ Beta(a, 8) and B|A ~ Bern(\). By conjugacy, we can switch their order:

B ~ Bern <aiﬁ) B~ Beta(a + B.f+1— B), (34)

and arrive at:

Ex~Beta(a,8)l ([ (Mg, (gr(xi), gr (75))), M (yi,y5))
= Eppern(zo, ) EavBetaat,s+1-) [B(A(fi(Mag, (91 (i), 91(2;))))

a+pB

— Yifu (Mg, (9(2i), gk (25))))
+ (1 = B)(h(fr(Mxg, (9 (i), g (7)) — Y5 [ (M g, (9x (1), gx(25))))] (35)

= mE)\NBeta(a-&-lﬁ) [R(frx(Mx g, (gr (i), g (5)))) — vi fu (M g, (9r (i), gr(x5)))]

+ Ex~Beta(a,s+1) [P(fe(Mx g, (96(7i), 91(5)))) — vj fre (M g, (9k(4), g (25)))]-

(36)

a+p

Using the facts that Beta(8 + 1,«) and 1 — Beta(a, 8 + 1) are of the same distribution and
Mi_x(z;, ;) = Mx(z;,z;), we have:

Z Ex~Beta(a,s+10) [P(fe(Mxg, (g6 (i), gr(25)))) — v5 fro (M g, (9x (), g (25)))]

= Excpeta(p+t.a) [M(fe(Mg, (91 (i), 91(25))) = vifu (Mg, (9 (2:), gr ()] B7)

.9
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Therefore, denoting Dy, := ipBetala+1,8) + a+5 Beta(8+1,a)and D, := 1 > i1 0z the
empirical distribution induced by the training samples {x; } j¢[], We have:

B0 = S B B Bl (M (05, 51(7))
— (M g (04 (20) 9] 68)

The statement of the lemma follows upon substituting the fact that M ¢, (gx(z:), gx(2r)) = gr () +

eerFM(k) into the above equation. O

With this lemma in hand, we now prove Theorem 3]

NFM(k))) NFM(k))

ProofofTheorem Denote ¥;(€) = h(fx(gr(zi) + ee Yifr(gr(x;) + ee

where e M) 4 given in l) Since h and fj, are twice differentiable by assumption, 1); is twice
dlfferentlable in €, and

2
€
vi(e) = $i(0) + ei(0) + 47 (0) + pile), (39)
where ¢; is some function such that lim_,o ;(¢) = 0. Therefore, by Lemma [2, LM =
NFM(k)
Eir~sln , where

1 n

LyTME = =3 By 5, Earn, Benalti(c) (40)
i=1

1« :
= Z Exop,Ee,~p, Eeno {1/11(0) + € (0) + %1/):/(0) + 52901'(6)] (41)

i=1
1 u / 52 " 2
= > Exop,Ea,np, Egmo [1i(0) + e (0) + 5 ¥ (0)] +€“le) (42)
i=1
= L 4 eng) + eZ(E’ék) + Rék)) + 2p(e), 43)

where p(¢) = % D i Exvp, Bz~ E¢,~alpile)]-

It remains to compute ¢;(0) and ¢} (0) in order to arrive at the expression for the R&k), ng) and
Rék) presented in Theorem

Denoting gx(z;) := gr(z;) + eeNFM(k) we compute, applying chain rule:
. Ogr(x; _ Ogx(x;
U1(6) = B () Vi) 20y (e 7 22 @)
g (zi

= (W (@) — ) Vi) 220 @3)
= (0 (fr(0(2))) = y) Vifi(Gi (@) e; e (46)

= (W' (fu(gr (@) = 9:) Vi fro(Gre(:)) T [(1 ) gu(27) = gi(@i)) + Oada€i™
+ O'multglznult © gk(iE ) (1 /\)Umultgk ‘o (gk(zr) - gk(l‘i))}v “47)
where we have used ag"(ll) = elNFM(k) in the second last line and substituted the expression for

fVFM(k) from || in the last line above.

Therefore,

$i(0) = (' (fa(gr(2:)) = 1) Vi Sr(gr (@) T 1L = N (gr(zr) = gr(2:)) + Taaai™
+ Umultgqunult O] gk (332)], (48)
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and
Ee,~oi(0) = (B (fi(gx(%:)) — 4:) Vie S (gr (@) T [(1 = A (gn(2r) — gr(x:))], (49

where we have used the assumptions that E¢, o844 = 0 and Egk,\,gfmu“ = 0. The expression for
the R( ) in the theorem then follows from substituting (49)) into

Next, using chain rule, we have:

v = (f((h'(fk(gk(xz))) Wil o) 22 50)
<88 (W (fr(gn (i) )) kak(gk(%))TagNgi(ji)
. N =7 Ogk(wi)
+ (W' (fu(Gr (i) — Z/z)a6 Vi fi(Gr(2i)) 9 : (51)
Note that, applying chain rule,
e (Tuhauto 22D ) = 2 (Tufutintey el ) e
= 2 (MO, i) 53)
= (PN (i) 22 (54)
= (/"M NI i (G (i) . (55)
Also, using chain rule again,
(e Grtantea) = ) ) = "o Vel 222 s
= 1" (i (G () Vi S (Gr (@) el TP, (57)

Therefore, we have:

0} (€) = B (Fu(@r (@) Vi S (Gr (i) Ter MO (MM ENTT fi (i ()
+ (W (ful@n () = w)(er TN fr (G (i))e M) (58)
= B (@ (20)) Vi fu @Gr () TI(L = N (gr(22) — gi(@7)) + Oaaaci™
+ Tl © gr(@0) + €(1 = N)omun™" © (gi(@r) — gr(x:))]
x [(1 = N (gr(2r) — g1(#:)) + Taadlp®™ + omuél™ © gi(;)
+e(1 = Nomaéf™ © (gr(@r) — gr(@0)] T Vi fi(Gn(zs))
+ (1 (fel@(@))) — 9)[(1 = Mgk (@r) — gi(20)) + Taddbi™ + Omutei™™ © gio(as)
+e(1 = Nomu&f™ © (gi(@r) — g (@) T VE fi (G (2:))[(1 = Mgk (20) — gr(22))
+ 0add€2 4 0™ © gr(2:) + €(1 = N)omusE™ © (gr(2r) — gu())] (59)
= 0" (f(G0(2:))) Vi S @G0 (20) T P Vi fi (@ (@) + (B (Ful@r(2:)) — yi>P2<e>,(60

NFM (k)

where we have substituted the expression for the ¢, into the first line to arrive at the last line

above.
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Note that,

Ee.noPi(e)

= Egnol(1 = N (gr(zr) — gk (2i)) + Oadalt™ + omuéi™ © gi(z:)
+ e(1 = Nomui™" © (gr(2,) = gr(2:)] ¥ [(1 = M) (gr(zr) — g (1)) + Oadali™
+ Ot © g (i) + €(1 = N)Omuteé™ © (gr(zr) — gro(x:))]" (61)
= (1= A)?(gr(xr) — gr(@:)) gk (2r) — gr(2i))" + 05 44Ee,~a G (£
+ 0 Be ol (E0 © gi(2:)) (67" © gr(2:))"] + o(e) (62)
= (1= 2)%(g(xr) = gi(@:)) (g (xr) = go(2:))" + 02g4EermalEn™ (6197
+ e Ee~ (€7 (E)T) © gr(wi))gn (i) ] + oe), (63)

as € — 0, where we have used the assumption that E¢, .o&¢? = 0 and E¢, ~o&™"!* = 0 in the
second last line above.

Similarly,

Ee.noP2(e)
= Egunol(1 = N (gk(2r) — g1(2:)) + 0addbi™ + omunéi™" © gi(2:)

+e(1 - /\)Umultfizn"” © (gr(2r) — gr ()] VE fi(@r () [(1 = X (gr (@) — gr(z:))

+ Taddbf ' + O™ © gr(xi) + (1 = N omué™ @ (gi(zr) — gr(24))] (64)
= (1= N)*(gr(2r) = gr ()" VE i (Gr () (gr (@) — gr ()

+ 02 4aEeu o[ (E") TV i (@1 () €4

+ 07 Bl (8" © gr () Vi fi(Gr () (€7 © gr(w:)] + o), (65)

ase — 0.
Now, recall from Eq. (#2) that we have

1 & €2
LYFM®) = 23 7E, 5 Eaven,Eeima [Ui(0) + et(0) + SU/0)| +E0(0)  (66)
i=1

= L3t + eng) + €2 (Rék) + ng)) + e2p(e), (67)

where ¥;(0) = h(fx(gk(2i))) — i fr(gk(2i)). Also, we have:

E¢nolti (6)]
= 1" (fr(Gr(€:))) Vi fr (G (@) EgonalP1(€)] Vi fu Gk (7))
+ (I (e (Gr(2:))) — yi)Be o[ Pa(e)] (68)

= 1" (fi(@r(2:)) Vi S (Gr (@) 11 = N (ge (@) — gi (@) (gr(z2) — grelzi))"

+ 02gaEe o [ERMN (G T + 02 B o [(E (M) T) © gi(2)) gr(2:)T] + 0(e€)]
X Vi fr(gr(x:))

+ (W (fr(Gr (@) — 9l = N (gr (@) = g (@) Vi fr (G (20) (gr (@) — gr ()
+ 0244Ee.nol(E0M) VT fi (Gr (1)) €19
+ 0B [0 © gi(2:)) T Vi fr (G (@) (€8 © gr(2:))] + o(e))]. (69)
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Therefore, setting € = 0,
Ee.~ov7 (0)]
= 1" (fie(gr (@) Vi S (g () T1(1 = N2 (gx (@) = gr (@) (gx (@) = gr(@))"
+ 0eaaBe~ol G ()] + on Bl (7 (€M) © gr (@) gr(x:) "]
X Vi fr(gr(4))
+ (W (Frlgr(:) = y) [(1 = N2 (gr(r) = gr ()" Vi fi(gr (@) (gr () = gr(2:))
+ 0aadEe ol (€ V7 fi(gn (2:)) 0]
+ 0 murEe~ol (G © gi ()" VE fir(gr () (€7 © gr(@:))]]. (70)

The expression for the Rék) and f{ék) in the theorem follows upon substituting into . O

B.2 THEOREM[2]IN THE MAIN PAPER AND THE PROOF

We first restate Theorem 2]in the main paper and then provide the proof. Recall that we consider the
binary cross-entropy loss, setting h(z) = log(1 + e*), with the labels y taking value in {0, 1} and
the classifier model f : R? — R.

Theorem 4 (Theorem[2]in the main paper). Let € © := {6 : y; f(x;)+(y;—1) f(z;) > 0 forall i €
[n]} be a point such that YV, f (g (z;)) and V3 f (gi(;)) exist for all i € [n], k € S. Assume that
Tr(gr (i) = Vi f(gr(z:) T gr(4), kf(gk(xz)) = 0foralli € [n], k € S. In addition, suppose
that |V f(x:)|l2 > 0 forall i € [n], Eyep, [gx(r)] = 0 and ||g(z:)||2 > S/, for all i € [n],

k € S. Then,
LNFM > Z max (f(xi +0:),y:) + L9 + €2¢(€), (71)
I[s H2<6”7LL.E
where
mix ka Ik
6" =€By p,[1 = Al Egns {rzk)c;k)lnvﬂ:%”j Vd (72)
= |cos(ka<gk.<xi>> geai)), 7
Lzeg _ Z |h/l reg)2, (74)
with

() = E|IVif (g ()3 (EA[(l — M°Eq, [llgk (@) 115 cos(Vi f (gr (), gk (21))?]
+ 05 4aEelll€aaalls cos(Vi f (g (), £aad)’]
+ 0t Ee [l€muit © gi (@) 115 cos(Vi f (g (1)), Emute © gk(xz‘))z]) ; (75)

and ¢ is some function such that lim._,o ¢(e) = 0.

Theorem E| says that LYY "M is approximately an upper bound of sum of an adversarial loss with [>-
attack of size €™ = min; ¢7*** and a feature-dependent regularizer with the strength of min; (e ).
Therefore, minimizing the NFM loss would result in a small regularized adversarial loss. We note
that both emix and €; “Y depend on the cosine similarities between the directional derivatives and the
features at Wthh the derivatives are evaluated at, whereas the €, Y additionally depend on the cosine
similarities between the directional derivatives and the mJected noise.

Before proving Theorem we remark that the assumption that fx,(gx (7)) = Vi f(gr(z:)) T gr(2:),
V2 f(gr(z;)) = 0foralli € [n], k € S is satisfied by fully connected neural networks with ReLU
activation function or max-pooling. For a proof of this, we refer to Section B.2 in|Zhang et al.| (2020).
The assumption that E,..p_[gr(r)] = 0 could be relaxed at the cost of obtaining a more complicated
formula (see Remark [1] for the formula) for the €;“Y in the bound, which could be derived in a
straightforward manner.
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Proof of Theorem[d} For h(z) = log(1 + e*), we have h/(z) = 11; =: S(z) > 0and h''(z) =

ﬁ = S(2)(1 — S(z)) > 0. Substituting these expressions into the equation of Theorem [3{and
using the assumptions that fy(gx(7:)) = Vi f(9x(7:))T gr(z;) and E,.wp, [gx (7)] = 0, we have, for
kes,

E, 51—
2PN (s — S(f (@) frlgr (@), (76)

i=1

k
R = -

and we compute:
Exop, (1 =) &
R W > S( @)1 = S o) Veflan(e:))”
% Eaoo o, (g0 (@) — gi(20)) (g1 (@) — g1(0) TV i f (gn (1)) 7

Eyuny (1= V]
N W IS @)1 = S @) Vif(gn(w)”

x Eg,np, [(9r(2r) = gr (@) (g (2r) — gr (@) "] Vif (g (i) (78)
- —\)Z 2
= Bt E I S S )1~ ()9 o)
B g )] + 9100 ()T Vi a1 ™)
Eyp [N ¢

- on < 1S(f (@) (1 = S(f(x)) (Vi (gr(@:) " gr(:))?
Eren, B2 SIS @)1 = S @) Er, e, (o (g6(w:)) gl

K3

+

(80)

By, [(1— V2 &
= e S () (0~ ST Bl

x (cos(Vif(gr(@:)), gn(@:)))® + % YIS @)@ = S EIVaS ()3
i=1

X El(1 = MPEs, [llgi (o) 3 cos(Vif (gi (@), 9w (1)) 81)

> SIS @)1 = SUEIITeS 91 BErp, [(1 = NZdelr Ve

+ o YIS = SU@DIITes (g0 (@) B - ExL(L = NPEs, [lgn (o) B

x cos(Vif(gr(x:)), gr(27))?) (82)
= o > IS (1 - ST )3

i=1
i 2 IV (gr(@a)l3 ) ()2
5 IS )~ SU@DIITRS (06 () B~ ExLL = NPEx, [l (e 3
x cos(Vif(gr(x:)), gr(x))?). (83)

In the above, we have used the facts that E[Z2] = E[Z]? + Var(Z) > E[Z]? and S, S(1 —S) > 0 to
obtain (78), the assumption that E,.p, [gx ()] = 0 to arrive at (79), the assumption that || gy, (z;)|2 >

P/, for all i € [n], k € S to arrive at (82)), and the assumption that ||V f(x;)|l2 > 0 for all
i € [n] to justify the last equation above.
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Next, we bound ng), using the assumption that § € ©. Note that from our assumption on 6, we
have y; f(xz;) + (y; — 1) f(z;) > 0, which implies that f(z;) > 0if y; = 1 and f(x;) < 0if
yi = 0. Thus, if y; = 1, then (y; — S(f(2:))) fr(gr(2:)) = (1 = S(f(:))) fi(gr(2:)) > 0, since
f(z;) > 0and (1 — S(f(x;))) > 0 due to the fact that S(f(z;)) € (0,1). A similar argument leads

to (% N S(f (i) fr(gr(zi)) = 0if y; = 0. So, we have (y; — S(f(xi))) fi(gr(xi)) = 0 for all
1€ n|.

Therefore, noting that E, 5, [1 — )] > 0, we compute:

R = 2B 3y — S(f ()l fe(gn ()] (84)
Evop 1A &

= A”Df ]Zsm ) = illl Ve (91 w0)) 29w (w4) 2] cos(Vif (gr (), g )

i=1 (85)

> = SIS @) — il TS gelw) (B, 11— N e/a) (56)

1y 2)) — v ., 1y VRS gk (@))ll2 ) )elh)
H;IS(f( i) = wilIVA( 2)2<E>\~D>\[1 Al NVl \/») (87)

Note that R(k) 0 as a consequence of our assumption that V% f(gx(z;)) = Oforalli € [n], k € S,

and similar argument leads to:

RS = SIS0 (@) (1 S(7 i) Vi (g1 (:)) B [6244(€0) T 1V n (1)) (88)
i=1

-5 Z IS @)1 = S )IVef (o) 3
B I s Ve (), €47 (89)
R = Z [S(F (@)1 = S(Fa)|Vif (on(w:)) T ey [€1™ (€T © gnli)gn(wa))
< Vi flan(a)
- o i IS @) = S )IIVef (o) 3

x Esk [II&’”“” © gr ()13 cos(Vif (i (1)), Emute © gi(w:))?]- (90)
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Using Theorem@ and the above results, we obtain:

LYPY 2 S U (w1). )

> E[eRM + 2R 4 2Ry 4 2 prlt(h) | 2 5(¢)) 91)
1 - mix
> = 1S(f(@) = wil IV £ (@) lc; 92)
=1

+ % Z 1S(f (@)X = S(F @)V f (gr(@))lI3 - EXIL = N]*Eq, [llgr(z,) 13

x COS(ka (9 (), gr(2))?] (93)
+ % Z [S(f(2:)) (1 = S(f(@)))|(e]7*)* + ep(e), (94)

where €% := €E, 5 [1 — A\|Eg [W (k) )\/dk} and

Z

(@) = IV an o) (o2 1161 cos(T1 o o), 1)
+ O"multE§k [Hgmult © gk (%)H% COS(ka(gk (zz)) mult © gk ('rz))ﬂ) . (95)

On the other hand, for any small parameters ¢; > 0 and any inputs 21, ..., z,, We can, using a
second-order Taylor expansion and then applying our assumptions, compute:

1 n 1 n
n - Hé?ﬁ?;(q (f(zi+0:),y:) — o ;Kf(%%%)
< TS IS ) wl IV (o) s + Z|s SNV AR
=1
1 n
+g mggﬂué ill395(0:) (96)
1 n
§EZIS(f( i) — yz\IIVf(zl)llzeﬁ—ZlS N = SfEININVF(z)l3€F

<.

Z 2ol (€), 97)

where the ¢ are functions such that lim, .o ¢j(2) = 0, (&) = maxs,|,<c, ¢;(d;) and
lim,_,o ¢ (z) = 0.
Combining (94) and (97), we see that

3\'—‘

n

vy L Z S U 07100 5 L4 (0 - Y (R ()
= 98)
= = Z o B L s 07), ) + L0+ €6(0) (99)
where L is defined in the theorem. Noting that lim._,¢ ¢(¢) = 0, the proof is done. O

25



Published as a conference paper at ICLR 2022

Remark 1. Had we assumed that E,.p_[gr(r)] # O, then the statements of Theorem {| remain
unchanged, but with (¢;°)? replaced by

(&) = €[V f (g ()3 (EA[(l — NPEs, [llgr(2,)|I5 cos(Vi f (gr (2:)), gr (1))
+ UgddEﬁ[HfaddH% cos(Vi f(gr(74)), gadd)Q}
+ ot Ee ll&muir © gr (@) 115 cos(Vi f (g (1)), Emute © gk(ffi))z])

— EEA(1 = NPV (gr (@) T [Ergr (r)gr ()" + gk(mi)Ergk(T)T}ka(gk(xz)l)do)

C NFM THROUGH THE LENS OF IMPLICIT REGULARIZATION AND
CLASSIFICATION MARGIN

First, we define classification margin at the input level. We shall show that minimizing the NFM
loss can lead to an increase in the classification margin, and therefore improve model robustness in
this sense.

Definition 2 (Classification Margin). The classification margin of a training input-label sample
s; = (x4, ¢;) measured by the Euclidean metric d is defined as the radius of the largest d-metric ball
in X centered at x; that is contained in the decision region associated with the class label c;, i.e., it
is: v(s;) = sup{a : d(z;,2) < a = g(x) = ¢; Va}.

Intuitively, a larger classification margin allows a classifier to associate a larger region centered
on a point z; in the input space to the same class. This makes the classifier less sensitive to input
perturbations, and a perturbation of x; is still likely to fall within this region, keeping the classifier
prediction. In this sense, the classifier becomes more robust. In the typical case, the networks are
trained by a loss (cross-entropy) that promotes separation of different classes in the network output.
This, in turn, maximizes a certain notion of score of each training sample (Sokoli¢ et al.,[2017)).
Definition 3 (Score). For an input-label training sample s; = (x;,¢;), we define its score as
o(s;) = minjzc, V2(ee; — €;)T f(z;) > 0, where e; € RE is the Kronecker delta vector (one-hot
vector) with e = 1 and €] = 0 for i # j.

A positive score implies that at the network output, classes are separated by a margin that corresponds

to the score. A large score may not imply a large classification margin, but score can be related to
classification margin via the following bound.

Proposition 1. Assume that the score o(s;) > 0 and let k € S. Then, the classification margin for
the training sample s; can be lower bounded as:

’Yd(si) > 0(57) ’
SupwE(:onv(X) Hka(gk (.’IJ)) HQ

where C(sl) = O(Si)/supwEConv(X) ‘|V9k($)||2

(101)

Since NFM implicitly reduces the feature-output Jacobians V, f (including the input-output Jacobian)
according to the mixup level and noise levels (see Proposition [3), this, together with Theorem [T}
suggests that applying NFM implicitly increases the classification margin, thereby making the model
more robust to input perturbations. We note that a similar, albeit more involved, bound can also be
obtained for the all-layer margin, a more refined version of classification margin introduced in (Wei
& Ma, 2019b), and the conclusion that applying NFM implicitly increases the margin also holds.

We now prove the proposition.

Proof of Proposition[l] Note that, forany k € S, V f(x) = Vi f(gx(2))Vgr(z) by the chain rule,
and so

IV (@)ll2 < Vi f (gr (@) 121V gr ()2 (102)
< ( sup ka(gk(ﬂf))b) < sup ||V9k(ﬂ?)||2>- (103)
z€conv(X) x€conv(X)
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The statement in the proposition follows from a straightforward application of Theorem 4 in (Sokolié
et al.,[2017) together with the above bound. O

D NFM THROUGH THE LENS OF PROBABILISTIC ROBUSTNESS

Since the main novelty of NFM lies in the introduction of noise injection, it would be insightful
to isolate the robustness boosting benefits of injecting noise on top of manifold mixup. We shall
demonstrate the isolated benefit in this section.

The key idea is based on the observation that manifold mixup produces minibatch outputs that lie in
the convex hull of the feature space at each iteration. Therefore, for k € S, N F M (k) can be viewed
as injecting noise to the layer k features sampled from some distribution over conv(gx (X)), and so
the NF M (k) neural network F}, can be viewed as a probabilistic mapping from conv(gi (X)) to
P(Y), the space of probability distributions on ).

To isolate the benefit of noise injection, we adapt the approach of (Pinot et al.,[2019a;2021) to our
setting to show that the Gaussian noise injection procedure in NFM robustifies manifold mixup in a
probabilistic sense. At its core, this probabilistic notion of robustness amounts to making the model
locally Lipschitz with respect to some distance on the input and output space, ensuring that a small
perturbation in the input will not lead to large changes (as measured by some probability metric) in
the output. Interestingly, it is related to a notion of differential privacy (Lecuyer et al.l 2019} Dwork
et al., [2014), as formalized in (Pinot et al., [2019Db).

We now formalize this probabilistic notion of robustness.

Let p > 0. We say that a standard model f : X — Y is a,-robust if for any (z,y) ~ D such that
f(x) = y, one has, for any data perturbation 7 € X,

Irllp < ap = f(z) = flz+7). (104)

Analogous definition can be formulated when output of the model is distribution-valued.

Definition 4 (Probabilistic robustness). A probabilistic model F' : X — P () is called (o, €)-robust
with respect to D if, for any x, 7 € X, one has

Illp < ap = D(F(z),F(z +71)) <e, (105)
where D is a metric or divergence between two probability distributions.

We refer to the probabilistic model (built on top of a manifold mixup classifier) that injects Gaus-
sian noise to the layer k features as probabilistic FM model, and we denote it by Fnosv(k) .
conv(gp(X)) — P(Y). We denote G as the classifier constructed from F™°*¥(¥) je G : x
arg max;e|x| [Freisy(R)]3 ().

In the sequel, we take D to be the total variation distance Dry, defined as:

Drv(P.Q) == sup |P(S) = Q(S)], (106)
Scx

for any two distributions P and ) over X'. Recall that if P and ) have densities p,, and p, respectively,
then the total variation distance is half of the L' distance, i.e., Drv (P, Q) = 5 [, |pp(2) — pqg(z)|da.
The choice of the distance depends on the problem on hand and will give rise to different notions of
robustness. One could also consider other statistical distances such as the Wasserstein distance and
Renyi divergence, which can be related to total variation (see (Pinot et al.|[2021}; (Gibbs & Su, [2002)

for details).

Before presenting our main result in this section, we need the following notation. Let X(z) :=
O’def + afnultxxT. For z,7 € X, let I, be a di, by di — 1 matrix whose columns form a basis
for the subspace orthogonal to gx,(z + 7) — gx (), and {p;(gx (), 7) }ic[a, 1] be the eigenvalues of
(ML (gr(2)),) " IE S (gr (z + 7)), — I. Also, let [F]*P*(z) denote the kth highest value of
the entries in the vector F'(x).

Viewing an N F'M (k) classifier as a probabilistic FM classifier, we have the following result.
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Theorem 5 (Gaussian noise injection robustifies FM classifiers). Let k € S, dy, > 1, and assume
that gi(z)gx(z)T > BZI > 0 for all z € conv(X) for some constant By. Then, Fsv(%) jg
(cvp, €k (D, d, ap, Tudd, Omuir))-robust with respect to Dy against 1, adversaries, with

64 (P, 0y, Ot Faae) = 5 min{1, max{A, B}, (107)
where
o2 1 2 1
A= Ap(cup)Qm—uét2 (‘ / Vgr(x + tr)dt|| + 2||gx(x)]|2 / Vi (x + tr)dt ),
Oada + OB 0 2 0 2
(108)
1 + d'/2-1/r1 +Vd1)— oo
B = By(r) rlee02 e Vi) (109)
Oadd + Jmultﬂk:
with
aplap<1 =+ aglap217 lfp € (07 2}7
A;D(ap) = dl/Qil/p(O‘pla,J<1 + szlap21)a ifp € (27 OO), (110)
\/&(O‘plap<1 +O‘12)1a,,21)7 ifp= oo,
and

B(r) = sup (‘ /01ng(x+tf>dt dgp%(gk(wm). (111)

x€conv(X)

2

Moreover, if © € X is such that [F0sv(R)]topl () > [Froisy(R)]tor2 (1) 4 2¢(p, d, oy, Taddy Tmuit ),
then for any T € X, we have

Il <a = G(z) =Gz +7), (112)
forany p > 0.

Theorem [5)implies that we can inject Gaussian noise into the feature mixup representation to improve
robustness of FM classifiers in the sense of Definition ] while keeping track of maximal loss in
accuracy incurred under attack, by tuning the noise levels 0,44 and 0,,,,,¢. To illustrate this, suppose
that o+ = 0 and consider the case of p = 2, in which case A = 0, B ~ aa/0444 and so injecting
additive Gaussian noise can help controlling the change in the model output, keeping the classifier’s
prediction, when the data perturbation is of size ao.

We now prove Theorem E} Before this, we need the following lemma.

Lemma3. Letxz; = 2 € R* and z9 :== z+ 7 € R%, with ™ > 0 and di. > 1, and Y(x) =
02l + 02 wxt > (02,402 8% > 0, for some constant B3, for all z. Let 11 be a dy, by dy, — 1
matrix whose columns form a basis for the subspace orthogonal to T, and let p1(z,7), . .., pd,,—1(2,T)
denote the eigenvalues of (173 (z1)I1) " TIT (2T — 1.

Define the function C(x1,x2,3) := max{A, B}, where
2
o

A= ——mult (1712 4 27T7), 113
Ugdd—i_afnultﬁg(" I2 ) 1)

dp—1

> 7). (114)

=1

s
Vi + O3
Then, the total variation distance between N (x1,%(x1)) and N (x2,X(x2)) admits the following

bounds:
1 Drv(N(zy, X(@1)), N2, 5(x2)))
200 — min{1, C(z1, 22, %)}

B

9
<-. 11
<5 (115)

Proof of Lemma[3] The result follows from a straightforward application of Theorem 1.2 in (Devroye
et al.} 2018)), which provides bounds on the total variation distance between Gaussians with different
means and covariances. ]
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With this lemma in hand, we now prove Theorem |§L

Proof of Theorem 5] We denote the noise injection procedure by the map Z :  — N (z,X(z)),
where ¥(z) = 02,1 + 02, ,xxT.

Let z € X be a test datapoint and 7 € X be a data perturbation such that ||7||, < «, for p > 0.

Note that
Dy (F(Z(gs(2))). Fy(Z(gi(x + 7)) < Dry (Z(gw(2)). Z(gelz +7))) (116)
< Drv(Z(gk(w)), Z(gk () + gr(z + 7) — gk(2)))
(117)
= Drv (Z(gk(2)), Z (9 (2) + 7x)) (118)
< gmin{LCb(gk‘(x)7Tkwo'addyamultaﬁk)}v (119)

where 71, := gi(z +7) — gr(x) = (fol Vi (x + tr)dt) 7 by the generalized fundamental theorem
of calculus, and

@ (91 (), Tk, Tadd> Omuit, Bk)

di—1

7k |2 3 2
pi (gk(I),T) )
V Ugdd + Ugwltﬁlz i=1

2
Tmu
5 i3 (k][5 + 2(7k. gi(2))),

= max —S 5 5
2 2
Oadd T Omui B

(120)

where the p;(gi (), 7) are the eigenvalues given in the theorem.

In the first line above, we have used the data preprocessing inequality (Theorem 6 in (Pinot
et all, 2021)), and the last line follows from applying Lemma [3] together with the assumption
that gi () gx(x)T > B2 > 0 for all z.

Using the bounds
1
nle < [ Voo enya] el (121)
0 2
and )
(w96 @)| < lgu(@)l | [ Fouler+ )t Il (122)
0 2
we have
O(gr(x), Tk, Cadds Tmuit, Br) < max {A, B}, (123)
where
o 1 2 1
A= Tt (| [+ mar 1otz + 2l | [ Vot +mar] i)
Oadd T OB, 0 2 0 2 12

and

| o Vonta+ eryae il 4

2
P; (gk(), 7) (125)
Vit OB i=1 '
: [Gil
< sup (‘/ Vi (z + tr)dt p2(gx(z ,T) 2 (126)
zE€conv(X) 0 ( ) 2 FZI ( ( ) ) vV U?zdd + Ugnultﬁli
7l

=: Bk(T)

(127)

2 2 2
V0iaa + O B
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The first statement of the theorem then follows from the facts that || 7|2 < ||7]|, < a, forp € (0,2],
I7lle < dY/?=Yar|, < d/?>~Vq, for ¢ > 2, and ||7]]2 < Vd||7]|ee < Vda for any 7 € R%
In particular, these imply that A < C'A,,, where

oapla, <1+ 02ly,>1, if p e (0,2],
Ay = QA2 VP (apl,, o1 + 021y, >1), ifp € (2,00), (128)
ﬁ(aplap<1 +0112,1ap21), if p = o0,
and
O—gault ! ’ !
= W( /0 Vgi(x + tr)dt|| + 2||gx(x)||2 /o Vi (x + tr)dt ) (129)
add mult-k 2 2

The last statement in the theorem essentially follows from Proposition 3 in (Pinot et al., 2021). [

E ON GENERALIZATION BOUNDS FOR NFM

Let F be the family of mappings = — f(x) and Z,, := ((4,¥:))ic[n)- Given a loss function , the
Rademacher complexity of the setl o F := {(x,y) — I(f(z),y) : f € F} is defined as:

1 n
Ry(loF):=Ez, o |sup = Y oil(f(z:),5:)| (130)
fer i
where ¢ := (o1,...,0,), with the o; independent uniform random variables taking values in

{-1,1}.

Following (Lamb et al.l 2019), we can derive the following generalization bound for the NFM
loss function, i.e., the upper bound on the difference between the expected error on unseen data
and the NFM loss. This bound shows that NFM can reduce overfitting and give rise to improved
generalization.

Theorem 6 (Generalization bound for the NFM loss). Assume that the loss function | satisfies
[z, y) — Uz, y)| < M forall x,x' and y. Then, for every § > 0, with probability at least 1 — §
over a draw of n i.i.d. samples {(x;,y;)}_,, we have the following generalization bound.: for all
maps f € F,

Eoyll(f(x),9)] — L™ < 2Ry (Lo F) +2M @ ~Qc(f), (131)
where ~ ~
Qc(f) = E[eR" + @R + @RI + p(e), (132)

for some function o such that lim,_, o, p(z) = 0.

To compare the generalization behavior of NFM with that without using NFM, we also need the
following generalization bound for the standard loss function.

Theorem 7 (Generalization bound for the standard loss). Assume that the loss function | satisfies
[l(z,y) = U(z',y)| < M for all x,x’" and y. Then, for every § > 0, with probability at least 1 — §
over a draw of n i.i.d. samples {(x;,y;)}7_,, we have the following generalization bound: for all

maps f € F,
Eoy[l(f(2),y)] — L3 < 2R, (1o F) 4+ 2My/ 111(217{5). (133)

By comparing the above two theorems and following the argument of (Lamb et al.,[2019), we see
that the generalization benefit of NFM comes from two mechanisms. The first mechanism is based
on the term Q.(f). Assuming that the Rademacher complexity term is the same for both methods,
then NFM has a better generalization bound than that of standard method if Q.(f) > 0. The second
mechanism is based on the Rademacher complexity term R,, (! o F). For certain families of neural
networks, this term can be bounded by the norms of the hidden layers of the network and the norms
of the Jacobians of each layer with respect to all previous layers (Wei & Ma, 2019ajb). Therefore,
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this term differs for the case of training using NFM and the case of standard training. Since NFM
implicitly reduces the feature-output Jacobians (see Theorem 3)), we can argue that NFM leads to a
smaller Rademacher complexity term and hence a better generalization bound.

We now prove Theorem[6} The proof of Theorem|[7]follows the same argument as that of Theorem [6]

Proof of Theorem|[B] Let Z,, := {(x,y:) }icn) and Z,, := { (7, y;) }ic[n) be two test datasets, where
7! differs from Z,, by exactly one point of an arbitrary index 4.

Denote GE(Zy) := sup e 7 Eq y [I(f(2),y)] — LYFM, where LY¥™ is computed using the dataset
Z., and likewise for GE(Z])). Then,

M(2n—1) _2M

— b
2 n

GE(Z,) — GE(Zn) < (134)

n

where we have used the fact that L)Y ¥ has n? terms and there are 2n — 1 different terms for Z,,
and Z),. Similarly, we have GE(Z,) — GE(Z],) < 2L

Therefore, by McDiarmid’s inequality, for any § > 0, with probability at least 1 — 4,

GE(Z,) < Ey [GE(Zy)] +2M ln(;f). (135)

Applying Theorem 3| we have

GE(Z,) <Eg, [sup Ez [izn: — LNFM | L on % (136)
1 n
=Ez, LsctelgEZI lnz ),y 1]—21 ] Qe(f)
ongy /070 (137)
2n
1< " In(1/9)

<Ez, z l?gg o ;(l(f(xi)vyi) —U(f (), yz))] — Qe(f) +2M on (138)

In(1/6

sz [Sgg n Zm z<f<xi>,y,»>>] Q) +oany (UL
(139)
Ez..0 oil( i) | — Qe M 40
<2Eg, [ﬁﬁgnz )y)] Q(f)+2 (140)
= 2,10 F) - Qulr) + 20y D, (141

where uses the definition of GE(Z,,), (137) uses £ 3" I(f(z;),y;) inside the expectation
and the 1near1ty of expectation, (I38) follows from the “Jensen’s inequality and the convex1ty of
the supremum, (139) follows from the fact that o; (I( f(}), ;) — I(f(x;),y;)) and 1(f(@).y;) —
I(f(x;),y;) have the same distribution for each o; € {—1,1} (smce Zn, Z!, are drawn i.i.d. 'with the
same distribution), and (I40) follows from the subadd1t1v1ty of supremum.

The bound in the theorem then follows from the above bound. O
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F ADDITIONAL EXPERIMENTS AND DETAILS

F.1 INPUT PERTURBATIONS

We consider the following three types of data perturbations during inference time:

» White noise perturbations are constructed as & = x + Ax, where the additive noise is sampled
from a Gaussian distribution Az ~ N(0, 0). This perturbation strategy emulates measurement
errors that can result from data acquisition with poor sensors (where ¢ corresponds to the severity
of these errors).

* Salt and pepper perturbations emulate defective pixels that result from converting analog signals to
digital signals. The noise model takes the form P(X = X) = 1 — v, and P(X = max) = P(X =

min) = /2, where X (i, j) denotes the corrupted image and min, max denote the minimum and
maximum pixel values, respectively. y parameterizes the proportion of defective pixels.

* Adversarial perturbations are “worst-case” non-random perturbations that maximize the loss
£(¢°(X + AX),y) subject to the constraint |AX|| < r on the norm of the perturbation. We
consider the projected gradient decent for constructing these perturbations (Madry et al.l 2017).

F.2 ILLUSTRATION OF THE EFFECTS OF NFM ON TOY DATASETS

We consider a binary classification task for the noise corrupted 2D dataset whose data points form
two concentric circles. Points on the same circle corresponds to the same label class. We generate
500 samples, setting the scale factor between inner and outer circle to be 0.05 and adding Gaussian
noise with zero mean and standard deviation of 0.3 to the samples. Fig.|8|shows the training and
test data points. We train a fully connected feedforward neural network that has four layers with the
ReLU activation functions on these data, using 300 points for training and 200 for testing. All models
are trained with Adam and learning rate 0.1, and the seed is fixed across all experiments. Note that
the learning rate can be considered as a temperature parameter which introduces some amount of
regularization itself. Hence, we choose a learning rate that is large for this problem to better illustrate
the regularization effects imposed by the different schemes that we consider.

Fig. P]illustrates how different regularization strategies affect the decision boundaries of the neural
network classifier. The decision boundaries and the test accuracy indicate that white noise injections
and dropout (we explore dropout rates in the range [0.0,0.9] and we finds that 0.2 yields the best
performance) introduce a favorable amount of regularization. Most notably is the effect of weight
decay (we use 9e—3), i.e., the decision boundary is nicely smoothed and the test accuracy is improved.
In contrast, the simple mixup data augmentation scheme shows no benefits here, whereas manifold
mixup is improving the predictive accuracy considerably. Combining mixup (manifold mixup) with
noise injections yields the best performance in terms of both smoothness of the decision boundary
and predictive accuracy. Indeed, NFM is outperforming all other methods here.

The performance could be further improved by combining NFM with weight decay or dropout. This
shows that there are interaction effects between different regularization schemes. In practice, when

tof. s . .
. . . . . ... .. . ‘ . .. . .'. . R
® . ‘8o ‘o 0‘0.‘ :. ..:'- . ° .:.0 :’ ... e ° ..
. * : . ..'...( ° (] . . * ® 0% F e °
« 8 .l oo o o 2 “ee
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. . . o 9, s R " . L. S LI R
- {..' F o.o.-k..gt"ﬁ:.- . -, . . c..: '."?::.*'..‘".‘ .
. ‘ .... S e .: R e : “ °
(a) Data points for training. (b) Data points for testing.

Figure 8: The toy dataset in R? that we use for binary classification.
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Figure 9: Vision transformers evaluated on CIFAR-10 with different training schemes.

Table 4: Robustness of Wide-ResNet-18 w.r.t. white noise (o) and salt and pepper () perturbations
evaluated on CIFAR-100. The results are averaged over 5 models trained with different seed values.

Scheme Clean (%) o (%) v (%)

01 02 03008 012 02
Baseline 91.3 89.4 77.0 56.7| 832 746 48.6
Mixup (o = 0.1) Zhang et al.|(2017) 91.2 89.5 77.6 577|829 746 48.6
Mixup (o = 0.2)Zhang et al.|(2017) 91.2 89.2 778 589|826 745 479
Noisy Mixup (o = 0.1)|Yang et al.|(2020b) 90.9 904 875 802 |84.0 794 638
Noisy Mixup (o = 0.2)|Yang et al.|(2020b) 90.9 904 874 798 | 83.8 793 634
Manifold Mixup (o = 0.1)|Verma et al.|(2019) 91.2 892 772 569 |83.0 743 47.1
Manifold Mixup (o = 1.0)|Verma et al.|(2019) 90.2 884 76.0 551|813 714 427
Manifold Mixup (o = 2.0)|Verma et al.|(2019) 89.0 87.0 743 537|798 703 419
Noisy Feature Mixup (a = 0.1) 914 90.2 88.2 84.8 | 844 81.2 744
Noisy Feature Mixup (a = 1.0) 89.8 89.1 86.6 827|825 790 714
Noisy Feature Mixup (a = 2.0) 88.4 87.6 84.6 80.1 | 804 765 68.6

one trains deep neural networks, different regularization strategies are considered as knobs that are
fine-tuned. From this perspective, NFM provides additional knobs to further improve a model.

F.3 ADDITIONAL RESULTS FOR VISION TRANSFORMERS

Here we consider compact vision transformer (ViT-lite) with 7 attention layers and 4 heads (Hassani
et al.l 2021). Fig.[9] (left) compares vision transformers trained with different data augmentation
strategies. Again, NFM improves the robustness of the models while achieving state-of-the-art
accuracy when evaluated on clean data. However, mixup and manifold mixup do not boost the
robustness. Further, Fig.[9] (right) shows that that the vision transformer is less sensitive to salt and
pepper perturbations as compared to the ResNet model. These results are consistent with the high
robustness properties of transformers recently reported in|Shao et al.|(2021)); Paul & Chen| (2021)).
Table @] provides additional results for different o values.

Table 4] shows results for vision transformers trained with different data augmentation schemes and
different values of . It can be seen that NFM with o = 0.1 helps to improve the predictive accuracy
on clean data while also improving the robustness of the models. For example, the model trained
with NFM shows about a 25% improvement compared to the baseline model when faced with salt
and paper perturbations (v = 0.2). Further, our results indicate that larger values of o have a negative
effect on the generalization performance of vision transformer.

F.4 ABLATION STUDY

In Table 5| we provide a detailed ablation study where we vary several knobs. First, we can see that
just injecting noise helps to improve robustness, but the test accuracy is only marginally improving.
On the other hand, just mixing inputs and hidden features improves the testing performance of the
model, but it does not significantly improve the robustness of a model. In contrast, the NFM scheme
combines best of both worlds and shows that both accuracy and robustness can be increased. Varying
the noise levels indicate that there is a trade-off between test accuracy on clean data and robustness to
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perturbations. We also vary the mixup parameter « to show that the good performance is consistent
across a range of different values.

Table 5: Ablation study using Wide-ResNet-18 trained and evaluated on CIFAR-100.

Mixup Manifold Noise Injections «  Noise Levels | Clean (%) o (%) v (%)
Oadd  Omult 01 025 05 |006 01 015
X X X - 0 0 76.9 64.6 420 235 | 58.1 398 15.1
X X - 0.4 0.2 78.1 76.2 657 46.6 | 70.0 588 284
X X 1 0 0 80.3 72.5 540 334 ] 625 438 162
X 1 0.4 0.2 78.9 78.6 66.6 467 | 66.6 534 259
X 0.2 0 0 79.7 70.6 46.6 253 | 62.1 43.0 152
X 1 0 0 79.7 70.5 450 23.8 | 62.1 428 14.8
X 2 0 0 79.2 69.3 438 23.0 | 62.8 442 16.0
1 0.1 0.1 81.0 762 566 364 | 66.8 49.7 214
0.2 04 0.2 80.6 79.2 702 51.7 | 71.5 604 30.3
1 04 0.2 80.9 80.1 72.1 553 | 72.8 62.1 344
2 0.4 0.2 80.7 80.0 71.5 539 | 727 627 36.6
1 0.8 04 80.3 80.1 755 664 | 743 66.5 44.6

F.5 ADDITIONAL RESULTS FOR RESNETS WITH HIGHER LEVELS OF NOISE INJECTIONS

In the experiments in Section 5] we considered models trained with NFM that use noise injection
levels 0,499 = 0.4 and 0,,,;; = 0.2, whereas the ablation model uses 0,499 = 1.0 and 0,,,,,;; = 0.5.
Here, we want to better illustrate the trade-off between accuracy and robustness. We saw that there
exists a potential sweet-spot where we are able to improve both the predictive accuracy and the
robustness of the model. However, if the primary aim is to push the robustness of the model, then we
need to sacrifice some amount of accuracy.

Fig.[10]is illustrating this trade-off for pre-actived ResNet-18s trained on CIFAR-10. We can see
that increased levels of noise injections considerably improve the robustness, while the accuracy on
clean data points drops. In practice, the amount of noise injection that the user chooses depend on the
situation. If robustness is critical, than higher noise levels can be used. If adversarial examples are the
main concern, than other training strategies such as adversarial training might be favorable. However,
the advantage of NFM over adversarial training is that (a) we have a more favorable trade-off between
robustness and accuracy in the small noise regime, and (b) NFM is computationally inexpensive,
when compared to most adversarial training schemes. This is further illustrated in the next section.

F.6 COMPARISON WITH ADVERSARIAL TRAINED MODELS

Here, we compare NFM to adversarial training in the small noise regime, i.e., the situation where
models do not show a significant drop on the clean test set. Specifically, we consider the projected
gradient decent (PGD) method (Madry et al.l |2017) using 7 attack iterations and varying o per-
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Figure 10: Pre-actived ResNet-18 evaluated on CIFAR-10 trained with NFM and varying levels of
additive (0,44) and multiplicative (o,,,;¢) noise injections. Shaded regions indicate one standard
deviation about the mean. Averaged across 5 random seeds.
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Figure 11: Pre-actived ResNet-18 evaluated on CIFAR-10 (left) and Wide ResNet-18 evaluated on
CIFAR-100 (right) with respect to adversarial perturbed inputs. Shaded regions indicate one standard
deviation about the mean. Averaged across 5 random seeds.

turbation levels e to train adversarial robust models. First, we compare how resilient the different
models are with respect to adversarial input perturbations during inference time (Fig. [T T} left). Again
the adversarial examples are constructed using the PGD method with 7 attack iterations. Not very
surprisingly, the adversarial trained model with e = 0.01 features the best resilience while sacrificing
about 0.5% accuracy as compared to the baseline model (here not shown). In contrast, the models
trained with NFM are less robust, while being about 1 — 1.5% more accurate on clean data.

Next, we compare in (Fig. [T} right) the robustness with respect to salt and pepper perturbations, i.e.,
perturbations that both models have not seen before. Interestingly, here we see an advantage of the
NFM scheme with high noise injection levels as compared to the adversarial trained models.

F.7 FEATURE VISUALIZATION COMPARISON

In this subsection, we concern ourselves with comparing the features learned by three ResNet-
50 models trained on Restricted Imagenet (Tsipras et al., 2018)): without mixup, manifold mixup
(Verma et al.,|2019), and NFM. We can compare features by maximizing randomly chosen pre-logit
activations of each model with respect to the input, as described by Engstrom et al.|(2020). We do so
for all models with Projected Gradient Ascent over 200 iterations, a step size of 16, and an £ norm
constraint of 2,000. Both the models trained with manifold mixup and NFM use an o« = 0.2, and the
NFM model uses in addition 0,49 = 2.4 and 0,45+ = 1.2. The result, as shown in Fig. @ is that the
features learned by the model trained with NFM are slightly stronger (i.e., different from random
noise) than the clean model.

F.8 TRAIN AND TEST ERROR FOR CIFAR-100

Figure [[3] shows models trained with different training schemes on CIFAR-100. Compared to the
baseline model, the models trained with manifold mixup and NFM have a similar convergence
behavior. However, they are able to achieve a smaller test error. This shows that both manifold mixup
and NFM have a favorable implicit regularization effect, where the effect is more pronounced for the
NFM scheme.
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Figure 12: The features learned by the NFM classifier are slightly stronger (i.e., different from
random noise) than the clean model. See SubsectionElfor more details.
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Figure 13: Train (a) and test (b) error for a pre-actived Wide-ResNet-18 trained on CIFAR-100.
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