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Abstract

We present a framework for learning hierarchi-001
cal policies from demonstrations, using sparse002
natural language annotations to guide the003
discovery of reusable skills for autonomous004
decision-making. We formulate a generative005
model of action sequences in which goals006
generate sequences of high-level subtask de-007
scriptions, and these descriptions generate se-008
quences of low-level actions. We describe009
how to train this model using primarily unan-010
notated demonstrations by parsing demonstra-011
tions into sequences of named high-level sub-012
tasks, using only a small number of seed an-013
notations to ground language in action. In014
trained models, the space of natural language015
commands indexes a combinatorial library of016
skills; agents can use these skills to plan017
by generating high-level instruction sequences018
tailored to novel goals. We evaluate this ap-019
proach in the ALFRED household simulation020
environment, providing natural language an-021
notations for only 10% of demonstrations. It022
completes more than twice as many tasks as a023
standard approach to learning from demonstra-024
tions, matching the performance of instruction025
following models with access to ground-truth026
plans during both training and evaluation. 1027

1 Introduction028

Building autonomous agents that integrate high-029

level reasoning with low-level perception and con-030

trol is a long-standing challenge in artificial intelli-031

gence (Fikes et al., 1972; Newell, 1973; Sacerdoti,032

1973; Brockett, 1993). Fig. 1 shows an example: to033

accomplish a task such as cooking an egg, an agent034

must first find the egg, then grasp it, then locate a035

stove or microwave, at each step reasoning about036

both these subtasks and complex, unstructured sen-037

sor data. Hierarchical planning models (e.g. Sut-038

ton et al., 1999)—which first reason about abstract039

1Code, data, and additional visualizations are
available at https://sites.google.com/view/
skill-induction-latent-lang/.

Place tomato 
in fridge.

Annotated demonstrations (10%) Unannotated demonstrations (90%)

Pick up 
an egg.

…

Heat and cool an egg.

grasp(ob1) open(ob3)turn(left)

Grab the 
ladle.

Go to the 
sink.

…

Put a clean ladle on the counter

turn(right) forwardgrasp(obj1)

Put the 
ladle down.

… …

Find a 
knife.

Slice and chill a tomato.

forward grasp(ob4)turn(right) …

Goal

Plan Heat the egg in 
the microwave.

Alignments

Actions

Slice the 
tomato.

Find a 
tomato.

cond. LM policy

observed 

Legend

Model Architecture

Find an egg.

inferred / predicted

embed

cond. 
LM

open(ob3)

observation action mask

Training: Semi Supervised Skill Learning with Latent Language

Deployment: Planning with Language

language model planner

Figure 1: Hierarchical imitation learning using weak
natural language supervision. During training, a small
number of seed annotations are used to automatically
segment and label unannotated training demonstrations
with natural language descriptions of their high-level
structure. When deployed on new tasks, learned poli-
cies first generate sequences of natural language sub-
task descriptions, then modularly translate each de-
scription to a sequence of low-level actions.

states and actions, then ground these in concrete 040

control decisions—play a key role in most existing 041

agent architectures. But training effective hierarchi- 042

cal models for general environments and goals re- 043

mains difficult. Standard techniques either require 044

detailed formal task specifications, limiting their 045

applicability in complex and hard-to-formalize en- 046

vironments, or are restricted to extremely simple 047

high-level actions, limiting their expressive power 048

(Bacon et al., 2017; Sutton et al., 1999; Dietterich, 049

1999; Kaelbling and Lozano-Pérez, 2011). 050

Several recent papers have proposed to overcome 051

these limitations using richer forms of supervision— 052

especially language—as a scaffold for hierarchi- 053

cal policy learning. In latent language policies 054

(LLPs; Andreas et al., 2018; Shiarlis et al., 2018), 055
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controllers first map from high-level goals to se-056

quences of natural language instructions, then use057

instruction following models to translate those058

instructions into actions. But applications of059

language-based supervision for long-horizon pol-060

icy learning have remained quite limited in scope.061

Current LLP training approaches treat language062

as a latent variable only during prediction, and063

require fully supervised (and often impractically064

large) datasets that align goal specifications with065

instructions and instructions with low-level actions.066

As a result, all existing work on language-based067

policy learning has focused on very short time hori-068

zons (Andreas et al., 2018), restricted language (Hu069

et al., 2019; Jacob et al., 2021) or synthetic training070

data (Shu et al., 2018; Jiang et al., 2019).071

In this paper, we show that it is possible to train072

language-based hierarchical policies that outper-073

form state-of-the-art baselines using only minimal074

natural language supervision. We introduce a pro-075

cedure for weakly and partially supervised training076

of LLPs using ungrounded text corpora, unlabeled077

demonstrations, and a small set of annotations link-078

ing the two. To do so, we model training demon-079

strations as generated by latent high-level plans: we080

describe a deep, structured latent variable model081

in which goals generate subtask descriptions and082

subtask descriptions generate actions. We show083

how to learn in this model by performing inference084

in the infinite, combinatorial space of latent plans085

while using a comparatively small set of annotated086

demonstrations to seed the learning process.087

Using an extremely reduced version of the AL-088

FRED household robotics dataset (Shridhar et al.,089

2020)—with 10% of labeled training instructions,090

no alignments during training, and no instructions091

at all during evaluation—our approach matches or092

outperforms existing approaches that use ground-093

truth instructions and alignments during both train-094

ing and evaluation. It correctly segments and labels095

subtasks in unlabeled demonstrations, including096

subtasks that involve novel compositions of actions097

and objects. Additional experiments show that pre-098

training on large (ungrounded) text corpora (Raffel099

et al., 2020) contributes to this success, demonstrat-100

ing one mechanism by which background knowl-101

edge encoded in language can benefit tasks that do102

not involve language as an input or an output.103

Indeed, our results show that relatively little in-104

formation about language grounding is needed for105

effective learning of language-based policies—a106

rich model of natural language text, a large number 107

of demonstrations, and a small number of annota- 108

tions suffice for learning compositional libraries of 109

skills and effective policies for deploying them. 110

2 Preliminaries 111

We consider learning problems in which agents 112

must perform multi-step tasks (like cooking an egg; 113

Fig. 1) in interactive environments. We formalize 114

these problems as undiscounted, episodic, partially 115

observed Markov decision processes (POMDPs) 116

defined by a tuple (S,A, T,Ω, O), where S is a set 117

of states, A is a set of actions, T : S ×A → S is 118

an (unknown) state transition function, Ω is a set 119

of observations, and O : S → Ω is an (unknown) 120

observation function.2 We assume that observa- 121

tions include a distinguished goal specification g 122

that remains constant throughout an episode; given 123

a dataset D of consisting of goals g and demon- 124

strations d (i.e.D = {(d1, g1), (d2, g2) . . .};d = 125

[(o1, a1), (o2, a2), . . .]; o ∈ Ω, a ∈ A), we 126

aim to learn a goal-conditional policy π(at | 127

a:t−1,o:t, g) = π(at | a1, . . . , at−1, o1, . . . , ot, g) 128

that generalizes demonstrated behaviors to novel 129

goals and states. 130

For tasks like the ones depicted in Fig. 1, this 131

learning problem requires agents to accomplish 132

multiple subgoals (like finding an egg or oper- 133

ating an appliance) in a feasible sequence. As 134

in past work, we address this challenge by fo- 135

cusing on hierarchical policy representations that 136

plan over temporal abstractions of low-level ac- 137

tion sequences. We consider a generic class of 138

hierarchical policies that first predict a sequence 139

of subtask specifications τ from a distribution 140

πC(τi | τ:i−1, g) (the controller), then from each 141

τ generate a sequence of actions a1 . . . an from a 142

distribution πE(ai | a:i−1,o:i, τ) (the executor).3 143

At each timestep, πE may either generate an action 144

from A; or a special termination signal STOP; af- 145

ter STOP is selected, control is returned to πC and 146

a new τ is generated. This process is visualized 147

in Fig. 2(a). Trajectories generated by hierarchi- 148

cal policies themselves have hierarchical structure: 149

each subtask specification τ generates a segment 150

of a trajectory (delimited by a STOP action) that 151

2For notational convenience, we assume without loss of
generality that T and O are deterministic.

3In past work, πE often conditions on the current observa-
tion as well as goal and history of past subtask specifications;
we found that this extra information was not needed for the
tasks studied here.
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Figure 2: (a) When a hierarchical policy is deployed, πC generates a sequence of subtask specifications, and πE

translates each of these to a low-level action sequence ending in STOP. At training time, this hierarchical structure
is not available, and must be inferred to train our model. To do so, we assign each action ai an auxiliary alignment
variable αi identifying the subtask that produced it. Alignments divide an action sequence into a sequence of seg-
ments s containing actions aligned to the same subtask. Automatically segmenting training demonstrations makes
it possible to learn modular, reusable policies for individual subtasks without direct supervision. (b) Overview of
the proposed learning algorithm (SL)3, which alternates between segmenting (by aligning) actions to fixed subtask
specifications; labeling segments given fixed alignments, and updating model parameters.

accomplishes a specific subgoal.152

Training a hierarchical policy requires first defin-153

ing a space of subtask specifications τ , then param-154

eterizing controller and executor policies that can155

generate these specifications appropriately. Most156

past research has either pre-defined an inventory of157

target skills and independently supervised πC and158

πE (Sutton et al., 1999; Kulkarni et al., 2016; Dayan159

and Hinton, 1992); or performed unsupervised dis-160

covery of a finite skill inventory using clustering161

techniques (Dietterich, 1999; Fox et al., 2017).162

Both methods have limitations, and recent work163

has explored methods for using richer supervision164

to guide discovery of skills that are more robust165

than human-specified ones and more generalizable166

than automatically discovered ones. One frequently167

proposed source of supervision is language: in la-168

tent language policies, πC is trained to generate169

goal-relevant instructions in natural language, πE is170

trained to follow instructions, and the space of ab-171

stract actions available for planning is in principle172

as structured and expressive as language itself. But173

current approaches to LLP training remain imprac-174

tical, requiring large datasets of independent, fine-175

grained supervision for πC and πE. Below, we de-176

scribe how to overcome this limitation, and instead177

learn from large collections of unlabeled demon-178

strations augmented with only a small amount of179

natural language supervision.180

3 Approach181

Overview We train hierarchical policies on unan-182

notated action sequences by inferring latent natural183

language descriptions of the subtasks they accom- 184

plish (Fig. 2(b). We present a learning algorithm 185

that jointly partitions these action sequences into 186

smaller segments exhibiting reusable, task-general 187

skills, labels each segment with a description, trains 188

πC to generate subtask descriptions from goals, and 189

trains πE to generate actions from subtask descrip- 190

tions. 191

Formally, we assume access to two kinds of 192

training data: a large collection of unannotated 193

demonstrations D = {(d1, g1), (d2, g2), . . .} 194

and a smaller collection of annotated demon- 195

strations Dann = {(d1, g1, τ 1), (d2, g2, τ 2), . . .} 196

where each τ consists of a sequence of natural lan- 197

guage instructions [τ1, τ2, . . .] corresponding to 198

the subtask sequence that should be generated by 199

πC. We assume that even these annotated trajecto- 200

ries leave much of the structure depicted in Fig. 2(a) 201

unspecified, containing no explicit segmentations 202

or STOP markers. Training πE thus requires infer- 203

ring the correspondence between actions and an- 204

notations on Dann while inferring annotations them- 205

selves on D. 206

Training objective To begin, it will be conve- 207

nient to have an explicit expression for the probabil- 208

ity of a demonstration given a policy (πC, πE). To 209

do so, we first observe that the hierarchical genera- 210

tion procedure depicted in Fig. 2(a) produces a la- 211

tent alignment between each action and the subtask 212

τ that generated it. We denote these alignments α, 213

writing αi = j to indicate that ai was generated 214

from τj . Because πC executes subtasks in sequence, 215

alignments are monotonic, satisfying αi = αi−1 or 216
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αi = αi−1 + 1. Let seg(α) denote the segmenta-217

tion associated with α, the sequence of sequences218

of action indices [[i : αi = 1], [i : αi = 2], . . .]219

aligned to the same instruction (see Fig. 2(a)).220

Then, for a fixed policy and POMDP, we may write221

the joint probability of a demonstration, goal, an-222

notation, and alignment as:223

p(d, g,τ ,α) ∝
∏

s∈seg(α)

[
πC(τs | τ :s−1, g)224

×
( ∏
i∈1..|s|

πE(ai | as:i−1 ,os:i , ταi)
)

225

× πE(STOP | as,os)
]
. (1)226

Here : s− 1 (in a slight abuse of notation) denotes227

all segments preceding s, and si is the index of228

the ith action in s. The constant of proportionality229

in Eq. (1) depends only on terms involving T (s′ |230

s, a), O(o | s) and p(g), all independent of πC or231

πE; Eq. (1) thus describes the component of the232

data likelihood under the agent’s control (Ziebart233

et al., 2013).234

With this definition, and given D and Dann as de-235

fined above, we may train a latent language policy236

using partial natural language annotations via or-237

dinary maximum likelihood estimation, imputing238

the missing segmentations and labels in the train-239

ing set jointly with the parameters of πC and πE240

(which we denote θ) in the combined annotated241

and unannotated likelihoods:242

arg max
τ̂ ,α̂,θ̂

L(τ̂ , α̂, θ̂) + Lann(α̂, θ̂) (2)243

where244

L(τ̂ , α̂, θ̂) =
∑

(d,g)∈D

log p(d, g, τ̂ , α̂) (3)245

Lann(α̂, θ̂) =
∑

(d,g,τ )∈Dann

log p(d, g, τ , α̂) (4)246

and where we have suppressed the dependence247

of p(d, g, τ ,α) on θ̂ for clarity. This objective248

involves continuous parameters θ̂, discrete align-249

ments α̂, and discrete labelings τ̂ . We optimize it250

via block coordinate ascent on each of these compo-251

nents in turn: alternating between re-segmenting252

demonstrations, re-labeling those without ground-253

truth labels, and updating parameters. The full254

learning algorithm, which we refer to as (SL)3255

(semi-supervised skill learning with latent lan-256

guage), is shown in Algorithm 1, with each step of257

the optimization procedure described below.258

Segmentation: arg maxα̂ L(τ̂ , α̂, θ̂)+Lann(α̂, θ̂) 259

The segmentation step associates each low-level ac- 260

tion with a high-level subtask by finding the highest 261

scoring alignment sequence α for each demonstra- 262

tion in D and Dann. While the number of possi- 263

ble alignments for a single demonstration is expo- 264

nential in demonstration length, the fact that πE 265

depends only on the current subtask implies the 266

following recurrence relation: 267

max
α1:n

p(d1:n, g, τ 1:m,α1:n) 268

= max
i

(
max
α1:i

p(d1:i, g, τ 1:m−1,α1:i) 269

× p(di+1:n, g, τm,αi+1:n = m)
)

(5) 270

This means that the highest-scoring segmentation 271

can be computed by with an algorithm that recur- 272

sively identifies the highest-scoring alignment to 273

each prefix of the instruction sequence at each ac- 274

tion (Algorithm 2), a process requiring O(|d||τ |) 275

space andO(|d|2|τ |) time. The structure of this dy- 276

namic program is identical to the forward algorithm 277

for hidden semi-Markov models (HSMMs), which 278

are widely used in NLP for tasks like language 279

generation and word alignment (Wiseman et al., 280

2018). Indeed, Algorithm 2 can be derived imme- 281

diately from Eq. (5) by interpreting p(d, g, τ ,α) 282

as the output distribution for an HSMM in which 283

emissions are actions, hidden states are alignments, 284

the emission distribution is πE and the transition 285

distribution is the deterministic distribution with 286

p(α+ 1 | α) = 1. 287

This segmentation procedure is extremely noisy 288

before an initial executor policy has been trained. 289

Thus, during the first iteration of training, we esti- 290

mate a segmentation by by fitting a 3-state hidden 291

Markov model to training action sequences using 292

the Baum–Welch algorithm (Baum et al., 1970), 293

and mark state transitions segment boundaries. De- 294

tails about the initialization step and the algorithm 295

can be found in Appendix B. 296

Labeling: arg maxτ̂ L(τ̂ , α̂, θ̂) 297

Inference of latent, language-based plan descrip- 298

tions in unannotated demonstrations involves an 299

intractable search over string-valued τ . To ap- 300

proximate this search tractably, we used a learned, 301

amortized inference procedure (Wainwright and 302

Jordan, 2008; Hoffman et al., 2013; Kingma and 303

Welling, 2014) to impute descriptions given fixed 304

segmentations. During each parameter update step 305

4



Algorithm 1: (SL)3: Semi-Supervised Skill Learn-
ing with Latent Language

Input: Unannotated demonstrations
D = {(d1, g1), (d2, g2), . . .};

Annotated demonstrations
Dann = {(d1, g1, τ 1), (d2, g2, τ 2), . . .}

Output: Inferred alignments α̂, labels τ̂ , and
parameters θ for πC and πE.

// Initialization
Initialize policy parameters θ using a pretrained

language model (Raffel et al., 2020).

Initialize inference network parameters
η ← argmaxη̂

∑
d∈Dann

∑
s,τ log qη(τ | as,os).

for iteration t← 1 . . . T do

// Segmentation
// Infer alignments between actions and subtasks.
if t = 1 then

Initialize α̂ using the Baum–Welch
algorithm (Baum et al., 1970)

else
α̂← argmaxα̂ L(τ̂ , α̂, θ̂) + Lann(α̂, θ̂)

[Algorithm 2].
end

// Labeling
// Infer subtask labels for unannotated demos D.
τ̂ ← argmaxτ̂ L(τ̂ , α̂, θ̂)

// Parameter Update
// Fit policy and proposal model parameters.
θ̂ ← argmaxθ̂ L(τ̂ , α̂, θ̂) + L

ann(α̂, θ̂)
η̂ ← argmaxη̂

∑
d

∑
s,τ log qη(τ̂ | as,os)

end

Algorithm 2: Dynamic program for segmentation
Input: Demonstration d = [(o1, a1), . . . , (on, an);
Task specifications τ = [τ1, . . . , τm].
Executor πE(a | o, τ) =

∏
i π

E(ai | a:i−1,o:i, τ)

Output: Maximum a posteriori alignments α.

scores← an n×m matrix of zeros
// scores[i, j] holds the log-probability of the
// highest-scoring sequence whose final action i is
// aligned to subtask j.

for i← 1 . . . n do
for j ← 1 . . . |τ | do

scores[i, j]← −∞
for k ← 1 . . . i− 1 do

scores[i, j]← max (
scores[i, j],
scores[k, j − 1]

+ log πE(ak+1:i | ok+1:i, τj))
end

end
end

The optimal alignment sequence may be obtained
from scores via back-tracing (Rabiner, 1989).

(described below), we train an inference model 306

qη(τ | as(i) ,as(i+1) , g) to approximate the posterior 307

distribution over descriptions for a given segment 308

given a goal, the segment’s actions, and the actions 309

from the subsequent segment.4 Then, during the 310

labeling step, we label complete demonstrations by 311

choosing the highest-scoring instruction for each 312

trajectory independently: 313

314

arg max
τ

log p(d, g, τ ,α) ≈ 315[
arg max

τ
q(τ |as(i) ,as(i+1) , g)

∣∣∣ s(i)∈seg(α)
]

(6) 316

Labeling is performed only for demonstrations in 317

D, leaving the labels for Dann fixed during training. 318

Param update: arg maxθ̂ L(τ̂ , α̂, θ̂)+Lann(α̂, θ̂) 319

This is the simplest of the three update steps: given 320

fixed instructions and alignments, and πE, πC pa- 321

rameterized as neural networks, this objective is 322

differentiable end-to-end. In each iteration, we 323

train these to convergence (optimization details 324

are described in Section 4 and ??). During the 325

parameter update step, we also fit parameters η 326

of the proposal model to maximize the likelihood 327∑
d

∑
s,τ log qη(τ̂ | as,os) with respect to the cur- 328

rent segmentations ŝ and labels τ̂ . 329

As goals, subtask indicators, and actions may 330

all be encoded as natural language strings, πC and 331

πE may be implemented as conditional language 332

models. As described below, we initialize both 333

policies with models pretrained on a text corpora. 334

4 Experimental Setup 335

Our experiments aim to answer two questions. 336

First, does the latent-language policy representa- 337

tion described in Section 3 improve downstream 338

performance on complex tasks? Second, how many 339

natural language annotations are needed to train 340

an effective latent language policy given an initial 341

dataset of unannotated demonstrations? 342

Environment We investigate these questions in 343

the ALFRED environment of Shridhar et al. (2020). 344

ALFRED consists of a set of interactive simulated 345

households containing a total of 120 rooms, accom- 346

panied by a dataset of 8,055 expert task demonstra- 347

tions for an embodied agent annotated with 25,743 348

English-language instructions. Observations o are 349

4In our experiments, conditioning on observations or
longer context did not improve the accuracy of this model.
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bitmap images from a forward-facing camera, and350

actions a are drawn from a set of 7 low-level navi-351

gation and manipulation primitives. Manipulation352

actions (7 of the 12) additionally require predicting353

a mask over the visual input to select an object for354

interaction. See Shridhar et al. (2020) for details.355

While the ALFRED environment is typically356

used to evaluate instruction following models,357

which map from detailed, step-by-step natural lan-358

guage descriptions to action sequences (Shridhar359

et al., 2020; Singh et al., 2020; Corona et al., 2021),360

our experiments focus on an autonomous evalua-361

tion in which agents are given goals (but not fine-362

grained instructions) at test time. Several previous363

studies have also considered the autonomous eval-364

uation for ALFRED, but all have used extremely365

fine-grained supervision at training time, including366

full supervision of symbolic plan representations367

and their alignments to demonstrations (Blukis368

et al., 2021). In contrast, our approach supports369

learning from partial, language-based annotations370

without segmentations or alignments, and this data371

condition is the main focus of our evaluation.372

Modeling details πC and πE are implemented373

as sequence-to-sequence transformer networks374

(Vaswani et al., 2017). πC, which maps from375

text-based goal specifications to text-based instruc-376

tion sequences, is initialized with a pre-trained377

T5-small language model (Raffel et al., 2020). πE,378

which maps from (textual) instructions and (image-379

based) observations to (textual) actions and (image-380

based) object selection masks is also initialized381

with T5-small; to incorporate visual input, this382

model first embeds observations using a pretrained383

ResNet18 model (He et al., 2016) and transforms384

these linearly to the same dimensionality as the385

word embedding layer. Details about the architec-386

ture of πC and πE may be found in Appendix C.387

Baselines and comparisons We compare the388

performance of (SL)3 to several baselines:389

seq2seq: A standard (non-hierarchical) goal-390

conditioned policy, trained on the (g,d) pairs in391

D ∪Dann to maximize
∑

a,o,g log π(a | o, g), with392

π parameterized similar to πE.393

seq2seq2seq: A supervised hierarchical policy394

with the same architectures for πC and πE as in395

(SL)3, but with πC trained to generate subtask se-396

quences by maximizing
∑

τ ,g log πC(τ | g) and πE397

trained to maximize
∑

a,o,τ ,g log πE(a | o, τ , g)398

using only Dann. Because πE maps from complete399

task sequences to complete low-level action se- 400

quences, training of this model involves no explicit 401

alignment or segmentation steps. 402

no-pretrain, no-latent: Ablations of the 403

full (SL)3 model in which πC and πE are, respec- 404

tively, randomly initialized or updated only on 405

Lann(α̂, θ̂) during the parameter update phase. 406

In addition to these baselines, we contextualize 407

our approach by comparing it to several state-of- 408

the-art models for the instruction following task 409

in ALFRED: S+ (Shridhar et al., 2020), MOCA 410

(Singh et al., 2020), and Modular (Corona et al., 411

2021). Like seq2seq, these are neural sequence- 412

to-sequence models trained to map instructions to 413

actions; they incorporate several standard model- 414

ing improvements from the instruction following 415

literature, including progress monitoring (Ma et al., 416

2019), pretrained object recognizers (Singh et al., 417

2020), and independently parameterized policies 418

for different subtasks (Andreas et al., 2016). This 419

last group of models is trained with considerably 420

stronger supervision than (SL)3: instructions and 421

alignments during training, and ground truth in- 422

structions during evaluation. 423

Evaluation Following Shridhar et al. (2020), 424

our main evaluation Table 1 computes the online, 425

subtask-level accuracy of each policy. Given a 426

ground-truth (goal, demonstration) pair from the 427

test set with ground-truth subtask boundaries, we 428

perform forced decoding (“teacher forcing”) of 429

the policy up to the beginning of each segment 430

boundary, then allow the policy to take actions 431

autonomously for up to 20 timesteps. If it com- 432

pletes the subtask within this window, the subtask 433

is marked as successful. Online evaluation requires 434

live interaction with a simulator, and is somewhat 435

slow; for data-efficiency experiments involving a 436

large number of policy variants Fig. 4, we instead 437

use an offline evaluation in which we measure the 438

fraction of subtasks in which a policy’s predicted 439

actions (ignoring object selection masks) exactly 440

match the ground truth action sequence. 441

In ALFRED, navigation in the autonomous con- 442

dition requires exploration, but no exploration is 443

demonstrated, and techniques other than imitation 444

learning are required for this specific skill. To re- 445

flect this, we replace all annotations containing de- 446

tailed navigation instructions go to the glass on the 447

table to your left with generic ones find a glass. Ad- 448

ditionally, while we report results for the navigation 449

subtask, we do not include them when reporting av- 450
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Train: g + τ | Test: g

(SL)3 (10%) 56 56 75 74 50 48 54 32 13
(SL)3 (100%) 58 68 82 75 50 45 55 32 15
seq2seq 27 16 33 64 20 15 25 13 14
seq2seq2seq 42 15 69 58 29 42 50 32 15

Train: g + τ + α | Test: g+τ

S+ 49 21 94 88 20 51 14 54 21
MOCA 49 71 38 86 44 39 55 11 32
Mod 63 67 94 85 28 55 39 73 14

Table 1: Online subtask success rate for (SL)3, base-
lines, and instruction following models, grouped by
subtask category. “Train: g + τ | Test: g” means mod-
els in this section were trained with both goals g and
annotated subtask descriptions τ , but observed only
goals during evaluation. With annotations for 10% of
data and no alignment supervision, (SL)3 outperforms
non-hierarchical baselines and is competitive with mod-
els that receive substantially more information during
training and evaluation. *Navigation (GoTo) is omitted
from this average; see text for discussion.

erage task accuracy. Concurrent work (Blukis et al.,451

2021) has proposed procedures for exploration in452

ALFRED, these are orthogonal to our contribution453

and could be straightforwardly incorporated.454

5 Results455

Table 1 compares (SL)3 with flat and hierarchical456

imitation learning baselines. The table includes457

two versions of the model: a 100% model trained458

with full instruction supervision (|D|= 0, |Dann|=459

21000) and a 10% model trained with only a small460

fraction of labeled demonstrations (|D|= 19000,461

|Dann|= 2000). Baselines are always trained with462

100% of natural language annotations, meaning463

the 10% version of (SL)3 has access to strictly464

less information than all models it is compared to.465

Results are shown in Table 1. We find:466

(SL)3 improves on flat policies: In both the467

10% and 100% conditions, it improves over the468

subtask completion rate of the seq2seq (goals-to-469

actions) model by 29%. Indeed, it is competitive470

with several recent state-of-the-art instruction fol-471

lowing models, outperforming S+ and Mod and ap-472

proaching the performance of MOCA and performing473

particularly well on Picking subtasks. Condition-474

ing on detailed instructions is not needed for good475

task performance in ALFRED—while decompos-476

ing goals hierarchically appears to be extremely477

helpful, hierarchical policies can be trained to gen-478

erate high-quality plans directly from goals.479

Figure 3: Example of an inferred segmentation and la-
beling for an unannotated trajectory. The trajectory is
parsed into a sequence of 10 segments and qη assigns
high scoring natural-language labels to the segmented
actions. These are consistent with the objects, recep-
tacles and sub-tasks. The overall sequence of latent-
language skills is a good plan for the high-level goal.

Model Average

(SL)3 (10%) 56
(SL)3 (100%) 58
(SL)3 (ground-truth α) 65
no-pt 49
no-latent 52

Table 2: Ablation experiments. Providing ground-truth
alignments at training time improves task completion
rates, suggesting potential benefits from an improved
alignment procedure. Pretraining and inference of la-
tent task representations contribute 7% and 4% respec-
tively to task completion rate with 10% of annotations.

Language-based policies can be trained with 480

sparse natural language annotations: Perfor- 481

mance of (SL)3 trained with 10% and 100% natural 482

language annotations is similar (and in both cases 483

superior to seq2seq and seq2seq2seq trained on 484

100% of data). Fig. 4 shows more detailed super- 485

vision curves. Ablation experiments in Table 2 486

show that inference of latent training plans is im- 487

portant for this result: with no inference of latent 488

instructions (i.e. training only on annotated demon- 489

strations), performance drops from 56% to 52%. 490

Fig. 3 shows an example of the structure inferred 491

for an unannotated trajectory: the model inserts rea- 492

sonable segment boundaries and accurately labels 493

each step. Ultimately, relatively little language is 494

needed to train effective hierarchical models: lan- 495

guage plans can be inferred from unlabeled demon- 496

strations using a small set of seed annotations. 497

Language model pretraining improves auto- 498

mated decision-making. Ablation experiments in 499

Table 2 provide details. Language model pretrain- 500
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ing of πC and πE (on ungrounded text) is crucial501

for good performance in the low-data regime: with502

10% of annotations, models trained from scratch503

complete 49% of tasks (vs 56% for pretrained mod-504

els). We hypothesize that this result can be partly505

attributable to the fact that pretrained language506

models already encode a great deal of informa-507

tion about the common-sense structure of plans,508

e.g. the fact that slicing a tomato first requires find-509

ing a knife. Such models are thus well-positioned510

to adapt to “planning” problems that require mod-511

eling relations between natural language strings.512

These experiments point to a potentially broad role513

for pretrained language models in tasks that do not514

involve language as an input or an output.515

6 Related Work516

Our approach draws on a large body of research517

at the intersection of natural language processing,518

representation learning, and autonomous control.519

Language-based supervision and representa-520

tion The use of natural language annotations to521

scaffold learning, especially in computer vision522

and program synthesis applications, has been the523

subject of a number of previous studies (Brana-524

van et al., 2009; Frome et al., 2013; Andreas et al.,525

2018; Wong et al., 2021). Here, we use language to526

support policy learning, specifically by using natu-527

ral language instructions to discover compositional528

subtask abstractions that can support autonomous529

control. Our approach is closely related to previous530

work on learning skill libraries from policy sketches531

(Andreas et al., 2017; Shiarlis et al., 2018); instead532

of the fixed skill inventory used by policy sketches,533

(SL)3 learns an open-ended, compositional library534

of behaviors indexed by natural language strings.535

Hierarchical policies Hierarchical policy learn-536

ing and temporal abstraction have been major areas537

of focus since the earliest research on reinforce-538

ment learning and imitation learning (McGovern539

and Barto, 2001; Konidaris et al., 2012; Daniel540

et al., 2012). Past work typically relies on direct541

supervision or manual specification of the space542

of high-level skills (Sutton et al., 1999; Kulkarni543

et al., 2016) or fully unsupervised skill discov-544

ery (Dietterich, 1999; Bacon et al., 2017). Our545

approach uses policy architectures from this lit-546

erature, but aims to provide a mechanism for su-547

pervision that allows fine-grained control over the548

space of learned skills (as in fully supervised ap-549
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Figure 4: Offline subtask success rate as a function of
the fraction of annotated examples. Only a fraction of
annotations (5–10%) are needed for good performance

proaches) while requiring only small amounts of 550

easy-to-gather human supervision. 551

Language and interaction Outside of language- 552

based supervision, problems at the intersection of 553

language and control include instruction following 554

(Chen and Mooney, 2011; Branavan et al., 2009; 555

Tellex et al., 2011; Anderson et al., 2018; Misra 556

et al., 2017), embodied question answering (Das 557

et al., 2018; Gordon et al., 2018) and dialog tasks 558

(Tellex et al., 2020). As in our work, representa- 559

tions of language learned from large text corpora fa- 560

cilitate grounded language learning (Shridhar et al., 561

2021), and interaction with the environment can in 562

turn improve the accuracy of language generation 563

(Zellers et al., 2021); future work might extend our 564

framework for semi-supervised inference of plan 565

descriptions to these settings as well. 566

7 Conclusion 567

We have presented (SL)3, an algorithm for learning 568

hierarchical policies from demonstrations sparsely 569

annotated with natural language descriptions. Us- 570

ing these annotations, (SL)3 infers the latent struc- 571

ture of unannotated demonstrations, automatically 572

segmenting them into subtasks and labeling each 573

subtask with a compositional description. In the 574

learnt hierarchical policy, natural language serves 575

as an abstract representation of subgoals and plans. 576

While our evaluation has focused on household 577

robotics tasks, the hierarchical structure inferred by 578

(SL)3 is present in a variety of learning problems, 579

including image understanding, program synthesis, 580

and language generation. In all those domains, gen- 581

eralized versions of (SL)3 might offer a framework 582

for building high-quality models using only a small 583

amount of rich natural language supervision. 584
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A Out-of-distribution Generalization765

One of the advantages of language-based skill766

representations over categorical representations767

is open-endedness: (SL)3 does not require pre-768

specification of a fixed inventory of goals or ac-769

tions. As a simple demonstration of this potential770

for extensibility, we design goal prompts consisting771

of novel object names, verbs and skill combina-772

tions not seen at training time, and test the model’s773

ability to generalize to out-of-distribution samples774

across the three categories. Some roll-outs can be775

seen in Fig. 6. We observe the following:776

Novel sub-task combinations We qualitatively777

evaluate the ability of the model to generalize sys-778

tematically to novel subtask combinations and sub-779

task ordering not encountered at training time. Ex-780

amples are shown in Fig. 6. For example, we781

present the model with the goal slice a heated ap-782

ple; in the training corpus, objects are only heated783

after being sliced. It can be seen in Fig. 6 that784

the model able correctly orders the two subtasks.785

The model additionally generalizes to new combi-786

nations of tasks such as clean and cool an apple.787

Novel objects and verbs The trained model also788

exhibits some success at generalizing novel object789

categories such as carrot and mask. In the carrot790

example, an incorrect Find the lettuce example is791

generated at the first step, but subsequent subtasks792

refer to a carrot (and apply the correct actions to793

it). The model also generalizes to new but related794

verbs such as scrub but fails at ones like squash795

that are unrelated to training goals.796

Limitations One shortcoming of this approach797

is that affordances and constraints are incompletely798

modelled. Given a (physically unrealizable) goal799

clean the bowl and then slice it, the model cannot800

detect the impossible goal and instead generates801

a plan involving slicing the bowl. Another short-802

coming of the model is the ability to generalize to803

goals that may involve considerably larger number804

of subgoals than goals seen at training time. For805

plans that involve very long sequences of skills806

(slice then clean then heat. . . ) the generated plan807

skips some subtasks Fig. 6.808

B Initialization: Segmentation Step809

The training data contains no STOP actions, so πE810

cannot be initialized by training on Dann. Using811

a randomly initialized πE during the segmentation812

step results in extremely low-quality segmentations. 813

Instead, we obtain an initial set of segmentations 814

via unsupervised learning on low-level action se- 815

quences. 816

In particular, we obtain initial segmentations us- 817

ing the Baum–Welch algorithm for unsupervised 818

estimation of hidden Markov models (Baum et al., 819

1970). We replace string-valued latent variables 820

produced by πC with a discrete set of hidden states 821

(in our experiments, we found that three hidden 822

states sufficed). Transition and emission distribu- 823

tions, along with maximum a posteriori sequence 824

labels, are obtained by running the expectation– 825

maximization algorithm on state sequences. We 826

then insert segment boundaries (and an implicit 827

STOP action) at every transition between two dis- 828

tinct hidden states. Evaluated against ground-truth 829

segmentations from the ALFRED training set, this 830

produces an action-level accuracy of 87.9%. The 831

detailed algorithm can be found in Baum et al. 832

(1970). 833

C Model Architecture: Details 834

The controller policy πC is a fine-tuned T5-small 835

model. The executor policy πE decodes the low- 836

level sequence of actions conditioned on the first- 837

person visual observations of the agent. We use 838

the same architecture across the remaining base- 839

lines too. Fig. 5 depicts the architecture of the 840

image-conditioned T5 model. In addition to task 841

specifications, we convert low-level actions to tem- 842

plated commands: for example, put(cup,table) 843

becomes put the cup on the table. These are parsed 844

to select actions to send to the ALFRED simula- 845

tor. During training, both models are optimized 846

using the AdamW algorithm (Loshchilov and Hut- 847

ter, 2019) with a learning rate of 1e-4, weight decay 848

of 0.01, and ε = 1e-8. We use a MaskRCNN model 849

to generate action masks, selecting the predicted 850

mask labeled with the class of the object name 851

generated by the action decoder. The same model 852

architecture is used across all baselines. 853

D Role of trajectory length 854

We conclude with an additional set of ablation 855

experiments aimed at clarifying what aspects of 856

the demonstrated trajectories (SL)3 is better able 857

to model than baselines. We begin by observing 858

that most actions in our data are associated with 859

navigation, with sequences of object manipulation 860

actions (like those depicted in Fig. 3) constitut- 861
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Figure 5: Model architecture for πE, seq2seq and seq2seq2seq: Language parametrized sub-task/goal is input
to the encoder and actions templated in natural language are generated sequentially token-wise. The predictions
made are conditioned on the visual field of view of the agent at every time step along with the token generated
the previous time step. At the end of every low-level action (when ’.’ is generated) the action the executed. For
manipulation actions, the mask corresponding to the the object predicted is selected from the predictions of a
MaskRCNN model on the visual state. Navigation actions do not operate over objects. Once the action is taken,
the environment returns the updated visual state and the policy continues to be unrolled until termination (STOP).

Figure 6: Generalization of πC in out-of-distribution(OOD) settings including novel a) sub-task orders b) objects
c) verbs. OOD generalization enabled by means of representing plans in natural language overcomes the issue of
having to pre-specify the inventory of objects and actions specific to environments. d) Failures: The model fails to
predict actions based on the true affordances of objects and cannot generate arbitrarily long plans.
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ing only about 20% of each trajectory. We con-862

struct an alternative version of the dataset in which863

all navigation subtasks are replaced with a single864

TeleportTo action. This modification reduces av-865

erage trajectory length from 50 actions to 9. In866

this case (SL)3 and seq2seq2seq perform com-867

parably well (55.6% success rate and 56.7% suc-868

cess rate respectively), and only slightly better than869

seq2seq (53.6% success rate). Thus, while (SL)3870

(and all baselines) perform quite poorly at naviga-871

tion skills, identifying these skills and modeling872

their conditional independence from other trajec-873

tory components seems to be crucial for effective874

learning of other skills in the long-horizon setting.875

Hierarchical policies are still useful for modeling876

these shorter plans, but by a smaller margin than877

for long demonstrations.878
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