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ABSTRACT

While current Vision Transformer (ViT) adapter methods have shown promising
accuracy, their inference speed is implicitly hindered by inefficient memory access
operations, e.g., standard normalization and frequent reshaping. In this work, we
propose META, a simple and fast ViT adapter that can improve the model’s mem-
ory efficiency and decrease memory time consumption by reducing the inefficient
memory access operations. Our method features a memory-efficient adapter block
that enables the common sharing of layer normalization between the self-attention
and feed-forward network layers, thereby reducing the model’s reliance on nor-
malization operations. Within the proposed block, the cross-shaped self-attention
is employed to reduce the model’s frequent reshaping operations. Moreover, we
augment the adapter block with a lightweight convolutional branch that can en-
hance local inductive biases, particularly beneficial for the dense prediction tasks,
e.g., object detection, instance segmentation, and semantic segmentation. The
adapter block is finally formulated in a cascaded manner to compute diverse head
features, thereby enriching the variety of feature representations. Empirically,
extensive evaluations on multiple representative datasets validate that META sub-
stantially enhances the predicted quality, while achieving a new state-of-the-art
accuracy-efficiency trade-off. Theoretically, we demonstrate that META exhibits
superior generalization capability and stronger adaptability.

1 INTRODUCTION

State-of-the-art computer vision models typically follow the intuitive paradigm of pre-training on
large single-modal general datasets, followed by fine-tuning on local task-specific datasets to achieve
promising accuracy (Chen et al., 2021; Zhang et al., 2024; Radford et al., 2021; He et al., 2022;
Zhang et al., 2023). However, this defacto paradigm requires downstream models to load the entire
pre-trained model for fine-tuning, which may result in several undesirable drawbacks such as poor
structural flexibility, large optimization gaps, and limited applicability in certain scenarios (Jie &
Deng, 2023; Du et al., 2022; Jie & Deng, 2022). More importantly, these drawbacks have become
more prominent and urgent problems that need to be addressed for dense prediction tasks, particu-
larly in the current context of significant model size growth (Gao et al., 2023; Zhang et al., 2022b;
Radford et al., 2021; Zhang et al., 2023; Kirillov et al., 2023).

Recently, with the increasing dominance of Vision Transformer (ViT) architectures (Han et al.,
2022; Liu et al., 2021; Khan et al., 2022), following the parameter-efficient transfer learning mech-
anism (Houlsby et al., 2019), ViT adapter has become a central approach to learning vision-specific
inductive biases from pre-trained ViT models (Hu et al., 2022; Jie & Deng, 2023; Chen et al., 2022b;
Ma et al., 2024; Luo et al., 2023; Shao et al., 2024), successfully addressing the drawbacks associ-
ated with the pre-training followed by fine-tuning paradigm. The progressive ViT adapter enables
downstream ViT models to achieve promising accuracy levels that are comparable to, or even higher
than, those achieved by fine-tuning the entire model. In particular, thanks to the utilization of plain
ViT models, which contain unique multi-modal information, adapters based on these models can ef-
fectively promote downstream models to learn beneficial semantic-rich feature representations (Tou-
vron et al., 2021; Hu et al., 2022; Kirillov et al., 2023; Dosovitskiy et al., 2020). For example, ViT
adapter under the plain ViT models has been successfully applied in multiple computer vision tasks,
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e.g., object detection (ODet) (Li et al., 2022b), instance segmentation (ISeg) (Liu et al., 2024), and
semantic segmentation (SSeg) (Xie et al., 2021).

Despite the significant progress made by existing ViT adapters (Chen et al., 2022b; Liu et al., 2024;
Jie & Deng, 2023; Marouf et al., 2024), their inference speed is still somewhat unfavorable, which
limits their implementations on edge computing devices (Dong et al., 2024a) and applications for
real-time recognition scenarios (Marouf et al., 2024). Recently, it has been revealed that in addition
to computation and parameter complexity (e.g., FLOPs and #Params.), inefficient memory access
operations (Marouf et al., 2024; Liu et al., 2023), such as standard normalization and frequent re-
shaping operations, play a critical role in hindering the ViT’s inference speed (He & Hofmann, 2024;
Pan et al., 2022; Fournier et al., 2023; Shi et al., 2023). In other words, the inefficient planning of
memory access may cause delays and prevent models from fully utilizing the computing power of
GPUs or CPUs, resulting in a significant negative impact on the speed of ViT models (Liu et al.,
2023; Dao et al., 2022; Venkat et al., 2019; Gu et al., 2021; Ivanov et al., 2021). However, these
inefficient memory access operations are usually overlooked factors during the network design pro-
cess for dense prediction tasks. In this work, we explore how to solve this problem and accelerate
the inference speed of ViT adapters in downstream models. Our solution is to decrease memory time
consumption by reducing layer normalization and frequent reshaping operations.

ViT ViT Adapter META(Ours)

Training Params.  High  Low  Low

Application gaps  High  Low  Low

Memory consumptions  High  High  Low

Inference time costs  High  High  Low

Figure 1: Qualitative performance comparisons of differ-
ent models with respect to training parameters, application
gaps, memory access costs, and inference time costs.

We propose a simple and fast memory effi-
cient transformer adapter (META) that can
improve the model’s memory efficiency and
decrease memory time consumption by re-
ducing the inefficient memory access opera-
tions. As illustrated in Figure 1, our META
demonstrates advantages over existing ViT
models and ViT adapters in terms of mem-
ory consumptions and inference time costs.
The main contribution of this work is the proposal of a memory-efficient adapter block that shares
normalization operations between the self-attention and feed-forward network layers, which exist
in a parallel manner (Ref. Sec. 3.2). Within this block, the cross-shaped self-attention is employed
to reduce the reliance for frequent reshaping operations. Consequently, the proposed two reverse
designs are capable of significantly reducing the memory consumption of the ViT adapter, resulting
in an improved inference speed. Moreover, to enrich local inductive biases for dense predictions, a
lightweight convolutional branch is introduced into the memory-efficient adapter block. In the pro-
cess of interacting with the ViT backbone, a cascaded mechanism is further proposed to compute
different head features, which can enhance the diversity of the obtained feature representations. We
conduct extensive experiments for ODet, ISeg and SSeg on two challenging datasets, namely MS-
COCO (Lin et al., 2014) and ADE20K (Zhou et al., 2017), for evaluating our META. The obtained
results demonstrate that META substantially enhances prediction quality, attains a new state-of-
the-art accuracy level, reduces the number of parameters and memory consumption requirements,
and achieves faster inference speeds. Theoretically, we also prove that META can exhibit superior
generalization capability and stronger adaptability compared to existing ViT adapter methods1.

2 RELATED WORK

Vision Transformer (ViT). Current ViT models for state-of-the-art computer vision tasks can be
roughly divided into two camps: plain ViT models, which are designed to learn general vision fea-
tures (e.g., ViT (Dosovitskiy et al., 2020), DeiT (Touvron et al., 2021) and TDE Transformer (Tou-
vron et al., 2021)), and hierarchical ViT models, which are designed to learn vision-specific features
(e.g., Swin Transformer (Liu et al., 2021) and PVT (Wang et al., 2021)). Both camps of ViT models
have their pros and cons. For example, the hierarchical ViT models can learn powerful vision-
specific feature representations, which makes them usually perform better than the plain ViT models
on accuracy (Han et al., 2022; Khan et al., 2022; Kirillov et al., 2023). However, their unvarnished
disadvantage is the lack of multi-modal pre-training information for dense predictions (Chen et al.,
2022b). On the other hand, although the plain ViT models have weak prior assumptions, which re-
sults in lower accuracy compared to the hierarchical ViT models, their multi-modal pre-training in-

1Due to page limitations, the theoretical analysis will been provided in the supplementary materials.
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formation has great potential to provide semantic-rich feature representations for downstream mod-
els (Guo et al., 2022; Zhang et al., 2023; He et al., 2022; Zhang et al., 2024; Jia et al., 2022). In this
paper, we focus on the plain ViT models for dense predictions. Our contribution is the proposal of a
straightforward and memory efficient ViT adapter, starting from the reduction of inefficient memory
access operations.

ViT for Dense Predictions. Dense predictions, including ODet, ISeg, and SSeg, aim at predicting
a semantic mask where each pixel/object in the given image is assigned a class label (Ranftl et al.,
2021; Zhang et al., 2023; Vandenhende et al., 2021). For ISeg, the obtained mask also distinguishes
different objects of the same class. With the development of ViT technologies, dense prediction
models based on ViT have become one of the default choices for state-of-the-art methods (Liu
et al., 2021; Wang et al., 2021; Dosovitskiy et al., 2020). These methods can be mainly divided
into two categories: those based on Transformers and those that incorporate a combination of CNN
layers. The former, e.g., SegFormer (Strudel et al., 2021), HRViT (Gu et al., 2022), Segvit (Zhang
et al., 2022a), Swin UNet (Hatamizadeh et al., 2021), and ISTR (Hu et al., 2021), extract features
from a given image and connect with task-specific head networks to achieve specific recognition
purposes. The latter compensates for the lack of local inductive bias in the pure ViT architecture by
introducing local convolutional layers, and representative methods include ConFormer (Peng et al.,
2021), CVT (Wu et al., 2021), NextViT (Li et al., 2022a), and CAE-GReaT (Zhang et al., 2023).
While the former can capture long-range dependencies and achieve favorable recognition capability,
they require sufficient training samples to optimize the model, and further improvement is needed
on memory access and inference speed. To this end, we propose a solution to the problem of limited
inference speed caused by frequent memory consumption using a pre-trained ViT model.

ViT Adapters. Adapter methods are originally derived from the NLP tasks, such as PALs (Stickland
& Murray, 2019) and NLP adapter (Houlsby et al., 2019). These methods add a small number of
trainable modules to a pre-trained network, so that downstream fine-tuning models can quickly
adapt to specific datasets and tasks via a parameter-efficient transfer learning manner (Hu et al.,
2022; Houlsby et al., 2019; Chen et al., 2022b; Shen et al., 2023). In the computer vision domain,
ViT adapters have also adopted the similar paradigm (Jie & Deng, 2023; Chen et al., 2022b; Shao
et al., 2024; Luo et al., 2023). ViT adapter method is used to fine-tune large-scale plain ViT models
with a small number of trainable parameters and achieve promising accuracy (Jie & Deng, 2023;
Li et al., 2022b; Chen et al., 2022b). Inspired by (He & Hofmann, 2024; Jie & Deng, 2022; Chen
et al., 2022b; Liu et al., 2023; Mercea et al., 2024), we propose an efficient solution to enhance
the memory efficiency and minimize memory time consumption of ViT adapters. We also provide
theoretical analysis to demonstrate the superior generalization and adaptability of our method.

3 MEMORY EFFICIENT TRANSFORMER ADAPTER (META)

3.1 OVERALL ARCHITECTURE AND CONFIGURATIONS

As illustrated in Figure 2, the network takes an arbitrary RGB image I ∈ RH×W×3 as input and
predicts a semantic mask O ∈ RH×W×C as output. H and W denotes the image height and width,
respectively, and C denotes the class size of the used dataset. Following (Jie & Deng, 2023; Li
et al., 2022b; Chen et al., 2022b), the whole network mainly consists of two parts: the upper part
is a pre-trained plain ViT model (e.g., ViT (Li et al., 2021)), which consists of 4 blocks. The i-th
(i = 1, 2, 3, 4) block contains a set of semantic features Fi

vit with the spatial size of 1/4, 1/8, 1/16,
and 1/32 of I, respectively. The lower part is a trainable ViT adapter, which includes a spatial prior
module as in (Chen et al., 2022b) for I’s encoding, where the encoded features within each block
denote Fi

sp, as well as a set of cascaded memory efficient adapter (MEA) injectors (Ref. Sec. 3.3)
and cascaded MEA extractors (Ref. Sec. 3.4) that act on each ViT backbone block. The “cascaded”
refers to a computational scheme that is incorporated into the different heads of the proposed injec-
tors/extractors, which can enhance the diversity of the obtained feature representations. Concretely,
for the i-th trainable MEA injector, it injects the updated task-specific features back into the i-th
ViT block and into the i-th extractor (as shown in Figure 2 (b)). For the i-th trainable MEA extrac-
tor, it extracts the i-th general features for the (i + 1)-th injector (as shown in Figure 2 (c)). This
process is repeated until the final ViT block is reached. Due to the incorporation of strategies aimed
at reducing inefficient memory access operations in our method, which exhibits enhanced memory
efficiency and reduced memory time consumption compared to existing ViT adapters, consequently
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Figure 2: Overall architecture of META. Our primary contribution is the proposal of a MEA block
in (a), which serves as the fundamental component for the injector in (b) and extractor in (c).

leading to accelerated inference speed. We will provide a detailed explanation of the basic compo-
nent and mechanism of the MEA block in the following Sec. 3.2 and how it can be deployed in the
MEA injectors and MEA extractors to form a cascaded scheme.

3.2 MEA BLOCK

The MEA block aims to interact the features extracted from the ViT backbone and the spatial prior
module. Our block consists of the attention (i.e., Attn) branch, the feed-forward network (i.e., FFN)
branch, and the lightweight convolutional (i.e., Conv) branch. The three branches exist in a parallel
form, which is beneficial for computing in GPUs. As shown in Figure 2 (a), consider an arbitrary
block, the input is Fsp and Fvit, and the output F is obtained by concatenating the features from
the Attn, FFN, and Conv branches along the channel dimension, and then passing them through a
feature projection layer. Therefore, this process can be formulated as:

F = Conv3×3(Concat((A(Fsp,Fvit)︸ ︷︷ ︸
Attn Branch

;F(Fsp,Fvit)︸ ︷︷ ︸
FFN Branch

;C(Fsp,Fvit)︸ ︷︷ ︸
Conv Branch

;Fsp;Fvit)), (1)

where A(·), F(·), and C(·) denote the operation of the Atte, FFN, and Conv branch, respectively. In
MEA, these three branches exist in a parallel manner. Concat(·) denotes the feature concatenation
operation along the channel dimension, and Conv3×3(·) denotes a 3× 3 convolution with the output
channel size of 256 for feature projection. In particular, to construct an memory efficient block,
following (He & Hofmann, 2024; Wang & Komatsuzaki, 2021), the Attn and FFN branches are
subjected to a shared layer normalization operation, which leads to a decrease in memory time
consumption associated with the normalization operations.

Attn Branch. In our work, we adopt the cross-shaped self-attention (CSA) to reduce the model’s
access to the memory unit, which allows for the computation of the attention matrix across different
spatial dimensions without requiring the input tensor to be frequently reshaped (Dong et al., 2022;
Tu et al., 2022). Specifically, CSA first performs self-attention separately along the horizontal and
vertical dimensions of the given features. The outputs AH(Fsp,Fvit) and AV (Fsp,Fvit) of these two
parallel groups are then concatenated along the channel dimension, followed by a feature projection
operation via a 3×3 convolution with the output channel size of 256, to form the output A(Fsp,Fvit).
For the horizontal self-attention, the input features Fsp and Fvit are first subjected to the shared layer
normalization, and then divided into M non-overlapping horizontal stripes, where each stripe has the
spatial size of s×W (i.e., s = H/M ). Then, the self-attention (Vaswani et al., 2017) is performed
on each stripe, which can be formulated as:

Am
H(Fsp,Fvit) = SA(LN(Fm

spW
Q),LN(Fm

vitW
K),LN(Fm

vitW
V )), (2)

where LN(·) denotes the shared layer normalization operation. SA(·) denotes the classical single
head self-attention (Vaswani et al., 2017). m denotes the m-th stripe and m = 1, 2, ...,M . WQ,
WK , and WV are used to project the input features into the queries, keys, and values spaces, re-
spectively. The sub-attention results of different stripes are merged together to form the output
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AH(Fsp,Fvit) of the horizontal group. In equation 2, we choose Fsp as queries and Fvit as keys and
values for the sake of example. In our injector and extractor in Sec 3.3 and Sec 3.4, the roles of Fsp

and Fvit can be swapped depending on the specific requirements. The attention computation along
the vertical dimension AV (Fsp,Fvit) is also performed in a similar fashion.

FFN Branch. Following the common setting (Vaswani et al., 2017; Tolstikhin et al., 2021), to
enable interaction between the obtained features in the channel dimension, our FFN branch consists
of two MLP layers and a non-linear activation layer (Saxe et al., 2013; He & Hofmann, 2024), where
the MLP layer consists of a sequential arrangement of two 3× 3 convolutional layers.

The input of the FFN branch is Fsp and Fvit, which are sequentially processed by feature concate-
nation along the channel dimension, a 3 × 3 convolution with the output channel size of 256, and
the shared layer normalization. This process can be expressed as:

F(Fsp,Fvit)Tem = LN(Conv3×3(Concat(Fsp;Fvit))). (3)

The temporary F(Fsp,Fvit)Tem are then passed through a MLP layer, a non-linear activation
layer (Saxe et al., 2013), and another MLP layer to obtain the output F(Fsp,Fvit). Hence, this
can be expressed as:

F(Fsp,Fvit) = MLP(NLA(MLP(F(Fsp,Fvit)Tem))), (4)

where MLP(·) denotes the MLP layer operation, and NLA(·) denotes the non-linear activation
layer (Saxe et al., 2013; He & Hofmann, 2024).

Conv Branch. Empirical evidence has demonstrated that incorporating local inductive biases into
ViT models can provide notable benefits for visual tasks involving dense prediction (Peng et al.,
2021; Wu et al., 2021; Li et al., 2022a; Zhang et al., 2023). To achieve this goal, we introduce a
lightweight convolutional branch into the ViT adapter. Specifically, the Conv branch also takes into
Fsp and Fvit as the input, which consists of three 1 × 1 depth-wise convolutions concatenated in
series, with a GLUE layer used to activate the features between every two convolutions (Saxe et al.,
2013; He & Hofmann, 2024). The computation process of the Conv branch is formulated as:

C(Fsp,Fvit) = DC(GLU(DC(GLU(DC(Concat(Fsp;Fvit))))), (5)

where DC(·) denotes the 1 × 1 depth-wise convolution with the output channel size of 256, and
GLU(·) denotes the GLUE layer. With the help of shared layer normalization and CSA, MEA
becomes a memory-efficient module with rich local inductive biases. In the following sections, we
will provide detailed instructions on how to deploy our MEA block on injectors and extractors.

3.3 CASCADED MEA INJECTOR

As illustrated in Figure 2 (b), the cascaded MEA injector adopts the paradigm of self-attention in
its computational process, where Fi

vit is used as the query, and Fi−1
sp generated by the last extractor

is used as the key and value. Particularly, to enhance the diversity of the obtained attention maps, a
cascaded mechanism is proposed to compute different head features in the cascaded MEA injector.
Specifically, we first divide the given features into H parts along the channel dimension in a multi-
head manner, following the classic self-attention (Vaswani et al., 2017), where H is set to 16 in our
work. In the computation process of each head, the output of the h-th head F̂

h,i

sp and F̂
h,i

vit is added
into the input features of the next (h+1)-th head Fh+1,i−1

sp and Fh+1,i
vit to be used in the calculation of

subsequent self-attention features, where h = 1, 2, ...,H . The cascaded process continues until the
feature from the last head is included in the computation. Finally, the features obtained from these
heads are concatenated along the channel dimension and projected through a 3×3 convolution layer
before being outputted as the output of the i-th cascaded MEA injector. Besides, since the MEA
block has only one output, F̂

h,i

sp = F̂
h,i

vit in our cascaded MEA injector.

3.4 CASCADED MEA EXTRACTOR

As illustrated in Figure 2 (c), following (Marouf et al., 2024; Chen et al., 2022a; Dong et al., 2024b),
our i-th cascaded MEA extractor of the h-th head takes the F̂

h,i

sp generated by the injector and Fh,i
vit

as input, where F̂
h,i

sp is used as the query, Fh,i
vit is used as the key and value. The output of the
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i-th cascaded MEA extractor is Fh,i
sp . Similarly, the cascaded mechanism is applied following the

cascaded MEA injector until the feature from the last head is included in the computation.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

Datasets. To facilitate a fair result comparison with existing methods, we conduct experiments, in-
cluding the ablation analysis, on two commonly used datasets: MS-COCO (Caesar et al., 2018) for
ODet and ISeg, and ADE20K (Zhou et al., 2017) for SSeg. Due to page limitations, the implemen-
tation details of these datasets will be given in the supplementary materials.

Evaluation metrics. The commonly adopted average precision (AP) and mean intersection-over-
union (mIoU) are used to assess the model accuracy for ODet (APb)/ISeg (APm) and SSeg, respec-
tively. Besides, to evaluate the efficiency, model Parameters (#P), floating point operations (FLOPs),
memory consumption (MC) of the adapter, and frames per second (FPS) are also adopted. The re-
ported inference results are measured by A100 GPUs with per-GPU batch size 2.

4.2 EXPERIMENTS ON OBJECT DETECTION (ODET) AND INSTANCE SEGMENTATION (ISEG)

Baselines and settings. As in (Chen et al., 2022b; Xiong et al., 2024; Jie & Deng, 2022; Marouf
et al., 2024), Mask R-CNN (He et al., 2017), Cascade Mask R-CNN (Cai & Vasconcelos, 2019),
ATSS (Zhang et al., 2020), and GFL (Li et al., 2020) are employed as the baseline models, where
the pre-trained ViT (Li et al., 2022b) is used as the backbone. All the baseline models are pre-trained
on ImageNet-1k by default (Deng et al., 2009). Unless otherwise specified, these baselines are set
up to be consistent with their papers and the settings of the ViT-Adapter (Chen et al., 2022b) method.

Comparisons with state-of-the-art (SOTA) methods. Result comparisons with SOTA methods
with Mask R-CNN (He et al., 2017) for ODet and ISeg are shown in Table 1. From this table, we
can obtain the following observations and conclusions: i) Compared to the experimental results of
the Mask R-CNN (He et al., 2017) model with ViT (Li et al., 2021), our proposed META can con-
sistently improve accuracy for ODet and ISeg across different model scales (e.g., ViT-T/S/B/L (Li
et al., 2021)), while only adding a small number of training parameters. Even with different training
schedules (i.e., 1×, and 3× with MS), our method can also improve the model performance, demon-
strating the plug-and-play advantage of META. ii) Compared to the SOTA ViT-Adapter (Chen et al.,
2022b) and LoSA (Mercea et al., 2024), META can achieve a new accuracy-efficiency trade-off. For
example, in settings with the strong ViT-B (Li et al., 2021) as the backbone, our method achieves a
performance gain of 0.5%APm under 1× training schedule and 0.7%APm under 3× training sched-
ule with MS while reducing 4.9M model parameters, when compared to ViT-Adapter (Chen et al.,
2022b). iii) Even with stronger pre-trained models, META still improves performance on the base-
line models and surpasses existing methods on accuracy, parameters and memory. For example,
on the ImageNet-22k pre-trained weights from (Steiner et al., 2021), our method achieves a per-
formance gain of 0.8%/0.7%APm under 1×/3× training schedule while reducing 8.2M parameters
compared to ViT-Adapter (Chen et al., 2022b), which validates its strong learning ability and flexi-
ble adaptability. iv) Compared to SOTA ODet and ISeg methods, META also has very competitive
performance. For example, compared to the strong ViTDet-B (Li et al., 2022b) model, META-T has
2.2%APb and 3.1%APm gains under the 1× training schedule, and has META-T has 4.9%APb and
2.7%APm gains under the 3× training schedule. v) Compared to SOTA ViT adapter methods such
as AdaptFormer (Chen et al., 2022a), FacT-TK (Jie & Deng, 2023), and LoSA (Mercea et al., 2024),
our method exhibits superior efficiency in terms of reduced parameter count, decreased FLOPs, and
lower MC. Particularly, META only utilizes 62% of the MC of LoSA while achieving superior pre-
diction accuracy. Therefore, the experimental results and conclusions above demonstrate that our
method achieves better accuracy and higher efficiency in dense prediction tasks.

Superiority performance under different baselines. In addition to Mask R-CNN, we also choose
Cascade Mask R-CNN (Cai & Vasconcelos, 2019), ATSS (Zhang et al., 2020), and GFL (Li et al.,
2020) as the baselines as in Chen et al. (2022b); Mercea et al. (2024). We explore the effectiveness
and superiority performance of META on these baseline models, where the 3× training with MS
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Methods #P FLOPs MC 1× schedule 3× +MS schedule
(M) (G) (GB) APb APm APm

50 APm
75 APb APm APm

50 APm
75

ViT-T (Li et al., 2021) 26.1 205 NA 35.5 33.5 54.9 35.1 44.9 37.0 59.6 39.0
ViTDet-T (Li et al., 2022b) 26.6 209 NA 35.7 33.5 54.7 35.2 40.4 37.1 60.1 39.3
ViT-Adapter-T (Chen et al., 2022b) 28.1 208 15.2 41.1 37.5 59.7 39.9 46.0 41.0 64.4 44.1
AdaptFormer-T (Chen et al., 2022a) 27.9 210 17.7 36.4 34.2 55.6 35.9 45.2 37.5 60.5 40.8
FacT-TK-T (Jie & Deng, 2023) 27.7 213 16.1 36.6 34.5 55.5 36.7 46.3 41.2 64.7 44.0
LoSA-T (Mercea et al., 2024) 27.6 208 13.0 41.4 38.0 60.1 40.5 46.1 39.5 64.2 44.3
META-T(Ours) 27.4 206 8.1 43.1 38.6 60.8 41.1 47.5 41.6 65.0 44.8
ViT-S (Li et al., 2021) 43.8 245 NA 40.2 37.1 59.9 39.3 44.0 39.9 63.4 42.2
ViTDet-S (Li et al., 2022b) 43.8 255 NA 40.6 37.1 60.0 38.8 44.5 40.1 63.6 42.5
ViT-Adapter-S (Chen et al., 2022b) 47.8 251 15.2 44.7 39.9 62.5 42.8 48.2 42.8 66.4 45.9
AdaptFormer-S (Chen et al., 2022a) 47.5 255 17.7 41.2 37.8 60.3 41.0 45.0 41.2 64.2 43.4
FacT-TK-S (Jie & Deng, 2023) 46.8 259 16.1 41.5 37.8 60.7 41.2 45.2 41.8 65.0 42.9
LoSA-S (Mercea et al., 2024) 46.1 249 13.0 44.2 39.8 62.6 42.5 48.3 42.5 66.5 46.0
META-S(Ours) 45.2 247 8.1 45.5 40.5 63.4 43.5 49.5 43.3 66.9 46.6
ViT-B (Li et al., 2021) 113.6 719 NA 42.9 39.4 62.6 42.0 45.8 41.3 65.1 44.4
ViTDet-B (Li et al., 2022b) 121.3 800 NA 43.2 39.2 62.7 41.4 46.3 41.6 65.3 44.5
ViT-Adapter-B (Chen et al., 2022b) 120.2 730 15.2 47.0 41.8 65.1 44.9 49.6 43.6 67.7 46.9
AdaptFormer-B (Chen et al., 2022a) 118.5 733 17.7 44.5 40.3 63.1 43.0 46.2 42.4 66.2 45.7
FacT-TK-B (Jie & Deng, 2023) 118.0 735 16.1 44.9 41.2 64.1 43.2 47.6 43.2 67.5 46.3
LoSA-B (Mercea et al., 2024) 117.2 722 13.0 45.1 41.8 64.6 44.0 48.6 43.8 67.9 47.0
META-B(Ours) 115.3 720 8.1 45.4 42.3 66.0 45.7 51.2 44.3 68.2 47.5
ViT-L‡ (Li et al., 2021) 337.3 1,907 NA 45.7 41.5 65.6 44.6 48.3 43.4 67.9 46.6
ViTDet-L‡ (Li et al., 2022b) 350.9 1,900 NA 46.2 41.4 65.8 44.1 49.1 44.0 68.5 47.6
ViT-Adapter-L‡ (Chen et al., 2022b) 347.9 1,927 15.2 48.7 43.3 67.0 46.9 52.1 46.0 70.5 49.7
AdaptFormer-L‡ (Chen et al., 2022a) 345.7 1,924 17.7 46.3 42.6 66.1 45.8 49.0 44.8 68.1 47.1
FacT-TK-L‡ (Jie & Deng, 2023) 342.1 1,925 16.1 46.5 42.9 66.5 46.0 48.8 44.5 68.2 47.0
LoSA-L‡ (Mercea et al., 2024) 341.3 1,922 13.0 50.2 43.5 66.8 47.1 53.2 46.2 71.0 48.9
META-L‡

(Ours) 339.7 1,905 8.1 51.8 44.1 67.6 47.8 55.3 46.7 71.3 50.4

Table 1: Result comparisons with SOTA methods under Mask R-CNN (He et al., 2017) on the val
set of MS-COCO. ‡ denotes the model is pre-trained on ImageNet-22k as in (Steiner et al., 2021).
“MS” denotes the multi-scale training strategy. “NA” denotes not applicable.

strategy is used. The experimental results are given in Table 2. We can observe that META can
consistently improve performance across different baselines, and exhibits more accurate and more
efficient advantages compared to SOTA ViT adapter methods. For example, based on the Cascade
Mask R-CNN (Cai & Vasconcelos, 2019), META-S can achieve up to 44.8% APm with only 83M
parameters, 797G FLOPs, and 8.1GB MC, which is 1.3% APm higher, 3M fewer parameters, 4G
fewer FLOPs, and 7.1GB fewer MC compared to the competitive ViT-Adapter-T method (Chen
et al., 2022b). Besides, META-B can achieve a 1.7% APb/0.5% APm gain on the 3× training
schedule, with 5M fewer parameters and 5G fewer FLOPs than the ViT-Adapter-B (Chen et al.,
2022b) model. On ATSS and GFL, our method also achieves competitive 43.2% and 44.0% APm,
respectively, which are 0.7% and 0.9% APm higher than the competitive vision adapter ViT-Adapter-
S (Chen et al., 2022b). In terms of efficiency, compare with the SOTA LoSA (Mercea et al., 2024)
method, our method has fewer parameters (33M v.s. 35M), fewer FLOPs (265G v.s. 268G under
ATSS, 279G v.s. 284G under GFL), and fewer MC (8.1GB v.s. 13.0GB under ATSS and GFL),
indicating its higher computation and memory efficiency.

4.3 EXPERIMENTS ON SEMANTIC SEGMENTATION (SSEG)

Baselines and Settings. Following (Chen et al., 2022b; Jie & Deng, 2023; 2022), we select Semantic
FPN (Kirillov et al., 2019) and UperNet (Xiao et al., 2018) as baseline models, where the Semantic
FPN is trained for 80k iterations and the UperNet is trained for 160k iterations as in (Wang et al.,
2021; Liu et al., 2021). Unless otherwise specified, the training and inference settings are set up to
be consistent with the ViT-Adapter (Chen et al., 2022b).

7



Published as a conference paper at ICLR 2025

Methods #P FLOPs MC FPS APb APm APm
50 APm

75

Cascade Mask R-CNN (Cai & Vasconcelos, 2019) 3× +MS schedule
Swin-T (Liu et al., 2021) 86 745 NA 15.3 50.5 43.7 66.6 47.1
ViT-S (Li et al., 2021) 82 795 NA 16.5 47.9 42.8 62.1 44.8
ViT-Adapter-S (Chen et al., 2022b) 86 801 15.2 13.1 51.5 43.5 63.0 48.2
LoSA-S (Mercea et al., 2024) 84 799 13.0 12.0 53.5 43.8 64.1 48.1
META-S(Ours) 83 797 8.1 14.7 54.3 44.8 66.8 49.5
Swin-B (Liu et al., 2021) 145 982 NA 11.6 51.9 45.0 68.4 48.7
ViT-B (Li et al., 2021) 151 1,100 NA 13.0 50.1 42.7 63.9 44.1
ViT-Adapter-B (Chen et al., 2022b) 158 1,106 15.2 8.6 52.1 43.6 64.3 45.2
LoSA-B (Mercea et al., 2024) 155 1,104 13.0 9.0 52.6 43.5 63.8 44.7
META-B(Ours) 153 1,101 8.1 11.9 53.8 44.1 65.2 45.6

ATSS (Zhang et al., 2020) 3× +MS schedule
Swin-T (Liu et al., 2021) 36 215 NA 17.1 47.2 41.2 54.8 45.5
ViT-S (Li et al., 2021) 32 263 NA 18.0 45.2 40.5 52.0 41.8
ViT-Adapter-S (Chen et al., 2022b) 36 272 15.2 14.2 49.6 42.5 55.1 46.5
LoSA-S (Mercea et al., 2024) 35 268 13.0 16.0 50.3 41.9 54.4 45.0
META-S(Ours) 33 265 8.1 16.8 54.9 43.2 55.6 47.4

GFL (Li et al., 2020) 3× +MS schedule
Swin-T (Liu et al., 2021) 36 251 NA 17.5 47.6 40.8 54.2 46.0
ViT-S (Li et al., 2021) 32 275 NA 18.1 46.0 40.2 52.9 45.1
ViT-Adapter-S (Chen et al., 2022b) 36 288 15.2 15.3 50.0 43.1 54.5 47.1
LoSA-S (Mercea et al., 2024) 35 284 13.0 16.2 51.2 43.3 54.7 47.5
META-S(Ours) 33 279 8.1 17.6 55.6 44.0 55.2 48.5

Table 2: Result comparisons with SOTA methods under Cascade Mask R-CNN (Cai & Vasconcelos,
2019), ATSS (Zhang et al., 2020), and GFL (Li et al., 2020) on the val set of MS-COCO.

Comparisons with state-of-the-art methods. We show the SSeg experimental results of META
under different settings and compare them with SOTA SSeg methods in Table 3. We can observe
that i) Our method can consistently improve performance across different baselines, model scales,
training strategies, and pre-training weights (including IN-1K, IN-22K, and MM), while having
fewer model parameters and memory consumption compared to the advanced ViT-Adapter (Chen
et al., 2022b) and LoSA (Mercea et al., 2024) methods. This demonstrates the strong applicability
and learning ability of META, which can solve the problem of limited applicability in certain scenar-
ios of downstream models in the traditional pre-training and fine-tuning strategy at the application
level. ii) Compared to SOTA methods, META also can achieve a new SOTA accuracy-cost trade-off.
The parameter from META is only about 0.2% of the overall model parameter count, indicating a
minimal impact on the total parameter count. Furthermore, the memory consumption of our method
accounts for only 55.14% of the SOTA LoSA (Mercea et al., 2024). iii) On larger model scales,
META achieves higher efficiency with fewer parameters (e.g., -1.4M on META-T and -4.2M on
META-B). This indicates that our method is suitable for fine-tuning large ViT models.

4.4 ABLATION ANALYSIS

In our ablation analysis for ISeg and ODet, we adopt Mask R-CNN (He et al., 2017) under the 3×
training schedule with MS as the baseline and report the experimental results on the val set of MS-
COCO (Caesar et al., 2018), where the ImageNet-1k pre-trained ViT-B (Li et al., 2022b) is used as
the backbone. For SSeg, we choose UperNet (Xiao et al., 2018) with 160k iterations as the baseline,
where the ImageNet-1k pre-trained ViT-B (Li et al., 2022b) is used as the backbone. We report the
single-scale testing results on the val set of ADE20K (Zhou et al., 2017). Due to page limitations,
we only present the results of the effectiveness of each component in the main paper. Other aspects,
such as result comparisons with other variants of ViT adapter methods, will be provided in the
supplementary materials as part of the ablation analysis.

Effectiveness of each component. The experimental results of gradually adding META compo-
nents on the pre-trained ViT-B (Li et al., 2022b) model are shown in Table 4. First, we can observe
that directly using the Attn branch as the adapter on the pre-trained ViT-B (Li et al., 2022b) model
not only fails to improve performance but also significantly decreases APm and APb (i.e., from
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Methods Pre-Training Semantic FPN 80k UperNet 160k
#P MC mIoU mIoU(w/MS) #P MC mIoU mIoU(w/MS)

PVT-Tiny (Wang et al., 2021) IN-1k 17.0 NA 36.6 37.3 43.2 NA 38.5 39.0
ViT-T (Li et al., 2021) IN-1k 10.2 NA 39.4 40.5 34.1 NA 41.7 42.6
ViT-Adapter-T (Chen et al., 2022b) IN-1k 12.2 14.0 41.7 42.1 36.1 14.0 42.6 43.6
LoSA-T (Mercea et al., 2024) IN-1k 11.1 10.7 40.8 41.9 36.3 10.7 42.1 43.7
META-T(Ours) IN-1k 10.8 5.9 42.2 43.0 35.0 5.9 43.1 44.1
Twins-SVT-S (Chu et al., 2021) IN-1k 28.3 NA 43.2 44.1 54.4 NA 46.2 47.1
ViT-S (Li et al., 2021) IN-1k 27.8 NA 44.6 45.8 53.6 NA 44.6 45.7
ViT-Adapter-S (Chen et al., 2022b) IN-1k 31.9 14.0 46.1 46.6 57.6 14.0 46.2 47.1
LoSA-S (Mercea et al., 2024) IN-1k 29.8 10.7 45.7 46.7 54.9 10.7 45.8 46.6
META-S(Ours) IN-1k 29.4 5.9 46.9 49.5 54.7 5.9 47.2 48.0
Twins-SVT-L (Chu et al., 2021) IN-1k 103.7 NA 46.7 45.5 133.0 NA 48.8 50.2
ViT-B (Li et al., 2021) IN-1k 98.0 NA 46.4 47.6 127.3 NA 46.1 47.1
ViT-Adapter-B (Chen et al., 2022b) IN-1k 104.6 14.0 47.9 48.9 133.9 14.0 48.8 49.7
LoSA-B (Mercea et al., 2024) IN-1k 103.5 10.7 48.3 49.2 131.2 10.7 47.3 48.5
META-B(Ours) IN-1k 100.4 5.9 48.7 49.7 129.1 5.9 49.4 50.5
Swin-L‡ (Liu et al., 2021) IN-22k 234.0 NA – – 234.0 NA 52.1 53.5
ViT-Adapter-B‡ (Chen et al., 2022b) IN-22k 104.6 14.0 50.7 51.9 133.9 14.0 51.9 52.5
ViT-Adapter-L‡ (Chen et al., 2022b) IN-22k 332.0 14.0 52.9 53.7 363.8 14.0 53.4 54.4
LoSA-L‡ (Mercea et al., 2024) IN-22k 310.5 10.7 52.3 54.0 338.5 10.7 53.0 54.5
META-L‡

(Ours) IN-22k 307.7 5.9 53.7 54.5 336.3 5.9 54.0 55.2
ViT-Adapter-L∗ (Chen et al., 2022b) MM 332.0 14.0 54.2 54.7 363.8 14.0 55.0 55.4
LoSA-L∗ (Mercea et al., 2024) MM 310.1 10.7 53.3 54.5 341.0 10.7 55.1 55.5
META-L∗

(Ours) MM 307.7 5.9 54.7 55.2 336.3 5.9 55.6 55.9

Table 3: Result comparisons with SOTA methods on the val set of ADE20K. “–” denotes there is no
such a result in its paper. “IN” and “MM” denotes ImageNet and Multi-Modal, respectively.

ISeg and ODet results on the val set of MS-COCO (Caesar et al., 2018)
ViT-B (Li et al., 2021) Attn Branch.FFN Branch.Conv Branch.Cascade APm APb #P FLOPsMC FPS

✓ 41.3 45.8113.6 719 NA 11.5
✓ ✓ 32.1 33.6113.9 719 7.5 11.3
✓ ✓ ✓ 43.4 46.5114.4 719 7.5 11.3
✓ ✓ 30.8 31.2114.0 719 0.4 11.4
✓ ✓ ✓ ✓ 44.1 48.1115.3 719 7.5 10.2
✓ ✓ ✓ ✓ 43.6 49.3114.4 720 8.1 11.0
✓ ✓ ✓ ✓ ✓ 44.3 51.2115.3 720 8.1 11.1

SSeg results on the val set of ADE20K (Zhou et al., 2017)
UperNet (Xiao et al., 2018) Attn Branch.FFN Branch.Conv Branch.Cascade mIoU #P FLOPsMC FPS

✓ 46.1 127.3 1,841 NA 25.4
✓ ✓ 33.7 128.0 1,843 5.1 25.0
✓ ✓ ✓ 46.8 128.5 1,846 5.1 24.9
✓ ✓ 31.1 128.1 1,841 0.3 25.0
✓ ✓ ✓ ✓ 47.9 129.0 1,847 5.1 23.5
✓ ✓ ✓ ✓ 48.0 128.6 1,846 5.9 25.0
✓ ✓ ✓ ✓ ✓ 49.4 129.1 1,847 5.9 24.9

Table 4: Effectiveness of each component of META. “NA” denotes not applicable.

41.3% to 32.1% and from 45.8% to 33.6%). This indicates that using attention alone as the feature
interaction method in the adapter is not enough. Then, on this basis, when we use both the Attn
branch and FFN branch as adapter components (where the layer normalization is used as a shared
manner), the model’s accuracy is significantly improved, surpassing the baseline model by 2.1%
APm/0.7% APb and achieving 43.4% APm/46.5% APm. At the same time, the model only has a
small increase in parameters and no increase in FLOPs. The same conclusion can be drawn from
the SSeg task. Furthermore, the independent utilization of the FFN branch as the adapter compo-
nent does not yield an improvement in accuracy. Instead, it significantly detracts from the model’s
accuracy across all three tasks evaluated. After that, continuing to add the Conv branch or using the
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cascaded mechanism can bring sustained performance improvement, e.g., 0.7% and 0.2% APm, and
1.6% and 2.8% APb, respectively. Finally, when using all components in the adapter, the model for
ISeg and ODet achieves the best performance by 44.3% APm and 51.2% APb with 115.3M param-
eters, 720G FLOPs, 8.1GB MC, and 11.1 FPS. The model for SSeg achieves the best accuracy by
49.4 mIoU with 129.1M parameters, 1847G FLOPs, 5.9GB MC, and 24.9 FPS. In addition, results
in the ablation analysis reveal that the increase in the model’s FLOPs and MC is mainly attributed
to the utilization of the “cascade” mechanism. Despite this, this mechanism can lead to significant
improvements in both accuracy and speed.

5 CONCLUSION

We proposed a simple and fast META that aims at improving the ViT model’s memory efficiency
and reduce memory time consumption by minimizing layer normalization and frequent reshaping
operations. The main contribution of this work was the proposal of the MEA block that shares the
layer normalization between the self-attention and feed-forward network layers, which exist in a
parallel manner. Within the proposed block, the cross-shaped self-attention was employed to reduce
the requirements for frequent reshaping operations. Moreover, a lightweight local convolutional
branch is introduced into META to enrich local inductive biases. Experimental results on object
detection, instance segmentation, and semantic segmentation tasks demonstrated that META can
achieve a new state-of-the-art accuracy-cost trade-off and at a faster inference speed. In addition to
the experimental validation, we also theoretical proved that META exhibits superior generalization
capability and stronger adaptability compared to current ViT adapters. In the future, we will explore
the effectiveness of META on more ViT architectures, such as designing memory-efficient ViT
models for a wider range of computer vision tasks. Besides, reducing the model’s memory footprint
is identified as a promising research direction to be explored for LLMs.
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