
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DiscQuant: A Quantization Method for
Neural Networks Inspired by Discrepancy
Theory

Anonymous authors
Paper under double-blind review

Abstract

Quantizing the weights of a neural network has two steps: (1) Finding a
good low bit-complexity representation for weights (which we call the quan-
tization grid) and (2) Rounding the original weights to values in the quan-
tization grid. In this paper, we study the problem of rounding optimally
given any quantization grid. The simplest and most commonly used way to
round is Round-to-Nearest (RTN). By rounding in a data-dependent way
instead, one can improve the quality of the quantized model significantly.
We study the rounding problem from the lens of discrepancy theory, which
studies how well we can round a continuous solution to a discrete solu-
tion without affecting solution quality too much. We prove that given
m = poly(1/ε) samples from the data distribution, we can round all but
O(m) model weights such that the expected approximation error of the
quantized model on the true data distribution is ≤ ε as long as the space
of gradients of the original model is approximately low rank (which we
empirically validate).
Our proof, which is algorithmic, inspired a simple and practical round-
ing algorithm called DiscQuant. In our experiments, we demonstrate that
DiscQuant significantly improves over the prior state-of-the-art rounding
method called GPTQ and the baseline RTN over a range of benchmarks
on Phi3mini-3.8B and Llama3.1-8B. For example, rounding Phi3mini-3.8B
to a fixed quantization grid with 3.25 bits per parameter using DiscQuant
gets 64% accuracy on the GSM8k dataset, whereas GPTQ achieves 54%
and RTN achieves 31% (the original model achieves 84%).

1 Introduction

Modern deep learning models continue to grow in size, incurring greater challenges to train
and serve these models. Post training compression methods have emerged which aim to
make model inference faster and cheaper. Compressing after pretraining is desirable among
practitioners who either cannot afford to train models themselves, or do not want to change
the expensive training process too much. In this paper, we study post training quantization
(PTQ) of the model weights. Quantization reduces the memory requirements of the model,
and speeds up inference for LLMs under memory-bound settings such as the generation
phase (as opposed to prefilling phase which is compute-bound) (Kwon et al., 2023).
The quantization problem can be divided into two overall steps: (1) Construct a good low
bit-complexity representation for the weights (we colloquially call this the quantization grid),
and (2) Round the original weights to values in the quantization grid. Within step (1), we
also consider those methods which apply a transformation on the weights to better match
the encoding format. There has been much recent work on weights-only PTQ for LLMs. To
date, the vast majority of such research has been focused on step (1): constructing good low
bit representations (Shao et al., 2024; Tseng et al., 2024a; Egiazarian et al., 2024). However,
work on rounding methods is under-explored. To the best of our knowledge, Round-to-
Nearest (RTN) and GPTQ (Hassibi et al., 1993; Frantar et al., 2022; 2023) are the primary

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

rounding methods for LLM weight quantization. RTN is a simple baseline, and GPTQ is a
data dependent method which aims to match the activations of the quantized model with
that of the original model layer-by-layer.
Let f(w; s) be the loss function of a neural network where w are original pretrained weights
and s is an input sample; for example f can be the usual cross-entropy loss on input s.
To find a good rounding solution, we are looking for perturbations of the original weights
w ∈ Rn that correspond to values in the quantization grid, and do not increase the loss
f too much. We further impose the constraint that we only round each parameter up or
down, this ensures that we are not changing the original model weights too much. Then the
set of allowed quantization points can be pictured as vertices of a hypercube H around w.
Let ŵ ∈ Rn be these perturbed weights, and ∆f = f(ŵ; s) − f(w; s) be the resulting change
in loss function for a sample s. We approximate ∆f via a first order Taylor expansion:
∆f ≈ ⟨∇wf(w; s), ŵ − w⟩. Some prior works such as Nagel et al. (2020); Hassibi et al.
(1993) assume the gradients of a pretrained model to be nearly zero, and focus on the
second order terms. We show that this assumption is not always true, the average gradients
are close to zero but per-sample gradients can be big; in fact the first order term is a good
approximation to ∆f (see Figure 3).

K
w

V

H

Figure 1: An illustrative figure show-
ing the convex polytope K formed by
the intersection of an n-dimensional
hypercube H and an n − m dimen-
sional affine subspace V . Any vertex
of K should have n − m coordinates
which are fully rounded.

Therefore, to incur a small ∆f , we want
⟨∇wf(w; s), ŵ − w⟩ ≈ 0 for s sampled from the data
distribution Ddata. Suppose we are given m indepen-
dent samples s1, s2, . . . , sm ∼ Ddata, we can impose
the constraints ⟨∇wf(w; s), ŵ − w⟩ = 0 which corre-
spond to an affine subspace V of dimension n − m.
The intersection of the subspace V and the hyper-
cube H is a convex polytope K. It can be shown
that any vertex of K should have at least n−m fully
rounded parameters, see Figure 1 for an illustration.
Since the number of parameters n ≫ m, any vertex
of K gives an almost fully rounded solution. Ob-
viously this solution satisfies the linear constraints
for the samples s1, s2, . . . , sm. But will it generalize
to unseen samples from the data distribution Ddata?
We prove that it can generalize if the distribution
of gradients g = ∇wf(w; s) for s ∼ Ddata is ap-
proximately low rank. Let Σ = Es∼Ddata [ggT] where
g = ∇wf(W ; s) be the covariance matrix of gradi-
ents. We prove the following theorem; the algorithm
and the proof draws on techniques from discrepancy
theory, in particular the famous Lovett-Meka algo-
rithm (Lovett & Meka, 2012).
Theorem 1.1 (Informal). If the eigenvalues of the covariance matrix of gradients decay
polynomially fast, then given m = poly

(
log n

ε

)
samples s1, s2, . . . , sm ∼ Ddata there is a

randomized algorithm to find ŵ with n − m weights rounded such that Es∼Ddata [|∆f |] ≤ ε.

From these insights we develop a practical rounding algorithm called DiscQuant. The
Lovett-Meka algorithm does a random walk starting from the original weights until it con-
verges to a vertex of K. Instead, we can find a vertex of K by minimizing a linear function
over the convex polytope K. DiscQuant uses stochastic gradient descent to minimize two
objectives, one corresponding to low ∆f , and the other corresponding to minimizing a linear
function. We take a knowledge distillation approach for the first term, minimizing the KL
divergence between the original and quantized model. These two losses are balanced with a
regularization parameter λ > 0:

min
ŵ

λ ⟨c, ŵ⟩ + Ez∼DdataEi[DKL (pw(·|z<i) ∥ pŵ(·|z<i))]

s.t. ŵ ∈ H.
(1)

Here pw(·|z<i) is the next token distribution given prefix z<i. An astute reader may notice
that the first order approximation of the KL divergence in (1) is exactly zero, and how our

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3.00 3.25 3.50 3.75 4.00 4.25 4.50
Wbits

0

20

40

60

80

Ac
cu

ra
cy

Phi-3-mini & GSM8k

DiscQ
GPTQ
RTN
Baseline

3.00 3.25 3.50 3.75 4.00 4.25 4.50
Wbits

50

55

60

65

70

75

Ac
cu

ra
cy

Phi-3-mini & WinoGrande

DiscQ
GPTQ
RTN
Baseline

3.00 3.25 3.50 3.75 4.00 4.25 4.50
Wbits

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Ac
cu

ra
cy

Llama-3.1-8B & PIQA

DiscQ
GPTQ
RTN
Baseline

Figure 2: Select results quantizing Phi-3-mini-4k-instruct and Meta-Llama-3.1-8B-Instruct
using block scaling quantization. GSM8k is a math-based generative task, and WinoGrande
and PIQA are multiple choice commonsense reasoning tasks. Error bars are standard errors
from lm-evaluation-harness. See Section 5 for full results.

discussion above applies. In Section 4 where we describe in detail our exact optimization
objective, we also show that the second order term of KL divergence can be written as

Ez∼DdataEiEt∼pw(·|z<i)

[
⟨∇w log pw(t|z<i), ŵ − w⟩2

]
.

So minimizing the KL divergence is a succinct way to impose constraints of the form
⟨∇w log pw(t|z<i), ŵ − w⟩ ≈ 0 or equivalently log pw(t|z<i) ≈ log pŵ(t|z<i) where t ∼
pw(·|z<i) and z ∼ Ddata. Therefore our framework still applies.
After every step of gradient descent, we project the weights back to the hypercube H.
This ensures that the trajectory of DiscQuant remains within the convex polytope K and
eventually converges to a vertex of K with almost all the coordinates rounded. Instead of
picking a random direction c to find a random vertex of K, we use a special c∗ which let’s
us find the vertex closest to the original weights w (see Section 4). We use RTN to round
the few unrounded parameters left at the end of the optimization.
We perform extensive experiments which show the strength of our method: on models Phi-3-
mini-4k-instruct and Meta-Llama-3.1-8B-Instruct, across a variety of evaluation tasks, and
across the block scaling and incoherence processing quantization formats. DiscQuant is ag-
nostic towards the quantization grid, and can therefore be composed with other quantization
methods. Block scaling sets a bits parameter which determines the number of grid points,
and a unique scaling parameter per groupsize weights (Frantar et al., 2023). Incoherence
processing applies a random orthogonal transformation, which reduces the weight ranges
and can make quantization easier (Chee et al., 2023; Tseng et al., 2024a). A subset of re-
sults can be found in Figure 2. Across tasks, models, and quantization levels, our method
DiscQuant achieves superior compression over baselines GPTQ and RTN.
We summarize our main contributions:

• Theoretical developments: We prove that it is possible to achieve generalization error
≤ ε on the true data distribution by rounding all but poly(log n/ε) weights, so long as
the gradients of the original model are approximately low rank.

• Practical algorithm: We develop a simple and practical algorithm DiscQuant guided by
our theoretical analysis. We perform extensive experiments on Phi-3-mini-4k-instruct and
Meta-Llama-3.1-8B-Instruct, over block scaling and incoherence processing quantization
formats, and a variety of evaluation tasks. Our method DiscQuant achieves superior or
comparable quantization to the baselines GPTQ and RTN as can be seen from Figure 2.

2 Related Work

In this paper we focus on weights-only PTQ. Quantization can also be applied to the activa-
tions or KV-cache (Ashkboos et al., 2024; Liu et al., 2024a;b). Other compression method
such as pruning (Frantar & Alistarh, 2023; Sun et al., 2023) are also outside the scope of
this work. As discussed in the introduction, post training quantization can be divided into

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

two overall steps: (1) Construct a good low bit-complexity representations for the weights
(the quantization grid), and (2) Round the original weights to the values in the quantization
grid. To this date, the vast majority of PTQ research for LLMs has focused on step (1).
Note that determining a good compressed representation can involve both encoding formats,
as well as transformations to ensure the weights better match the encoding format.

2.1 Quantization Grids

One of the more common quantization formats is called block scaling, or group-wise quan-
tization (Frantar et al., 2023). In addition to the bits parameter determining the number
of representable points, each groupsize parameters share a unique scaling parameter. An-
other successful encoding is to identify a small set of important weights and keep them in
high precision (Dettmers et al., 2022; 2024; Kim et al., 2024). Shao et al. (2024) learns
quantization parameters. Other works apply transformations to make quantization easier,
either relatively simple invariant scalings (Xiao et al., 2023; Lin et al., 2024), or more com-
plicated random orthogonal transformations (Chee et al., 2023; Liu et al., 2024a). Beyond
block scaling, there has been work quantizing multiple parameters together using vector
quantization (Tseng et al., 2024a; Egiazarian et al., 2024; van Baalen et al., 2024) or trellis
quantization (Tseng et al., 2024b).

2.2 Rounding

To the best of our knowledge, GPTQ (Frantar et al., 2023) is the main rounding method for
LLMs. It is based on the Optimal Brain Surgeon (Hassibi et al., 1993), which was adapted
for pruning and quantization in Frantar et al. (2022) and then refined for quantization in
GPTQ. GPTQ works by minimizing a layer-wise objective ∥WX − ŴX∥2

2, where W is
the weight matrix of a linear layer and X is the matrix of input activations to that layer
(stacked as columns). Two other LLM rounding methods both use coordinate descent: Nair
& Suggala (2024) only has results on the closed source PaLM-2 models with no released code,
and Behdin et al. (2023) has results on the OPT, BLOOM, and Falcon model families.
There was more work on rounding methods several years ago, before the LLM boom.
These papers were typically on smaller vision models. The line of work was started by
AdaRound (Nagel et al., 2020) and continuing to AdaQuant (Hubara et al., 2021) and
BRECQ (Li et al., 2021) employ a similar approach to ours, optimizing essentially inter-
polation variables between the closest up(wup) and down(wdown) quantization grid points,
while adding a concave regularization term to encourage rounding and using a rectified sig-
moid to interpolate between wup and wdown. They also do rounding layer by layer. However
our method uses a linear term as a regularizer inspired from our theoretical insights using
discrepancy theory and uses simple linear interpolation between wup and wdown and we
round the entire model at once.

2.3 Discrepancy Theory

Discrepancy theory is a deep branch of mathematics and theoretical computer science, and
we refer the readers to standard textbooks for more details (Matousek, 2009; Chazelle et al.,
2004; Bansal, 2022) To our knowledge, only Lybrand & Saab (2021) makes the connection
between discrepancy theory and quantization. However, besides the high level motivational
similarities, their work is not directly relevant to ours. Lybrand & Saab (2021) reduce the
problem of understanding the error introduced by quantization on the output of a single
neuron to a problem in discrepancy, and construct an algorithm for quantizing a single
neuron. Their theoretical analysis on the generalization error only applies to quantizing the
first layer of a neural network. On the other hand, we use discrepancy theory to understand
when the whole network f(w; s) can be approximated by f(ŵ; s) with ŵ in the quantization
grid, and our theory holds for any network as a whole as long as our assumptions are true.

3 Connections to Discrepancy Theory

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: First order approxi-
mation of the error function ∆f
when quantizing the model to
4.25 bits using RTN and Disc-
Quant. Here f is the per-token
loss function and s is sampled
from the WikiText-2 dataset.

0 500 1000 1500 2000
k

10 4

10 3

10 2

10 1

100

101

k

Phi-3-mini-4k Gradient Eigenvalues
layer 0
layer 1
layer 2
layer 10
layer 20
layer 31

0 500 1000 1500 2000
k

10 3

10 2

10 1

100

101

102

k

Meta-Llama-3.1-8B-Instruct Gradient Eigenvalue
layer 0
layer 1
layer 2
layer 10
layer 20
layer 31

Figure 4: Eigenvalues of the covariance matrix of the gra-
dients of pre-trained models. The covariance matrix is
estimated by averaging over 8k sample gradients from
RedPajama-1T-Sample and projecting them to 2048 di-
mensions using Johnson-Lindenstrauss projections.

Model ∥E(g)∥2 E∥g∥2

Phi3-mini-128k 0.1021 4.7812
Llama3.1-8B 1.6328 107

Table 1: ∥E(g)∥2 vs E∥g∥2 over 8192
samples from RedPajama-1T-Sample
dataset with window size 2048.

Let f(w; s) be the loss function of a pre-trained
neural network with weights w ∈ Rn on an input
sample s and let Ddata be the sample data dis-
tribution. Suppose we are also given a (scalar)
quantization grid Q = Q1 × Q2 × · · · × Qn where
Qj ⊂ R is a finite set of quantization points avail-
able to quantize the jth parameter.1 In this work,
we focus on scalar quantization which allows us to
write the quantization grid as a product set, i.e.,
each parameter can be independently rounded to
a finite set of available values. Alternatively, in vector quantization a group of d variables
are rounded together to one of a finite set of quantization points in Rd, which has been used
in some prior works (Tseng et al., 2024a; Egiazarian et al., 2024; van Baalen et al., 2024).
Generalizing our method to vector quantizers is an interesting future research direction.
Our goal is to find a rounding ŵ ∈ Q of the original weights w such f(ŵ; s) ≈ f(w; s) where
s ∼ Ddata. We further impose the constraint that for each parameter wj , we only round up
or round down to the available values in Qj , i.e., we only have two choices for ŵj denoted
by wup

j , wdown
j ∈ Qj where wup

j ≤ wj ≤ wdown
j .2 We make this assumption because we don’t

want to change any parameter of the original model too much during quantization, consider
it an important property of algorithms we design. Using Taylor expansion:

∆f = f(ŵ; s) − f(w; s) = ⟨∇wf(w; s), ŵ − w⟩ + (ŵ − w)T ∇2
wf(w; s)(ŵ − w) + · · · (2)

Assuming that the quantization grid Q is fine enough and since we only round each param-
eter up or down, ∥ŵ − w∥ is small and so we can ignore the higher order terms. We claim
that the first order term is the dominant term. Prior works such as Nagel et al. (2020);
Hassibi et al. (1993); LeCun et al. (1989) have assumed that the first order term can be
assumed to be zero because the model is trained to convergence and focused on reducing
the second order term. But the model being trained to convergence just means that average
gradient over many samples from the distribution is nearly zero. But the gradients still
have some variance and gradients w.r.t. individual samples from the data distribution are
not approximately zero (see Table 1). Figure 3 demonstrates this by showing that the error
term ∆f is well-correlated with the first order approximation ⟨∇wf(w; s), ŵ − w⟩.3

So the goal now is to find a rounding ŵ such that ⟨∇wf(w; s), ŵ − w⟩ ≈ 0 for samples
s ∼ Ddata. Suppose we sample m samples s1, s2, . . . , sm ∼ Ddata independently from the

1The quantization grid Q can depend on w, like in Block Scaling (Frantar et al., 2023). So
ideally, we should write Qw, but we ignore the dependence to simplify notation.

2If wj < min Qj or wj > max Qj , we just set wup
j = wdown

j = min Qj or max Qj respectively.
3In the special case when f is the KL distillation loss between the original model and quantized

model, the first order term vanishes exactly. See Section 4 for why this analysis still applies.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

data distribution, where m ≪ n. We now break our task into two parts of bounding the
empirical error and generalization error as follows:
Question 3.1. Can we find ŵ ∈ Q (with ŵj ∈ {wdown

j , wup
j }) such that

⟨∇wf(w; si), ŵ − w⟩ ≈ 0 for all the samples s1, . . . , sm?
Question 3.2. Once we find such a ŵ, will it generalize to the true data distribution, i.e.,
will ⟨∇wf(w; s), ŵ − w⟩ ≈ 0 for s ∼ Ddata? How many samples m do we need for this?

3.1 Bounding empirical error (Question 3.1)

For simplicity, let us assume that the quantization grid is uniform and wup
i − wdown

i = δ
for all i ∈ [n] where δ > 0 is the distance between grid points. See Appendix C for how to
genealize this to non-uniform grids. We will introduce new parameters x ∈ [0, 1]n and define
wx = wdown + δx. Note that wx

i interpolates between wdown
i and wup

i where wi = wdown
i if

xi = 0 and wi = wup
i if xi = 1. Let y ∈ [0, 1]n be the interpolation point corresponding to

the original weights, i.e., wy = w. We can rewrite the linear constraints in terms of x as
follows:

⟨∇wf(w; si), wx − w⟩ = ⟨∇wf(w; si), wx − wy⟩ = δ ⟨∇wf(w; si), x − y⟩ .

Let M be an m×n matrix whose ith row is given by ∇wf(w; si). Then the linear constraints
can be simply written as M(x − y) = 0. Our goal is to find a fully integral x̂ ∈ {0, 1}n such
that M(x̂ − y) = 0. Let V = {x ∈ Rn : Mx = My} which is an affine subspace of dimension
≥ n − m. Define K = [0, 1]n ∩ V as the intersection of the hypercube with this subspace. K
is a convex polytope and it is non-empty because y ∈ K. Therefore any vertex of K should
have n − m integral coordinates (i.e., coordinates j such that xj ∈ {0, 1}).4

See Figure 1 for geometric intuition about why this is true. Since the number of parameters
n is much larger than the number of samples m, any vertex of K is almost fully integral
and exactly satisfies all the m linear constraints.
Suppose we further ask for a fully integral x̂ which approximately satisfies all the m linear
constraints, this precise question is answered by discrepancy theory which studies how to do
this and relates the approximation error to properties of M such as hereditary discrepancy
(Lovász et al., 1986; Bansal, 2022). We don’t explore this direction further because the
almost integral x̂—a vertex of K—is good enough if we apply RTN to the few remaining
fractional parameters; we observe that the linear constraints are all approximately satisfied.

3.2 Bounding Generalization Error (Question 3.2)

How do we bound the generalization error if we know that the empirical approximation error
is small? If ŵ − w is approximately orthogonal to m sample gradients ∇wf(w; si) for i = 1
to m, why should we expect that ŵ − w is orthogonal to unseen gradients ∇wf(w; s) for
samples s ∼ Ddata? This should happen only if the gradients are approximately low rank.
More precisely, let

Σ = Es∼Ddata [ggT] where g = ∇wf(w; s)
be the covariance matrix of the distribution of sample gradients and let λ1 ≥ λ2 ≥ · · · ≥ λn

be its eigenvalues. We observe that the eigenvalues decay very fast, see Figure 4 for empirical
validation of this on some real world models. We model this by assuming that λk ≤ λ1/kα

for α > 1. The assumption that α > 1 is valid since

Es[∥g∥2] = Es[Tr(ggT)] = Tr(Es[ggT]) = Tr(Σ) =
n∑

i=1
λi.

It is well-known that the gradients of a pretrained model have constant norm on most
samples (see Table 1 for empirical validation). Therefore

∑n
i=1 λi = O(1) and so the the

decay coefficient α has to be at least 1.
4This is because at a vertex, we need to have n tight constraints, and V imposes only m tight

constraints. So the remaining n − m tight constraints should come from the hypercube. These are
also called basic feasible solutions in linear programming.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Under this assumption, it is reasonable to expect generalization. But this is not at all obvious
to find a generalizing solution. In fact, any deterministic algorithm which chooses one of the
vertices of K will most likely not generalize. We give a randomized rounding algorithm (see
Algorithm B.2) based on the famous Lovett-Meka algorithm from discrepancy theory (Lovett
& Meka, 2012) which finds a vertex of K which has low generalization error. The algorithm
starts at y and does a random walk (Brownian motion) inside the n−m dimensional subspace
V formed by the linear constraints imposed by the m samples. Whenever it hits a face xi = 0
or xi = 1 of the hypercube, it fixes that variable and continues the random walk until almost
all the variables are rounded.
In order to prove rigorous bounds we also need a mild assumption that the distribution
of gradients is well-behaved. We use the notion by O’Donnell (2014) and say that for a
parameter β ≥ 1, a random vector X ∈ Rn is β-reasonable if

E[⟨X, θ⟩4] ≤ β · E[⟨X, θ⟩2]2 ∀θ ∈ Rn.

For example X ∼ {−1, 1}n and a Gaussian X ∼ N(0, Σ) are both O(1)-reasonable. Our
main theoretical result (proved in Appendix B) is then:
Theorem 3.3. Let α > 1 and β ≥ 1 be constants and let 1 ≤ m ≤ n

16 . Let D be a
β-reasonable distribution with unknown covariance matrix Σ ∈ Rn×n whose Eigenvalues
satisfy λk ≤ λ1

kα for all k = 1, . . . , n. Then there is a randomized polynomial time algorithm
that given a y ∈ [0, 1]n and m independent samples g1, . . . , gm ∼ D, produces an x ∈ [0, 1]n
with high probability such that all but O(m) parameters in x are fully rounded and

Eg∼D[⟨g, x − y⟩2] = (x − y)T Σ(x − y) ≲α,β λ1m− min{1/2,α−1}(log n)2.

4 DiscQuant: Algorithm

In this section, we will present DiscQuant, a simple and practical algorithm for rounding
inspired by the theoretical insights in Section 3. Instead of trying to approximate the loss
function of the pre-trained model, i.e., f(ŵ; s) ≈ f(w; s), we will instead take a distillation
approach and try to minimize the KL divergence between the next token distribution of the
original model and the quantized model. Let pw(·|z<i) be the distribution of the next token
predicted by the original model given prefix z<i where z ∼ Ddata is a sample from the data
distribution. We want error(ŵ) = Ez∼DdataEiDKL (pw(·|z<i) ∥ pŵ(·|z<i)) ≈ 0.
Expanding error(ŵ) using Taylor series, we can see that first order term vanishes exactly
and so the second order term is the dominant term (see Appendix D). By Lemma D.1,
Hessian of error(ŵ) can be written as a covariance of gradients as:

Hw = Ez∼DdataEiEt∼pw(t|z<i)
[
(∇w log pw(t|z<i)(∇w log pw(·|z<i))T

]
.

Therefore
error(ŵ) ≈ (ŵ − w)T Hw(ŵ − w) = Ez∼DdataEiEt∼pw(·|z<i)

[
⟨∇w log pw(t|z<i), ŵ − w⟩2

]
.

So minimizing error(ŵ) is a succinct way to impose constraints of the form
⟨∇w log pw(t|z<i), ŵ − w⟩ ≈ 0 or equivalently log pw(t|z<i) ≈ log pŵ(t|z<i) where t ∼
pw(·|z<i) and z ∼ Ddata. Therefore, we can use the same techniques developed in Sec-
tion 3 to solve this as well. Assuming that the gradients are low rank, the set of x satisfying
these constraints (where ŵ = wx) form an affine subspace V of dimension ≥ n − m where
m is the number of samples. We are again interested in finding a vertex of the polytope
K = [0, 1]n ∩ V which will have ≥ n − m integral coordinates. At this point, we could use
the Lovett-Meka algorithm (Algorithm B.2) which has provable generalization guarantees.
But explicitly calculating all the gradients and storing them is infeasible. Instead a simple
heuristic way to find a random vertex of polytope K is to minimize a random linear function.
Let c ∈ Rn be some arbitrary vector; we will try to minimize the linear function ⟨c, x⟩ along
with the KL divergence by taking a linear combination of them. The final optimization
objective is shown in (3) where λ > 0 is a regularization coefficient.

min
x

λ ⟨c, x⟩ + Ez∼DdataEi[DKL (pw(·|z<i) ∥ pwx(·|z<i))]

s.t. x ∈ [0, 1]n.
(3)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

We solve the optimization problem (3) using projected stochastic gradient descent where we
project x to the hypercube after every gradient update. Optimizing (3) will keep us close
the polytope K and will approximately converge to a vertex of K which is almost integral.
We round whatever fractional coordinates are left using RTN to get a fully integral solution.
We use one additional heuristic to improve the performance of the algorithm in practice.
Instead of choosing a random vertex of the polytope K by choosing the vector c at random,
we will choose it carefully so as to find the vertex of the polytope K which is closest to y
which is the interpolation point corresponding to the original model weights (i.e., y such
that wy = w). We have:

∥x − y∥2 =
∑

i

(x2
i − 2xiyi + y2

i) ≈
∑

i

(xi − 2xiyi + y2
i) = ⟨c∗, x⟩ + ∥y∥2

where c∗ = (1 − 2y). Here we have used the fact that x2
i = xi whenever xi ∈ {0, 1} and

since x is almost integral, we can use the approximation in the summation above. With
this approximation, minimizing ∥x − y∥2 over almost integral x is equivalent to minimizing
⟨c∗, x⟩. So in the DiscQuant algorithm, we use c = c∗ specifically instead of a random c.

5 Experiments

We evaluate our method on the Phi-3-mini-4k-instruct (Abdin et al., 2024) and Meta-
Llama-3.1-8B-Instruct (Dubey et al., 2024) models, and compare against GPTQ and greedy
rounding (i.e. round-to-nearest, or RTN). We use the lm-evaluation-harness Gao et al. (2023)
to evaluate on the Wikitext, GSM8k cot 8-shot, MMLU 5-shot, ARC Challenge 0-shot,
PIQA 0-shot, HellaSwag 0-shot, and Winogrande 0-shot tasks. We report standard errors
from lm-evaluation-harness. Wikitext measures perplexity, GSM8k is a generative task,
and the remaining are multiple choice tasks. Note that generative tasks are typically more
difficult than multiple choice tasks, and better reflect how the models are used in practice.
See Appendix A for details on the hardware used, and hyper-parameter settings. Our
method has similar memory requires as knowledge distillation, which also requires two copies
of the model. We do not perform inference timing experiments; DiscQuant can optimize over
a given quantization grid, so that we can utilize any pre-existing inference optimizations. For
example, there are inference kernels for block scaling (Frantar et al., 2024) and incoherence
processing (Tseng et al., 2024a). Ablations on the loss formulation are in Appendix A.

5.1 Block Scaling

Our first experiments use standard block scaling quantization, determined by a bits and
groupsize parameter. There are 2bits unique points, and every groupsize parameters
share a unique 16-bit scale parameter. For example, 3.25 bits is achieved with bits=3,
groupsize=64. We use the block scaling implementation from Frantar et al. (2024) which is
symmetric linear quantization. Table 2 shows the results quantizing Phi-3-mini-4k-instruct.
Across all tasks and all bit settings, our method DiscQuant achieves superior or comparable
compression over the baseline GPTQ and RTN methods. The gap between DiscQuant and
the baselines is greater at lower bits. On the ARC Challenge, PIQA, and WinoGrade tasks,
DiscQuant achieves full recovery with at least 0.25 fewer bits per parameter than GPTQ and
RTN. For example on ARC Challenge, DiscQuant achieves full recovery at 4 bits per weight,
whereas GPTQ requires 4.25 bits, and RTN 4.5 bits. DiscQuant achieves better compression
on the more difficult generative GSM8k task: at 4 bits DiscQuant gets 77.3% accuracy,
while GPTQ gets 71.5%, and RTN gets 62.2%. Table 3 shows the results quantizing Meta-
Llama-3.1-8B-Instruct. Overall the story is the same. Our method DiscQuant achieves
improved compression on the majority of quantization levels and tasks. For example at 4
bits, DiscQuant gets 66.5% GSM8k accuracy, while GPTQ gets 63.2%, and RTN gets 50.8%.

5.2 Incoherence Processing

We explore another quantization format to show that our method can compose with other
quantization improvements. Incoherence processing has been shown to improve quantiza-
tion, especially at less than 4 bits per weight Chee et al. (2023). The weights are multiplied

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Method Wbits Wiki↓ GSM8k↑ MMLU↑ ArcC↑ PIQA↑ Hella↑ Wino↑
— 16.0 9.5 84.4±1.0 70.4±0.4 56.7±1.4 80.8±0.9 77.4±0.4 73.5±1.2

RTN 3.0 6.3E5 1.0±0.3 23.3±0.4 26.9±1.3 53.4±1.2 28.2±0.4 48.6±1.4

GPTQ 3.0 28.2 2.3±0.4 37.7±0.4 34.8±1.4 64.3±1.1 56.5±0.5 52.6±1.4

DiscQ 3.0 17.7 26.8±1.2 45.6±0.4 44.1±1.5 73.9±1.0 63.3±0.5 66.6±1.3

RTN 3.25 22.5 31.0±1.3 53.2±0.4 48.4±1.5 72.5±1.0 68.3±0.5 62.6±1.4

GPTQ 3.25 13.8 54.3±1.4 59.0±0.4 49.6±1.5 77.3±1.0 71.1±0.5 66.5±1.3

DiscQ 3.25 12.6 64.2±1.3 60.7±0.4 53.5±1.5 78.7±1.0 72.3±0.4 72.5±1.3

RTN 3.5 18.8 46.3±1.4 57.0±0.4 46.2±1.5 73.8±1.0 70.0±0.5 63.9±1.4

GPTQ 3.5 12.8 54.6±1.4 61.7±0.4 51.6±1.5 78.9±1.0 72.3±0.4 68.3±1.3

DiscQ 3.5 12.0 69.5±1.3 63.0±0.4 51.1±1.5 78.9±1.0 73.0±0.4 73.9±1.2

RTN 4.0 14.6 62.2±1.3 61.2±0.4 53.6±1.5 76.3±1.0 72.9±0.4 65.3±1.3

GPTQ 4.0 11.5 71.5±1.2 65.1±0.4 54.6±1.5 78.8±1.0 74.7±0.4 70.9±1.3

DiscQ 4.0 11.2 77.3±1.2 65.7±0.4 56.8±1.4 79.5±0.9 74.5±0.4 72.0±1.3

RTN 4.25 11.2 64.4±1.3 67.5±0.4 55.5±1.5 79.3±0.9 76.1±0.4 69.1±1.3

GPTQ 4.25 10.3 81.0±1.1 68.5±0.4 56.9±1.4 79.7±0.9 76.1±0.4 72.1±1.3

DiscQ 4.25 10.2 80.7±1.1 68.4±0.4 57.3±1.4 80.7±0.9 76.3±0.4 74.2±1.2

RTN 4.5 10.8 71.6±1.2 67.7±0.4 57.5±1.4 79.3±0.9 76.6±0.4 72.2±1.3

GPTQ 4.5 10.1 82.0±1.1 68.8±0.4 55.8±1.5 80.8±0.9 76.5±0.4 71.8±1.3

DiscQ 4.5 10.0 82.1±1.1 68.5±0.4 56.6±1.4 80.2±0.9 76.7±0.4 74.2±1.2

Table 2: Phi-3-mini-4k-instruct. Across all tasks and bits, our method DiscQuant always
achieves superior results over the baseline RTN and GPTQ methods. On the ArcC, PIQA,
and Wino tasks, DiscQuant achieves full recovery with at least 0.25 fewer bits per parameter
than GPTQ and RTN.

Method Wbits Wiki↓ GSM8k↑ MMLU↑ ArcC↑ PIQA↑ Hella↑ Wino↑
— 16.0 8.7 77.0±1.2 68.0±0.4 55.2±1.5 81.3±0.9 79.3±0.4 73.7±1.2

RTN 3.0 4.4E3 0.5±0.2 23.2±0.4 22.3±1.2 52.4±1.2 29.1±0.5 50.0±1.4

GPTQ 3.0 23.2 3.6±0.5 24.6±0.4 31.8±1.4 66.6±1.1 45.8±0.5 54.1±1.4

DiscQ 3.0 15.2 14.3±1.0 44.6±0.4 39.4±1.4 73.2±1.0 64.4±0.5 62.8±1.4

RTN 3.25 15.2 10.8±0.9 50.5±0.4 44.3±1.5 75.2±1.0 71.4±0.5 67.2±1.3

GPTQ 3.25 10.7 56.3±1.4 60.5±0.4 46.3±1.5 76.7±1.0 74.4±0.4 68.7±1.3

DiscQ 3.25 10.5 58.3±1.4 60.2±0.4 49.1±1.5 79.1±0.9 75.1±0.4 72.1±1.3

RTN 3.5 12.7 35.9±1.3 51.4±0.4 48.4±1.5 76.7±1.0 73.0±0.4 69.1±1.3

GPTQ 3.5 10.4 57.0±1.4 62.1±0.4 49.9±1.5 77.3±1.0 75.1±0.4 71.1±1.3

DiscQ 3.5 10.3 60.7±1.3 60.9±0.4 51.7±1.5 79.2±0.9 76.3±0.4 72.5±1.3

RTN 4.0 12.5 50.8±1.4 59.3±0.4 50.5±1.5 77.6±1.0 74.7±0.4 69.9±1.3

GPTQ 4.0 9.9 63.2±1.3 64.4±0.4 52.4±1.5 78.4±1.0 75.9±0.4 71.7±1.3

DiscQ 4.0 9.8 66.5±1.3 63.4±0.4 51.6±1.5 79.2±0.9 76.9±0.4 72.8±1.3

RTN 4.25 9.4 70.6±1.3 65.7±0.4 54.2±1.5 80.1±0.9 78.0±0.4 73.9±1.2

GPTQ 4.25 9.1 74.6±1.2 66.8±0.4 53.4±1.5 79.6±0.9 77.9±0.4 73.5±1.2

DiscQ 4.25 9.1 74.9±1.2 66.9±0.4 53.6±1.5 79.9±0.9 78.4±0.4 72.6±1.3

RTN 4.5 9.3 71.9±1.2 65.8±0.4 54.8±1.5 80.3±0.9 78.4±0.4 72.4±1.3

GPTQ 4.5 9.0 73.8±1.2 66.9±0.4 53.6±1.5 79.6±0.9 78.1±0.4 73.7±1.2

DiscQ 4.5 9.1 74.8±1.2 66.8±0.4 54.1±1.5 80.6±0.9 78.7±0.4 72.9±1.2

Table 3: Meta-Llama-3.1-8B-Instruct. Our method DiscQuant achieves superior compres-
sion on the vast majority of quantization levels and tasks over the baselines GPTQ and
RTN.

by certain random orthogonal matrices prior to quantization, which can reduce the range of
the weights and make quantization easier. We employ the Randomized Hadamard Trans-
form from Tseng et al. (2024a). We use the same block scaling quantization grid as in the
previous subsection. A subset of our results are shown in Figure 5, where we superimpose bar

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

DiscQ GPTQ RTN DiscQ GPTQ RTN0
10
20
30
40
50
60
70
80

Ac
cu

ra
cy

3 Bits 4 Bits

Phi-3-mini & GSM8k

DiscQ GPTQ RTN DiscQ GPTQ RTN
25

30

35

40

45

50

55

Ac
cu

ra
cy

3 Bits 4 Bits

Phi-3-mini & ARC_Challenge

DiscQ GPTQ RTN DiscQ GPTQ RTN

50

55

60

65

70

75

Ac
cu

ra
cy

3 Bits 4 Bits

Phi-3-mini & WinoGrande

DiscQ Incoh Proc
DiscQ Block Scale

GPTQ Incoh Proc
GPTQ Block Scale

RTN Incoh Proc
RTN Block Scale

Baseline

DiscQ GPTQ RTN DiscQ GPTQ RTN0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

3 Bits 4 Bits

Llama-3.1-8B & GSM8k

DiscQ GPTQ RTN DiscQ GPTQ RTN
25

30

35

40

45

50

55

Ac
cu

ra
cy

3 Bits 4 Bits

Llama-3.1-8B & ARC_Challenge

DiscQ GPTQ RTN DiscQ GPTQ RTN

50

55

60

65

70

75

Ac
cu

ra
cy

3 Bits 4 Bits

Llama-3.1-8B & WinoGrande

DiscQ Incoh Proc
DiscQ Block Scale

GPTQ Incoh Proc
GPTQ Block Scale

RTN Incoh Proc
RTN Block Scale

Baseline

Figure 5: Quantizing Phi-3-mini-4k-instruct and Meta-LLama-3.1-8B-Instruct with block
scaling, and additional incoherence processing. DiscQuant can compose with other quanti-
zation improvements, and with incoherence processing remains competitive with GPTQ.

0.00 0.25 0.50 0.75 1.00
Fraction of Math Data

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Ac
cu

ra
cy

Data Mix - GSM8k

DiscQ
GPTQ

0.00 0.25 0.50 0.75 1.00
Fraction of Math Data

70.0
70.5
71.0
71.5
72.0
72.5
73.0
73.5
74.0

Ac
cu

ra
cy

Data Mix - HellaSwag
DiscQ
GPTQ

0.00 0.25 0.50 0.75 1.00
Fraction of Math Data

75

76

77

78

79

80
Ac

cu
ra

cy
Data Mix - PIQA

DiscQ
GPTQ

Figure 6: Effect of increasing the fraction of math data when quantizing Phi-3-mini-4k-
instruct at 3.25 bits. For 8192 total samples, we use a fraction of math subject data (GSM8k
& MetaMathQA), and the remaining our standard RedPajama. As expected, performance
on GSM8k increases with more math data. Expected behavior on the other tasks is unclear.

plots for block scaling and block scaling + incoherence processing. In the majority of cases,
adding incoherence processing increases the task accuracy, especially at lower bits. We do
not use fractional bits, (i.e. no groupsize), due to the fact that both these methods effect
outliers and can interfere with one another. Incoherence especially helps GPTQ at 3 bits,
and for Phi-3 DiscQuant without incoherence is competitive to GPTQ with incoherence.
For full results see Appendix A.

5.3 Effect of Data

We perform a simple investigation into the effect of the dataset on quantization. We mix
math subeject data–GSM8k and MetaMathQA–with our standard RedPajama dataset. Fig-
ure 6 shows the results of quantizing Phi-3-mini-4k-instruct at 3.25 bits with such a mix.
As expected, both methods increase accuracy on GSM8k when there is a greater fraction of
math data. On HellaSwag, DiscQuant improves with more math data, where GPTQ gets
worse. On PIQA, both methods get worse. See Appendix A for all tasks. There is a mean-
ingful change in accuracy as a result of changing the data mix. Choosing an appropriate
data mix for quantization remains an important open question.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

References
Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan,

Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, and Harkirat Behl. Phi-3
technical report: A highly capable language model locally on your phone, 2024. URL
https://arxiv.org/abs/2404.14219.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan
Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. In Thirty-either Conference on Neural Information Processing Systems,
2024.

Nikhil Bansal. Discrepancy theory and related algorithms. In Proc. Int. Cong. Math,
volume 7, pp. 5178–5210, 2022.

Kayhan Behdin, Ayan Acharya, Aman Gupta, Sathiya Keerthi, Rahul Mazumder, Zhu Siyu,
and Song Qingquan. Quantease: Optimization-based quantization for language models–an
efficient and intuitive algorithm. arXiv preprint arXiv:2309.01885, 2023.

Bernard Chazelle, William WL Chen, and Anand Srivastav. Discrepancy theory and its
applications. Oberwolfach Reports, 1(1):673–722, 2004.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher De Sa. QuIP: 2-bit quan-
tization of large language models with guarantees. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
xrk9g5vcXR.

Together Computer. Redpajama: An open source recipe to reproduce llama training dataset,
2023. URL https://github.com/togethercomputer/RedPajama-Data.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int(): 8-bit matrix
multiplication for transformers at scale. In Advances in Neural Information Processing
Systems, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar,
Saleh Ashkboos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-
quantized representation for near-lossless llm weight compression, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama
3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and
Dan Alistarh. Extreme compression of large language models via additive quantization.
In Forty-First International Conference on Machine Learning, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately
pruned in one-shot. In Proceedings of the International Conference on Machine Learning,
2023.

Elias Frantar, Sidak Pal Singh, and Dan Alistarh. Optimal brain compression: A framework
for accurate post-training quantization and pruning. In Advances in Neural Information
Processing Systems, 2022.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quanti-
zation for generative pre-trained transformers. In The Eleventh International Conference
on Learning Representations, 2023.

Elias Frantar, Roberto L Castro, Jiale Chen, Torsten Hoefler, and Dan Alistarh. Mar-
lin: Mixed-precision auto-regressive parallel inference on large language models. arXiv
preprint arXiv:2408.11743, 2024.

11

https://arxiv.org/abs/2404.14219
https://openreview.net/forum?id=xrk9g5vcXR
https://openreview.net/forum?id=xrk9g5vcXR
https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/abs/2407.21783

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell,
Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya
Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy
Zou. A framework for few-shot language model evaluation, 12 2023. URL https://zenodo.
org/records/10256836.

Babak Hassibi, Daivd G Stork, and Gregory J Wolff. optimal brain surgeon and general
network pruning. In IEEE International Conference on Neural Networks, 1993.

Itay Hubara, Yury Nahshan, Yair Hanami, Ron Banner, and Daniel SOudry. Accurate
post training quantization with small calibration sets. In Thirty-Eighth International
Conference on Machine Learning, 2021.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. In Forty-First
International Conference on Machine Learning, 2024.

Eldar Kurtic, Denis Kuznedelev, Elias Frantar, Michael Goin, and Dan Alistarh. Sparse
fine-tuning for inference acceleration of large language models, 2023. URL https://arxiv.
org/abs/2310.06927.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large
language model serving with pagedattention. In Proceedings of the 29th Symposium on
Operating Systems Principles, pp. 611–626, 2023.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural
information processing systems, 2, 1989.

Yuang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang,
and Shi Gu. Brecq: Pushing the limit of post-training quantization by block reconstruc-
tion. In The Nineth International Conference on Learning Representations, 2021.

Jin Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang,
Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Acttivation-aware
weight quantization for on-device llm compression and acceleration. In Seventh Confer-
ence on Machine Learning and Systems, 2024.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman
Krishnamoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant–
llm quantization with learned rotations. arXiv preprint arXiv:2405.16406, 2024a.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman,
Beidi Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache.
In Forty-First International Conference on Machine Learning, 2024b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. The International
Conference on Learning Representations, 2019.

László Lovász, Joel Spencer, and Katalin Vesztergombi. Discrepancy of set-systems and
matrices. European Journal of Combinatorics, 7(2):151–160, 1986.

Shachar Lovett and Raghu Meka. Constructive discrepancy minimization by walking on the
edges. In FOCS, pp. 61–67. IEEE Computer Society, 2012.

Eric Lybrand and Rayan Saab. A greedy algorithm for quantizing neural networks. Journal
of Machine Learning Research, 22(156):1–38, 2021.

Jiri Matousek. Geometric discrepancy: An illustrated guide, volume 18. Springer Science &
Business Media, 2009.

12

https://zenodo.org/records/10256836
https://zenodo.org/records/10256836
https://arxiv.org/abs/2310.06927
https://arxiv.org/abs/2310.06927

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen
Blankevoort. Up or down? Adaptive rounding for post-training quantization. In
Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 7197–
7206. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/nagel20a.html.

Pranav Ajit Nair and Arun Sai Suggala. Cdquant: Accurate post-training weight quan-
tization of large pre-trained models using greedy coordinate descent, 2024. URL https:
//arxiv.org/abs/2406.17542.

Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng
Zhang, Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated
quantization for large language models. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=8Wuvhh0LYW.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning
approach for large language models. In Workshop on Efficient Systems for Foundation
Models @ ICML2023, 2023. URL https://openreview.net/forum?id=tz9JV2PRSv.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa.
QuIP#: Even better llm quantization with hadamard incoherence and lattice codebooks.
In Forty-First International Conference on Machine Learning, 2024a.

Albert Tseng, Qingyao Sun, David Hou, and Christopher De Sa. QTIP: Quantization
with trellises and incoherence processing. In Advances in Neural Information Processing
Systems, 2024b.

Mart van Baalen, Andrey Kuzmin, Markus Nagel, Peter Couperus, Cedric Bastoul, Eric
Mahurin, Tijmen Blankevoort, and Paul Whatmough. Gptvq: The blessing of dimension-
ality in llm quantization. arXiv preprint arXiv:2402.15319, 2024.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language mod-
els. In Fortieth International Conference on Machine Learning, 2023.

13

https://proceedings.mlr.press/v119/nagel20a.html
https://arxiv.org/abs/2406.17542
https://arxiv.org/abs/2406.17542
https://openreview.net/forum?id=8Wuvhh0LYW
https://openreview.net/forum?id=tz9JV2PRSv

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Method Wbits Wiki↓ GSM8k↑ MMLU↑ ArcC↑ PIQA↑ Hella↑ Wino↑
— 16.0 9.5 84.4±1.0 70.4±0.4 56.7±1.4 80.8±0.9 77.4±0.4 73.5±1.2

RTN 3.0 2.6E5 0.0±0.0 23.4±0.4 28.5±1.3 49.8±1.2 26.0±0.4 50.2±1.4

GPTQ 3.0 20.8 10.0±0.8 43.8±0.4 39.2±1.4 70.5±1.1 60.7±0.5 58.0±1.4

DiscQ 3.0 16.7 29.9±1.3 48.0±0.4 46.2±1.5 75.1±1.0 64.5±0.5 66.6±1.3

RTN 4.0 15.9 56.3±1.4 55.0±0.4 53.5±1.5 77.4±1.0 68.8±0.5 70.6±1.3

GPTQ 4.0 11.0 77.6±1.1 65.8±0.4 53.7±1.5 80.2±0.9 74.9±0.4 72.5±1.3

DiscQ 4.0 11.0 76.7±1.2 65.6±0.4 56.0±1.5 79.5±0.9 74.9±0.4 74.2±1.2

Table 4: Phi-3-mini-4k-instruct with incoherence processing. At 3 bits per weight, Dis-
cQuant achieves superior compression across all tasks. At 4 bits per weight, DiscQuant
achieves comparable compression.

Method Wbits Wiki↓ GSM8k↑ MMLU↑ ArcC↑ PIQA↑ Hella↑ Wino↑
— 16.0 8.7 77.0±1.2 68.0±0.4 55.2±1.5 81.3±0.9 79.3±0.4 73.7±1.2

RTN 3.0 2.4E3 2.1±0.4 25.2±0.4 24.3±1.3 54.7±1.2 29.5±0.5 49.6±1.4

GPTQ 3.0 13.9 24.4±1.2 49.7±0.4 41.7±1.4 73.1±1.0 70.4±0.5 66.2±1.3

DiscQ 3.0 13.4 25.4±1.2 51.5±0.4 40.4±1.4 73.2±1.0 69.6±0.5 64.2±1.3

RTN 4.0 11.2 51.6±1.4 59.5±0.4 50.1±1.5 78.9±1.0 74.5±0.4 71.0±1.3

GPTQ 4.0 9.5 70.7±1.3 64.9±0.4 52.8±1.5 80.0±0.9 77.4±0.4 72.7±1.3

DiscQ 4.0 9.6 69.4±1.3 63.7±0.4 54.1±1.5 80.7±0.9 77.0±0.4 73.2±1.2

Table 5: Meta-Llama-3.1-8B-Instruct with incoherence processing. Across a majority of bits
and tasks, DiscQuant achieves comparable compression with GPTQ, and does better than
RNT.

A Additional Experiments

A.1 Experimental Setup Details

The experiments for the Phi-3-mini model were conducted on either a single 80GB Nvidia
A100 GPU, or 2x40GB A100 GPUs, while the Llama-3.1-8B model used either 2x80GB
A100s, or 4x40GB A100s. We use the PyTorch framework. We initialize x ∈ [0, 1]n
uniformly at random, and used AdamW (Loshchilov & Hutter, 2019) with a cosine
learning rate schedule. We multiply the regularization coefficient λ with the KL loss
term, and perform entry-wise gradient clipping on the KL loss term. For DiscQuant,
we tuned the hyper-parameters for each model and bit setting. The hyper-parameters
clamp, λ, lr, batch size, num iter and warmup were tuned. In the block scaling
setting we found that clamp={1.0, 0.5}, λ=200, lr={0.1, 0.05}, batch size={4,8},
num iter=1024, warmup=128 worked well for both models. In the incoherence processing
setting we found that clamp={0.05,0.01}, lr={0.05,0.01} worked well for both mod-
els, all other parameters being the same as before. For GPTQ, we used the actorder,
true sequential heuristics, and as tuned the number of samples over {1024, 4096,
8192} for each model and bit setting. Our quantization dataset is constructed from the
RedPajama-1T-Sample training set (Computer, 2023). We concatenate random samples
until up to 2048 sequence length, truncating the last sample if necessary. Greedy or round-
to-nearest requires no data, and no hyper-parameter tuning.

A.2 Incoherence Processing

Table 4 shows our results quantizing Phi-3-mini-4k-instruct with incoherence processing. At
3 bits per weight, DiscQuant achieves superior compression across all tasks. At 4 bits per
weight, DiscQuant achieves comparable compression. For example, on ARC CHallenge at
3 bits, DiscQuant achieves 46.2% accuracy, while GPTQ achieves 39.2%, and RTN 28.5%.
Table 5 shows our results quantizing Meta-Llama-3.1-8B-Instruct with incoherence process-
ing. DiscQuant performs comparably to GPTQ, and better than RTN. For example, on

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

DiscQ GPTQ RTN DiscQ GPTQ RTN
10

15

20

25

30

Pe
rp

le
xi

ty

3 Bits 4 Bits

Phi-3-mini & Wikitext

DiscQ GPTQ RTN DiscQ GPTQ RTN0

20

40

60

80

Ac
cu

ra
cy

3 Bits 4 Bits

Phi-3-mini & GSM8k

DiscQ GPTQ RTN DiscQ GPTQ RTN20

30

40

50

60

70

Ac
cu

ra
cy

3 Bits 4 Bits

Phi-3-mini & MMLU

DiscQ GPTQ RTN DiscQ GPTQ RTN

30

40

50

Ac
cu

ra
cy

3 Bits 4 Bits

Phi-3-mini & ARC_Challenge

DiscQ GPTQ RTN DiscQ GPTQ RTN
50

60

70

80

Ac
cu

ra
cy

3 Bits 4 Bits

Phi-3-mini & PIQA

DiscQ GPTQ RTN DiscQ GPTQ RTN20

30

40

50

60

70

80

Ac
cu

ra
cy

3 Bits 4 Bits

Phi-3-mini & HellaSwag

DiscQ GPTQ RTN DiscQ GPTQ RTN
50

55

60

65

70

75

Ac
cu

ra
cy

3 Bits 4 Bits

Phi-3-mini & WinoGrande

DiscQ Incoh Proc
DiscQ Block Scale

GPTQ Incoh Proc
GPTQ Block Scale

RTN Incoh Proc
RTN Block Scale

Baseline

Figure 7: Quantizing Phi-3-mini-4k-instruct with block scaling, and additional incoherence
processing. Adding incoherence processing largely improves model quality at 3 bits. At
4 bits, these improvements are smaller. At 3 bits, DiscQuant is better than GPTQ with
incoherence processing.

WinoGrande at 4 bits, DiscQuant achieves 73.2% accuracy, while GPTQ achieves 72.7%,
and RTN 71.0%.
Figures 7 and 8 show the results adding incoherence processing superimposed over just using
block scaling. Incoherence processing largely improves quantization at 3 bits across both
models, whereas at 4 bits the improvements are smaller. In the Phi-3 model at 3 bits,
DiscQuant without incoherence is better than GPTQ with incoherence. Across the other
models and bit settings, DiscQuant and GPTQ are comparable after incoherence processing.

A.3 Effect of Data

Here we give the full set of evaluation tasks when changing the mix of math subject data
when quantizing Phi-3-mini-4k-instruct to 3.25 bits. It is interesting that across all evalua-
tion tasks, there is a meaningful change in evaluation metrics as a result of changing the data
mix. We leave the question of appropriate data curation as an important open question.

A.4 Ablations

We tried several distillation formulations, but ultimately chose a standard KL divergence
between the outputs of the original and quantized model as the best approach. See Table 6.
We quantize Phi-3-mini-4k-instruct to 3.25 bits, using 1024 samples. We tune the hyper-
parameters as described at the beginning of this section. Note that for these ablations
we used fewer samples than in our main experiments. In addition to the standard KL
divergence, we tried several intermediate loss formulations for knowledge distillation. We
used a normalized L2 loss between the outputs of the teacher and student, either per decoder
layer (Intermed Type = Layer), or between each linear layer (Intermed Type = Linear).
This distillation formulation was presented in Kurtic et al. (2023) for recovering LLMs after
pruning. We also investigated taking an affine combination between the KL and intermediate

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

DiscQGPTQ RTN DiscQGPTQ RTN
10.0
12.5
15.0
17.5
20.0
22.5
25.0

Pe
rp

le
xi

ty

3 Bits 4 Bits

Llama-3.1-8B & Wikitext

DiscQGPTQ RTN DiscQGPTQ RTN0

20

40

60

80

Ac
cu

ra
cy

3 Bits 4 Bits

Llama-3.1-8B & GSM8k

DiscQGPTQ RTN DiscQGPTQ RTN20

30

40

50

60

70

Ac
cu

ra
cy

3 Bits 4 Bits

Llama-3.1-8B & MMLU

DiscQGPTQ RTN DiscQGPTQ RTN20

30

40

50

Ac
cu

ra
cy

3 Bits 4 Bits

Llama-3.1-8B & ARC_Challenge

DiscQGPTQ RTN DiscQGPTQ RTN50

60

70

80

Ac
cu

ra
cy

3 Bits 4 Bits

Llama-3.1-8B & PIQA

DiscQGPTQ RTN DiscQGPTQ RTN

30

40

50

60

70

80

Ac
cu

ra
cy

3 Bits 4 Bits

Llama-3.1-8B & HellaSwag

DiscQGPTQ RTN DiscQGPTQ RTN

50

55

60

65

70

75

Ac
cu

ra
cy

3 Bits 4 Bits

Llama-3.1-8B & WinoGrande

DiscQ Incoh Proc
DiscQ Block Scale

GPTQ Incoh Proc
GPTQ Block Scale

RTN Incoh Proc
RTN Block Scale

Baseline

Figure 8: Quantizing Meta-Llama-3.1-8B-Instruct with block scaling, and additional inco-
herence processing. Adding incoherence processing largely improves model quality at 3 bits.
At 4 bits, these improvements are smaller. After incoherence, DiscQuant is largely compa-
rable to GPTQ.

losses, trying several different coefficients. Table 6 shows our results; using just the KL
divergence gives the best results. We also tried minimizing the ground truth loss instead of
a distillation loss. We use the same setup as Table 6, and find that minimizing the ground
truth loss achieves 52.7% GSM8k accuracy, and 13.6 Wikitext perplexity. Therefore we use
the KL divergence.

B Rounding weights via Discrepancy Theory

B.1 The Lovett Meka algorithm

A seminal result by Lovett and Meka Lovett & Meka (2012) works as follows: we are given
a point y ∈ [0, 1]n in the hypercube, vectors v1, . . . , vm ∈ Rn with ∥vj∥2 = 1 and parameters
cj ≥ 0 so that

∑m
j=1 e−c2

j /16 ≤ n
16 . Then in randomized polynomial time one can find a

point x ∈ [0, 1]n so that | ⟨vj , x − y⟩ | ≤ cj for all j and at least half the coordinates of x are
integral. Their algorithm is simple and elegant: we construct x as the outcome of a random
walk starting at y. Then iteratively, for some small step size δ > 0 we add the outcome
of a random Gaussian times δ to the current point. After hitting some constraint xi = 0,
xi = 1 or | ⟨vj , x − y⟩ | = cj , the Gaussian updates will be taken orthogonal to those normal
vectors. In other words, the random walk will continue in the face of the described polytope.
Still Lovett & Meka (2012) prove that performing the updates for O(1

δ2) iterations the walk
will cover enough distance so that on average Θ(n) box constraints must become tight.
In our setting we only need to use parameters cj = 0. However we use some properties of the
Lovett-Meka algorithm that are not explicitly stated elsewhere. Here we denote ∥M∥S(1)
as the sum of the singular values of a matrix M (also called Schatten-1 norm, nuclear norm
or trace norm of M).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00
Fraction of Math Data

13

14

15

16

17

Pe
rp

le
xi

ty

Data Mix - Wikitext
DiscQ
GPTQ

0.00 0.25 0.50 0.75 1.00
Fraction of Math Data

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5
Ac

cu
ra

cy
Data Mix - GSM8k

DiscQ
GPTQ

0.00 0.25 0.50 0.75 1.00
Fraction of Math Data

57.5

58.0

58.5

59.0

59.5

60.0

60.5

61.0

Ac
cu

ra
cy

Data Mix - MMLU
DiscQ
GPTQ

0.00 0.25 0.50 0.75 1.00
Fraction of Math Data

48

50

52

54

56

Ac
cu

ra
cy

Data Mix - ARC_Challenge
DiscQ
GPTQ

0.00 0.25 0.50 0.75 1.00
Fraction of Math Data

75

76

77

78

79

80

Ac
cu

ra
cy

Data Mix - PIQA
DiscQ
GPTQ

0.00 0.25 0.50 0.75 1.00
Fraction of Math Data

70.0
70.5
71.0
71.5
72.0
72.5
73.0
73.5
74.0

Ac
cu

ra
cy

Data Mix - HellaSwag
DiscQ
GPTQ

0.00 0.25 0.50 0.75 1.00
Fraction of Math Data

64

66

68

70

72

74

Ac
cu

ra
cy

Data Mix - WinoGrande

DiscQ
GPTQ

Figure 9: Effect of increasing the fraction of math data when quantizing Phi-3-mini-4k-
instruct at 3.25 bits. For 8192 total samples, we use a fraction of math subject data (GSM8k
and MetaMathQA), and the remaining our standard RedPajama. Across all evaluations,
there is a meaningful change as a result of changing the data mix.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

KL Coeff Intermed Coeff Intermed Type Wiki↓ GSM8k↑
1.0 0.0 None 12.8 64.9±1.3

0.0 1.0 Layer 14.7 54.1±1.4

0.0 1.0 Linear 14.3 60.1±1.4

0.1 0.9 Linear 13.1 61.4±1.3

0.5 0.5 Linear 12.9 63.9±1.3

0.9 0.1 Linear 12.8 63.8±1.3

Table 6: Distillation Ablations. Quantizing Phi-3-mini-4k to 3.25 bits using a reduced 1024
samples of RedPajama. We test affine combinations between the KL divergence loss and
intermediate L2 loss, which is either between the linear or decoder layers. Standard KL
divergence does best.

Theorem B.1 (Derived from Lovett & Meka (2012)). Let g1, . . . , gm ∈ Rn be any vectors
with m ≤ n

16 and let y ∈ [0, 1]n. Then in polynomial time one can compute a sample
x ∼ D := DLM (g1, . . . , gm, y) so that

(i) One has x ∈ [0, 1]n and with probability at least 1
10 one has |{j ∈ [n] : xj ∈ {0, 1}}| ≥

n
2 .

(ii) For any vector θ ∈ Rn one has Ex∼D[⟨θ, x − y⟩2] ≤ O(∥θ∥2
2).

(iii) For any symmetric matrix M ∈ Rn×n one has E[
〈
M, (x − y)(x − y)T

〉
] ≤

O(∥M∥S(1)).

Proof. (i) is explicitly in Lovett & Meka (2012). For (ii) we use that the outcome of the
random walk is of the form

x = y + δ

O(1/δ2)∑
t=1

ut where ut ∼ N(0, Σt)

Here 0 ⪯ Σt ⪯ In. But crucially each covariance matrix Σt may depend on the outcome of
u1, . . . , ut−1. In particular it is not true that x − y is Gaussian. But it is a Martingale and
as for each step t one has E[⟨ut, θ⟩] = 0 and E[⟨ut, θ⟩2] ≤ O(∥θ∥2

2), the variance still satisfies
E[
〈
δ
∑O(1/δ2)

t=1 ut, θ
〉2] ≤ O(∥θ∥2

2) which settles (ii). Finally we argue why (iii) holds. We
note that (ii) can be restated as Ex∼D[(x − y)(x − y)T] ⪯ O(1) · In. Then

E[
〈
M, (x − y)(x − y)T

〉
] =

〈
M,E[(x − y)(x − y)T]

〉
≤ ∥M∥S(1) · ∥E[(x − y)(x − y)T]∥op

≤ O(∥M∥S(1)).

□

B.2 The main theoretical result

As explained earlier we assume that we are given a weight vector y ∈ [0, 1]n and have
access to samples g1, . . . , gm ∼ D where D is a distribution on Rn whose covariance matrix
Σ := Eg∼Ddata [ggT] has rapidly decaying Eigenvalues, say λk ≤ C

kα for some constants C > 0
and α > 1. In order to prove rigorous bounds we also need a mild assumption that provides
that the distribution is well-behaved. We use the notion by O’Donnell O’Donnell (2014)
and say that for a parameter β ≥ 1, a random vector X ∈ Rn is β-reasonable if

E[⟨X, θ⟩4] ≤ β · E[⟨X, θ⟩2]2 ∀θ ∈ Rn

For example X ∼ {−1, 1}n and a Gaussian X ∼ N(0, Σ) are both O(1)-reasonable. Our
main theoretical result is then:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Theorem B.2. Let α > 1 and β ≥ 1 be constants and let 1 ≤ m ≤ n
16 . Let D be a

β-reasonable distribution with unknown covariance matrix Σ ∈ Rn×n whose Eigenvalues
satisfy λk ≤ 1

kα for all k = 1, . . . , n. Then there is a randomized polynomial time algorithm
that given a y ∈ [0, 1]n and m independent samples g1, . . . , gm ∼ D, produces an x ∈ [0, 1]n
so that with probability at least 0.99 one has

(i) |frac(x)| ≤ 16m

(ii)
〈
Σ, (x − y)(x − y)T

〉
≲α log(n

m) · Fα(m, n) where

Fα(m, n) :=


m1−α if 1 < α < 3

2
log(n)√

m
if α = 3

2
1√
m

if α > 3/2.

Ignoring polylogarithmic factors, this means that we can find an x with O(m) fractional
coordinates left and

〈
Σ, (x − y)(x − y)T

〉
≤ max{m1−α, 1√

m
}. The algorithm to compute x

as in Theorem B.2 is simple:

Lovett-Meka Rounding Algorithm

Input: Weight vector y ∈ [0, 1]n and parameter m
Output: Rounded vector x

(1) Sample g1, . . . , gm ∼ D. Initialize x(0) := y

(2) FOR t = 1 TO ∞ DO

(3) IF |frac(x(t−1))| ≤ 16m then return x(t−1)

(4) Set x(t) := DLM (g1, . . . , gm, x(t−1))

A crucial aspect of analyzing this algorithm is understanding how far the covariance esti-
mator 1

m

∑m
j=1 gjgT

j is from the actual covariance matrix Σ in terms of the Schatten 1-norm
∥ · ∥S(1). We use the following result.
Proposition B.3. Let α > 1, β ≥ 1 and let D be a β-reasonable distribution with covariance
matrix Σ ∈ Rn×n whose Eigenvalues satisfy λk ≤ 1

kα for all k = 1, . . . , n. Let g1, . . . , gm ∼ D
be independent samples and let X(ℓ) := 1

m gℓg
T
ℓ and X :=

∑m
ℓ=1 X(ℓ). Then

E[∥X − Σ∥S(1)] ≲α,β Fα(m, n)

where Fα(m, n) is as defined in Theorem B.2.

We postpone the proof of Prop B.3 to Section B.3 and first conclude the proof of Theo-
rem B.2.

Proof of Theorem B.2. Suppose x(t∗) is the vector that the algorithm returned in (3). It
will be notationally convenient to define x(t) := x(t∗) for all t > t∗. We say that iteration t is
good if either |frac(x(t−1))| ≤ 16m or if |frac(x(t))| ≤ 1

2 |frac(x(t−1))|. If an iteration t is not
good, we repeat the iteration until it is good. From Theorem B.1.(i) we know that every
iteration is good with probability at least 1

10 (independently of previous outcomes), thus by
standard Chernov bounds, with probability at least 0.99, within the first T := C ′ log(n

m)
iterations there must be at least log(n

m) many good iterations, for C ′ > 0 a sufficiently
large constant. After log(n

m) good iterations, one has |frac(x(T))| ≤ 16m, and moreover the
suffered discrepancy is

E
[〈

Σ, (x(T) −y)(x(T) −y)T
〉]

≤
T∑

t=1
E
[〈

Σ, (x(t) −x(t−1))(x(t) −x(t−1))T
〉]

≲α,β T ·Fα(m, n).

Thus the claim then follows. □

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B.3 Analyzing the covariance estimator

It remains to prove Prop B.3.

Proof of Prop B.3. We first present the proof for the case of 1 < α < 3
2 and then discuss

the modifications for the other two cases. The claim is invariant under a change of basis,
hence we may assume that Σ is a diagonal matrix with Eigenvalues λ1 ≥ . . . ≥ λn ≥ 0, i.e.
Σii = λi for all i ∈ [n]. We can bound the variance terms for all entries (whether diagonal
or not):
Claim I. For all i, j ∈ [n] one has E[|Xij − Σij |2] ≲β

λiλj

m .
Proof of Claim I. We recall that E[X] = Σ and E[X(ℓ)] = 1

m Σ. For all i, j ∈ [n] one has
E[|Xij − Σij |2] = Var[Xij]

=
m∑

ℓ=1
Var[X(ℓ)

ij]

= 1
m
Eh∼D[|hihj − Σij |2]

≤ 2
m

(
Eh∼D[h2

i h2
j] + Σ2

ij︸︷︷︸
≤λiλj

)
(∗)
≤ 2

m
(Eh∼D[h4

i]1/2Eh∼D[h4
j]1/2 + λiλj)

(∗∗)
≤ 2

m

(
β1/2 Eh∼D[h2

i]︸ ︷︷ ︸
=λi

·β1/2 Eh∼D[h2
j]︸ ︷︷ ︸

=λj

+λiλj

)
= 2β + 2

m
· λiλj

Here we use the inequality (a − b)2 ≤ 2a2 + 2b2. Moveover Σij ≤ λiλj holds because Σ is a
diagonal matrix. Note that we have used Cauchy-Schwarz in (∗) and the assumption that
D is β-reasonable in (∗∗). □
Now let Jℓ := {i ∈ [n] | 2ℓ−1 ≤ i < 2ℓ}. It will be useful to note that |Jℓ| ≤ 2ℓ and the sum
of the Eigenvalues in each block satisfies

∑
i∈Jℓ

λi ≲ 2ℓ · (2ℓ)−α = (2ℓ)1−α. Our strategy is
to use the triangle inequality to bound:

E[∥X − Σ∥S(1)] ≤ 2
∑
ℓ≥1

∑
k≥ℓ

E[∥XJℓ,Jk
− ΣJℓ,Jk

∥S(1)] (4)

Here XJℓ,Jk
is the |Jℓ| × |Jk| submatrix of X that is indexed by rows Jℓ and columns Jk.

In the following we will estimate the contribution of the different blocks depending on their
parameter regime and whether they are diagonal or off-diagonal.
Claim II. Let ℓ ≤ k and abbreviate Y := XJℓ,Jk

− ΣJℓ,Jk
. Then

E[∥Y ∥S(1)] ≲
√

r

m
· 2

ℓ+k
2 (1−α)

assuming that rank(Y) ≤ r for any outcome of Y .
Proof of Claim II. We recall that for any matrix A one has ∥A∥S(1) ≤

√
rank(A) · ∥A∥F .

Then for all ℓ ≤ k we can bound
E[∥Y ∥S(1)] ≤

√
r · E[∥Y ∥F]

Jensen
≤

√
r · E[∥Y ∥2

F]1/2

Claim I
≲β

√
r ·
(1

m

(∑
i∈Jℓ

λi

)(∑
j∈Jk

λj

))1/2

≲
√

r ·
√

1
m

· (2ℓ)1−α · (2k)1−α

=
√

r

m
· 2

ℓ+k
2 (1−α) □

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Now we can bound the contribution that off-diagonal blocks have to Eq (4). Here we use
that ΣJℓ,Jk

= 0 and rank(XJℓ,Jk
) ≤ min{m, 2ℓ}. Then∑

ℓ≥1

∑
k>ℓ

E
[
∥XJℓ,Jk

− ΣJℓ,Jk︸ ︷︷ ︸
=0

∥S(1)
] Claim II

≤
∑
ℓ≥1

∑
k>ℓ

√
min{m, 2ℓ}√

m
· 2

ℓ+k
2 (1−α)

=
∑
ℓ≥1

min
{

1,
√

2ℓ/m
}

· 2 ℓ
2 (1−α)

∑
k>ℓ

·2 k
2 (1−α)

︸ ︷︷ ︸
≲α2ℓ(1−α)/2

≲α

∑
ℓ≥1

min
{

1,
√

2ℓ/m
}

· (2ℓ)1−α (5)

≲α m1−α

In the last step we use that the function z 7→
√

z · z1−α is monotonically increasing while
z 7→ z1−α is monotonically decreasing as we assume that 1 < α < 3

2 . Hence the term with
m = 2ℓ dominates the sum.
It remains to bound the diagonal blocks. First we consider the regime of small indices. Here
we use the bound rank(XJℓ,Jℓ

− ΣJℓ,Jℓ
) ≤ |Jℓ| ≤ 2ℓ which gives∑

ℓ:2ℓ≤m

E[∥XJℓ,Jℓ
− ΣJℓ,Jℓ

∥S(1)]
Claim II

≤
∑

ℓ:2ℓ≤m

√
2ℓ

m
· 2ℓ(1−α) ≲ m1−α (6)

Here the last summand (with 2ℓ = m) dominates the sum in (6), again as z 7→
√

z · z1−α is
monotonically increasing.
The final regime to consider is the one of large indices, i.e. diagonal blocks with 2ℓ > m.
In that case we can ignore any concentration that the randomness may provide and simply
bound ∑

ℓ:2ℓ>m

E[∥XJℓ,Jℓ
− ΣJℓ,Jℓ

∥S(1)] ≤
∑

ℓ:2ℓ>m

(
E[∥XJℓ,Jℓ

∥S(1)] + ∥ΣJℓ,Jℓ
∥S(1)

)
=

∑
ℓ:2ℓ>m

(
E[Tr[XJℓ,Jℓ

]] + Tr[ΣJℓ,Jℓ
]
)

=
n∑

j=m

(E[Xjj]︸ ︷︷ ︸
=Σjj

+ Σjj︸︷︷︸
≤j−α

)

≲
∑
j≥m

1
jα

≲ m1−α (7)

Here we use again the triangle inequality of the trace norm and the fact that the matrices
XJℓ,Jℓ

and ΣJℓ,Jℓ
are always positive semidefinite. This concludes the argument for 1 <

α < 3
2 . If α = 3

2 then
√

2ℓ/m · (2ℓ)1−α ≤ 1√
m

for each ℓ ≥ 1 and so (5) is bounded by log(n)√
m

.
Moreover, the last two cases can be merged as∑

ℓ≥1
E[∥XJℓ,Jℓ

− ΣJℓ,Jℓ
∥S(1)]

Claim II
≤

∑
ℓ≥1

√
2ℓ

m
· 2ℓ(1−α) ≲

log(n)√
m

(8)

Finally, if α > 3
2 then the first term (for ℓ = 1) dominates the sums in (5) and (8) and the

extra log(n) term can be omitted. □

C Non-uniform Quantization Grid

We will introduce a new parameters x ∈ [0, 1]n and define

wx = wdown ⊙ (1 − x) + wup ⊙ x

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where ⊙ is component-wise product. Note that wx
i interpolates between wdown

i and wup
i

where wi = wdown
i if xi = 0 and wi = wup

i if xi = 1. Let y ∈ [0, 1]n be the interpolation point
corresponding to the original weights, i.e., wy = w. We can rewrite the linear constraints in
terms of x as follows:

⟨∇wf(w; si), wx − w⟩ = ⟨∇wf(w; si), wx − wy⟩
=
〈
∇wf(w; si), (wup − wdown) ⊙ (x − y)

〉
=
〈
∇wf(w; si) ⊙ (wup − wdown), x − y

〉
.

Let M be an m × n matrix whose ith row is given by ∇wf(w; si) ⊙ (wup − wdown). Then
the linear constraints can be simply written as M(x − y) = 0.

D Taylor Series for KL Divergence

Let pw(·|z<i) be the distribution of the next token predicted by the original model given
prefix z<i where z ∼ Ddata is a sample from the data distribution. Let

error(ŵ) = Ez∼DdataEiDKL (pw(·|z<i) ∥ pwx(·|z<i))

be the KL divergence between the original model and quantized model.
Lemma D.1. Let

error(ŵ) = ⟨gw, ŵ − w⟩ + (ŵ − w)T Hw(ŵ − w) + · · ·

be the Taylor series expansion of the KL divergence where gw is the gradient and Hw is the
Hessian. Then

1. gw = 0,

2. Hw = Ez∼DdataEiEt∼pw(·|z<i)[(∇w log pw(t|z<i))(∇w log pw(t|z<i))T]

Therefore error(ŵ) ≈ Ez∼DdataEiEt∼pw(·|z<i)[⟨∇wpw(t|z<i), ŵ − w⟩2].

Proof. To simplify notation, we will ignore the z, i variables coming from Ez∼Ddata and Ei

and also drop them from pw(·|z<i) and just write pw(·). Adding these back and taking ex-
pectations over these variables, we get the desired result. We can expand the KL divergence
using Taylor series and evaluate the first and second order terms.

error(ŵ) = DKL (pw(·) ∥ pŵ(·))
= −Et∼ [log pŵ(t) − log pw(t)]
= −Et∼pw

[
⟨∇w log pw(t), ŵ − w⟩ + (ŵ − w)T ∇2

w log pw(t)(ŵ − w) + · · ·
]

= ⟨gw, ŵ − w⟩ + (ŵ − w)T Hw(ŵ − w) + · · ·

where gw = −Et∼pw
[∇w log pw(t)] and Hw = −Et∼pw

[∇2
w log pw(t)].

(1) We first evaluate gw.

gw = −Et∼pw [∇w log pw(t)] = Et∼pw

[
∇wpw(t)

pw(t)

]
=
∑

t

∇wpw(t)

= ∇w(
∑

t

pw(t))

= ∇w(1) = 0.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(2) We now evaluate Hw.

Hw = −Et∼pw [∇2
w log pw(t)]

= −Et∼pw

[
∇w

(
∇wpw(t)

pw(t)

)]
= −Et∼pw

[
∇2

wpw(t)
pw(t) − (∇wpw(t))(∇wpw(t))T

pw(t)2

]
= −Et∼pw

[
∇2

wpw(t)
pw(t) − (∇w log pw(t))(∇w log pw(t))T

]
= −

∑
t

∇2
wpw(t) + Et∼pw

[
(∇w log pw(t))(∇w log pw(t))T

]
= −∇2

w

(∑
t

pw(t)
)

+ Et∼pw

[
(∇w log pw(t))(∇w log pw(t))T

]
= −∇2

w (1) + Et∼pw

[
(∇w log pw(t))(∇w log pw(t))T

]
= Et∼pw

[
(∇w log pw(t))(∇w log pw(t))T

]
□

23

	Introduction
	Related Work
	Quantization Grids
	Rounding
	Discrepancy Theory

	Connections to Discrepancy Theory
	Bounding empirical error (Question 3.1)
	Bounding Generalization Error (Question 3.2)

	DiscQuant: Algorithm
	Experiments
	Block Scaling
	Incoherence Processing
	Effect of Data

	Additional Experiments
	Experimental Setup Details
	Incoherence Processing
	Effect of Data
	Ablations

	Rounding weights via Discrepancy Theory
	The Lovett Meka algorithm
	The main theoretical result
	Analyzing the covariance estimator

	Non-uniform Quantization Grid
	Taylor Series for KL Divergence

