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Abstract

Quantizing the weights of a neural network has two steps: (1) Finding a
good low bit-complexity representation for weights (which we call the quan-
tization grid) and (2) Rounding the original weights to values in the quan-
tization grid. In this paper, we study the problem of rounding optimally
given any quantization grid. The simplest and most commonly used way to
round is Round-to-Nearest (RTN). By rounding in a data-dependent way
instead, one can improve the quality of the quantized model significantly.
We study the rounding problem from the lens of discrepancy theory, which
studies how well we can round a continuous solution to a discrete solu-
tion without affecting solution quality too much. We prove that given
m = poly(1/ε) samples from the data distribution, we can round all but
O(m) model weights such that the expected approximation error of the
quantized model on the true data distribution is ≤ ε as long as the space
of gradients of the original model is approximately low rank (which we
empirically validate).
Our proof, which is algorithmic, inspired a simple and practical round-
ing algorithm called DiscQuant. In our experiments, we demonstrate that
DiscQuant significantly improves over the prior state-of-the-art rounding
method called GPTQ and the baseline RTN over a range of benchmarks
on Phi3mini-3.8B and Llama3.1-8B. For example, rounding Phi3mini-3.8B
to a fixed quantization grid with 3.25 bits per parameter using DiscQuant
gets 64% accuracy on the GSM8k dataset, whereas GPTQ achieves 54%
and RTN achieves 31% (the original model achieves 84%).

1 Introduction

Modern deep learning models continue to grow in size, incurring greater challenges to train
and serve these models. Post training compression methods have emerged which aim to
make model inference faster and cheaper. Compressing after pretraining is desirable among
practitioners who either cannot afford to train models themselves, or do not want to change
the expensive training process too much. In this paper, we study post training quantization
(PTQ) of the model weights. Quantization reduces the memory requirements of the model,
and speeds up inference for LLMs under memory-bound settings such as the generation
phase (as opposed to prefilling phase which is compute-bound) (Kwon et al., 2023).
The quantization problem can be divided into two overall steps: (1) Construct a good low
bit-complexity representation for the weights (we colloquially call this the quantization grid),
and (2) Round the original weights to values in the quantization grid. Within step (1), we
also consider those methods which apply a transformation on the weights to better match
the encoding format. There has been much recent work on weights-only PTQ for LLMs. To
date, the vast majority of such research has been focused on step (1): constructing good low
bit representations (Shao et al., 2024; Tseng et al., 2024a; Egiazarian et al., 2024). However,
work on rounding methods is under-explored. To the best of our knowledge, Round-to-
Nearest (RTN) and GPTQ (Hassibi et al., 1993; Frantar et al., 2022; 2023) are the primary
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rounding methods for LLM weight quantization. RTN is a simple baseline, and GPTQ is a
data dependent method which aims to match the activations of the quantized model with
that of the original model layer-by-layer.
Let f(w; s) be the loss function of a neural network where w are original pretrained weights
and s is an input sample; for example f can be the usual cross-entropy loss on input s.
To find a good rounding solution, we are looking for perturbations of the original weights
w ∈ Rn that correspond to values in the quantization grid, and do not increase the loss
f too much. We further impose the constraint that we only round each parameter up or
down, this ensures that we are not changing the original model weights too much. Then the
set of allowed quantization points can be pictured as vertices of a hypercube H around w.
Let ŵ ∈ Rn be these perturbed weights, and ∆f = f(ŵ; s) − f(w; s) be the resulting change
in loss function for a sample s. We approximate ∆f via a first order Taylor expansion:
∆f ≈ ⟨∇wf(w; s), ŵ − w⟩. Some prior works such as Nagel et al. (2020); Hassibi et al.
(1993) assume the gradients of a pretrained model to be nearly zero, and focus on the
second order terms. We show that this assumption is not always true, the average gradients
are close to zero but per-sample gradients can be big; in fact the first order term is a good
approximation to ∆f (see Figure 3).

K
w

V

H

Figure 1: An illustrative figure show-
ing the convex polytope K formed by
the intersection of an n-dimensional
hypercube H and an n − m dimen-
sional affine subspace V . Any vertex
of K should have n − m coordinates
which are fully rounded.

Therefore, to incur a small ∆f , we want
⟨∇wf(w; s), ŵ − w⟩ ≈ 0 for s sampled from the data
distribution Ddata. Suppose we are given m indepen-
dent samples s1, s2, . . . , sm ∼ Ddata, we can impose
the constraints ⟨∇wf(w; s), ŵ − w⟩ = 0 which corre-
spond to an affine subspace V of dimension n − m.
The intersection of the subspace V and the hyper-
cube H is a convex polytope K. It can be shown
that any vertex of K should have at least n−m fully
rounded parameters, see Figure 1 for an illustration.
Since the number of parameters n ≫ m, any vertex
of K gives an almost fully rounded solution. Ob-
viously this solution satisfies the linear constraints
for the samples s1, s2, . . . , sm. But will it generalize
to unseen samples from the data distribution Ddata?
We prove that it can generalize if the distribution
of gradients g = ∇wf(w; s) for s ∼ Ddata is ap-
proximately low rank. Let Σ = Es∼Ddata [ggT ] where
g = ∇wf(W ; s) be the covariance matrix of gradi-
ents. We prove the following theorem; the algorithm
and the proof draws on techniques from discrepancy
theory, in particular the famous Lovett-Meka algo-
rithm (Lovett & Meka, 2012).
Theorem 1.1 (Informal). If the eigenvalues of the covariance matrix of gradients decay
polynomially fast, then given m = poly

(
log n

ε

)
samples s1, s2, . . . , sm ∼ Ddata there is a

randomized algorithm to find ŵ with n − m weights rounded such that Es∼Ddata [|∆f |] ≤ ε.

From these insights we develop a practical rounding algorithm called DiscQuant. The
Lovett-Meka algorithm does a random walk starting from the original weights until it con-
verges to a vertex of K. Instead, we can find a vertex of K by minimizing a linear function
over the convex polytope K. DiscQuant uses stochastic gradient descent to minimize two
objectives, one corresponding to low ∆f , and the other corresponding to minimizing a linear
function. We take a knowledge distillation approach for the first term, minimizing the KL
divergence between the original and quantized model. These two losses are balanced with a
regularization parameter λ > 0:

min
ŵ

λ ⟨c, ŵ⟩ + Ez∼DdataEi[DKL (pw(·|z<i) ∥ pŵ(·|z<i))]

s.t. ŵ ∈ H.
(1)

Here pw(·|z<i) is the next token distribution given prefix z<i. An astute reader may notice
that the first order approximation of the KL divergence in (1) is exactly zero, and how our
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Figure 2: Select results quantizing Phi-3-mini-4k-instruct and Meta-Llama-3.1-8B-Instruct
using block scaling quantization. GSM8k is a math-based generative task, and WinoGrande
and PIQA are multiple choice commonsense reasoning tasks. Error bars are standard errors
from lm-evaluation-harness. See Section 5 for full results.

discussion above applies. In Section 4 where we describe in detail our exact optimization
objective, we also show that the second order term of KL divergence can be written as

Ez∼DdataEiEt∼pw(·|z<i)

[
⟨∇w log pw(t|z<i), ŵ − w⟩2

]
.

So minimizing the KL divergence is a succinct way to impose constraints of the form
⟨∇w log pw(t|z<i), ŵ − w⟩ ≈ 0 or equivalently log pw(t|z<i) ≈ log pŵ(t|z<i) where t ∼
pw(·|z<i) and z ∼ Ddata. Therefore our framework still applies.
After every step of gradient descent, we project the weights back to the hypercube H.
This ensures that the trajectory of DiscQuant remains within the convex polytope K and
eventually converges to a vertex of K with almost all the coordinates rounded. Instead of
picking a random direction c to find a random vertex of K, we use a special c∗ which let’s
us find the vertex closest to the original weights w (see Section 4). We use RTN to round
the few unrounded parameters left at the end of the optimization.
We perform extensive experiments which show the strength of our method: on models Phi-3-
mini-4k-instruct and Meta-Llama-3.1-8B-Instruct, across a variety of evaluation tasks, and
across the block scaling and incoherence processing quantization formats. DiscQuant is ag-
nostic towards the quantization grid, and can therefore be composed with other quantization
methods. Block scaling sets a bits parameter which determines the number of grid points,
and a unique scaling parameter per groupsize weights (Frantar et al., 2023). Incoherence
processing applies a random orthogonal transformation, which reduces the weight ranges
and can make quantization easier (Chee et al., 2023; Tseng et al., 2024a). A subset of re-
sults can be found in Figure 2. Across tasks, models, and quantization levels, our method
DiscQuant achieves superior compression over baselines GPTQ and RTN.
We summarize our main contributions:

• Theoretical developments: We prove that it is possible to achieve generalization error
≤ ε on the true data distribution by rounding all but poly(log n/ε) weights, so long as
the gradients of the original model are approximately low rank.

• Practical algorithm: We develop a simple and practical algorithm DiscQuant guided by
our theoretical analysis. We perform extensive experiments on Phi-3-mini-4k-instruct and
Meta-Llama-3.1-8B-Instruct, over block scaling and incoherence processing quantization
formats, and a variety of evaluation tasks. Our method DiscQuant achieves superior or
comparable quantization to the baselines GPTQ and RTN as can be seen from Figure 2.

2 Related Work

In this paper we focus on weights-only PTQ. Quantization can also be applied to the activa-
tions or KV-cache (Ashkboos et al., 2024; Liu et al., 2024a;b). Other compression method
such as pruning (Frantar & Alistarh, 2023; Sun et al., 2023) are also outside the scope of
this work. As discussed in the introduction, post training quantization can be divided into
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two overall steps: (1) Construct a good low bit-complexity representations for the weights
(the quantization grid), and (2) Round the original weights to the values in the quantization
grid. To this date, the vast majority of PTQ research for LLMs has focused on step (1).
Note that determining a good compressed representation can involve both encoding formats,
as well as transformations to ensure the weights better match the encoding format.

2.1 Quantization Grids

One of the more common quantization formats is called block scaling, or group-wise quan-
tization (Frantar et al., 2023). In addition to the bits parameter determining the number
of representable points, each groupsize parameters share a unique scaling parameter. An-
other successful encoding is to identify a small set of important weights and keep them in
high precision (Dettmers et al., 2022; 2024; Kim et al., 2024). Shao et al. (2024) learns
quantization parameters. Other works apply transformations to make quantization easier,
either relatively simple invariant scalings (Xiao et al., 2023; Lin et al., 2024), or more com-
plicated random orthogonal transformations (Chee et al., 2023; Liu et al., 2024a). Beyond
block scaling, there has been work quantizing multiple parameters together using vector
quantization (Tseng et al., 2024a; Egiazarian et al., 2024; van Baalen et al., 2024) or trellis
quantization (Tseng et al., 2024b).

2.2 Rounding

To the best of our knowledge, GPTQ (Frantar et al., 2023) is the main rounding method for
LLMs. It is based on the Optimal Brain Surgeon (Hassibi et al., 1993), which was adapted
for pruning and quantization in Frantar et al. (2022) and then refined for quantization in
GPTQ. GPTQ works by minimizing a layer-wise objective ∥WX − ŴX∥2

2, where W is
the weight matrix of a linear layer and X is the matrix of input activations to that layer
(stacked as columns). Two other LLM rounding methods both use coordinate descent: Nair
& Suggala (2024) only has results on the closed source PaLM-2 models with no released code,
and Behdin et al. (2023) has results on the OPT, BLOOM, and Falcon model families.
There was more work on rounding methods several years ago, before the LLM boom.
These papers were typically on smaller vision models. The line of work was started by
AdaRound (Nagel et al., 2020) and continuing to AdaQuant (Hubara et al., 2021) and
BRECQ (Li et al., 2021) employ a similar approach to ours, optimizing essentially inter-
polation variables between the closest up(wup) and down(wdown) quantization grid points,
while adding a concave regularization term to encourage rounding and using a rectified sig-
moid to interpolate between wup and wdown. They also do rounding layer by layer. However
our method uses a linear term as a regularizer inspired from our theoretical insights using
discrepancy theory and uses simple linear interpolation between wup and wdown and we
round the entire model at once.

2.3 Discrepancy Theory

Discrepancy theory is a deep branch of mathematics and theoretical computer science, and
we refer the readers to standard textbooks for more details (Matousek, 2009; Chazelle et al.,
2004; Bansal, 2022) To our knowledge, only Lybrand & Saab (2021) makes the connection
between discrepancy theory and quantization. However, besides the high level motivational
similarities, their work is not directly relevant to ours. Lybrand & Saab (2021) reduce the
problem of understanding the error introduced by quantization on the output of a single
neuron to a problem in discrepancy, and construct an algorithm for quantizing a single
neuron. Their theoretical analysis on the generalization error only applies to quantizing the
first layer of a neural network. On the other hand, we use discrepancy theory to understand
when the whole network f(w; s) can be approximated by f(ŵ; s) with ŵ in the quantization
grid, and our theory holds for any network as a whole as long as our assumptions are true.

3 Connections to Discrepancy Theory

4
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Figure 3: First order approxi-
mation of the error function ∆f
when quantizing the model to
4.25 bits using RTN and Disc-
Quant. Here f is the per-token
loss function and s is sampled
from the WikiText-2 dataset.
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Figure 4: Eigenvalues of the covariance matrix of the gra-
dients of pre-trained models. The covariance matrix is
estimated by averaging over 8k sample gradients from
RedPajama-1T-Sample and projecting them to 2048 di-
mensions using Johnson-Lindenstrauss projections.

Model ∥E(g)∥2 E∥g∥2

Phi3-mini-128k 0.1021 4.7812
Llama3.1-8B 1.6328 107

Table 1: ∥E(g)∥2 vs E∥g∥2 over 8192
samples from RedPajama-1T-Sample
dataset with window size 2048.

Let f(w; s) be the loss function of a pre-trained
neural network with weights w ∈ Rn on an input
sample s and let Ddata be the sample data dis-
tribution. Suppose we are also given a (scalar)
quantization grid Q = Q1 × Q2 × · · · × Qn where
Qj ⊂ R is a finite set of quantization points avail-
able to quantize the jth parameter.1 In this work,
we focus on scalar quantization which allows us to
write the quantization grid as a product set, i.e.,
each parameter can be independently rounded to
a finite set of available values. Alternatively, in vector quantization a group of d variables
are rounded together to one of a finite set of quantization points in Rd, which has been used
in some prior works (Tseng et al., 2024a; Egiazarian et al., 2024; van Baalen et al., 2024).
Generalizing our method to vector quantizers is an interesting future research direction.
Our goal is to find a rounding ŵ ∈ Q of the original weights w such f(ŵ; s) ≈ f(w; s) where
s ∼ Ddata. We further impose the constraint that for each parameter wj , we only round up
or round down to the available values in Qj , i.e., we only have two choices for ŵj denoted
by wup

j , wdown
j ∈ Qj where wup

j ≤ wj ≤ wdown
j .2 We make this assumption because we don’t

want to change any parameter of the original model too much during quantization, consider
it an important property of algorithms we design. Using Taylor expansion:

∆f = f(ŵ; s) − f(w; s) = ⟨∇wf(w; s), ŵ − w⟩ + (ŵ − w)T ∇2
wf(w; s)(ŵ − w) + · · · (2)

Assuming that the quantization grid Q is fine enough and since we only round each param-
eter up or down, ∥ŵ − w∥ is small and so we can ignore the higher order terms. We claim
that the first order term is the dominant term. Prior works such as Nagel et al. (2020);
Hassibi et al. (1993); LeCun et al. (1989) have assumed that the first order term can be
assumed to be zero because the model is trained to convergence and focused on reducing
the second order term. But the model being trained to convergence just means that average
gradient over many samples from the distribution is nearly zero. But the gradients still
have some variance and gradients w.r.t. individual samples from the data distribution are
not approximately zero (see Table 1). Figure 3 demonstrates this by showing that the error
term ∆f is well-correlated with the first order approximation ⟨∇wf(w; s), ŵ − w⟩.3

So the goal now is to find a rounding ŵ such that ⟨∇wf(w; s), ŵ − w⟩ ≈ 0 for samples
s ∼ Ddata. Suppose we sample m samples s1, s2, . . . , sm ∼ Ddata independently from the

1The quantization grid Q can depend on w, like in Block Scaling (Frantar et al., 2023). So
ideally, we should write Qw, but we ignore the dependence to simplify notation.

2If wj < min Qj or wj > max Qj , we just set wup
j = wdown

j = min Qj or max Qj respectively.
3In the special case when f is the KL distillation loss between the original model and quantized

model, the first order term vanishes exactly. See Section 4 for why this analysis still applies.
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data distribution, where m ≪ n. We now break our task into two parts of bounding the
empirical error and generalization error as follows:
Question 3.1. Can we find ŵ ∈ Q (with ŵj ∈ {wdown

j , wup
j }) such that

⟨∇wf(w; si), ŵ − w⟩ ≈ 0 for all the samples s1, . . . , sm?
Question 3.2. Once we find such a ŵ, will it generalize to the true data distribution, i.e.,
will ⟨∇wf(w; s), ŵ − w⟩ ≈ 0 for s ∼ Ddata? How many samples m do we need for this?

3.1 Bounding empirical error (Question 3.1)

For simplicity, let us assume that the quantization grid is uniform and wup
i − wdown

i = δ
for all i ∈ [n] where δ > 0 is the distance between grid points. See Appendix C for how to
genealize this to non-uniform grids. We will introduce new parameters x ∈ [0, 1]n and define
wx = wdown + δx. Note that wx

i interpolates between wdown
i and wup

i where wi = wdown
i if

xi = 0 and wi = wup
i if xi = 1. Let y ∈ [0, 1]n be the interpolation point corresponding to

the original weights, i.e., wy = w. We can rewrite the linear constraints in terms of x as
follows:

⟨∇wf(w; si), wx − w⟩ = ⟨∇wf(w; si), wx − wy⟩ = δ ⟨∇wf(w; si), x − y⟩ .

Let M be an m×n matrix whose ith row is given by ∇wf(w; si). Then the linear constraints
can be simply written as M(x − y) = 0. Our goal is to find a fully integral x̂ ∈ {0, 1}n such
that M(x̂ − y) = 0. Let V = {x ∈ Rn : Mx = My} which is an affine subspace of dimension
≥ n − m. Define K = [0, 1]n ∩ V as the intersection of the hypercube with this subspace. K
is a convex polytope and it is non-empty because y ∈ K. Therefore any vertex of K should
have n − m integral coordinates (i.e., coordinates j such that xj ∈ {0, 1}).4

See Figure 1 for geometric intuition about why this is true. Since the number of parameters
n is much larger than the number of samples m, any vertex of K is almost fully integral
and exactly satisfies all the m linear constraints.
Suppose we further ask for a fully integral x̂ which approximately satisfies all the m linear
constraints, this precise question is answered by discrepancy theory which studies how to do
this and relates the approximation error to properties of M such as hereditary discrepancy
(Lovász et al., 1986; Bansal, 2022). We don’t explore this direction further because the
almost integral x̂—a vertex of K—is good enough if we apply RTN to the few remaining
fractional parameters; we observe that the linear constraints are all approximately satisfied.

3.2 Bounding Generalization Error (Question 3.2)

How do we bound the generalization error if we know that the empirical approximation error
is small? If ŵ − w is approximately orthogonal to m sample gradients ∇wf(w; si) for i = 1
to m, why should we expect that ŵ − w is orthogonal to unseen gradients ∇wf(w; s) for
samples s ∼ Ddata? This should happen only if the gradients are approximately low rank.
More precisely, let

Σ = Es∼Ddata [ggT ] where g = ∇wf(w; s)
be the covariance matrix of the distribution of sample gradients and let λ1 ≥ λ2 ≥ · · · ≥ λn

be its eigenvalues. We observe that the eigenvalues decay very fast, see Figure 4 for empirical
validation of this on some real world models. We model this by assuming that λk ≤ λ1/kα

for α > 1. The assumption that α > 1 is valid since

Es[∥g∥2] = Es[Tr(ggT )] = Tr(Es[ggT ]) = Tr(Σ) =
n∑

i=1
λi.

It is well-known that the gradients of a pretrained model have constant norm on most
samples (see Table 1 for empirical validation). Therefore

∑n
i=1 λi = O(1) and so the the

decay coefficient α has to be at least 1.
4This is because at a vertex, we need to have n tight constraints, and V imposes only m tight

constraints. So the remaining n − m tight constraints should come from the hypercube. These are
also called basic feasible solutions in linear programming.
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Under this assumption, it is reasonable to expect generalization. But this is not at all obvious
to find a generalizing solution. In fact, any deterministic algorithm which chooses one of the
vertices of K will most likely not generalize. We give a randomized rounding algorithm (see
Algorithm B.2) based on the famous Lovett-Meka algorithm from discrepancy theory (Lovett
& Meka, 2012) which finds a vertex of K which has low generalization error. The algorithm
starts at y and does a random walk (Brownian motion) inside the n−m dimensional subspace
V formed by the linear constraints imposed by the m samples. Whenever it hits a face xi = 0
or xi = 1 of the hypercube, it fixes that variable and continues the random walk until almost
all the variables are rounded.
In order to prove rigorous bounds we also need a mild assumption that the distribution
of gradients is well-behaved. We use the notion by O’Donnell (2014) and say that for a
parameter β ≥ 1, a random vector X ∈ Rn is β-reasonable if

E[⟨X, θ⟩4] ≤ β · E[⟨X, θ⟩2]2 ∀θ ∈ Rn.

For example X ∼ {−1, 1}n and a Gaussian X ∼ N(0, Σ) are both O(1)-reasonable. Our
main theoretical result (proved in Appendix B) is then:
Theorem 3.3. Let α > 1 and β ≥ 1 be constants and let 1 ≤ m ≤ n

16 . Let D be a
β-reasonable distribution with unknown covariance matrix Σ ∈ Rn×n whose Eigenvalues
satisfy λk ≤ λ1

kα for all k = 1, . . . , n. Then there is a randomized polynomial time algorithm
that given a y ∈ [0, 1]n and m independent samples g1, . . . , gm ∼ D, produces an x ∈ [0, 1]n
with high probability such that all but O(m) parameters in x are fully rounded and

Eg∼D[⟨g, x − y⟩2] = (x − y)T Σ(x − y) ≲α,β λ1m− min{1/2,α−1}(log n)2.

4 DiscQuant: Algorithm

In this section, we will present DiscQuant, a simple and practical algorithm for rounding
inspired by the theoretical insights in Section 3. Instead of trying to approximate the loss
function of the pre-trained model, i.e., f(ŵ; s) ≈ f(w; s), we will instead take a distillation
approach and try to minimize the KL divergence between the next token distribution of the
original model and the quantized model. Let pw(·|z<i) be the distribution of the next token
predicted by the original model given prefix z<i where z ∼ Ddata is a sample from the data
distribution. We want error(ŵ) = Ez∼DdataEiDKL (pw(·|z<i) ∥ pŵ(·|z<i)) ≈ 0.
Expanding error(ŵ) using Taylor series, we can see that first order term vanishes exactly
and so the second order term is the dominant term (see Appendix D). By Lemma D.1,
Hessian of error(ŵ) can be written as a covariance of gradients as:

Hw = Ez∼DdataEiEt∼pw(t|z<i)
[
(∇w log pw(t|z<i)(∇w log pw(·|z<i))T

]
.

Therefore
error(ŵ) ≈ (ŵ − w)T Hw(ŵ − w) = Ez∼DdataEiEt∼pw(·|z<i)

[
⟨∇w log pw(t|z<i), ŵ − w⟩2

]
.

So minimizing error(ŵ) is a succinct way to impose constraints of the form
⟨∇w log pw(t|z<i), ŵ − w⟩ ≈ 0 or equivalently log pw(t|z<i) ≈ log pŵ(t|z<i) where t ∼
pw(·|z<i) and z ∼ Ddata. Therefore, we can use the same techniques developed in Sec-
tion 3 to solve this as well. Assuming that the gradients are low rank, the set of x satisfying
these constraints (where ŵ = wx) form an affine subspace V of dimension ≥ n − m where
m is the number of samples. We are again interested in finding a vertex of the polytope
K = [0, 1]n ∩ V which will have ≥ n − m integral coordinates. At this point, we could use
the Lovett-Meka algorithm (Algorithm B.2) which has provable generalization guarantees.
But explicitly calculating all the gradients and storing them is infeasible. Instead a simple
heuristic way to find a random vertex of polytope K is to minimize a random linear function.
Let c ∈ Rn be some arbitrary vector; we will try to minimize the linear function ⟨c, x⟩ along
with the KL divergence by taking a linear combination of them. The final optimization
objective is shown in (3) where λ > 0 is a regularization coefficient.

min
x

λ ⟨c, x⟩ + Ez∼DdataEi[DKL (pw(·|z<i) ∥ pwx(·|z<i))]

s.t. x ∈ [0, 1]n.
(3)
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We solve the optimization problem (3) using projected stochastic gradient descent where we
project x to the hypercube after every gradient update. Optimizing (3) will keep us close
the polytope K and will approximately converge to a vertex of K which is almost integral.
We round whatever fractional coordinates are left using RTN to get a fully integral solution.
We use one additional heuristic to improve the performance of the algorithm in practice.
Instead of choosing a random vertex of the polytope K by choosing the vector c at random,
we will choose it carefully so as to find the vertex of the polytope K which is closest to y
which is the interpolation point corresponding to the original model weights (i.e., y such
that wy = w). We have:

∥x − y∥2 =
∑

i

(x2
i − 2xiyi + y2

i ) ≈
∑

i

(xi − 2xiyi + y2
i ) = ⟨c∗, x⟩ + ∥y∥2

where c∗ = (1 − 2y). Here we have used the fact that x2
i = xi whenever xi ∈ {0, 1} and

since x is almost integral, we can use the approximation in the summation above. With
this approximation, minimizing ∥x − y∥2 over almost integral x is equivalent to minimizing
⟨c∗, x⟩. So in the DiscQuant algorithm, we use c = c∗ specifically instead of a random c.

5 Experiments

We evaluate our method on the Phi-3-mini-4k-instruct (Abdin et al., 2024) and Meta-
Llama-3.1-8B-Instruct (Dubey et al., 2024) models, and compare against GPTQ and greedy
rounding (i.e. round-to-nearest, or RTN). We use the lm-evaluation-harness Gao et al. (2023)
to evaluate on the Wikitext, GSM8k cot 8-shot, MMLU 5-shot, ARC Challenge 0-shot,
PIQA 0-shot, HellaSwag 0-shot, and Winogrande 0-shot tasks. We report standard errors
from lm-evaluation-harness. Wikitext measures perplexity, GSM8k is a generative task,
and the remaining are multiple choice tasks. Note that generative tasks are typically more
difficult than multiple choice tasks, and better reflect how the models are used in practice.
See Appendix A for details on the hardware used, and hyper-parameter settings. Our
method has similar memory requires as knowledge distillation, which also requires two copies
of the model. We do not perform inference timing experiments; DiscQuant can optimize over
a given quantization grid, so that we can utilize any pre-existing inference optimizations. For
example, there are inference kernels for block scaling (Frantar et al., 2024) and incoherence
processing (Tseng et al., 2024a). Ablations on the loss formulation are in Appendix A.

5.1 Block Scaling

Our first experiments use standard block scaling quantization, determined by a bits and
groupsize parameter. There are 2bits unique points, and every groupsize parameters
share a unique 16-bit scale parameter. For example, 3.25 bits is achieved with bits=3,
groupsize=64. We use the block scaling implementation from Frantar et al. (2024) which is
symmetric linear quantization. Table 2 shows the results quantizing Phi-3-mini-4k-instruct.
Across all tasks and all bit settings, our method DiscQuant achieves superior or comparable
compression over the baseline GPTQ and RTN methods. The gap between DiscQuant and
the baselines is greater at lower bits. On the ARC Challenge, PIQA, and WinoGrade tasks,
DiscQuant achieves full recovery with at least 0.25 fewer bits per parameter than GPTQ and
RTN. For example on ARC Challenge, DiscQuant achieves full recovery at 4 bits per weight,
whereas GPTQ requires 4.25 bits, and RTN 4.5 bits. DiscQuant achieves better compression
on the more difficult generative GSM8k task: at 4 bits DiscQuant gets 77.3% accuracy,
while GPTQ gets 71.5%, and RTN gets 62.2%. Table 3 shows the results quantizing Meta-
Llama-3.1-8B-Instruct. Overall the story is the same. Our method DiscQuant achieves
improved compression on the majority of quantization levels and tasks. For example at 4
bits, DiscQuant gets 66.5% GSM8k accuracy, while GPTQ gets 63.2%, and RTN gets 50.8%.

5.2 Incoherence Processing

We explore another quantization format to show that our method can compose with other
quantization improvements. Incoherence processing has been shown to improve quantiza-
tion, especially at less than 4 bits per weight Chee et al. (2023). The weights are multiplied

8
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Method Wbits Wiki↓ GSM8k↑ MMLU↑ ArcC↑ PIQA↑ Hella↑ Wino↑
— 16.0 9.5 84.4±1.0 70.4±0.4 56.7±1.4 80.8±0.9 77.4±0.4 73.5±1.2

RTN 3.0 6.3E5 1.0±0.3 23.3±0.4 26.9±1.3 53.4±1.2 28.2±0.4 48.6±1.4

GPTQ 3.0 28.2 2.3±0.4 37.7±0.4 34.8±1.4 64.3±1.1 56.5±0.5 52.6±1.4

DiscQ 3.0 17.7 26.8±1.2 45.6±0.4 44.1±1.5 73.9±1.0 63.3±0.5 66.6±1.3

RTN 3.25 22.5 31.0±1.3 53.2±0.4 48.4±1.5 72.5±1.0 68.3±0.5 62.6±1.4

GPTQ 3.25 13.8 54.3±1.4 59.0±0.4 49.6±1.5 77.3±1.0 71.1±0.5 66.5±1.3

DiscQ 3.25 12.6 64.2±1.3 60.7±0.4 53.5±1.5 78.7±1.0 72.3±0.4 72.5±1.3

RTN 3.5 18.8 46.3±1.4 57.0±0.4 46.2±1.5 73.8±1.0 70.0±0.5 63.9±1.4

GPTQ 3.5 12.8 54.6±1.4 61.7±0.4 51.6±1.5 78.9±1.0 72.3±0.4 68.3±1.3

DiscQ 3.5 12.0 69.5±1.3 63.0±0.4 51.1±1.5 78.9±1.0 73.0±0.4 73.9±1.2

RTN 4.0 14.6 62.2±1.3 61.2±0.4 53.6±1.5 76.3±1.0 72.9±0.4 65.3±1.3

GPTQ 4.0 11.5 71.5±1.2 65.1±0.4 54.6±1.5 78.8±1.0 74.7±0.4 70.9±1.3

DiscQ 4.0 11.2 77.3±1.2 65.7±0.4 56.8±1.4 79.5±0.9 74.5±0.4 72.0±1.3

RTN 4.25 11.2 64.4±1.3 67.5±0.4 55.5±1.5 79.3±0.9 76.1±0.4 69.1±1.3

GPTQ 4.25 10.3 81.0±1.1 68.5±0.4 56.9±1.4 79.7±0.9 76.1±0.4 72.1±1.3

DiscQ 4.25 10.2 80.7±1.1 68.4±0.4 57.3±1.4 80.7±0.9 76.3±0.4 74.2±1.2

RTN 4.5 10.8 71.6±1.2 67.7±0.4 57.5±1.4 79.3±0.9 76.6±0.4 72.2±1.3

GPTQ 4.5 10.1 82.0±1.1 68.8±0.4 55.8±1.5 80.8±0.9 76.5±0.4 71.8±1.3

DiscQ 4.5 10.0 82.1±1.1 68.5±0.4 56.6±1.4 80.2±0.9 76.7±0.4 74.2±1.2

Table 2: Phi-3-mini-4k-instruct. Across all tasks and bits, our method DiscQuant always
achieves superior results over the baseline RTN and GPTQ methods. On the ArcC, PIQA,
and Wino tasks, DiscQuant achieves full recovery with at least 0.25 fewer bits per parameter
than GPTQ and RTN.

Method Wbits Wiki↓ GSM8k↑ MMLU↑ ArcC↑ PIQA↑ Hella↑ Wino↑
— 16.0 8.7 77.0±1.2 68.0±0.4 55.2±1.5 81.3±0.9 79.3±0.4 73.7±1.2

RTN 3.0 4.4E3 0.5±0.2 23.2±0.4 22.3±1.2 52.4±1.2 29.1±0.5 50.0±1.4

GPTQ 3.0 23.2 3.6±0.5 24.6±0.4 31.8±1.4 66.6±1.1 45.8±0.5 54.1±1.4

DiscQ 3.0 15.2 14.3±1.0 44.6±0.4 39.4±1.4 73.2±1.0 64.4±0.5 62.8±1.4

RTN 3.25 15.2 10.8±0.9 50.5±0.4 44.3±1.5 75.2±1.0 71.4±0.5 67.2±1.3

GPTQ 3.25 10.7 56.3±1.4 60.5±0.4 46.3±1.5 76.7±1.0 74.4±0.4 68.7±1.3

DiscQ 3.25 10.5 58.3±1.4 60.2±0.4 49.1±1.5 79.1±0.9 75.1±0.4 72.1±1.3

RTN 3.5 12.7 35.9±1.3 51.4±0.4 48.4±1.5 76.7±1.0 73.0±0.4 69.1±1.3

GPTQ 3.5 10.4 57.0±1.4 62.1±0.4 49.9±1.5 77.3±1.0 75.1±0.4 71.1±1.3

DiscQ 3.5 10.3 60.7±1.3 60.9±0.4 51.7±1.5 79.2±0.9 76.3±0.4 72.5±1.3

RTN 4.0 12.5 50.8±1.4 59.3±0.4 50.5±1.5 77.6±1.0 74.7±0.4 69.9±1.3

GPTQ 4.0 9.9 63.2±1.3 64.4±0.4 52.4±1.5 78.4±1.0 75.9±0.4 71.7±1.3

DiscQ 4.0 9.8 66.5±1.3 63.4±0.4 51.6±1.5 79.2±0.9 76.9±0.4 72.8±1.3

RTN 4.25 9.4 70.6±1.3 65.7±0.4 54.2±1.5 80.1±0.9 78.0±0.4 73.9±1.2

GPTQ 4.25 9.1 74.6±1.2 66.8±0.4 53.4±1.5 79.6±0.9 77.9±0.4 73.5±1.2

DiscQ 4.25 9.1 74.9±1.2 66.9±0.4 53.6±1.5 79.9±0.9 78.4±0.4 72.6±1.3

RTN 4.5 9.3 71.9±1.2 65.8±0.4 54.8±1.5 80.3±0.9 78.4±0.4 72.4±1.3

GPTQ 4.5 9.0 73.8±1.2 66.9±0.4 53.6±1.5 79.6±0.9 78.1±0.4 73.7±1.2

DiscQ 4.5 9.1 74.8±1.2 66.8±0.4 54.1±1.5 80.6±0.9 78.7±0.4 72.9±1.2

Table 3: Meta-Llama-3.1-8B-Instruct. Our method DiscQuant achieves superior compres-
sion on the vast majority of quantization levels and tasks over the baselines GPTQ and
RTN.

by certain random orthogonal matrices prior to quantization, which can reduce the range of
the weights and make quantization easier. We employ the Randomized Hadamard Trans-
form from Tseng et al. (2024a). We use the same block scaling quantization grid as in the
previous subsection. A subset of our results are shown in Figure 5, where we superimpose bar
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Figure 5: Quantizing Phi-3-mini-4k-instruct and Meta-LLama-3.1-8B-Instruct with block
scaling, and additional incoherence processing. DiscQuant can compose with other quanti-
zation improvements, and with incoherence processing remains competitive with GPTQ.
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Figure 6: Effect of increasing the fraction of math data when quantizing Phi-3-mini-4k-
instruct at 3.25 bits. For 8192 total samples, we use a fraction of math subject data (GSM8k
& MetaMathQA), and the remaining our standard RedPajama. As expected, performance
on GSM8k increases with more math data. Expected behavior on the other tasks is unclear.

plots for block scaling and block scaling + incoherence processing. In the majority of cases,
adding incoherence processing increases the task accuracy, especially at lower bits. We do
not use fractional bits, (i.e. no groupsize), due to the fact that both these methods effect
outliers and can interfere with one another. Incoherence especially helps GPTQ at 3 bits,
and for Phi-3 DiscQuant without incoherence is competitive to GPTQ with incoherence.
For full results see Appendix A.

5.3 Effect of Data

We perform a simple investigation into the effect of the dataset on quantization. We mix
math subeject data–GSM8k and MetaMathQA–with our standard RedPajama dataset. Fig-
ure 6 shows the results of quantizing Phi-3-mini-4k-instruct at 3.25 bits with such a mix.
As expected, both methods increase accuracy on GSM8k when there is a greater fraction of
math data. On HellaSwag, DiscQuant improves with more math data, where GPTQ gets
worse. On PIQA, both methods get worse. See Appendix A for all tasks. There is a mean-
ingful change in accuracy as a result of changing the data mix. Choosing an appropriate
data mix for quantization remains an important open question.
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Method Wbits Wiki↓ GSM8k↑ MMLU↑ ArcC↑ PIQA↑ Hella↑ Wino↑
— 16.0 9.5 84.4±1.0 70.4±0.4 56.7±1.4 80.8±0.9 77.4±0.4 73.5±1.2

RTN 3.0 2.6E5 0.0±0.0 23.4±0.4 28.5±1.3 49.8±1.2 26.0±0.4 50.2±1.4

GPTQ 3.0 20.8 10.0±0.8 43.8±0.4 39.2±1.4 70.5±1.1 60.7±0.5 58.0±1.4

DiscQ 3.0 16.7 29.9±1.3 48.0±0.4 46.2±1.5 75.1±1.0 64.5±0.5 66.6±1.3

RTN 4.0 15.9 56.3±1.4 55.0±0.4 53.5±1.5 77.4±1.0 68.8±0.5 70.6±1.3

GPTQ 4.0 11.0 77.6±1.1 65.8±0.4 53.7±1.5 80.2±0.9 74.9±0.4 72.5±1.3

DiscQ 4.0 11.0 76.7±1.2 65.6±0.4 56.0±1.5 79.5±0.9 74.9±0.4 74.2±1.2

Table 4: Phi-3-mini-4k-instruct with incoherence processing. At 3 bits per weight, Dis-
cQuant achieves superior compression across all tasks. At 4 bits per weight, DiscQuant
achieves comparable compression.

Method Wbits Wiki↓ GSM8k↑ MMLU↑ ArcC↑ PIQA↑ Hella↑ Wino↑
— 16.0 8.7 77.0±1.2 68.0±0.4 55.2±1.5 81.3±0.9 79.3±0.4 73.7±1.2

RTN 3.0 2.4E3 2.1±0.4 25.2±0.4 24.3±1.3 54.7±1.2 29.5±0.5 49.6±1.4

GPTQ 3.0 13.9 24.4±1.2 49.7±0.4 41.7±1.4 73.1±1.0 70.4±0.5 66.2±1.3

DiscQ 3.0 13.4 25.4±1.2 51.5±0.4 40.4±1.4 73.2±1.0 69.6±0.5 64.2±1.3

RTN 4.0 11.2 51.6±1.4 59.5±0.4 50.1±1.5 78.9±1.0 74.5±0.4 71.0±1.3

GPTQ 4.0 9.5 70.7±1.3 64.9±0.4 52.8±1.5 80.0±0.9 77.4±0.4 72.7±1.3

DiscQ 4.0 9.6 69.4±1.3 63.7±0.4 54.1±1.5 80.7±0.9 77.0±0.4 73.2±1.2

Table 5: Meta-Llama-3.1-8B-Instruct with incoherence processing. Across a majority of bits
and tasks, DiscQuant achieves comparable compression with GPTQ, and does better than
RNT.

A Additional Experiments

A.1 Experimental Setup Details

The experiments for the Phi-3-mini model were conducted on either a single 80GB Nvidia
A100 GPU, or 2x40GB A100 GPUs, while the Llama-3.1-8B model used either 2x80GB
A100s, or 4x40GB A100s. We use the PyTorch framework. We initialize x ∈ [0, 1]n
uniformly at random, and used AdamW (Loshchilov & Hutter, 2019) with a cosine
learning rate schedule. We multiply the regularization coefficient λ with the KL loss
term, and perform entry-wise gradient clipping on the KL loss term. For DiscQuant,
we tuned the hyper-parameters for each model and bit setting. The hyper-parameters
clamp, λ, lr, batch size, num iter and warmup were tuned. In the block scaling
setting we found that clamp={1.0, 0.5}, λ=200, lr={0.1, 0.05}, batch size={4,8},
num iter=1024, warmup=128 worked well for both models. In the incoherence processing
setting we found that clamp={0.05,0.01}, lr={0.05,0.01} worked well for both mod-
els, all other parameters being the same as before. For GPTQ, we used the actorder,
true sequential heuristics, and as tuned the number of samples over {1024, 4096,
8192} for each model and bit setting. Our quantization dataset is constructed from the
RedPajama-1T-Sample training set (Computer, 2023). We concatenate random samples
until up to 2048 sequence length, truncating the last sample if necessary. Greedy or round-
to-nearest requires no data, and no hyper-parameter tuning.

A.2 Incoherence Processing

Table 4 shows our results quantizing Phi-3-mini-4k-instruct with incoherence processing. At
3 bits per weight, DiscQuant achieves superior compression across all tasks. At 4 bits per
weight, DiscQuant achieves comparable compression. For example, on ARC CHallenge at
3 bits, DiscQuant achieves 46.2% accuracy, while GPTQ achieves 39.2%, and RTN 28.5%.
Table 5 shows our results quantizing Meta-Llama-3.1-8B-Instruct with incoherence process-
ing. DiscQuant performs comparably to GPTQ, and better than RTN. For example, on
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Figure 7: Quantizing Phi-3-mini-4k-instruct with block scaling, and additional incoherence
processing. Adding incoherence processing largely improves model quality at 3 bits. At
4 bits, these improvements are smaller. At 3 bits, DiscQuant is better than GPTQ with
incoherence processing.

WinoGrande at 4 bits, DiscQuant achieves 73.2% accuracy, while GPTQ achieves 72.7%,
and RTN 71.0%.
Figures 7 and 8 show the results adding incoherence processing superimposed over just using
block scaling. Incoherence processing largely improves quantization at 3 bits across both
models, whereas at 4 bits the improvements are smaller. In the Phi-3 model at 3 bits,
DiscQuant without incoherence is better than GPTQ with incoherence. Across the other
models and bit settings, DiscQuant and GPTQ are comparable after incoherence processing.

A.3 Effect of Data

Here we give the full set of evaluation tasks when changing the mix of math subject data
when quantizing Phi-3-mini-4k-instruct to 3.25 bits. It is interesting that across all evalua-
tion tasks, there is a meaningful change in evaluation metrics as a result of changing the data
mix. We leave the question of appropriate data curation as an important open question.

A.4 Ablations

We tried several distillation formulations, but ultimately chose a standard KL divergence
between the outputs of the original and quantized model as the best approach. See Table 6.
We quantize Phi-3-mini-4k-instruct to 3.25 bits, using 1024 samples. We tune the hyper-
parameters as described at the beginning of this section. Note that for these ablations
we used fewer samples than in our main experiments. In addition to the standard KL
divergence, we tried several intermediate loss formulations for knowledge distillation. We
used a normalized L2 loss between the outputs of the teacher and student, either per decoder
layer (Intermed Type = Layer), or between each linear layer (Intermed Type = Linear).
This distillation formulation was presented in Kurtic et al. (2023) for recovering LLMs after
pruning. We also investigated taking an affine combination between the KL and intermediate
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Figure 8: Quantizing Meta-Llama-3.1-8B-Instruct with block scaling, and additional inco-
herence processing. Adding incoherence processing largely improves model quality at 3 bits.
At 4 bits, these improvements are smaller. After incoherence, DiscQuant is largely compa-
rable to GPTQ.

losses, trying several different coefficients. Table 6 shows our results; using just the KL
divergence gives the best results. We also tried minimizing the ground truth loss instead of
a distillation loss. We use the same setup as Table 6, and find that minimizing the ground
truth loss achieves 52.7% GSM8k accuracy, and 13.6 Wikitext perplexity. Therefore we use
the KL divergence.

B Rounding weights via Discrepancy Theory

B.1 The Lovett Meka algorithm

A seminal result by Lovett and Meka Lovett & Meka (2012) works as follows: we are given
a point y ∈ [0, 1]n in the hypercube, vectors v1, . . . , vm ∈ Rn with ∥vj∥2 = 1 and parameters
cj ≥ 0 so that

∑m
j=1 e−c2

j /16 ≤ n
16 . Then in randomized polynomial time one can find a

point x ∈ [0, 1]n so that | ⟨vj , x − y⟩ | ≤ cj for all j and at least half the coordinates of x are
integral. Their algorithm is simple and elegant: we construct x as the outcome of a random
walk starting at y. Then iteratively, for some small step size δ > 0 we add the outcome
of a random Gaussian times δ to the current point. After hitting some constraint xi = 0,
xi = 1 or | ⟨vj , x − y⟩ | = cj , the Gaussian updates will be taken orthogonal to those normal
vectors. In other words, the random walk will continue in the face of the described polytope.
Still Lovett & Meka (2012) prove that performing the updates for O( 1

δ2 ) iterations the walk
will cover enough distance so that on average Θ(n) box constraints must become tight.
In our setting we only need to use parameters cj = 0. However we use some properties of the
Lovett-Meka algorithm that are not explicitly stated elsewhere. Here we denote ∥M∥S(1)
as the sum of the singular values of a matrix M (also called Schatten-1 norm, nuclear norm
or trace norm of M).
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Figure 9: Effect of increasing the fraction of math data when quantizing Phi-3-mini-4k-
instruct at 3.25 bits. For 8192 total samples, we use a fraction of math subject data (GSM8k
and MetaMathQA), and the remaining our standard RedPajama. Across all evaluations,
there is a meaningful change as a result of changing the data mix.
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KL Coeff Intermed Coeff Intermed Type Wiki↓ GSM8k↑
1.0 0.0 None 12.8 64.9±1.3

0.0 1.0 Layer 14.7 54.1±1.4

0.0 1.0 Linear 14.3 60.1±1.4

0.1 0.9 Linear 13.1 61.4±1.3

0.5 0.5 Linear 12.9 63.9±1.3

0.9 0.1 Linear 12.8 63.8±1.3

Table 6: Distillation Ablations. Quantizing Phi-3-mini-4k to 3.25 bits using a reduced 1024
samples of RedPajama. We test affine combinations between the KL divergence loss and
intermediate L2 loss, which is either between the linear or decoder layers. Standard KL
divergence does best.

Theorem B.1 (Derived from Lovett & Meka (2012)). Let g1, . . . , gm ∈ Rn be any vectors
with m ≤ n

16 and let y ∈ [0, 1]n. Then in polynomial time one can compute a sample
x ∼ D := DLM (g1, . . . , gm, y) so that

(i) One has x ∈ [0, 1]n and with probability at least 1
10 one has |{j ∈ [n] : xj ∈ {0, 1}}| ≥

n
2 .

(ii) For any vector θ ∈ Rn one has Ex∼D[⟨θ, x − y⟩2] ≤ O(∥θ∥2
2).

(iii) For any symmetric matrix M ∈ Rn×n one has E[
〈
M, (x − y)(x − y)T

〉
] ≤

O(∥M∥S(1)).

Proof. (i) is explicitly in Lovett & Meka (2012). For (ii) we use that the outcome of the
random walk is of the form

x = y + δ

O(1/δ2)∑
t=1

ut where ut ∼ N(0, Σt)

Here 0 ⪯ Σt ⪯ In. But crucially each covariance matrix Σt may depend on the outcome of
u1, . . . , ut−1. In particular it is not true that x − y is Gaussian. But it is a Martingale and
as for each step t one has E[⟨ut, θ⟩] = 0 and E[⟨ut, θ⟩2] ≤ O(∥θ∥2

2), the variance still satisfies
E[
〈
δ
∑O(1/δ2)

t=1 ut, θ
〉2] ≤ O(∥θ∥2

2) which settles (ii). Finally we argue why (iii) holds. We
note that (ii) can be restated as Ex∼D[(x − y)(x − y)T ] ⪯ O(1) · In. Then

E[
〈
M, (x − y)(x − y)T

〉
] =

〈
M,E[(x − y)(x − y)T ]

〉
≤ ∥M∥S(1) · ∥E[(x − y)(x − y)T ]∥op

≤ O(∥M∥S(1)).

□

B.2 The main theoretical result

As explained earlier we assume that we are given a weight vector y ∈ [0, 1]n and have
access to samples g1, . . . , gm ∼ D where D is a distribution on Rn whose covariance matrix
Σ := Eg∼Ddata [ggT ] has rapidly decaying Eigenvalues, say λk ≤ C

kα for some constants C > 0
and α > 1. In order to prove rigorous bounds we also need a mild assumption that provides
that the distribution is well-behaved. We use the notion by O’Donnell O’Donnell (2014)
and say that for a parameter β ≥ 1, a random vector X ∈ Rn is β-reasonable if

E[⟨X, θ⟩4] ≤ β · E[⟨X, θ⟩2]2 ∀θ ∈ Rn

For example X ∼ {−1, 1}n and a Gaussian X ∼ N(0, Σ) are both O(1)-reasonable. Our
main theoretical result is then:

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Theorem B.2. Let α > 1 and β ≥ 1 be constants and let 1 ≤ m ≤ n
16 . Let D be a

β-reasonable distribution with unknown covariance matrix Σ ∈ Rn×n whose Eigenvalues
satisfy λk ≤ 1

kα for all k = 1, . . . , n. Then there is a randomized polynomial time algorithm
that given a y ∈ [0, 1]n and m independent samples g1, . . . , gm ∼ D, produces an x ∈ [0, 1]n
so that with probability at least 0.99 one has

(i) |frac(x)| ≤ 16m

(ii)
〈
Σ, (x − y)(x − y)T

〉
≲α log( n

m ) · Fα(m, n) where

Fα(m, n) :=


m1−α if 1 < α < 3

2
log(n)√

m
if α = 3

2
1√
m

if α > 3/2.

Ignoring polylogarithmic factors, this means that we can find an x with O(m) fractional
coordinates left and

〈
Σ, (x − y)(x − y)T

〉
≤ max{m1−α, 1√

m
}. The algorithm to compute x

as in Theorem B.2 is simple:

Lovett-Meka Rounding Algorithm

Input: Weight vector y ∈ [0, 1]n and parameter m
Output: Rounded vector x

(1) Sample g1, . . . , gm ∼ D. Initialize x(0) := y

(2) FOR t = 1 TO ∞ DO

(3) IF |frac(x(t−1))| ≤ 16m then return x(t−1)

(4) Set x(t) := DLM (g1, . . . , gm, x(t−1))

A crucial aspect of analyzing this algorithm is understanding how far the covariance esti-
mator 1

m

∑m
j=1 gjgT

j is from the actual covariance matrix Σ in terms of the Schatten 1-norm
∥ · ∥S(1). We use the following result.
Proposition B.3. Let α > 1, β ≥ 1 and let D be a β-reasonable distribution with covariance
matrix Σ ∈ Rn×n whose Eigenvalues satisfy λk ≤ 1

kα for all k = 1, . . . , n. Let g1, . . . , gm ∼ D
be independent samples and let X(ℓ) := 1

m gℓg
T
ℓ and X :=

∑m
ℓ=1 X(ℓ). Then

E[∥X − Σ∥S(1)] ≲α,β Fα(m, n)

where Fα(m, n) is as defined in Theorem B.2.

We postpone the proof of Prop B.3 to Section B.3 and first conclude the proof of Theo-
rem B.2.

Proof of Theorem B.2. Suppose x(t∗) is the vector that the algorithm returned in (3). It
will be notationally convenient to define x(t) := x(t∗) for all t > t∗. We say that iteration t is
good if either |frac(x(t−1))| ≤ 16m or if |frac(x(t))| ≤ 1

2 |frac(x(t−1))|. If an iteration t is not
good, we repeat the iteration until it is good. From Theorem B.1.(i) we know that every
iteration is good with probability at least 1

10 (independently of previous outcomes), thus by
standard Chernov bounds, with probability at least 0.99, within the first T := C ′ log( n

m )
iterations there must be at least log( n

m ) many good iterations, for C ′ > 0 a sufficiently
large constant. After log( n

m ) good iterations, one has |frac(x(T ))| ≤ 16m, and moreover the
suffered discrepancy is

E
[〈

Σ, (x(T ) −y)(x(T ) −y)T
〉]

≤
T∑

t=1
E
[〈

Σ, (x(t) −x(t−1))(x(t) −x(t−1))T
〉]

≲α,β T ·Fα(m, n).

Thus the claim then follows. □

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B.3 Analyzing the covariance estimator

It remains to prove Prop B.3.

Proof of Prop B.3. We first present the proof for the case of 1 < α < 3
2 and then discuss

the modifications for the other two cases. The claim is invariant under a change of basis,
hence we may assume that Σ is a diagonal matrix with Eigenvalues λ1 ≥ . . . ≥ λn ≥ 0, i.e.
Σii = λi for all i ∈ [n]. We can bound the variance terms for all entries (whether diagonal
or not):
Claim I. For all i, j ∈ [n] one has E[|Xij − Σij |2] ≲β

λiλj

m .
Proof of Claim I. We recall that E[X] = Σ and E[X(ℓ)] = 1

m Σ. For all i, j ∈ [n] one has
E[|Xij − Σij |2] = Var[Xij ]

=
m∑

ℓ=1
Var[X(ℓ)

ij ]

= 1
m
Eh∼D[|hihj − Σij |2]

≤ 2
m

(
Eh∼D[h2

i h2
j ] + Σ2

ij︸︷︷︸
≤λiλj

)
(∗)
≤ 2

m
(Eh∼D[h4

i ]1/2Eh∼D[h4
j ]1/2 + λiλj)

(∗∗)
≤ 2

m

(
β1/2 Eh∼D[h2

i ]︸ ︷︷ ︸
=λi

·β1/2 Eh∼D[h2
j ]︸ ︷︷ ︸

=λj

+λiλj

)
= 2β + 2

m
· λiλj

Here we use the inequality (a − b)2 ≤ 2a2 + 2b2. Moveover Σij ≤ λiλj holds because Σ is a
diagonal matrix. Note that we have used Cauchy-Schwarz in (∗) and the assumption that
D is β-reasonable in (∗∗). □
Now let Jℓ := {i ∈ [n] | 2ℓ−1 ≤ i < 2ℓ}. It will be useful to note that |Jℓ| ≤ 2ℓ and the sum
of the Eigenvalues in each block satisfies

∑
i∈Jℓ

λi ≲ 2ℓ · (2ℓ)−α = (2ℓ)1−α. Our strategy is
to use the triangle inequality to bound:

E[∥X − Σ∥S(1)] ≤ 2
∑
ℓ≥1

∑
k≥ℓ

E[∥XJℓ,Jk
− ΣJℓ,Jk

∥S(1)] (4)

Here XJℓ,Jk
is the |Jℓ| × |Jk| submatrix of X that is indexed by rows Jℓ and columns Jk.

In the following we will estimate the contribution of the different blocks depending on their
parameter regime and whether they are diagonal or off-diagonal.
Claim II. Let ℓ ≤ k and abbreviate Y := XJℓ,Jk

− ΣJℓ,Jk
. Then

E[∥Y ∥S(1)] ≲
√

r

m
· 2

ℓ+k
2 (1−α)

assuming that rank(Y ) ≤ r for any outcome of Y .
Proof of Claim II. We recall that for any matrix A one has ∥A∥S(1) ≤

√
rank(A) · ∥A∥F .

Then for all ℓ ≤ k we can bound
E[∥Y ∥S(1)] ≤

√
r · E[∥Y ∥F ]

Jensen
≤

√
r · E[∥Y ∥2

F ]1/2

Claim I
≲β

√
r ·
( 1

m

(∑
i∈Jℓ

λi

)( ∑
j∈Jk

λj

))1/2

≲
√

r ·
√

1
m

· (2ℓ)1−α · (2k)1−α

=
√

r

m
· 2

ℓ+k
2 (1−α) □
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Now we can bound the contribution that off-diagonal blocks have to Eq (4). Here we use
that ΣJℓ,Jk

= 0 and rank(XJℓ,Jk
) ≤ min{m, 2ℓ}. Then∑

ℓ≥1

∑
k>ℓ

E
[
∥XJℓ,Jk

− ΣJℓ,Jk︸ ︷︷ ︸
=0

∥S(1)
] Claim II

≤
∑
ℓ≥1

∑
k>ℓ

√
min{m, 2ℓ}√

m
· 2

ℓ+k
2 (1−α)

=
∑
ℓ≥1

min
{

1,
√

2ℓ/m
}

· 2 ℓ
2 (1−α)

∑
k>ℓ

·2 k
2 (1−α)

︸ ︷︷ ︸
≲α2ℓ(1−α)/2

≲α

∑
ℓ≥1

min
{

1,
√

2ℓ/m
}

· (2ℓ)1−α (5)

≲α m1−α

In the last step we use that the function z 7→
√

z · z1−α is monotonically increasing while
z 7→ z1−α is monotonically decreasing as we assume that 1 < α < 3

2 . Hence the term with
m = 2ℓ dominates the sum.
It remains to bound the diagonal blocks. First we consider the regime of small indices. Here
we use the bound rank(XJℓ,Jℓ

− ΣJℓ,Jℓ
) ≤ |Jℓ| ≤ 2ℓ which gives∑

ℓ:2ℓ≤m

E[∥XJℓ,Jℓ
− ΣJℓ,Jℓ

∥S(1)]
Claim II

≤
∑

ℓ:2ℓ≤m

√
2ℓ

m
· 2ℓ(1−α) ≲ m1−α (6)

Here the last summand (with 2ℓ = m) dominates the sum in (6), again as z 7→
√

z · z1−α is
monotonically increasing.
The final regime to consider is the one of large indices, i.e. diagonal blocks with 2ℓ > m.
In that case we can ignore any concentration that the randomness may provide and simply
bound ∑

ℓ:2ℓ>m

E[∥XJℓ,Jℓ
− ΣJℓ,Jℓ

∥S(1)] ≤
∑

ℓ:2ℓ>m

(
E[∥XJℓ,Jℓ

∥S(1)] + ∥ΣJℓ,Jℓ
∥S(1)

)
=

∑
ℓ:2ℓ>m

(
E[Tr[XJℓ,Jℓ

]] + Tr[ΣJℓ,Jℓ
]
)

=
n∑

j=m

(E[Xjj ]︸ ︷︷ ︸
=Σjj

+ Σjj︸︷︷︸
≤j−α

)

≲
∑
j≥m

1
jα

≲ m1−α (7)

Here we use again the triangle inequality of the trace norm and the fact that the matrices
XJℓ,Jℓ

and ΣJℓ,Jℓ
are always positive semidefinite. This concludes the argument for 1 <

α < 3
2 . If α = 3

2 then
√

2ℓ/m · (2ℓ)1−α ≤ 1√
m

for each ℓ ≥ 1 and so (5) is bounded by log(n)√
m

.
Moreover, the last two cases can be merged as∑

ℓ≥1
E[∥XJℓ,Jℓ

− ΣJℓ,Jℓ
∥S(1)]

Claim II
≤

∑
ℓ≥1

√
2ℓ

m
· 2ℓ(1−α) ≲

log(n)√
m

(8)

Finally, if α > 3
2 then the first term (for ℓ = 1) dominates the sums in (5) and (8) and the

extra log(n) term can be omitted. □

C Non-uniform Quantization Grid

We will introduce a new parameters x ∈ [0, 1]n and define

wx = wdown ⊙ (1 − x) + wup ⊙ x
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where ⊙ is component-wise product. Note that wx
i interpolates between wdown

i and wup
i

where wi = wdown
i if xi = 0 and wi = wup

i if xi = 1. Let y ∈ [0, 1]n be the interpolation point
corresponding to the original weights, i.e., wy = w. We can rewrite the linear constraints in
terms of x as follows:

⟨∇wf(w; si), wx − w⟩ = ⟨∇wf(w; si), wx − wy⟩
=
〈
∇wf(w; si), (wup − wdown) ⊙ (x − y)

〉
=
〈
∇wf(w; si) ⊙ (wup − wdown), x − y

〉
.

Let M be an m × n matrix whose ith row is given by ∇wf(w; si) ⊙ (wup − wdown). Then
the linear constraints can be simply written as M(x − y) = 0.

D Taylor Series for KL Divergence

Let pw(·|z<i) be the distribution of the next token predicted by the original model given
prefix z<i where z ∼ Ddata is a sample from the data distribution. Let

error(ŵ) = Ez∼DdataEiDKL (pw(·|z<i) ∥ pwx(·|z<i))

be the KL divergence between the original model and quantized model.
Lemma D.1. Let

error(ŵ) = ⟨gw, ŵ − w⟩ + (ŵ − w)T Hw(ŵ − w) + · · ·

be the Taylor series expansion of the KL divergence where gw is the gradient and Hw is the
Hessian. Then

1. gw = 0,

2. Hw = Ez∼DdataEiEt∼pw(·|z<i)[(∇w log pw(t|z<i))(∇w log pw(t|z<i))T ]

Therefore error(ŵ) ≈ Ez∼DdataEiEt∼pw(·|z<i)[⟨∇wpw(t|z<i), ŵ − w⟩2].

Proof. To simplify notation, we will ignore the z, i variables coming from Ez∼Ddata and Ei

and also drop them from pw(·|z<i) and just write pw(·). Adding these back and taking ex-
pectations over these variables, we get the desired result. We can expand the KL divergence
using Taylor series and evaluate the first and second order terms.

error(ŵ) = DKL (pw(·) ∥ pŵ(·))
= −Et∼ [log pŵ(t) − log pw(t)]
= −Et∼pw

[
⟨∇w log pw(t), ŵ − w⟩ + (ŵ − w)T ∇2

w log pw(t)(ŵ − w) + · · ·
]

= ⟨gw, ŵ − w⟩ + (ŵ − w)T Hw(ŵ − w) + · · ·

where gw = −Et∼pw
[∇w log pw(t)] and Hw = −Et∼pw

[∇2
w log pw(t)].

(1) We first evaluate gw.

gw = −Et∼pw [∇w log pw(t)] = Et∼pw

[
∇wpw(t)

pw(t)

]
=
∑

t

∇wpw(t)

= ∇w(
∑

t

pw(t))

= ∇w(1) = 0.
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(2) We now evaluate Hw.

Hw = −Et∼pw [∇2
w log pw(t)]

= −Et∼pw

[
∇w

(
∇wpw(t)

pw(t)

)]
= −Et∼pw

[
∇2

wpw(t)
pw(t) − (∇wpw(t))(∇wpw(t))T

pw(t)2

]
= −Et∼pw

[
∇2

wpw(t)
pw(t) − (∇w log pw(t))(∇w log pw(t))T

]
= −

∑
t

∇2
wpw(t) + Et∼pw

[
(∇w log pw(t))(∇w log pw(t))T

]
= −∇2

w

(∑
t

pw(t)
)

+ Et∼pw

[
(∇w log pw(t))(∇w log pw(t))T

]
= −∇2

w (1) + Et∼pw

[
(∇w log pw(t))(∇w log pw(t))T

]
= Et∼pw

[
(∇w log pw(t))(∇w log pw(t))T

]
□
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