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Abstract001

Parameter-efficient fine-tuning (PEFT) has at-002
tracted significant attention for adapting large003
pre-trained models by modifying a small sub-004
set of parameters. Recently, Representation005
Fine-tuning (ReFT) has emerged as an effec-006
tive alternative. ReFT shifts the fine-tuning007
paradigm from updating model weights to di-008
rectly manipulating hidden representations that009
capture rich semantic information, and perform010
better than state-of-the-art PEFTs in standalone011
settings. However, its application in Federated012
Learning (FL) remains challenging due to het-013
erogeneity in clients’ data distributions, model014
capacities, and computational resources. To ad-015
dress these challenges, we introduce Federated016
Representation Fine-Tuning (FedReFT+), a017
novel approach to fine-tune the client’s hid-018
den representation. FedReFT+ applies sparse019
intervention layers to steer hidden representa-020
tions directly, offering a lightweight and se-021
mantically rich fine-tuning alternative ideal for022
edge devices. However, representation-level023
updates are especially vulnerable to aggrega-024
tion mismatch under different task heterogene-025
ity, where naive averaging can corrupt semantic026
alignment. To mitigate this issue, we propose027
All-But-Me (ABM) aggregation, where each028
client receives the aggregated updates of oth-029
ers and partially incorporates them, enabling030
stable and personalized learning by balancing031
local focus with global knowledge. We evaluate032
FedReFT+ on commonsense reasoning, arith-033
metic reasoning, instruction-tuning, and GLUE,034
where it consistently outperforms state-of-the-035
art PEFT methods in FL, achieving 7×–15×036
higher parameter efficiency compared to lead-037
ing LoRA-based approaches. The paper code038
is available at Anonymous Repository039

Fine-tuning has emerged as a core strategy for040

adapting large language models (LLMs) to vari-041

ous downstream tasks, allowing for a broad gen-042

eralization from minimal task-specific data (Ding043

et al., 2023; Ziegler et al., 2019). However, tra-044

ditional fine-tuning is computationally expensive 045

and memory-intensive, which poses scalability 046

challenges. This is further amplified in resource- 047

constrained environments, such as smartphones, 048

where full model updates are often infeasible due 049

to limited resources. To address these challenges, 050

parameter-efficient fine-tuning (PEFT) methods 051

such as Adapter Tuning (Houlsby et al., 2019), 052

BitFit (Zaken et al., 2022), Prefix Tuning (Li and 053

Liang, 2021), Prompt Tuning (Lester et al., 2021), 054

and Low-Rank Adaptation (LoRA) (Hu et al., 055

2021a), have been proposed, significantly reduc- 056

ing the cost of adaptation by updating only a small 057

subset of model weights. 058

PEFT has emerged as the preferred method for 059

efficiently adapting large language models (LLMs) 060

without sacrificing performance. However, most 061

PEFT approaches assume centralized data access, 062

which is unrealistic in many real-world scenarios 063

where data is distributed across users or devices 064

with varying tasks and privacy concerns. Federated 065

Learning (FL) offers a solution by enabling col- 066

laborative model training without centralizing data, 067

but prior FL work often emphasizes task-specific 068

tuning rather than learning generalizable represen- 069

tations. In practice, clients frequently work on 070

diverse or specialized tasks, making global repre- 071

sentation learning both more difficult and more 072

essential. 073

While PEFT typically modifies model weights, 074

recent interpretability research highlights the po- 075

tential of hidden representations, which encode 076

rich semantic information. Representation Fine- 077

Tuning (ReFT) (Wu et al., 2024b) leverages this 078

by directly intervening in hidden layers, achieving 079

stronger performance than methods like LoRA. De- 080

spite ReFT’s success in centralized settings, it has 081

yet to be adapted for FL, where challenges such as 082

data heterogeneity, varying model capacities, and 083

limited computational resources complicate aggre- 084

gation and reduce effectiveness. In order to study 085
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the challenges of representation-level fine-tuning086

under heterogeneous federated settings, and to eval-087

uate the effectiveness of our proposed aggregation088

strategy, we put forward the following research089

questions:090

1) How can we aggregate representation-level091

updates in Federated Learning without compromis-092

ing semantic alignment across task-heterogeneous093

clients?094

2) Is weighted averaging sufficient for aligning095

semantically rich hidden representations, or is a096

more robust and personalized strategy needed to097

preserve local semantics while leveraging global098

knowledge?099

To address these questions, we introduce100

Federated Representation Fine-Tuning (Fe-101

dReFT+), a novel framework for personalized102

and parameter-efficient federated representation103

fine-tuning. FedReFT+ builds on the core idea104

of ReFT by enabling clients to inject lightweight105

intervention components (i.e., sparse low-rank106

matrices W , R, b) directly into hidden representa-107

tions, making it particularly useful for edge devices108

with limited resources. To mitigate the degradation109

in semantic alignment caused by naive aggregation110

such as vanilla weighted average aggregation111

(FedAvg) (McMahan et al., 2017), we propose the112

All-But-Me (ABM) aggregation strategy. Instead113

of averaging all client updates uniformly, ABM114

constructs a personalized global intervention for115

each client by computing the geometric median116

over updates from all other clients.117

The key contributions of our work are as follows:118

Contribution 1: We address a critical gap in the119

utilization of ReFT in FL setting by introducing120

a novel aggregation strategy, All-But-Me (ABM),121

specifically designed for low-rank, representation-122

level interventions. ABM addresses the challenge123

of semantic misalignment caused by naive aggrega-124

tion strategies, preserving client-specific semantics125

while enabling stable collaboration.126

Contribution 2: We propose FedReFT+,127

a novel framework for personalized and128

parameter-efficient federated fine-tuning based on129

representation-level interventions. Contribution130

3: We evaluate the framework by simulating task131

heterogeneity, i.e., assigning different tasks to132

clients, all derived from a common dataset. This133

setup mimics real-world scenarios where clients134

pursue distinct objectives over structurally similar135

data, allowing us to evaluate the effectiveness of136

FedReFT+ and ABM under realistic conditions.137

Paper outline: The remainder of the paper is 138

organized as follows. Section 1 formally defines 139

the problem setting, the motivation behind our 140

work and the challenges posed by heterogeneous 141

FL setting. Section 2 details our methodology, 142

including the FedReFT+ mechanism and the 143

All-But-Me (ABM) aggregation strategy. Section 3 144

presents our experimental results and evaluates 145

the effectiveness of our approach on multiple 146

benchmarks. Section 4 concludes the paper with 147

key insights and future directions. We defer 148

additional details to the appendices.
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Figure 1: Illustration of the relationship between the
number of trainable parameters (in millions and %)
for various federated PEFT methods on Commonsense,
Arithmetic, and GLUE benchmarks using LLaMA-3.2B,
LLaMA-3 8B, and RoBERTa-large models, respectively.
FedReFT+ achieves competitive or state-of-the-art per-
formance while training significantly fewer parameters,
resulting in improved communication efficiency and re-
duced transmission cost in federated learning settings.

149

1 Problem Formulation and Motivation 150

In this section, we present the motivation to apply 151

ReFT in FL and formalize the problem of adapt- 152

ing personalized representation. Although ReFT 153

offers parameter-efficient updates in the represen- 154

tation space, its application in FL faces key chal- 155

lenges, including task heterogeneity, semantic mis- 156

alignment, and unstable aggregation among het- 157

erogeneous clients. We highlight these challenges 158

and formulate the objective of enabling parameter- 159

efficient and semantically aligned adaptation in FL 160

using ReFT. Challenge 1: LoReFT in FL Set- 161

tings: ReFT (Wu et al., 2024b) offers an attrac- 162

tive alternative by modifying hidden activations 163

instead of model weights. By intervening directly 164

in structured semantic subspaces, ReFT supports 165

interpretable, modular, and task-aligned adaptation, 166

particularly advantageous in task-heterogeneous 167

FL settings. However, full ReFT incurs consider- 168

able communication costs and poses integration 169

challenges when clients use different model capac- 170
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ities or architectures.171

To bridge this gap, we adopt Low-Rank Lin-172

ear Subspace ReFT (LoReFT)(Wu et al., 2024b),173

a lightweight ReFT variant that constrains inter-174

ventions to a learnable low-rank subspace. This175

design significantly reduces overhead while main-176

taining semantic control, making it a promising177

candidate for FL. We follow the LoReFT interven-178

tion formulation from (Wu et al., 2024b) on hidden179

representations h ∈ Rd which is defined as:180

ΦLoReFT(h) = h+R⊤(Wh+ b−Rh), (1)181

where, W ∈ Rr×d is a low-rank projection matrix182

with d as the representation dimension and r as183

the subspace intervention dimension, R ∈ Rr×d184

is a low-rank projection matrix with orthonormal185

rows, and b ∈ Rr, with r ≪ d. This structure,186

inspired by Distributed Interchange Intervention187

(DII) (Geiger et al., 2024), enables semantically188

grounded, low-rank adaptation suitable for scalable189

and privacy-preserving FL. Despite its efficiency,190

applying LoReFT in FL raises several non-trivial191

challenges: LoReFT modifies internal representa-192

tions that are sensitive to client-specific data distri-193

butions. Aggregating these interventions naïvely194

using FedAvg can cause semantic interference or195

collapse. Without global synchronization, low-rank196

updates may evolve in divergent directions, espe-197

cially when tasks are dissimilar. Applying shared198

LoReFT interventions across clients risks overfit-199

ting to shared patterns while ignoring local seman-200

tics. Considering all these challenges, the major201

research question is:202

Can representation-level adaptation via LoReFT203

achieve personalization and stability in federated204

environments without collapsing under task and205

data heterogeneity?206

FedReFT+ uses All-But-Me(ABM) aggregation to207

robustly combine intervention parameters while208

preserving personalization in heterogeneous FL.209

Challenge 2: Federated Fine-Tuning under Task210

Heterogeneity: A central motivation of our work211

is to address task heterogeneity in real-world FL,212

where clients perform fundamentally different tasks213

rather than optimizing a shared objective. For ex-214

ample, clients may work on distinct reasoning tasks215

within natural language QA that demand different216

semantic skills. While centralized fine-tuning has217

proven effective for such tasks, it assumes access218

to all data, which is unrealistic in decentralized219

settings. In FL, each client sees only a local, task-220

specific subset of the broader reasoning space, lead-221

ing to highly heterogeneous training distributions, 222

a common challenge in multi-department or cross- 223

domain deployments. This raises the question: 224

How can we learn a global representation that 225

generalizes across tasks when each client trains 226

only on a fragment of the broader task distribution? 227

Standard methods like FedAvg (McMahan et al., 228

2017) struggle in this regime, as they average 229

semantically misaligned updates, often resulting 230

in degraded performance or collapsed representa- 231

tions. Formally, let each client i have a dataset 232

Ti = {Xi, Yi} and optimize a personalized model 233

θi by solving: 234

min
Θ

1

N

N∑
i=1

L(Xi, Yi,θi), (2) 235

where L is the task-specific loss and Θ = {θi}Ni=1 236

is the set of client-specific models. Our proposed 237

method, FedReFT+, can successfully address this 238

research challenge. FedReFT+ enables scalable, 239

personalized representation learning across hetero- 240

geneous tasks, allowing global reasoning capabil- 241

ities to emerge from decentralized, task-specific 242

updates.

Table 1: Comparison of different aggregation methods
of GLUE task on ROBERTa, Commonsense and Arith-
metic reasoning task on LLaMA-2 7B.

Task FedAvg (%) FedReFT+ (%)

Commonsense 70.16 70.77
Arithmetic 15.36 17.21
GLUE 88.17 89.77

243
Challenge 3: Learnable Parameter Sharing with 244

the Server: When applying ReFT (Wu et al., 245

2024b) in a FL setting from the perspective of learn- 246

able parameter sharing, a fundamental question is: 247

Which of these parameters should be communi- 248

cated to the server for collaborative aggregation? 249

In FedReFT+, each client fine-tunes hidden repre- 250

sentations by introducing learnable low-rank inter- 251

vention parametersW ,R, and a bias b into a frozen 252

backbone model. Sharing only some part of the in- 253

tervention parameters leads to incomplete informa- 254

tion transfer and breaks the low-rank structure crit- 255

ical for generalization. W projects representations 256

into a low-dimensional space, and R reconstructs 257

them; omitting either disrupts compositionality and 258

limits alignment across heterogeneous clients. In 259

Table 2, empirical results show that partial sharing 260
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Figure 2: FedReFT+ with ABM Aggregation. Clients cross-task demonstrate personalization while maintaining
alignment with the global representation. (1)-(2): Each client applies LoReFT(Wu et al., 2024b) interventions to
train learnable parameter {W , R, b} to modify hidden representations h in a low-rank edit subspace. (3): Clients
fine-tune {W , R, b} locally and partially fuse received All-But-Me aggregated updates with their own. (4): The
server performs ABM aggregation using the geometric median over other clients’ intervention parameters to generate
WABM

k , RABM
k , bABM

k .

significantly degrades performance and representa-261

tion alignment under task heterogeneity. Therefore,262

FedReFT+ shares the full set of learnable interven-263

tion parameters (W,R,B) from each client with264

the server.265

2 Methodology266

In this section, we introduce FedReF+, designed to267

address the challenges we discussed in the previous268

section. An illustrative overview of FedReFT+ is269

shown in Figure 2.270

2.1 Intervention Parameter Sharing271

Strategies272

To reduce communication overhead while main-273

taining personalization, we explore three strategies274

for sharing local intervention parameters with the275

server. These strategies are summarized in Table 2276

and represent different trade-offs between expres-277

siveness and communication efficiency:278

1) Full Intervention Sharing: {W ∈ Rr×d,279

R ∈ Rr×d, b ∈ Rr} This strategy shares the280

complete set of intervention parameters, capturing281

client-specific compression (W), transformation282

(R), and translation (b). It enables the most ac- 283

curate reconstruction of local updates and yields 284

the best global performance, especially under high 285

heterogeneity. 286

2) No Bias Sharing: {W ∈ Rr×d, R ∈ Rr×d} 287

This variant omits the bias term b but retains the di- 288

rectional transformation via W and R. While it al- 289

lows the server to align low-rank subspace transfor- 290

mations across clients, it lacks the ability to model 291

per-dimension translation shifts, which can hinder 292

fine-grained personalization. 3) No W Sharing: 293

{R ∈ Rr×d, b ∈ Rr} This configuration excludes 294

W, giving the server access only to the reconstruc- 295

tion and shift parameters. Without knowledge of 296

how the local signals were encoded, the server’s 297

ability to interpret or align updates is severely lim- 298

ited. The {W,R,b} strategy provides the highest 299

fidelity for aggregation, {W,R} offers a balanced 300

compromise, and {R,b} prioritizes communica- 301

tion efficiency at the cost of semantic alignment 302

and global performance. 303
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Table 2: Performance vs. parameter efficiency for differ-
ent LoReFT sharing strategies (Uplink) for C clients on
commonsense reasoning task following the second ex-
periment design. GLUE task on ROBERTa, Arithmetic
and Commonsense on LLaMa-2 7B model.

Task Strategy TP(% ↓) Score

GLUE
W,R,b 0.01384 94.31
W,R 0.01383 64.03
R,b 0.00693 74.12

Arithmetic

W,R,b 0.03114 29.01
W,R 0.03114 26.13
R,b 0.01557 25.77

Commonsense

W,R,b 0.03114 73.82
W,R 0.03114 70.63
R,b 0.01557 68.02

2.2 Intervention Design for Federated304

Classification Tasks305

Following the formulation in ReFT (Wu et al.,306

2024b), for a given client, we define the307

classification head Hψ with parameters ψ =308

{Wo, bo,Wd, bd} operates on the CLS token repre-309

sentation z ∈ Rd from the final layer:310

Hψ(z) = softmax (Wo · tanh(Wdz + bd) + bo) .
(3)311

We jointly optimize the intervention parameters ϕ312

and the classifier ψ using cross-entropy loss over313

input x and label y:314

min
ϕ,ψ

{− logHψ (y | zϕ(x))} . (4)315

2.3 All-But-Me (ABM) Aggregation316

In heterogeneous FL, the integration of shared317

knowledge without compromising local task-318

specific adaptation remains a core challenge. Stan-319

dard aggregation methods such as FedAvg (McMa-320

han et al., 2017), which averages client models into321

a single global model, are often suboptimal in non322

i.i.d. scenarios. They risk overwriting valuable323

client-specific representations and rely on fixed324

mixing weights that may further reduce person-325

alization. Table 1 depicts the comparison. To over-326

come these limitations, we propose the All-But-Me327

(ABM) aggregation strategy. Instead of initializ-328

ing clients with a global model, each client contin-329

ues to update its local parameters while partially330

incorporating knowledge aggregated from other331

clients. Specifically, each client k receives a ro-332

bustly aggregated set of intervention parameters333

{WABM
k ,RABM

k ,BABM
k }, calculated from the up- 334

dates of all other clients using a geometric median: 335

WABM
k = ABM

({
Wlocal

m

}
m ̸=k

)
,

RABM
k = ABM

({
Rlocal
m

}
m ̸=k

)
,

BABM
k = ABM

({
Blocal
m

}
m ̸=k

)
.

(5) 336

The client then performs a personalized update 337

by interpolating between its local parameters and 338

the ABM-aggregated ones using a mixing factor 339

α ∈ [0, 1]. We have discussed in detail how the 340

evaluation loss-based α tuning works in the ap- 341

pendix D. 342

Xnew
k = (1− α) ·Xlocal

k + α ·XABM
k ,

X ∈ {W,R,B}.
(6) 343

Before the next local training using the Rnew
k , we 344

do the orthogonal transformation of Rnew
k to keep 345

the original property of R. 346

ABM via Geometric Median. The geometric 347

median (also known as the spatial or L1 median) of- 348

fers a robust alternative to the arithmetic mean, par- 349

ticularly under client heterogeneity and adversarial 350

conditions (Maronna and Martin, 2006; Weiszfeld, 351

1937). Given a set of vectors S = {x1, . . . , xn} ⊂ 352

Rd, it is defined as: 353

x∗ = arg min
x∈Rd

n∑
i=1

∥x− xi∥2, (7) 354

which minimizes the sum of Euclidean distances 355

to all elements in the set. This estimator is robust 356

to outliers and misaligned updates, making it well- 357

suited for federated settings. We instantiate the 358

ABM function using the geometric median, where 359

each client k receives an aggregated intervention 360

vector computed from Sk = {xm}m̸=k: 361

ABM(Sk) = arg min
x∈Rd

∑
xm∈Sk

∥x− xm∥2. (8) 362

To solve this optimization efficiently, we employ 363

Weiszfeld’s algorithm (Weiszfeld, 1937), an itera- 364

tive method known to converge under mild condi- 365

tions. Details of the algorithm are provided in Ap- 366

pendix E. By avoiding direct averaging and incor- 367

porating semantically meaningful low-rank inter- 368

vention updates through robust aggregation, ABM 369

enables each client to benefit from the knowledge 370

of others without sacrificing local personalization. 371

This approach enhances stability and generaliza- 372

tion across non-i.i.d. and task-heterogeneous FL 373

environments. 374
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Table 3: Federated fine-tuning performance of LlaMa-3.2 3B across five commonsense reasoning tasks with MT
experimental setup where clients train on heterogeneous task mixtures to promote generalizable representations.
*Performance results of all baseline methods and the experimental setup are taken from (Singhal et al., 2025).

Method R # TP(M) ↓ TP(%) BoolQ PIQA SIQA HellaS. WinoG Avg ↑

FLoRA* 32 243.15 7.58 65.05 82.81 74.67 81.84 76.01 78.83
FedIT* 32 48.63 1.51 62.99 81.50 73.13 76.83 71.51 75.74
FFA-LoRA* 32 24.31 0.76 62.87 80.03 68.53 70.02 65.56 71.11
Fed-SB * 120 2.83 0.0884 64.86 81.66 74.87 81.67 75.22 75.66

FedReFT+ (Ours)

4 1.38 0.0428 63.09 82.10 72.36 90.27 69.22 75.41
8 2.75 0.0857 64.01 81.18 72.11 90.71 71.01 75.66

16 6.194 0.1927 63.42 81.61 73.64 91.23 71.35 76.05
32 11.01 0.3427 64.53 81.34 73.39 91.51 71.32 76.22

FedReFT+ (tie ϕ, Ours) 4 0.688 0.0214 49.94 81.23 72.72 89.84 68.43 72.43
8 1.38 0.0428 57.15 81.22 72.77 90.56 68.50 74.04

Table 4: Performance comparison across arithmetic reasoning tasks with the Distict Task and Mixed Task setup.

FedReFT+ Distinct Task (DT) Mixed Task (MT)

Models AQuA GSM8K SVAMP Avg ↑ AQuA GSM8K SVAMP Avg ↑

LLaMa 7B 25.59 25.47 49.80 33.62 22.83 14.33 27.10 21.42
LLaMa-2 7B 29.53 32.45 57.3 39.76 21.65 20.39 31.5 24.51
LLaMa-3 8B 34.64 48.98 73.60 52.41 31.89 48.90 70.04 50.48

3 Experimental Validation375

To evaluate FedReFT+, we conduct extensive ex-376

periments on three different NLP benchmarks377

covering over 12 datasets. Our objective is to378

present a comprehensive assessment of how this379

approach performs in various NLP tasks. We380

experiment with both masked and autoregressive381

language models, including RoBERTa-large (Liu382

et al., 2019), TinyLlama-1B (Community, 2023),383

LLaMA 7B (Touvron et al., 2023a), LLaMA-2 7B384

and 13B (Touvron et al., 2023b), LLaMA-3.2B385

and LLaMA-3 8B (AI, 2024), across multiple set-386

tings and scales. Our comparisons include state-of-387

the-art baselines, such as LoRA(Hu et al., 2021b),388

FedIT (Zhang et al., 2024), FFA-LoRA(Sun et al.,389

2024), FedDPA-LoRA(Long et al., 2024), FedSA-390

LoRA(Guo et al., 2024), Fed-SB (Singhal et al.,391

2025) and FLoRA(Wang et al., 2024) focusing on392

both parameter efficiency and performance trade-393

offs. We align the experimental setup configura-394

tions with the baseline papers to ensure fair com-395

parisons. To optimize memory usage, we load396

all base language models with torch.bfloat16397

precision. All experiments are executed on a sin-398

gle NVIDIA A100-SXM4-80GB GPU, except for 399

LLaMA-2 13B, which is run on a GPUH200x8 400

141GB system to accommodate the computational 401

demands of large-scale federated fine-tuning. The 402

results are averaged over two runs to report the 403

mean performance. 404

Hyperparameter Configuration. In the experi- 405

ments, we determine how many interventions to 406

learn, as well as which input positions and layers 407

to apply them to. We apply interventions at a fixed 408

number of layers L, and at prefix (p) and suffix (s) 409

positions in the input prompt. We narrow the hyper- 410

parameter search space for Federated Learning by 411

adopting the configuration used in the centralized 412

ReFT(Wu et al., 2024b) paper. The appendix B 413

provides a brief overview of the hyperparameter 414

search space. We experiment with whether to share 415

(tie) the intervention parameters ϕ across different 416

input positions within the same layer. Given the 417

positions P = {1, . . . , p} ∪ {n − s + 1, . . . , n}, 418

we define the untied and tied variants (Wu et al., 419

2024b): 420

Iuntied = {⟨Φ, {p}, l⟩ | p ∈ P, l ∈ L} ,
Itied = {⟨Φ, P, l⟩ | l ∈ L} .

(9) 421
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Task Distribution Rationale. We design two ex-422

perimental setups to study how global represen-423

tations converge under diverse task distributions.424

In the Mixed-Task (MT) setup, each client trains425

on a subset of a combined reasoning dataset but426

is evaluated on a single task, encouraging gener-427

alized, transferable representations through ABM428

aggregation. This reflects collaborative learning429

across varied yet related tasks. In the Distinct Task430

(DT) setup, each client trains on a unique reasoning431

task, enabling personalized fine-tuning while still432

leveraging global updates. Despite higher task het-433

erogeneity, this setup maintains stable performance434

as model capacity increases. Both setups show that435

FedReFT+ supports effective generalization in MT436

and robustness in DT.437

3.1 Commonsense Reasoning438

We evaluate global representation generation on439

eight commonsense reasoning tasks using the Com-440

monsense170K dataset inspired by (Singhal et al.,441

2025; Wu et al., 2024b). We use the same hyper-442

parameter of (Singhal et al., 2025) and tune the443

intervention parameter in the Appendix B.1. This444

helps us tune important hyperparameters efficiently445

and also test their robustness across multiple com-446

monsense reasoning tasks.447

Datasets. For the first setup (MT design), we split448

the combined COMMONSENSE170K (Hu et al.,449

2023) commonsense reasoning tasks among clients450

and use them for fine-tuning. Each client evaluates451

one of the commonsense reasoning tasks. BoolQ452

(Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA453

(Sap et al., 2019), HellaSwag (Zellers et al., 2019),454

and WinoGrande (Sakaguchi et al., 2021). For the455

second setup (DT design), each client fine-tunes456

on only one of these five commonsense reasoning457

tasks and is evaluated using the same task. All458

examples are formatted as multiple-choice ques-459

tions, requiring the model to directly generate the460

correct answer without providing rationales. We461

adopt the prompt template from Hu et al. (Hu et al.,462

2023) with minor modifications, including addi-463

tional string normalization by removing leading464

and trailing whitespace.465

Results. In Table 3, our proposed FedReFT+466

method demonstrates strong parameter efficiency467

while maintaining competitive accuracy across five468

commonsense reasoning tasks. Notably, FedReFT+469

with rank 8 uses only 2.75M(0.0857%) trainable470

parameters, achieving accuracy close to or better471

than several baselines. Compared to existing meth-472

ods our approach reduces the trainable parameter 473

count by factors of 9× to 89×, with minimal to no 474

compromise in performance. Figure 1 also depicts 475

so. The experiments results on MT setup in Com- 476

monsense reasoning are shown in Appendix Table 477

14. 478

3.2 Arithmetic Reasoning 479

For the arithmetic reasoning tasks, we design three 480

experimental settings to fine-tune models on vari- 481

ous arithmetic reasoning tasks. We follow the same 482

hyperparameter tuning strategy as used in COM- 483

MONSENSE170K in Appendix B.1, which uses a 484

development set to select the best-performing con- 485

figuration. Evaluation is based solely on the final 486

numeric or multiple-choice answer, disregarding 487

intermediate reasoning steps. 488

Datasets. In the first setting following MT, we 489

split a combined arithmetic reasoning dataset, 490

MATH10K (Hu et al., 2023) which includes four 491

arithmetic reasoning tasks with chain-of-thought 492

solutions generated by a language model. Each 493

client reports performance using test set one of 494

three tasks: AQuA (Ling et al., 2017), GSM8K 495

(Cobbe et al., 2021), and SVAMP (Patel et al., 496

2021). In the second setting following DT, each 497

client is assigned one arithmetic reasoning task 498

for both fine-tuning and evaluation. Both MT and 499

DT setup results are reported in Table 4. In the 500

third setting following (Guo et al., 2024; Kuang 501

et al., 2024), we split the dataset GSM8K into three 502

clients under an IID distribution, and the results are 503

shown in Table 6. All optimization hyperparame- 504

ters remain consistent with that setup. 505

Results. In Table 6, FedReFT+ demonstrates 506

strong performance while using significantly fewer 507

trainable parameters than existing baselines. No- 508

tably, FedReFT+ achieves the highest accuracy 509

among all methods, while FedReFT+ (tie ϕ) of- 510

fers a compelling trade-off between performance 511

and efficiency. These results highlight the scala- 512

bility and efficiency of our representation-tuning 513

approach. The Distinct Task (DT) setup repre- 514

sents task heterogeneity. Hence, fine-tuning allows 515

clients to learn highly personalized, task-specific 516

representations while benefiting from global aggre- 517

gation. As a result, the DT setup yields higher per- 518

formance, as seen in Table 4. In contrast, the MT 519

setup, where clients train on heterogeneous task 520

mixtures to promote global generalizable represen- 521

tations. This blending of tasks during fine-tuning 522

leads to general representation learning but can de- 523
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Table 5: Performance comparison across GLUE Tasks on RoBERTa model for C = 3, FedReFT+ use rank rank 1.
*Performance results of all baseline methods are taken from (Guo et al., 2024) and use LoRA rank 8.

Setup Method # TP(M) ↓ TP(%) MNLI-m SST-2 QNLI QQP Avg ↑

Standalone
FT 355 100 88.8 96.0 93.8 91.5 91.87
LoRA* 1.83 0.515 88.71 95.16 91.16 85.33 89.33
LoReFT 0.053 0.015 89.2 96.2 94.1 88.5 92.0

FL

FFA-LoRA* 1.44 0.405 88.83 94.95 91.52 86.71 89.39
FedDPA-LoRA* 2.62 0.737 88.99 95.50 90.74 85.73 89.47
FedSA-LoRA* 1.83 0.551 90.18 96.00 92.13 87.48 90.43
FedReFT+ (ours) 0.053 0.015 88.86 95.17 94.52 86.57 90.93

Table 6: Performance comparison on arithmetic reason-
ing tasks for GSM8K on LLaMa-3 8B model with LoRA
rank 8, where clients enable consistent evaluation of rep-
resentation generalization. *Performance results of all
baseline methods are taken from (Guo et al., 2024).

Method # TP(M) ↓ TP(%) GSM8K

LoReFT 4.19 0.052 48.33
LoRA* 30.40 0.38 46.23

FedSA-LoRA* 30.40 0.38 46.63
FFA-LoRA* 15.2 0.19 46.32
FedReFT+ (tie ϕ) 2.09 0.0261 49.35
FedReFT+ 4.19 0.0622 49.68

grade performance on specific evaluation tasks due524

to misaligned representation and conflicting task525

objectives.526

3.3 Natural Language Understanding527

We evaluate the effectiveness of FedReFT+ in528

learning generalizable representations for Natural529

Language Understanding (NLU) using the GLUE530

benchmark (Wang et al., 2018). The objective is to531

fine-tune NLU to learn global representations that532

capture task-level semantics. By aligning interme-533

diate representations for downstream classification534

performance. This setup allows us to test whether535

lightweight intervention tuning can align represen-536

tations across clients within a single NLU task.537

Hyperparameter Tuning. We tune hyperparam-538

eters separately for each task, following common539

practice for PEFT methods (Hu et al., 2023) in FL.540

To reduce the impact of random seed variability,541

we perform hyperparameter tuning using a fixed542

seed and report the average performance across that543

seed and two additional unseen seeds. Details are544

provided in the Appendix B.2. 545

Results. Table 5 depicts that our approach per- 546

forms strongly across GLUE tasks while using very 547

few trainable parameters. It performs competitive 548

or outperforms other methods, showing that it can 549

learn good representations even in a federated set- 550

ting. Despite using over 30× fewer parameters than 551

some baselines, it still achieves competitive results, 552

making it both efficient and effective. 553

3.4 Ablation Studies 554

We conduct ablation studies to better understand 555

the effectiveness of FedReFT+, specifically exam- 556

ining the role of geometric median-based All-But- 557

Me aggregation. Details of this analysis are pro- 558

vided in Appendix F. 559

4 Conclusion 560

In this work, we addressed a critical gap in 561

the deployment of Representation Fine-Tuning 562

within Federated Learning settings by proposing a 563

novel aggregation strategy tailored to its low-rank, 564

representation-level interventions. While ReFT im- 565

proves upon traditional PEFT methods like LoRA 566

by operating on semantically rich hidden repre- 567

sentations, its application in FL is limited by data 568

heterogeneity, model diversity, and the shortcom- 569

ings of standard aggregation methods. To address 570

these, we propose All-But-Me aggregation, en- 571

abling clients to adapt their local ReFT parame- 572

ters using a robust average of others’ interventions. 573

FedReFT+ ensures parameter efficiency and se- 574

mantic alignment. Extensive experiments under 575

task heterogeneity and different heterogeneous set- 576

tings show that ABM consistently enhances con- 577

vergence, generalization, and robustness, making it 578

a practical and effective solution for personalized 579

representation learning in federated systems. 580
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Limitations581

Due to computational constraints, our current study582

focuses primarily on LoReFT-based interventions583

within language models under a fixed set of hyper-584

parameters. In future work, we aim to automate the585

parameter search space using a multi-agent coor-586

dination framework to better explore optimal low-587

rank configurations for each client. Although our588

current set-up does not explicitly address privacy,589

we are actively investigating how to integrate differ-590

ential privacy mechanisms, such as DP-SGD, into591

the FedReFT framework without sacrificing per-592

sonalization. Initial experiments in this direction593

are ongoing. Additionally, we are exploring the594

theoretical properties of ABM aggregation under595

adversarial or noisy clients, and whether it can be596

extended to other modalities beyond language, such597

as vision-language models in federated systems.598

Data and Model Usage599

We use publicly available models including600

LLaMA-1.1B, LLaMA-2 (7B, 13B), LLaMA-3 8B,601

LLaMA-3.2 3B and RoBERTa-large. LLaMA-2602

and LLaMA-3 models are licensed under Meta’s603

community license permitting commercial use.604

RoBERTa-large is under the MIT License, and605

TinyLLaMA use Apache 2.0, while the original606

LLaMA-1 7B is for non-commercial research only.607

We will release code and configurations under an608

open-source license with usage documentation to609

support reproducibility and responsible use.610

We employ publicly available datasets across611

commonsense and arithmetic reasoning tasks, each612

released under open-source licenses. For common-613

sense reasoning, BoolQ is under CC BY-SA 3.0,614

PIQA under Apache 2.0, SIQA and WinoGrande615

under CC BY 4.0, HellaSwag under MIT, ARC616

under CC BY-SA 4.0, and OBQA under CC BY617

4.0. For arithmetic reasoning, AddSub, AQuA,618

MAWPS, and MultiArith are under Apache 2.0,619

GSM8K and SVAMP under MIT, and SingleEq620

under CC BY 4.0. For natural language under-621

standing, GLUE consists of multiple datasets, each622

with its own license, allowing for research use and623

redistribution.624

Environmental Impact625

Our approach FedReFT+ achieves 7×–15× higher626

parameter efficiency than existing PEFT methods,627

using fewer trainable parameters. This reduces en-628

ergy consumption and training time, making our629

method more resource-efficient and environmen- 630

tally friendly. 631

Societal Impacts 632

Our method FedReFT+ adapts ReFT for Federated 633

Learning, enabling efficient model personalization 634

with minimal computational overhead. This pro- 635

motes broader accessibility of large language mod- 636

els on edge devices, including in low-resource or 637

privacy-sensitive environments. While improving 638

inclusivity and deployment scalability, care must 639

be taken to mitigate potential misuse or bias propa- 640

gation across decentralized systems. 641

Bias and Fairness 642

Our approach FedReFT+ considers the potential for 643

bias introduced by non-IID client data in Federated 644

Learning. While we do not explicitly optimize for 645

fairness, we acknowledge that imbalanced partici- 646

pation or data diversity may lead to uneven model 647

performance. Future work should explore fairness- 648

aware objectives to mitigate such disparities across 649

clients and demographic groups. 650

Responsible Deployment 651

To support responsible use, we include clear docu- 652

mentation outlining the intended use cases of our 653

framework and advise against applying it in safety- 654

critical settings without thorough validation. We 655

encourage users to follow ethical standards, such 656

as the ACL Code of Ethics, when deploying our 657

method. Our released code comes with usage in- 658

structions to promote safe adoption and reduce the 659

risk of misuse. This work is licensed under CC BY 660

4.0, allowing reuse and adaptation, even commer- 661

cially, with proper attribution. 662

AI Assistants in Research Writing 663

We used AI assistants to support writing and code 664

refinement during the preparation of this paper. All 665

AI-generated content was reviewed and verified by 666

the authors. 667
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A Related Works979

A.1 Parameter-Efficient Fine-Tuning (PEFT)980

Fine-tuning LLMs is resource-intensive due to981

their large parameter counts. Parameter-efficient982

fine-tuning (PEFT) methods mitigate this by up-983

dating only a small subset of parameters while984

keeping pre-trained weights frozen (Li and Liang,985

2021; He et al., 2021; Wang et al., 2022). Several986

PEFT approaches have been proposed, Adapter987

Tuning (Houlsby et al., 2019), BitFit (Zaken et al.,988

2022), Prefix Tuning (Li and Liang, 2021), Prompt989

Tuning (Lester et al., 2021), and Low-Rank Adap-990

tation (LoRA) (Hu et al., 2021a). Among them,991

LoRA is widely adopted for its efficiency in ap-992

proximating weight updates via low-rank matrices.993

Extensions such as ReLoRA (Lialin et al., 2023)994

and RankAdapter (Zhou et al., 2024) improve mem-995

ory use and adapt ranks dynamically, though they996

lack theoretical guarantees. AdaZeta (Yang et al.,997

2024) introduces zeroth-order optimization with998

convergence guarantees, while others (Gao et al.,999

2024; Rajabzadeh et al., 2024; Valipour et al.,1000

2022) explore adaptive ranks without formal proofs.1001

LoRA has been integrated with Mixture-of-Experts1002

models (Li et al., 2024a; Wu et al., 2024a), as in1003

AdaMoLE (Liu and Luo, 2024), to enable dynamic1004

expert selection, and also with Neural Architec-1005

ture Search for LLM compression (Muñoz et al.,1006

2025). These approaches primarily target weight1007

updates, overlooking direct interventions in hidden1008

representations, which are discussed next.1009

A.2 Representation Fine-Tuning (ReFT)1010

ReFT shifts fine-tuning from model weights to1011

hidden representations, leveraging their semantic1012

structure for efficient adaptation (Wu et al., 2024b).1013

Inspired by activation steering and representation1014

engineering (Avitan et al., 2024; Li et al., 2024b;1015

Liu et al., 2023; Singh et al., 2024), ReFT enables1016

task-specific control through fixed or learned inter-1017

ventions without updating the full model. Notably,1018

Inference-Time Intervention (ITI) (Li et al., 2024b)1019

improves LLM truthfulness by modifying activa-1020

tions, while representation engineering (Zou et al.,1021

2023) combines representation reading and con-1022

trol for interpretable model behavior. Minimally1023

Modified Counterfactuals (MMC) (Singh et al.,1024

2024) unify erasure and steering to reduce bias,1025

and can be mapped to natural language edits (Avi-1026

tan et al., 2024), enhancing interpretability. These1027

findings support direct representation manipulation1028

as a lightweight and effective alternative to weight- 1029

based PEFT methods like LoRA. 1030

A.3 Federated Fine-Tuning 1031

Federated Learning (FL) (McMahan et al., 2017) 1032

poses challenges for fine-tuning LLMs, including 1033

data heterogeneity, communication constraints, and 1034

model diversity. PEFT methods have emerged to 1035

address these issues efficiently (Sun et al., 2022; 1036

Chen et al., 2022; Zhang et al., 2023). LoRA-based 1037

approaches such as FedLoRA (Yi et al., 2023), 1038

Hyper-FloRA (Lu et al., 2024), and Efficient FL 1039

Adapter (Cai et al., 2023) offer modular and person- 1040

alized adaptation across clients. Recent advances 1041

further incorporate privacy (FFA-LoRA (Sun et al., 1042

2024)), heterogeneous adaptation (FloRA (Wang 1043

et al., 2024)), instruction tuning (FedIT (Zhang 1044

et al., 2024)), and expert routing (DualFed (Long 1045

et al., 2024), Sparse-FedMoE (Tran et al., 2025)). 1046

In contrast, our proposed FEDREFT+ shifts from 1047

weight updates to direct representation-level tun- 1048

ing via sparse intervention layers and introduces 1049

an All-But-Me (ABM) aggregation strategy to pre- 1050

serve semantic alignment while enabling robust 1051

knowledge sharing across non-IID clients. 1052

A.4 Aggregation Methods in FL 1053

To address the inherent heterogeneity and robust- 1054

ness challenges in federated learning, median- 1055

based aggregation strategies have been extensively 1056

studied as alternatives to simple averaging. Unlike 1057

the arithmetic mean, the geometric and coordinate- 1058

wise medians are significantly more resilient to 1059

outliers and adversarial updates, making them suit- 1060

able for secure and personalized FL scenarios. For 1061

instance, coordinate-wise median aggregation has 1062

been proposed to defend against Byzantine clients 1063

in distributed optimization (Blanchard et al., 2017). 1064

This was extended with geometric median-based 1065

gradient descent to improve statistical guarantees 1066

across diverse loss landscapes (Yin et al., 2018). 1067

Further work demonstrated that coordinate-wise 1068

median and trimmed-mean-based methods achieve 1069

order-optimal convergence not only for strongly 1070

convex losses but also under non-strongly con- 1071

vex and even non-convex population losses (Chen 1072

et al., 2017). Additionally, a one-round median- 1073

based algorithm was shown to maintain statisti- 1074

cal optimality under quadratic convexity, offering 1075

a communication-efficient solution (Chen et al., 1076

2017). RFA (Pillutla et al., 2022) maintains privacy 1077

and demonstrates improved robustness over stan- 1078
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dard averaging techniques, particularly in environ-1079

ments with high levels of data corruption. FedEAT1080

(Pang et al., 2025) integrates adversarial training1081

in the embedding space with geometric median-1082

based aggregation to enhance robustness while pre-1083

serving performance. This work demonstrates that1084

LoRA-based FL systems can effectively leverage1085

geometric median aggregation. Inspired by these1086

findings, we adopt geometric median aggregation1087

in our FL framework to aggregate the All-But-Me1088

(ABM) intervention parameter, weight W, rota-1089

tion R, and bias b. This provides stability across1090

diverse client behaviors and loss geometries, im-1091

proving personalization performance under data1092

and objective heterogeneity.1093

B Hyperparameter Search Space1094

B.1 Hyperparameter Search Space for1095

Commonsense and Arithmetic Reasoning1096

Following the ReFT framework (Wu et al., 2024b),1097

we construct a development set using the GSM8K1098

dataset and consider only the last 300 samples. We1099

trained the clients using LLaMa 7B model with the1100

remaining training data and determined the best-1101

performing hyperparameters based on the model’s1102

performance on the development set. We further1103

use this hyperparameter in another model directly.1104

We set the maximum input sequence length to 5121105

tokens during training and tuning, and limit in-1106

ference to 32 generated tokens. We use the same1107

setup for commonsense reasoning with COMMON-1108

SENSE170k dataset. The hyperparameter search1109

space is summarized in Tables 7 and 8.1110

During inference, we use greedy decoding (with-1111

out sampling) for the commonsense reasoning1112

benchmark, as it is a multi-token classification task.1113

For arithmetic reasoning, we follow the decoding1114

setup from (Hu et al., 2023), using a higher tem-1115

perature of 0.3. This change helps avoid errors in1116

HuggingFace’s decoding caused by unstable prob-1117

abilities1118

B.2 Hyperparameter Search Space for GLUE1119

Benchmark1120

We perform hyperparameter (HP) tuning on1121

RoBERTa-large separately for each GLUE task,1122

selecting the optimal settings based on validation1123

performance using a fixed random seed of 42. Fi-1124

nal evaluations are conducted using two additional1125

unseen seeds, {43, 44}, to ensure robustness. Table1126

9 depicts this.1127

Table 7: Narrow down the hyperparameter(HP) search
space of LLaMA 7B models with FedReFT+ on the
GSM8K development set, inspired from (Wu et al.,
2024b). The best-performing settings are underlined.
We apply greedy decoding without sampling during hy-
perparameter tuning.

HP FedReFT+

prefix+suffix, p+ s {p5+s5, p7+s7, p9+s9}
Tied weight ϕ {True, False}
Rank r {8, 16, 32, 64}
Layer L {all}
Dropout {0.00, 0.05}
Optimizer AdamW
LR {6, 9}×10−4

Weight decay {0, 1×10−3, 2×10−3}
LR scheduler Linear
Batch size {16, 32}
Warmup ratio {0.06, 0.10}
Clients {3, 5}
Epochs {3, 4, 5, 6}
Rounds 10

C Dataset Description 1128

C.1 Commonsense Reasoning 1129

We train and evaluate our models on eight common- 1130

sense reasoning datasets spanning different types of 1131

open-ended QA tasks, following (Hu et al., 2021a), 1132

we construct all examples. Table 10 shows the 1133

dataset samples. 1134

• BoolQ (Clark et al., 2019): A yes/no question 1135

answering dataset consisting of naturally oc- 1136

curring questions. We remove the associated 1137

passages to ensure a fair comparison. 1138

• PIQA (Bisk et al., 2020): A dataset for physi- 1139

cal commonsense reasoning. The model must 1140

select the more plausible solution to everyday 1141

physical tasks. 1142

• SIQA (Sap et al., 2019): Focuses on social 1143

interaction reasoning by asking the model to 1144

choose responses based on human intent and 1145

consequences. 1146

• HellaSwag (Zellers et al., 2019): Requires 1147

choosing the most coherent sentence comple- 1148

tion given a context, often involving physical 1149

or temporal common sense. 1150
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Table 8: Narrow down the hyperparameter (HP) search
space of LLaMA 7B models with FedReFT+ on the
COMMONSENSE170k development set, following
the Appendix B.1. The best-performing settings are
underlined. We apply greedy decoding without sam-
pling during hyperparameter tuning.

HP FedReFT+

prefix+suffix, p+ s {p5+s5, p7+s7}
Tied weight p, s {True, False}
Rank r {8, 16, 32, 64}
Layer L {all}
Dropout {0.00, 0.05}
Optimizer AdamW
LR {4, 6, 9}×10−4

Weight decay {0}
LR scheduler Linear
Batch size {16, 32}
Warmup ratio {0.1}
Clients {3, 5}
Epochs {2, 3, 4}
Rounds 10

Table 9: Hyperparameter(HP) settings of RoBERTa-
large models on selected GLUE tasks for FedReFT+,
inspired from (Wu et al., 2024b)

HP MNLI SST-2 QNLI QQP

position p p1 p3 p11 p11
Tied weight False
Rank r 1
Layer L all
Dropout 0.05
Optimizer AdamW
LR 2× 10−2

Weight decay 0.00
LR scheduler Linear
Batch size 32
Warmup ratio 0.00 0.10 0.10 0.06
Epochs 10
Rounds 50

• WinoGrande (Sakaguchi et al., 2021): In- 1151

spired by the Winograd Schema Challenge 1152

(Levesque et al., 2012), this dataset contains 1153

fill-in-the-blank problems with binary choices 1154

requiring commonsense coreference reason- 1155

ing. 1156

We follow the experimental setup in (Hu et al., 1157

2021a) by fine-tuning our models on a com- 1158

bined training corpus referred to as COMMON- 1159

SENSE170K, which merges all of the above 1160

datasets. Evaluation is conducted individually on 1161

each dataset’s test split. 1162

Table 10: Examples from commonsense reasoning tasks:
BoolQ(Clark et al., 2019), PIQA(Bisk et al., 2020), Hel-
laSwag(Zellers et al., 2019), and SIQA(Sap et al., 2019).
Each instruction is followed by the answer selected dur-
ing evaluation.

Dataset Instruction / Question Answer

BoolQ Please answer the following
question with true or false:
Question: Do Iran and
Afghanistan speak the same
language?

True

PIQA Please choose the correct solu-
tion to the question:
Question: When boiling butter,
when it’s ready, you can
Solution1: Pour it onto a plate
Solution2: Pour it into a jar

Solution2

HellaSwag Please choose the correct end-
ing to complete the given sen-
tence:
Removing ice from car: Then,
the man writes over the snow
covering the window of a car,
and a woman wearing winter
clothes smiles. then
Ending1: , the man adds wax
to the windshield and cuts it.
Ending2: , a person boards a
ski lift...
Ending3: , the man puts on a
christmas coat...
Ending4: , the man continues
removing the snow on his car.

Ending4

SIQA Please choose the correct an-
swer to the question:
Cameron decided to have a bar-
becue and gathered her friends
together.
How would others feel as a re-
sult?
Answer1: like attending
Answer2: like staying home
Answer3: a good friend to
have

Answer1
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Table 11: Examples from math reasoning tasks:
AQUA (Ling et al., 2017), GSM8K (Cobbe et al., 2021),
and SVAMP (Patel et al., 2021). Each instruction is
followed by the correct answer derived through step-by-
step reasoning.

Dataset Instruction / Question Answer

AQUA Solve the following word prob-
lem:
A car is driven in a straight line
toward the base of a vertical
tower. It takes 10 minutes for
the angle of elevation to change
from 45° to 60°. After how
much more time will the car
reach the base of the tower?
Answer Choices: (A) 5(

√
3 +

1), (B) 6(
√
3 +

√
2), (C) 7(

√
3 –

1), (D) 8(
√
3 – 2), (E) None of

these.

(A)

GSM8K Solve the following question:
Janet’s ducks lay 16 eggs per
day. She eats 3 eggs and uses
4 for baking. She sells the rest
at $2 per egg. How much money
does she make daily?

$18

SVAMP Solve the following arithmetic
question:
Each pack of DVDs costs $76.
A discount of $25 is applied.
What is the final price per pack?

$51

C.2 Arithmetic Reasoning1163

We evaluate arithmetic reasoning using seven1164

benchmark datasets that cover a range of math1165

word problem types. As in (Hu et al., 2021a), we1166

construct all examples without using golden or re-1167

trieved passages. Data samples are shows in Table1168

11.1169

• AQuA (Ling et al., 2017): Presents algebraic1170

word problems in a multiple-choice format.1171

• GSM8K (Cobbe et al., 2021): A widely used1172

benchmark of grade-school math problems1173

requiring multi-step reasoning.1174

• SVAMP (Patel et al., 2021): A more challeng-1175

ing dataset that tests robustness to paraphrased1176

and structurally altered word problems.1177

Following (Hu et al., 2021a), we train our models1178

on a combined training set named MATH10K.1179

C.3 Natural Language Understanding1180

For NLU, we evaluate on the GLUE benchmark fol-1181

lowing the evaluation protocol in (Wu et al., 2024b).1182

Data samples for shown in Table 12.1183

• The validation set is split into two subsets one 1184

for in-training evaluation and the other for 1185

final testing. 1186

• For large datasets (QQP, MNLI, QNLI), 1,000 1187

samples are used for in-training validation. 1188

• For smaller datasets, half of the validation set 1189

is used during training. 1190

Table 12: Examples from GLUE benchmark (Wang
et al., 2018) tasks: MNLI, SST-2, QNLI, and QQP.

Dataset Instruction / Question Answer

MNLI Premise: The dog is running
through the field.
Hypothesis: An animal is mov-
ing.
Label: entailment

Entailment

SST-2 Sentence: A touching and
thought-provoking piece of cin-
ema.
Label: positive

Positive

QNLI Question: What is the capital of
France?
Sentence: Paris is the capi-
tal and most populous city of
France.
Label: entailment

Entailment

QQP Question1: How do I learn to
play guitar?
Question2: What is the best way
to learn guitar?
Label: duplicate

Duplicate

D Evaluation Loss-Based α Tuning 1191

To personalize the blending of local and aggregated 1192

intervention parameters in FedReFT+, we employ 1193

an evaluation loss-based tuning strategy for the 1194

mixing coefficient α ∈ [0, 1]. This coefficient gov- 1195

erns how much each client integrates the aggre- 1196

gated All-But-Me (ABM) intervention parameters 1197

with its own local updates: 1198

θnew
k = (1− α) · θlocal

k + α · θABM
k , (10) 1199

where θk can represent the LoReFT intervention 1200

components W , R, and b for client k. 1201

Tuning Procedure: 1202

1. For a set of candidate α values (α ∈ 1203

{0.0, 0.1, . . . , 1.0}), the client computes in- 1204

terpolated parameters. 1205
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2. For each α, the client evaluates its perfor-1206

mance using a local validation set and records1207

the evaluation loss L(α).1208

3. The optimal mixing coefficient is selected by:1209

α∗ = argmin
α

L(α). (11)1210

E Theoretical Foundation: Geometric1211

Median via Weiszfeld’s Algorithm1212

The geometric median offers a robust alternative1213

to the arithmetic mean, particularly suitable for1214

federated settings with heterogeneous or noisy1215

client updates. For a given set of vectors X =1216

{x1,x2, . . . ,xn} ⊂ Rd, the geometric median y∗1217

is defined as:1218

y∗ = arg min
y∈Rd

n∑
i=1

∥y − xi∥2. (12)1219

This optimization is non-smooth and convex,1220

and generally lacks a closed-form solution. How-1221

ever, Weiszfeld’s algorithm (Weiszfeld, 1937) pro-1222

vides an efficient iterative method to approximate1223

y∗. We now derive and justify this algorithm via1224

the Majorization-Minimization (MM) framework.1225

We define the cost function to be minimized:1226

f(y) =
n∑
i=1

∥y − xi∥2. (13)1227

This function is convex but non-differentiable at1228

points where y = xi. Weiszfeld’s algorithm avoids1229

such points during updates by construction.1230

The MM algorithm minimizes a difficult ob-1231

jective f(y) by iteratively minimizing a sur-1232

rogate function Q(y|y(k)) that: Majorizes f :1233

Q(y|y(k)) ≥ f(y) for all y, Touches f at the cur-1234

rent iterate: Q(y(k)|y(k)) = f(y(k)).1235

We define the surrogate using Jensen’s inequality1236

and the convexity of the norm:1237

Q(y|y(k)) =
n∑
i=1

∥y − xi∥22
2∥y(k) − xi∥2

+C(y(k)), (14)1238

whereC(y(k)) is a constant that does not depend1239

on y. This function is differentiable and strictly1240

convex in y.1241

To find the minimizer of Q(y|y(k)), we take the1242

gradient and set it to zero:1243

∇Q(y) =

n∑
i=1

y − xi

∥y(k) − xi∥2
= 0. (15) 1244

Solving the above yields the Weiszfeld update 1245

rule: 1246

y(k+1) =

∑n
i=1

xi

∥y(k)−xi∥2∑n
i=1

1
∥y(k)−xi∥2

. (16) 1247

The update is only valid when y(k) ̸= xi for all 1248

i, a condition that can be enforced by initialization 1249

and step-size dampening if needed. 1250

From MM theory (Lange, 2016), each iteration 1251

satisfies: 1252

f(y(k+1)) ≤ Q(y(k+1)|y(k))

≤ Q(y(k)|y(k)) = f(y(k)),
(17) 1253

ensuring that f(y(k)) is non-increasing. Under 1254

mild conditions (excluding cases where y(k) = xi), 1255

Weiszfeld’s algorithm converges to the geometric 1256

median y∗. 1257

E.1 Application in FedReFT+: ABM 1258

Aggregation 1259

In our FedReFT+ framework, each client receives 1260

an All-But-Me (ABM)aggregated update for in- 1261

tervention parameters computed as the geometric 1262

median of the corresponding parameters from all 1263

other clients. For client k, the ABM aggregated 1264

parameter is: 1265

WABM
k = arg min

w∈Rd

∑
m̸=k

∥w −Wlocal
m ∥2. (18) 1266

We compute this using Weiszfeld’s algorithm 1267

for each parameter type independently, ensuring 1268

robustness to outlier clients and misaligned updates. 1269

This enables stable and personalized aggregation 1270

without sacrificing task-specific semantics. 1271

Weiszfeld’s algorithm provides a theoretically 1272

grounded and computationally efficient way to 1273

compute the geometric median, making it ideal 1274

for ABM aggregation in heterogeneous FL. By 1275

leveraging this algorithm in FedReFT+, we ensure 1276

robustness in aggregation and improve both conver- 1277

gence and personalization in non-i.i.d. federated 1278

environments. 1279
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F Ablation Study1280

F.1 Comparison of Aggregation method on1281

different task1282

We use only 20% of the training data from the1283

COMMONSENSE170K dataset, split among three1284

clients, and evaluate the models using the SIQA1285

task. Figure 3 shows that Geometric Median ABM1286

aggregation outperforms all other approaches. Sim-1287

ilarly, we split 50% of the MATH10K dataset1288

among five clients, train each client for only five1289

local epochs, and evaluate the results using the1290

GSM8K evaluation set. Additionally, we use1291

RTK GLUE for the natural language understanding1292

(NLU) task.
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Figure 3: Comparison of Aggregation Strategies
Across Tasks. Performance of FedAvg, Mean-ABM,
and Geometric Median-ABM on three benchmark task
groups: Commonsense Reasoning, Arithmetic Reason-
ing, and GLUE. Geometric Median-ABM consistently
outperforms FedAvg and Mean-ABM, highlighting its
robustness and effectiveness in heterogeneous federated
settings.

Table 13: Trainable Intervention Parameters across Mod-
els (in Millions) in FedReFT+

Model Total P(M) # TP(M) TP%

LLaMa-1.1B 1100.05 0.72 0.0655
LLaMA 7B 6,738.42 2.10 0.0311
LLaMA-2 7B 6,738.42 2.10 0.0311
LLaMA-3 8B 8,030.27 2.10 0.0261
LlaMa-2-13B 13,015.86 6.55 0.0503
RoBERTa Large 355.36 0.0492 0.0138

1293

G Communication Efficiency1294

As shown in Table 13, FedReFT+ is communica-1295

tion and computationally efficient as it uses only1296

Table 14: We vary LLaMA model sizes with C = 3
clients following the DT design, alongside a central-
ized LoReFT baseline. As model capacity increases,
we observe notable performance gains, with the largest
model approaching the accuracy of the centralized set-
ting. First four experiments on the Standalone centralize
setup and later four experiments on the FL setup.

Method BoolQ PIQA HellaS.

LLaMa 7b 69.30 84.4 93.1
LLaMa-2 7B 71.10 83.8 94.3
LLaMa-3 7B 75.1 90.2 96.3

Tiny LLaMa 1B 63.83 49.18 46.03
LLaMa 7B 65.84 77.75 67.64
LLaMa-2 7B 68.93 74.81 77.73
LLaMa-3 7B 72.60 85.85 89.85

a very small percentage of trainable parameters 1297

(TP) compared to the total model parameters. For 1298

example, in LLaMA-7B and LLaMA-2 7B, only 1299

0.0311% of the total parameters are trained. In 1300

RoBERTa Large, this number is even smaller, at 1301

just 0.0138%. Even for large models like LLaMA- 1302

2-13B, the trainable portion remains as low as 1303

0.0503%. This shows that FedReFT+ is highly 1304

parameter-efficient. Despite using such a small 1305

fraction of parameters, FedReFT+ still achieves 1306

strong performance, as discussed in the experimen- 1307

tal analysis section 3. This highlights the bene- 1308

fit of using FedReFT+ in resource-constrained or 1309

communication-limited federated learning settings. 1310

G.1 Additional Experimental Validation 1311

In this section, we also conducted some additional 1312

experiments to show the robustness of FedReFT+ 1313

in different setups. Appendix Table 14 depicts 1314

these. 1315
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