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Abstract
This study introduces a novel transformer model
optimized for large-scale point cloud processing
in scientific domains such as high-energy physics
(HEP) and astrophysics. Addressing the limi-
tations of graph neural networks and standard
transformers, our model integrates local induc-
tive bias and achieves near-linear complexity with
hardware-friendly regular operations. One con-
tribution of this work is the quantitative analysis
of the error-complexity tradeoff of various spar-
sification techniques for building efficient trans-
formers. Our findings highlight the superiority
of using locality-sensitive hashing (LSH), espe-
cially OR & AND-construction LSH, in kernel ap-
proximation for large-scale point cloud data with
local inductive bias. Based on this finding, we
propose LSH-based Efficient Point Transformer
(HEPT), which combines E2LSH with OR &
AND constructions and is built upon regular com-
putations. HEPT demonstrates remarkable perfor-
mance on two critical yet time-consuming HEP
tasks, significantly outperforming existing GNNs
and transformers in accuracy and computational
speed, marking a significant advancement in ge-
ometric deep learning and large-scale scientific
data processing. Our code is available at https:
//github.com/Graph-COM/HEPT.

1. Introduction
Many scientific applications require the processing of com-
plex research objects, often represented as large-scale point
clouds — a set of points within a geometric space — in real
time. For instance, in high-energy physics (HEP) (Radovic
et al., 2018), to search for new physics beyond the standard

1Georgia Institute of Technology 2Beijing University of
Posts and Telecommunications 3Purdue University 4University
of California San Diego. Correspondence to: Siqi Miao
<siqi.miao@gatech.edu>, Pan Li <panli@gatech.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

model, e.g., new particles predicted by supersymmetric theo-
ries (Oerter, 2006; Wess & Bagger, 1992), the CERN Large
Hadron Collider (LHC) produces 1 billion particle collisions
per second, forming point clouds of detector measurements
with tens of thousands of points (Gaillard, 2017), necessitat-
ing real-time analysis due to storage limitations. Similarly,
in astrophysics (Halzen & Klein, 2010), the IceCube Neu-
trino Observatory records 3,000 events per second using
over 5,000 sensors (Aartsen et al., 2017), and simulations of
galaxy formation and evolution need to run billions of par-
ticles (Nelson et al., 2019). In drug discovery applications,
large-scale real-time computation is crucial for screening
billions of protein-antibody pairs, each requiring molec-
ular dynamics simulations of systems with thousands of
atoms (Durrant & McCammon, 2011). Facing these exten-
sive computational demands, machine learning, in particular
geometric deep learning (GDL), has emerged as a revolu-
tionary tool, offering to replace the most resource-intensive
parts of these processes (Bronstein et al., 2017; 2021).

In these scientific applications, inference tasks often ex-
hibit local inductive bias, meaning that the labels to be
predicted are primarily determined by aggregating informa-
tion from local regions within the ambient space. Lever-
aging local inductive bias can significantly reduce compu-
tational complexity. Consequently, graph neural networks
(GNNs) have gained widespread use due to their proficiency
in exploiting such sparse data patterns (Jing et al., 2021;
Kansal et al., 2021; Satorras et al., 2021; DeZoort et al.,
2021; Abbasi et al., 2022; Li et al., 2023). However, GNNs
still face two computational challenges that hinder their
application in real-time scenarios. First, the procedure of
graph construction is time-consuming: GNNs often use
k-NN or other relational rules to construct graphs (Stärk
et al., 2022; Lieret et al., 2023). Creating these graphs from
n points using brute-force methods involves O(n2) com-
plexity. While algorithms like KD-trees theoretically offer
O(n log n) complexity, their limited parallelizability makes
them impractical for real-time data processing pipelines (Wi-
eschollek et al., 2016). Second, The irregular structure of
graphs and the neighborhood aggregation process in GNNs
lead to irregular computations and random memory access.
These factors, coupled with dynamic computation graphs
for different inputs, pose significant computation challenges

1

https://github.com/Graph-COM/HEPT
https://github.com/Graph-COM/HEPT


Locality-Sensitive Hashing-Based Efficient Point Transformer

Figure 1: Pipeline of HEPT. Elements that share the same color represent points from the same local neighborhood. HEPT
employs OR & AND LSH to minimize noise caused by individual hash functions. HEPT also integrates point coordinates
as extra AND LSH codes for query-key alignment, maintaining computational regularity without compromising accuracy.

for conventional hardware architectures (Jang et al., 2010;
Hashemi et al., 2018; Abadal et al., 2021). These issues ren-
der GNNs less suitable for large-scale real-time point cloud
analysis. Therefore, there is a growing interest in exploring
alternative approaches to address the above challenges.

Recently, transformer architectures have demonstrated im-
pressive capabilities across various domains (Vaswani et al.,
2017; Brown et al., 2020). Unlike GNNs, transformers are
noted for their ability to model long-range dependencies and
their compatibility with hardware due to regular computa-
tion patterns. However, a major limitation of standard trans-
formers is their quadratic complexity to input size, which
poses challenges for processing large-scale point cloud data.
In this study, we aim to integrate the strengths of both trans-
formers and GNNs by developing an efficient transformer
model for point cloud processing. This model incorporates
local inductive bias and may achieve near-linear complexity,
balancing high accuracy with hardware efficiency through
regular and parallelizable computations.

Several studies have been conducted on efficient trans-
formers. However, efficient transformers are not yet fully
embraced by scientific domains dealing with geometric
data (Kansal et al., 2023; Pata et al., 2023). The primary
issue is that existing methods, which use low-rank (Wang
et al., 2020) or sparse (Kitaev et al., 2020) approximations
of the attention matrix, often overlook approximation errors
in method design (Kitaev et al., 2020; Daras et al., 2020)
or fail to adequately consider local inductive bias (Choro-
manski et al., 2021; Peng et al., 2021), leading to undesired
model performance. Some methods may compromise ap-
proximation accuracy for computational regularity (Kitaev
et al., 2020; Daras et al., 2020; Zandieh et al., 2023; Han
et al., 2024). Moreover, a systematic understanding of the
tradeoff between approximation errors and computational
complexity among the different methods is missing, making
it difficult to select the most effective method for GDL tasks.

In this work, we close the gap by conducting a quantitative
analysis of the error-complexity tradeoff, focusing on two
widely used techniques for building efficient transformers:
random Fourier features (RFF) (Rahimi & Recht, 2007) and
locality-sensitive hashing (LSH) (Indyk & Motwani, 1998).
Our analysis indicates that for tasks with local inductive
bias, RFF consistently exhibits higher approximation error
compared to LSH under subquadratic complexity. We also
discover that relying solely on OR-construction LSH results
in suboptimal performance, and combining OR & AND-
construction LSH (Leskovec et al., 2020), often ignored
in prior research, is essential to minimize errors for point
clouds in large multidimensional spaces.

Inspired by the analysis, we propose an LSH-based Efficient
Point Transformer (HEPT), designed to support highly reg-
ular computations with near-linear complexity and provably
low approximation errors for tasks with local inductive bias.
HEPT leverages a kernel that explicitly embeds local induc-
tive bias for attention calculation, and adopts E2LSH com-
bined with both OR & AND LSH to effectively minimize
approximation errors. To ensure computational regularity
without compromising accuracy, HEPT partitions queries
and keys into regular buckets based on their LSH codes, and
computes only blockwise attention weights. To address the
issue of the misalignment of query-key buckets (Sec. 4.3),
HEPT proposes to integrate point coordinates as extra AND
LSH codes. The pipeline of HEPT is shown in Fig. 1.

To validate the effectiveness of HEPT, we evaluate it on
two critical computationally intensive HEP tasks: charged
particle tracking (Amrouche et al., 2020) and pileup miti-
gation (Martı́nez et al., 2019), with their significance elab-
orated in Appendix A. HEPT is benchmarked against five
GNNs and seven efficient transformers adapted from both
NLP and CV domains under a unified framework on three
datasets (with one of them contributed by us). HEPT signif-
icantly outperforms all baselines, achieving state-of-the-art
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(SOTA) accuracy with up to 203× speedup on GPUs. Our
experiments also show that existing RFF-based methods fail
to deliver competitive performance. LSH-based baselines
achieve acceptable accuracy for medium-sized point clouds,
however, they struggle to scale to larger datasets with tens
of thousands of points, and only HEPT can process them
efficiently and achieve SOTA prediction accuracy.

2. Preliminaries
Geometric Deep Learning Tasks. We focus on tasks with
each sample represented as a point cloud C = (V,X,ρ),
where V = {u1, · · · , un} is a set of n points, X ∈ Rn×k1

includes k1-dimensional features for each point, and ρ ∈
Rn×k2 specifies the coordinates of these points in a k2-
dimensional space. We consider GDL tasks that require
learning meaningful H-dimensional latent representations
for each point via a neural network f : C → Rn×H . De-
pending on the specific task, these representations are either
used for direct point-wise label prediction or point-pair-wise
relationship analysis, or whole point cloud prediction via
aggregating (e.g., averaging) these representations.

Random Fourier Features. Consider any positive definite
shift-invariant kernel k(x,y) = k(x− y) with x,y ∈ Rd

that is properly normalized, i.e., k(0) = 1. Bochner’s
Theorem (Rudin, 1991) guarantees that its Fourier transform
k∗(w) is a probability distribution. Thus, Rahimi & Recht
(2007) propose RFFs to approximate such a kernel by
k(x,y) ≈ ψ(x)⊤ψ(y) with ψ : Rd → RD, where ψ(x) =√

2
D

(
sin(w⊤

1 x), cos(w⊤
1 x), . . . , sin(w⊤

D/2x), cos(w
⊤
D/2x)

)⊤

,wi
iid∼ k∗(w).

Locality-Sensitive Hashing. LSH (Indyk & Motwani,
1998) was proposed for efficient nearest-neighbor search.
With high probability, it hashes close data points into
the same bucket and distant ones into different buckets.
E2LSH (Datar et al., 2004) is an LSH variant for Eu-
clidean distances with a hash family H and hash functions
ha,b(x) ∈ H, where, for a point x ∈ Rd, ha,b(x) =
⌊a·x+b

r ⌋, a ∼ N (0, I), b ∼ U(0, r), and r > 0 is a hy-
perparameter to control bucket sizes. There are also vari-
ants for angular distances (Andoni et al., 2015) and inner
products (Shrivastava & Li, 2014). To amplify LSH’s per-
formance, AND LSH, OR LSH, or a hybrid of both can be
utilized. AND LSH concatenates multiple (say m2) hash
functions hj ∈ H to form a new hash family G, where for
g ∈ G, g(x) = [h1(x), . . . , hm2(x)], and two points are
deemed neighbors if they match across all m2 hash func-
tions in g. OR LSH, on the other hand, forms multiple (say
m1) hash tables from G, i.e., g1(x), . . . , gm1

(x) with each
gi(x) = [hi,1(x), . . . , hi,m2

(x)], and two points are neigh-
bors if they match in any one of these m1 tables. When
m2 = 1 (one hash function per table), it becomes OR-only

LSH, and when m2 ≥ 2, it is a hybrid of OR & AND LSH.

Efficient Transformers as Kernel Approximation. The
quadratic complexity of the original transformer (Vaswani
et al., 2017) comes from the computation of self-attention.
That is, with Q,K,V ∈ Rn×d, where each token or point
u in the point cloud is associated with a row qu,ku,vu

in these matrices, and Attn(Q,K,V ) = exp(QK⊤)V .
Here, exp(QK⊤) is of size n × n, and we omit the nor-
malization terms for simplicity. Viewing the attention as
a kernel exp(x⊤y), several methods have been proposed
to approximate it for efficiency. Many of these meth-
ods are RFF-based (Peng et al., 2021; Choromanski et al.,
2021; Luo et al., 2021; Choromanski et al., 2023) or LSH-
based (Kitaev et al., 2020; Daras et al., 2020; Zandieh et al.,
2023; Han et al., 2024). For example, RFFs can be uti-
lized to approximate exp(x⊤y) ≈ ψ̂(x)⊤ψ̂(y), with, e.g.,
ψ̂(x) = exp(∥x∥

2

2 )ψ(x) (Peng et al., 2021), reducing the
complexity to O(n). As for LSH-based methods, e.g., Re-
former (Kitaev et al., 2020) equalizes query and key vectors
and sets their norms to be 1, enabling the use of angular
distance-based LSH (Andoni et al., 2015) to efficiently find
large entries in the attention matrix exp(QK⊤) as its ap-
proximation, resulting in O(n log n) complexity.

Notation. Later, we use Õ, Θ̃, and õ denote soft-O, soft-Θ,
and soft-o , respectively. They are variants of Big-O, Big-Θ,
and Little-o that suppress polylogarithmic factors.

3. Error-Computation Analysis for RFF/LSH
One of the key steps of designing efficient transformers
relies on effective kernel approximation. So, this section
aims to analyze the tradeoff between the approximation
error (ϵ) and computational complexity (F ) of both RFF-
and LSH-based methods in point cloud systems. Our goal
is to enable direct comparisons between RFF-based and
LSH-based methods for GDL tasks, where local inductive
bias holds, seeking to provide theoretical guidance for the
design of efficient transformers to be discussed in Sec. 4. To
summarize, we achieve the following insights: Let ϵ denote
the squared error of the attention weight approximation
averaged over all point pairs in a system and F denote the
total number of floating point operations (FLOPs).

1. RFF results in an error ϵ = Θ̃( n
F ), which is consis-

tently worse than LSH under subquadratic complexity,
i.e., when F = õ(n2).

2. LSH is better suited for tasks with local inductive bias,
yielding ϵ = Θ̃( 1n ) via OR-only LSH. However, OR-
only LSH finds it hard to further reduce such error if
F is set to be almost linear, i.e., F = Õ(n).

3. Utilizing both OR & AND LSH significantly improves
performance. The error ϵ = Õ(exp(− F

npolylog(n) )
1
n ),

which means that ϵ can be further exponentially re-
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duced by almost linear complexity F = Õ(n).

Practitioners primarily interested in the architecture imple-
mentation of HEPT may choose to skip the rest of this
section, and check Sec. 4 directly.

3.1. Characterizing Local Inductive Bias

The following notions aim to formally characterize the local
inductive bias of a point cloud system of interest.

Definition 3.1 (Bounded-Support Kernels). Consider a
properly normalized shift-invariant kernel defined as
ks(x,y) = ks(x − y), where ks(x,y) ∈ [0, 1], s > 0
and ks(0) = 1. This kernel exhibits bounded support, i.e.,
ks(x− y) = 0 for ∥x− y∥2 > s. For any x,y ∈ Rd, the
computational complexity of ks(x,y) is linear in d.

Assumption 3.2 (Local Inductive Bias). Consider a
bounded point cloud system C with n points located at
{x1, ...,xn} in a d-dim unit ball, i.e., xi ∈ Rd and
∥xi∥2 ≤ 1. Denote the empirical distribution of the point-
pair distances as ϕ(z) = 1

n(n−1)

∑
i,j∈[n],i̸=j δ∥xi−xj∥2

(z)

where δa(·) is 1-dim dirac delta function. C is said to hold
local inductive bias if the ground-truth function for the learn-
ing task over C can be approximated by a transformer with
full attention matrices whose attention weights can be repre-
sented as a bounded-support kernel ks between point loca-
tions xi’s, where the bound s satisfies

∫ s

0
ϕ(z)dz ∼ Õ( 1n ).

Intuitively, local inductive bias assumes that in a point cloud
system, a point primarily interacts with its local neighbor-
hood, where the number of points each point interacts with
is on average at most O(polylog(n)). This assumption
means that the optimal full attention matrix has at most
O(n · polylog(n)) non-zeros, which gives the foundation to
build efficient transformers with almost linear complexity.
The challenge lies in how to identify those non-zeros using
near-linear complexity and regular operations.

Note that the above-assumed kernel ks for characteriz-
ing local inductive bias can be viewed as an inherent
property of the point cloud system and the learning task,
which may not necessarily follow the common implemen-
tation of attention kernel such as exp(F (x)⊤G(y)) with
some parameterized functions F,G. Although the conven-
tional kernel exp(x⊤y) is not strictly with bounded sup-
port, with the functions F,G, practical attention weights
exp(F (x)⊤G(y)) still hold the potential of approximating
a bounded support kernel and yield reasonable performance.
That having been said, as shown in our experiments, an at-
tention kernel that directly models local inductive bias (see
Sec. 4.1) often yields better performance for the tasks where
local inductive bias indeed exists.

How large could s be in practice? Suppose points are
almost uniformly allocated in the d-dim unit ball, and then,

∫ s

0
ϕ(z)dz = Θ(sd). In this case, local inductive bias means

the point pairs within s = Õ( 1
n1/d ) distance hold positive

attention weights.

3.2. Error-Computation Tradeoff

RFF. We instantiate our analysis of RFF based on a widely
used feature map ψ(x)⊤ψ(y) as defined in Sec. 2, where
the complexity F is proportional to the feature dimension
D. The following theorem indicates that RFF can hardly
reduce the error to 1

n when F is sub-quadratic in n.

Theorem 3.3 (ϵ− F Tradeoff of RFF). Assume ks(x,y) is
positive definite. If approximating it by RFF ψ(x)⊤ψ(y) in
point cloud systems described in Assumption 3.2, the error
ϵ = Θ(ndF ).

OR-only LSH. Since many previous works use OR-only
LSH, we are to first analyze the approximation error in
such a setting. Note that F is proportional to the number of
hash tablesm1 in this setting and the latter OR & AND LSH
setting. We base our analysis on E2LSH with r as the bucket
size defined in Sec. 2, while the analysis can be similarly
extended to other types of hash functions. To achieve the
next theorem, we need a further assumption that is satisfied
as long as the point allocation ϕ(z) is not concentrated at
z = a for some particular a ∈ [0, 2).

Theorem 3.4 (ϵ − F Tradeoff of OR-only E2LSH). As-
sume there exists r such that

∫ r

0
ϕ(z)dz ≤ c1r and∫∞

r
1
zϕ(z)dz ≤ c2 for some positive constants c1 and c2.

The OR-only E2LSH may achieve ϵ = Θ̃(exp
(
− c3F

dn2s

)
1
n )

where c3 is a positive constant depending on c1 and c2.

Putting Theorem 3.3 and 3.4 together, clearly, OR-only LSH
can outperform RFF when F = õ(n2), indicating that LSH
is always preferable for subquadratic complexity given point
cloud systems with local inductive bias. This is attributed to
the fact that LSH tends to zero out kernel values with a high
probability for distant pairs.

OR & AND LSH. OR-only LSH’s error dependency on
exp(− c3F

dn2s ) shows that to further effectively reduce the
error Θ̃( 1n ), F has to be in the order of dn2s. However,
as s could be much larger than n−1 in practice (see the
discussion in Sec. 3.1), this asks for F being super-linear in
n. The issue, due to our analysis, is caused by many distant
point pairs being mapped to the same hash bucket if one
uses OR-only LSH, which motivates us to inspect the use
of OR & AND LSH.

Theorem 3.5 (ϵ − F Tradeoff of OR & AND E2LSH).
Suppose each hash table contains m hash functions. As-
sume there exists m such that

∫ r

0
ϕ(z)dz = Õ( 1n ) and∫∞

r
ϕ(z) r

m

zm dz ≤
∫ r

0
(
√
2π − z

r )
mϕ(z)dz, where r = ms.

By choosing such r as the bucket size, the OR & AND E2LSH
may achieve ϵ = Õ(exp(− c4F

dn(polylog(n)+m) )
1
n ).
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Figure 2: The error-computation tradeoff from numerical
experiments. OR & AND LSH decreases the error exponen-
tially with near-linear complexity, validating our analysis.

Note that if we consider systems with almost uniformly allo-
cated points, there exists m ≤ d satisfying the assumption.
This theorem shows that with OR & AND LSH combined,
F ∼ nd(polylog(n) + d) is sufficient to reduce the error
exponentially, necessitating the use of OR & AND LSH.

3.3. Numerical Experiments

To further validate the effectiveness of OR & AND LSH as
proved in our theoretical analysis, we conducted additional
numerical experiments, and the results are depicted in Fig. 2.

In this numerical study, we generate n = 30, 000 points
uniformly distributed across a 2D square with a side length
of 10. To model local inductive bias, each point interacts
only with its 64 nearest neighbors, approximating a ground-
truth kernel value of exp

(
− 1

2∥x− y∥2
)

(our theoretical
results are not limited to this kernel). Points beyond this
neighborhood have a kernel value of 0. Additional details
are provided in Appendix C.3. In this study, since n2 is
roughly of the same magnitude as 1 GFLOP (1e9 FLOPs),
Fig. 2 reveals that OR-only LSH can only effectively reduce
the error when the computational budget is on the order of
n2. Conversely, OR & AND LSH achieves exponential error
reduction with substantially fewer FLOPs, demonstrating
its superior efficiency and accuracy.

4. HEPT Architecture
Motivated by our theoretical insights, we propose HEPT
in this section, which is illustrated in Fig 1. We will first
introduce the attention kernel considered, and then describe
an approach for approximating it with OR & AND LSH.
Lastly, we present a way to ensure computational regularity
without compromising approximation accuracy.

4.1. Kernel with Explicit Local Inductive Bias

Given a query-key pair (qu,kv), we propose to use the
following kernel for attention computation: k(qu,kv) =
exp(− 1

2∥qu − kv∥2), where qu = [q̃u∥
√
2ωρu] and

kv = [k̃v∥
√
2ωρv] are concatenated from the original trans-

former’s queries and keys q̃u, k̃v ∈ Rd with point coordi-

(   ,   )(   ,   ) (   ,   ) (   ,   )

Figure 3: The above shows how to obtain AND hash code
T (i) with m2 = 3, Bij = 2. Points are assumed to be pre-
sorted based on their raw hash values with min(L(i,1)) = 0.

nates ρu,ρv ∈ Rk2 and learnable parameters ω ∈ R+. The
full attention mechanism is then Attn(A,V ) = D−1AV ,
with A ∈ Rn×n comprising elements Auv = k(qu,kv),
and D = diag(A1) for normalization, where 1 represents
an all-one vector. This kernel enables the use of E2LSH (or
RFF) for approximation and allows for explicit modeling of
local inductive bias: the attention score k(qu,kv) → 0 as
∥qu − kv∥2 increases.

Note that HEPT can also support efficient computation of
the conventional attention kernel exp(qT

u kv) by transform-
ing it into exp(− 1

2∥F (qu)−G(kv)∥2) for some functions
F,G (Shrivastava & Li, 2014; Daras et al., 2020). However,
this kernel does not work well for the HEP tasks in this work,
due to its failure in explicitly modeling local inductive bias.

4.2. OR & AND LSH for Attention Computation

As shown in Sec. 3, to effectively approximate kernels with
local inductive bias, it is critical to utilize OR & AND LSH
for near-linear complexity with guaranteed low approxi-
mation errors. Therefore, we propose an architecture that
integrates OR & AND LSH for attention computation.

Specifically, we first construct m1 hash tables (OR LSH),
each withm2 hash functions (AND LSH) for each query and
key. Each hash function is E2LSH without bucketization,
i.e., ha(x) = a ·x. Consequently, each query qu or key kv

yieldsm1×m2 raw hash values, denoted asL(ij)
qu , L

(ij)
kv

∈ R
for i ∈ [m1] and j ∈ [m2], respectively. Due to the property
of E2LSH, if qu and kv hold small ∥qu − kv∥2, they are
likely to have close hash values L(ij)

qu
and L(ij)

kv
.

For each query/key, uniformly denoted as z, in the ith hash
table, our goal is to combine the m2 raw hash values L(ij)

z

into a single AND hash code T (i)
z ∈ R such that query/key

pairs with close |T (i)
qu

−T (i)
kv

| must have close |L(ij)
qu −L(ij)

kv
|

for all j ∈ [m2], i.e., an AND operation. Then, attention
can be computed using the resulting AND hash codes T (i)

z ’s
from those m1 hash tables. The details are as follows.

Obtaining AND Hash Code T (i)
z . For each query/key z,
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(a) Charged Particle Tracking (b) Pileup Mitigation

Figure 4: Illustrations of the two HEP tasks.

we keep L(i1)
z as it is as a real-valued 1D base hash code,

and bucketize each L
(ij)
z for j ≥ 2, which leads to an

(m2 − 1)-sized tuple of integer bucket indices, named as
aux hash code. As illustrated in Fig 3, we compute the
AND hash code by 1) allocating z’s only with the same
aux hash code to a unique range in R, and 2) within each
allocated range, positioning different z’s according to their
real-valued base hash codes. Specifically, to obtain the aux
hash code, given i, j and the number of desired buckets Bij ,
sort L(ij)

z for all queries and keys (thus 2n in total). Then,
starting from 1, every ⌊ 2n

Bij
⌋ consecutive points receives a

bucket index denoted as L̃(ij)
z ∈ {1, ..., Bij}. We use L̃(ij)

z

as the aux hash code. Then, the AND hash code T (i)
z can be

computed as follows: Let ∆(i) = max(L(i1))−min(L(i1)),

T (i)
z = L(i1)

z +∆(i)
m2∑
j=2

(L̃(ij)
z − 1)

j−1∏
j′=2

Bij′

 .
This way of computation makes sure that points with the
same aux hash codes are assigned to adjacent ranges. Note
that to avoid the boundary effect of hash bucketing (two
close points being put into two consecutive buckets consis-
tently), we may shift the number of desired buckets Bij for
different i, j while guaranteeing the total number of buckets∏m2

j=2Bij unchanged, which effectively shifts the bucket
boundaries, similar to the random shifts in original E2LSH.

Merging m1 OR LSH Results. By repeating the above
steps m1 times, we yield T

(i)
qu , T

(i)
kv

for every query and
key with i ∈ [m1], which are used to compute m1 many
sparse attention matrices A(i) with regular non-zero blocks
(this process will be elaborated in the next Sec. 4.3). The
final embedding can be computed as E = D−1AV ∈
Rn×d, where AV is computed via the sum of m1 regular
block matrix multiplications

∑
i A

(i)V , and D is computed
similarly via diag(

∑
i A

(i)1).

4.3. Regular Computation with Query-Key Alignment

Here, we elaborate the way to compute sparse attention
matrix A(i) with regular non-zero blocks via regular opera-
tions. A naive way to compute A(i) is to grouping queries
and keys with similar T (i)

qu , T
(i)
kv

into buckets and compute
their attention. However, this is inefficient because of the

potentially non-uniform allocation between queries’ and
keys’ hash codes. The numbers of queries and the numbers
of keys may be very different in the same buckets and may
shift significantly across the buckets, of which the attention
computation needs significantly irregular computations.

To introduce regularity, we separately process queries and
keys. We partition queries into equal-sized buckets by trun-
cating their AND hash codes T (i)

qu for u ∈ [n], and partition
the keys in the same way. Then, we compute the attention
between queries and keys with the same bucket index, which
essentially computes a block-diagonal attention matrix and
is highly regular and hardware-friendly.

However, in practice, we observe that the above way to
bucketize queries and keys separately may introduce a mis-
alignment issue between queries and keys and miss those
query-key pairs with large attention values, since it may
include queries and keys with rather different hash codes in
the same bucket, as illustrated with an example in Fig. 1. Re-
former (Kitaev et al., 2020) circumvents this issue by tying
queries and keys, i.e., qu = ku, but this limits its modeling
capacity. We address this challenge by integrating point
coordinates as extra AND hash codes, detailed as follows.

Point Coordinates as Extra AND Hash Codes. In GDL
tasks with point cloud data, we may leverage spatial prox-
imity to align query buckets and key buckets. Specifically,
we can obtain d′ additional AND hash values based on the
coordinates of point u, ρu ∈ Rk2 (typically d′ ≤ k2) for
aux hash code computation. These hash values are shared
by both queries and keys, i.e., L(i(m2+ℓ))

qu
= L

(i(m2+ℓ))
ku

=
haℓ

(ρu)(= aℓ · ρu) ∈ R, ℓ = 1, 2, ..., d′. Subsequently,
these hash values go through the same procedure to be com-
bined into the AND hash codes as discussed in Sec. 4.2.
This process is essentially equivalent to partitioning the
input space into various distinct, non-overlapping regions
randomly, and guarantees that even if the query and the key
hash codes are processed separately, only the attention be-
tween point pairs u, v that are close in the geometric space
is computed, which well addresses the misalignment issue.

5. Related Work
In this section, we review the most relevant work on efficient
transformers and discuss their existing issues. More related
work can be found in Appendix B.

Neglecting Error-Computation Tradeoff. FLT (Choro-
manski et al., 2023) models local inductive bias utilizing
RFF for GDL tasks with tens of points and overlooks the bad
error-computation tradeoff of RFF. Those works using LSH,
Reformer (Kitaev et al., 2020) and Smyrf (Daras et al., 2020)
consider OR-only LSH and neglect AND LSH, rendering
non-neglectable error for large n; KDEformer (Zandieh
et al., 2023) and HyperAttention (Han et al., 2024) em-
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ploy AND-only LSH, which often does not work well in
practice. Furthermore, to employ angular-distance-based
LSH functions, Reformer normalizes their queries and keys,
limiting the model’s expressiveness. KDEformer and Hyper-
Attention avoid using normalized inputs, but using angular-
distance-based LSH for maximum inner product search re-
quires strong assumptions on the alignment between query-
key angles and inner products.

Compromised Accuracy for Computational Regularity.
Reformer sorts and truncates hash buckets evenly for com-
putational regularity, which does not guarantee that consec-
utive buckets in a hash table correspond to geometrically
neighboring areas. To mitigate this issue, Smyrf, KDE-
former, and HyperAttention utilize either E2LSH (Datar
et al., 2004) or hyperplane LSH (Charikar, 2002), ensuring
that query/key pairs located in adjacent buckets are geo-
metrically close. However, these methods truncate queries
and keys into equal-sized buckets separately, and neglect
the query-key misalignment issue, as explained in Sec. 4.3.
Both Flatformer (Liu et al., 2023) and DSVT (Wang et al.,
2023) from CV propose to project 3D points onto the x and
y axes rather than using LSH functions, and attention is com-
puted by grouping points into equal-sized blocks along each
axis. Such fixed projection directions may not be suitable
for scientific problems with complex geometry. Moreover,
some of these methods rely on domain-specific techniques,
such as voxelization (Wang et al., 2023), which presents
challenges in applications to general point-cloud data.

6. Experiments
We evaluate HEPT for both predictive accuracy and compu-
tational performance against a variety of efficient transform-
ers and GNNs on two critical tasks in HEP. In the following,
we introduce our datasets, baselines, and experiment set-
tings, and more details can be found in Appendix A and C.

6.1. Datasets

Tracking-6k & Tracking-60k. We use two datasets derived
from the TrackML Particle Tracking Dataset (Amrouche
et al., 2020) designed for evaluating algorithms that recon-
struct charged particle tracks, a crucial task in HEP that
requires real-time processing. During collision events, as
charged particles pass through tracking detectors, they leave
a trail of hits, each recorded with geometric coordinates and
additional properties (e.g., momentum). The hits from a
single collision event collectively form an attributed point
cloud, as illustrated in Fig. 4a. The task is to identify which
hits are left by the same particle and group them accord-
ingly for track reconstruction. The current pipeline for this
task is time-consuming, representing about 45% of the to-
tal collider data reconstruction time (CMS Group, 2022).
Thus, accurate and efficient methods for this task are in great

demand. ML methods can be used to learn hit (point) embed-
dings such that the hits originating from the same particle
are nearby in the embedding space for downstream cluster-
ing and track identification. Differing in scale, Tracking-6k
comprises point clouds with about 6,000 points each, while
Tracking-60k presents a more challenging scenario with
each cloud containing about 60,000 points.

Pileup-10k. This dataset, similar to that in Martı́nez et al.
(2019); Li et al. (2023), is for the task of pileup mitigation, a
critical data-denoising step in HEP. Each point cloud within
the dataset represents an event resulting from multiple simul-
taneous proton-proton collisions at the LHC. The individual
points in these clouds correspond to the particles generated
from the collisions, either from the leading collision (LC) or
simultaneous pileup collisions (PCs). The goal of this task
is to classify whether each particle originates from the LC or
PCs, as illustrated in Fig. 4b, which is a point classification
task. There are 1000 point clouds in this dataset, each with
about 10,000 points.

6.2. Baselines and Setup

Efficient Transformer Baselines. We evaluate eight ef-
ficient transformers from both NLP and CV domains as
our baselines. These include the LSH-based Reformer (Ki-
taev et al., 2020), Smyrf (Daras et al., 2020), and Hyper-
Attn (Han et al., 2024); RFF-based Performer (Choromanski
et al., 2021) and FLT (Choromanski et al., 2023); and Scat-
terBrain (Chen et al., 2021), which integrates both RFF
and LSH approaches. From CV, we include Point Trans-
former (Zhao et al., 2021) and FlatFormer (Liu et al., 2023).

GNN Baselines. Besides collecting results from current
SOTA GNNs for the two tasks (Lieret et al., 2023; Li et al.,
2023), we use GCN (Kipf & Welling, 2017) as a baseline
and further benchmark three GNNs that have been widely
used in scientific applications, including GatedGNN (Li
et al., 2016; 2023), DGCNN (Wang et al., 2019; Qu &
Gouskos, 2020), and GravNet (Qasim et al., 2019).

Random Baselines. The random baselines for the Tracking
datasets are implemented by randomly initializing HEPT
models without any training. For the Pileup dataset, the ran-
dom baseline is obtained by randomly assigning the output
class probability for each point.

Metrics. For the tracking datasets, the quality of the
learned point embeddings is assessed by evaluating how
closely the embeddings of hits from the same particle clus-
ter together. Specifically, we use the metric AP@ k =
1
n

∑n
u=1 Prec@ ku, where ku represents the number of hits

originating from the same particle as hit u. Prec@ ku cal-
culates the precision by retrieving the closest ku neighbors
of hit u in the embedding space. For the pileup dataset, the
area under the precision-recall curve (AUC) is employed for
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Table 1: Predictive performance on the three datasets. The
Bold†, Bold‡, and Bold highlight the first, second, and
third best results, respectively. Underline indicates the best
transformer baselines.

Tracking-6k (AP@k) Tracking-60k (AP@k) Pileup-10k (AUC)

Random 5.88 5.71 4.22
SOTA GNNs 91.00‡ 90.89‡ 40.26

Reformer 72.37 72.47 36.70
SMYRF 72.98 71.18 25.20
HyperAttn 71.49 70.22 25.31
Performer 73.17 72.07 28.36
FLT 72.55 71.45 25.26
ScatterBrain 73.35 72.06 30.95
PointTrans 72.33 70.81 40.26
FlatFormer 74.22 70.23 38.61

GCN 79.61 75.38 40.10
DGCNN 90.74 88.66 33.75
GravNet 90.11 87.99 40.10
GatedGNN 80.98 78.42 40.26

Performer-kHEPT 71.97 69.20 32.81
SMYRF-kHEPT 83.19 71.04 40.31‡

FlatFormer-kHEPT 88.18 85.06 39.99

HEPT 92.66† 91.93† 40.39†

this imbalanced binary classification task.

Setup. The transformer baselines are implemented using
well-established codebases (Idiap, 2023; Wang, 2023b; Dao
& Chen, 2023) or author-provided code (Liu et al., 2023),
while GNNs use the implementation from PyG (Fey &
Lenssen, 2019). For the results collected from SOTA GNNs,
provided model checkpoints (Lieret et al., 2023) are used for
evaluation on the Tracking datasets; for the Pileup dataset,
the SOTA GNN is trained from scratch using available open-
source code in (Li et al., 2023). If not specified, point
coordinates are used as the positional encoding for the trans-
former baselines following Liu et al. (2023); Wang et al.
(2023). All models are ensured to have a similar number of
trainable parameters and then the FLOPs used are aligned if
possible. All models are trained and evaluated with the same
seed to ensure reproducibility, using a server with NVIDIA
Quadro RTX 6000 GPUs and Intel Xeon Gold 6248R CPUs.
Note that all computations were performed on the GPUs,
including the construction of k-nn graphs required by some
baselines, where the API from PyG (Fey & Lenssen, 2019)
was used with k being 64 similar to previous works (Lieret
et al., 2023; Li et al., 2023).

Hyperparameter Tuning. The hyperparameters for the
baselines and HEPT are tuned with similar budgets, based
on performance in the validation set of each dataset. For
HEPT, we adopt m1 = 3 hash tables, each with m2 = 3
hash functions for the three datasets. The block size of atten-
tion computation is set to 100, and we use only point coordi-
nates without point hidden representations as the AND hash
inputs, i.e., L(i(1+ℓ))

qu
= L

(i(1+ℓ))
ku

= haℓ
(ρu)(= aℓ · ρu),

for ℓ = 1, 2, where note that in HEP, the points are in a 2-d
η−ϕ space (Thais et al., 2022), as detailed in Appendix A.2.
We set a fixed total number of buckets

∏m2

j=2Bij and gen-
erate different bucket sizes {Bij} randomly to mitigate the
boundary effect. See Appendix C for detailed settings.

Table 2: Training and test time (ms) per sample. Each entry
is the median from at least 100 measurements evaluated on
an NVIDIA Quatro RTX 6000. Numbers in (·) are the time
used to pre-construct input graphs that may be saved during
training if pre-processing is allowed. Note that real-time
inference requires building graphs on the fly. The Bold†

highlights the best results, and Bold and Underline indicate
the best transformer and GNN baselines, respectively.

Tracking-6k Tracking-60k Pilup-10k

Train Test Train Test Train Test

SOTA GNNs 559 221 OOM 5781 432(322) 362

Reformer 355 23.1 2570 251 83.3 23.4
SMYRF 348 8.7 2343 69.6 58.6 12.4
HyperAttn 352 8.4 2320 62.1 44.4 12.5
Performer 343 8.3 2407 68.7 52.7 12.8
FLT 341 8.4 2369 71.6 55.9 12.7
ScatterBrain 357 13.1 2562 129 109 34.6
PointTrans 476(130) 144 7361(5017) 5143 372(323) 348
FlatFormer 338† 8.3 2261† 58.7 53.7 12.2

GCN 471(129) 138 7332(5009) 5123 376(322) 342

DGCNN 563 287 14098 11779 325 294
GravNet 593 251 13597 11684 312 278
GatedGNN 512(131) 158 7476(5013) 5263 432(328) 362

HEPT 338† 7.0† 2312 57.9† 40.3† 10.7†

Table 3: Ablation studies of HEPT.

Tracking-60k

HEPT w/o kHEPT 72.28

OR-only LSH 71.42
OR-only LSH* 78.22
OR & AND LSH 70.98
OR & AND LSH* 88.54

6.3. Result Analysis

Predictive Performance. As shown in Table 1, GNNs are
suitable for GDL tasks with local inductive bias and have
indeed achieved good prediction accuracy. However, HEPT
still largely outperforms GNNs (with much lower computa-
tional complexity). When compared with other transform-
ers, HEPT’s performance gain is even more significant (up
to 22%). To inspect the benefits of our proposed kernel
kHEPT, we also incorporate it into some transformer base-
lines when possible. These baselines also yield substantial
improvements, validating the necessity of modeling local
inductive bias explicitly for GDL tasks in HEP. Moreover,
we observe that RFF-based methods Performer and FLT
consistently exhibit unsatisfactory performance even with
kHEPT, which aligns with our analysis. As for LSH-based
methods, SMYRF shows promise with kHEPT, but it is un-
able to well generalize to the larger dataset Tracking-60k
due to its OR-only LSH-based design and the neglect of
query-key alignment. Similarly, FlatFormer also achieves
good results when paired with our kernel. However, it still
falls short of matching the SOTA GNNs and HEPT.

Computational Complexity. Table 2 compares both the
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Figure 5: Inference and training costs per point cloud.

training (forward + backward pass) and inference (forward
pass) time per sample for all models yielded from Table 1,
and their FLOPs and GPU memory usage are reported in
Table 7 in the appendix. Clearly, HEPT is among the most
efficient transformers, and the gain in computational speed
compared with GNNs is tremendous, especially for large
point clouds. The speedup can be less significant in training
for the Tracking datasets since the loss computation in this
task dominates the running time in training (see Table 9).
Specifically, in Tracking-60k, HEPT achieves an 89-203×
speedup in inference and a 3-6× speedup in training, and in
Pileup-10k, HEPT is 26-34× faster for inference and 8-11×
faster for training, all while maintaining SOTA predictive ac-
curacy. The slower performance of GNNs is due to the need
for constructing graphs from point clouds and their irregular
computation, while efficient transformers such as HEPT
avoid graph construction and adopt only efficient regular
computation. Moreover, HEPT can be further accelerated
by applying such as Float16 computation and FlashAtten-
tion (Dao, 2024), which we leave as future studies.

Ablation Studies. We conduct ablation studies whose re-
sults are shown in Table 3. First, we evaluate the importance
of our proposed kernel, where we replace our kernel with the
kernel from the original transformer with absolute positional
encoding. However, using the traditional kernel significantly
reduces the performance of the model. Second, to show the
effectiveness of OR & AND LSH in a general setting, we
remove the use of point coordinates when obtaining aux
hash codes. These codes are now computed only based on
the query/key vectors. Since query-key alignment is critical,
without using point coordinates, we follow (Kitaev et al.,
2020) by tying query and key vectors, i.e., qu = ku for
alignment. The models with such query-key alignment are
highlighted with ∗. As Table 3 shows, query-key alignment
is important. With query-key alignment, the advantage of
OR & AND LSH over OR-only LSH is obvious. HEPT by
using OR & AND LSH and point coordinates for query-key
alignment achieves the best performance.

6.4. Scalability Analysis

The considered tasks cover point clouds with 6k, 10k, and
60k points, offering a preliminary view of HEPT’s scalabil-
ity. To further examine scalability across a broader range of

Table 4: Performance of HEPT on Tracking-60k with dif-
ferent configurations of hash tables and bucket sizes. Re-
sults are reported as AP@ k (GFLOPs), i.e., the numbers in
parentheses represent the GFLOPs for each configuration.

# Hash Tables Block Size

50 100 150

1 73.57 (24.2) 78.60 (29.8) 80.91 (35.4)
3 87.47 (35.6) 91.93 (52.2) 92.22 (68.9)
5 91.89 (46.9) 92.27 (74.7) 92.34 (102.6)

input sizes, we evaluate HEPT on point clouds ranging from
1k (210) to 262k (218) points. The results are presented in
Fig. 5, where we also include a comparison with GCN and
the three most efficient transformer baselines as indicated by
Table 2, and the same settings used in Table 2 and Table 7
for the pileup mitigation task are employed. The input point
clouds are generated randomly to meet the required num-
ber of points, and all models are closely matched in terms
of FLOPs and trainable parameters (see Table 7). Fig. 5
indicates that HEPT is among the most scalable efficient
transformers in terms of both latency and memory usage,
even with input sizes extending from 210 to 218.

6.5. Sensitivity Analysis

Table 4 evaluates HEPT on Tracking-60k by varying the
number of hash tables and block sizes, keeping other settings
the same as those used in Table 1. Notably, configurations
using a single hash table correspond to AND-only LSH,
which generally performs poorly in practice and our results
further verify this claim. For other configurations, HEPT
demonstrates robustness, with increased computational bud-
gets generally improving performance.

7. Conclusion
This work introduces HEPT, a new efficient transformer
architecture for fast and accurate large-scale point cloud
learning in scientific domains. Quantitative analysis on
error-computation tradeoff shows the inherent limitations of
RFF and the necessity of using OR & AND LSH to design
efficient transformers for applications with local inductive
bias. Two tasks in HEP have been used for evaluation, where
HEPT greatly boosts computational speed and predictive
accuracy against existing GNNs and transformers.
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tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 2022.

Daras, G., Kitaev, N., Odena, A., and Dimakis, A. G. Smyrf-
efficient attention using asymmetric clustering. Advances
in Neural Information Processing Systems, 2020.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S.
Locality-sensitive hashing scheme based on p-stable dis-
tributions. Symposium on Computational Geometry,
2004.

De Favereau, J., Delaere, C., Demin, P., Giammanco, A.,
Lemaitre, V., Mertens, A., and Selvaggi, M. Delphes
3: a modular framework for fast simulation of a generic
collider experiment. Journal of High Energy Physics,
2014.

DeZoort, G., Thais, S., Duarte, J., Razavimaleki, V., Atkin-
son, M., Ojalvo, I., Neubauer, M., and Elmer, P. Charged
particle tracking via edge-classifying interaction net-
works. Computing and Software for Big Science, 2021.

Durrant, J. D. and McCammon, J. A. Molecular dynamics
simulations and drug discovery. BMC Biology, 2011.

Fan, L., Pang, Z., Zhang, T., Wang, Y.-X., Zhao, H., Wang,
F., Wang, N., and Zhang, Z. Embracing single stride
3d object detector with sparse transformer. IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2022.

Fey, M. and Lenssen, J. E. Fast Graph Representation
Learning with PyTorch Geometric. https://github.
com/pyg-team/pytorch_geometric, 2019.

Gaillard, M. Cern data centre passes the 200-petabyte mile-
stone. 2017.

Halzen, F. and Klein, S. R. Invited review article: Icecube:
an instrument for neutrino astronomy. Review of Scientific
Instruments, 2010.

Han, I., Jayaram, R., Karbasi, A., Mirrokni, V., Woodruff,
D. P., and Zandieh, A. Hyperattention: Long-context
attention in near-linear time. International Conference
on Learning Representations, 2024.

Hashemi, M., Swersky, K., Smith, J., Ayers, G., Litz, H.,
Chang, J., Kozyrakis, C., and Ranganathan, P. Learning
memory access patterns. In International Conference on
Machine Learning, 2018.

Idiap. Fast transformers. https://github.com/
idiap/fast-transformers, 2023.

Indyk, P. and Motwani, R. Approximate nearest neighbors:
towards removing the curse of dimensionality. Sympo-
sium on Theory of Computing, 1998.

Jang, B., Schaa, D., Mistry, P., and Kaeli, D. Exploiting
memory access patterns to improve memory performance
in data-parallel architectures. IEEE Transactions on Par-
allel and Distributed Systems, 2010.

Jing, B., Eismann, S., Suriana, P., Townshend, R. J., and
Dror, R. Learning from protein structure with geometric
vector perceptrons. International Conference on Learning
Representations, 2021.

Kansal, R., Duarte, J., Su, H., Orzari, B., Tomei, T., Pierini,
M., Touranakou, M., Gunopulos, D., et al. Particle cloud
generation with message passing generative adversarial
networks. Advances in Neural Information Processing
Systems, 2021.

Kansal, R., Li, A., Duarte, J., Chernyavskaya, N., Pierini,
M., Orzari, B., and Tomei, T. Evaluating generative
models in high energy physics. Physical Review D, 2023.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention. International Conference on Ma-
chine Learning, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. International Conference for Learning
Representations, 2015.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. International
Conference on Learning Representations, 2017.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The effi-
cient transformer. International Conference on Learning
Representations, 2020.

Langacker, P. The standard model and beyond. Taylor &
Francis, 2017.

Leskovec, J., Rajaraman, A., and Ullman, J. D. Mining of
massive data sets. Cambridge University Press, 2020.

Li, T., Liu, S., Feng, Y., Paspalaki, G., Tran, N. V., Liu, M.,
and Li, P. Semi-supervised graph neural networks for
pileup noise removal. The European Physical Journal C,
2023.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. Gated
graph sequence neural networks. International Confer-
ence on Learning Representations, 2016.

11

https://github.com/HazyResearch/fly
https://github.com/HazyResearch/fly
https://github.com/pyg-team/pytorch_geometric
https://github.com/pyg-team/pytorch_geometric
https://github.com/idiap/fast-transformers
https://github.com/idiap/fast-transformers


Locality-Sensitive Hashing-Based Efficient Point Transformer

Lieret, K., DeZoort, G., Chatterjee, D., Park, J., Miao, S.,
and Li, P. High pileup particle tracking with object con-
densation. International Connecting The Dots Workshop,
2023.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P.
Focal loss for dense object detection. IEEE/CVF Interna-
tional Conference on Computer Vision, 2017.

Liu, Z., Yang, X., Tang, H., Yang, S., and Han, S. Flat-
former: Flattened window attention for efficient point
cloud transformer. IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023.

Luo, S., Li, S., Cai, T., He, D., Peng, D., Zheng, S., Ke, G.,
Wang, L., and Liu, T.-Y. Stable, fast and accurate: Kernel-
ized attention with relative positional encoding. Advances
in Neural Information Processing Systems, 2021.

Mao, J., Xue, Y., Niu, M., Bai, H., Feng, J., Liang, X., Xu,
H., and Xu, C. Voxel transformer for 3d object detection.
IEEE/CVF International Conference on Computer Vision,
2021.

Martı́nez, J. A., Cerri, O., Spiropulu, M., Vlimant, J., and
Pierini, M. Pileup mitigation at the large hadron collider
with graph neural networks. The European Physical
Journal Plus, 2019.

Nelson, D., Springel, V., Pillepich, A., Rodriguez-Gomez,
V., Torrey, P., Genel, S., Vogelsberger, M., Pakmor, R.,
Marinacci, F., Weinberger, R., et al. The illustristng simu-
lations: public data release. Computational Astrophysics
and Cosmology, 2019.

Oerter, R. The theory of almost everything: The standard
model, the unsung triumph of modern physics. Penguin,
2006.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Pata, J., Wulff, E., Mokhtar, F., Southwick, D., Zhang, M.,
Girone, M., and Duarte, J. Improved particle-flow event
reconstruction with scalable neural networks for current
and future particle detectors. arXiv e-prints, 2023.

Peng, H., Pappas, N., Yogatama, D., Schwartz, R., Smith,
N. A., and Kong, L. Random feature attention. Interna-
tional Conference on Learning Representations, 2021.

Qasim, S. R., Kieseler, J., Iiyama, Y., and Pierini, M. Learn-
ing representations of irregular particle-detector geometry
with distance-weighted graph networks. The European
Physical Journal C, 2019.

Qu, H. and Gouskos, L. Jet tagging via particle clouds.
Physical Review D, 2020.

Qu, H., Li, C., and Qian, S. Particle transformer for jet
tagging. International Conference on Machine Learning,
2022.

Radovic, A., Williams, M., Rousseau, D., Kagan, M., Bona-
corsi, D., Himmel, A., Aurisano, A., Terao, K., and
Wongjirad, T. Machine learning at the energy and in-
tensity frontiers of particle physics. Nature, 2018.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. Advances in Neural Information Pro-
cessing Systems, 2007.

Rudin, W. Fourier Analysis on Groups. Wiley, 1991.

Satorras, V. G., Hoogeboom, E., and Welling, M. E (n)
equivariant graph neural networks. International Confer-
ence on Machine Learning, 2021.

Seeger, M. Gaussian processes for machine learning. Inter-
national journal of neural systems, 2004.

Shaw, P., Uszkoreit, J., and Vaswani, A. Self-attention
with relative position representations. North American
Chapter of the Association for Computational Linguistics,
2018.

Shirzad, H., Velingker, A., Venkatachalam, B., Sutherland,
D. J., and Sinop, A. K. Exphormer: Sparse transform-
ers for graphs. International Conference on Machine
Learning, 2023.

Shrivastava, A. and Li, P. Asymmetric lsh (alsh) for sublin-
ear time maximum inner product search (mips). Advances
in Neural Information Processing Systems, 2014.

Stärk, H., Ganea, O., Pattanaik, L., Barzilay, R., and
Jaakkola, T. Equibind: Geometric deep learning for drug
binding structure prediction. In International Conference
on Machine Learning, 2022.
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Figure 6: Visualizations of CMS detector and coordinate systems in HEP analysis, adapted from CMS Group (2012).

Table 5: Statistics of the three datasets.

# Point Clouds # Features in X # Dimensions in ρ Avg. # Points per Cloud Avg. # Labeled Pairs per Cloud Class Ratio (Pos./Neg.)

Tracking-6k 500 16 2 6.8k 3.7M N/A
Tracking-60k 50 16 2 56.7k 75.5M N/A
Pileup-10k 1000 8 2 10.3k N/A 0.039

A. Details of the Datasets
A.1. Background

Tracking-6k & Tracking-60k. These two datasets are for charged particle tracking at the CERN LHC, which is a crucial
task in HEP as it enables precise identification and reconstruction of charged particles’ paths, facilitating the determination
of their momentum, energy, etc. This capability is crucial for identifying particle types and reconstructing collision events,
laying the foundation for precise measurements of particle properties such as mass and charge. These measurements are
vital for testing Standard Model predictions and probing for new physics (Langacker, 2017). Additionally, accurate tracking
is instrumental in suppressing background noise, distinguishing between signal events and the more common processes,
thereby enhancing the detection of rare phenomena and contributing significantly to our understanding of fundamental
particles and their interactions at high energies. The tracking process utilizes sophisticated detector systems, such as the inner
detector of the ATLAS and CMS experiments, to reconstruct particle trajectories from collision events. However, challenges
arise from the vast volume of data generated, background noise, and experimental complexities, necessitating robust yet
efficient algorithms, e.g., the LHC operates at an extremely high collision rate, with millions of proton-proton collisions
occurring every second to be analyzed. Traditional combinatorial-Kalman-filter-based track reconstruction (Strandlie &
Frühwirth, 2010) cannot easily scale up to future LHC data and is difficult to parallelize on heterogeneous computing
platforms. And the inherent complexity of GNNs renders it hard for their efficient deployment at the LHC. This study is
performed using the TrackML dataset (Amrouche et al., 2023), which simulates the worst-case future LHC pileup conditions
(200 interactions per proton bunch crossing) in a generic tracking detector geometry.

Pileup-10k. This dataset focuses on pileup mitigation, a critical challenge in analyzing data from the LHC, where
multiple proton-proton collisions occur simultaneously within the same or nearby bunch crossings. These overlapping
interactions, known as pileup collisions (PCs), complicate the extraction of meaningful data from the primary collision of
interest. Effective pileup mitigation is essential for maintaining the physics sensitivity of LHC experiments, as it involves
distinguishing and removing the contributions of noisy particles from PCs to isolate signals from the leading collision (LC),
which is associated with the primary vertex having the highest sum of particle momentum. During the 2016 to 2018 LHC
runs, the average pileup level was around 40, but this figure is anticipated to rise to as much as 200 in future runs (i.e., more
noise and larger input sizes), significantly increasing the complexity of data analysis. The reconstruction of particles from
LHC collisions relies on tracking detector hits and calorimeter energy deposits. While the SOTA tracking systems allow
for tracking and vertexing of charged particles, enabling the straightforward identification and removal of those associated
with PCs, the main challenge lies in dealing with neutral particles, such as photons and neutral hadrons, which do not leave
tracks. To address these challenges, simulation samples based on the DELPHES framework (De Favereau et al., 2014) are
utilized, generating both charged and neutral particles from selected physics processes alongside detector resolution effects,
to develop and test pileup mitigation strategies.
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Figure 7: Visualization of a sample from the Tracking datasets, showcasing only the points collected from the detectors in
the highlighted region for better illustration. The leftmost part of this figure is adapted from CMS Group (2012).

Figure 8: Visualization of a sample from the Pileup dataset. The left part of this figure is adapted from Qu et al. (2022).

A.2. Data Format

The statistics of the three datasets used are shown in Table 5, and Fig. 7 and Fig. 8 provide visualizations of the data samples.
Below we introduce the features and labels included in the datasets.

Point Coordinates ρ. Following the standard pipeline in HEP analysis, each point in the three datasets is associated with a
2-d coordinate in η − ϕ space (Thais et al., 2022). Fig. 6 visualizes the CMS detector at the LHC with its 3D and transverse
view, where collisions occur at the center, surrounded by multiple layers of cylindrical detectors, and particles flying out
from the center will hit the detectors at various locations. Imagine cutting the cylindrical detector along its length and
flattening it out into a 2D plane, as illustrated in Fig. 6c. The vertical axis of this plane can represent the pseudorapidity (η),
which indicates how far up or down (along the beam axis) the particle hit the detector. The horizontal axis represents the
azimuthal angle (ϕ), indicating the particle’s direction around the beam axis.

Point Features X . Table 6 lists the variables included as point features in the two tasks and their definitions. Note that
geometric features, e.g., η and ϕ, are also included as point features for model learning, which is a common practice in HEP
and results in non-equivariant models with respect to these geometric features. We follow this practice in our implementation
similar to previous works (Lieret et al., 2023; Li et al., 2023) and whether equivariant models are useful in HEP has not
reached a consistent conclusion (Thais & Murnane, 2023).

Ground-Truth Labels. For the Tracking datasets, any pairs of hits (points) from the same particle are labeled as positive
samples to be learned with similar embeddings, while for each hit its neighboring 256 hits from other particles are labeled
as negative pairs. For the Pileup dataset, a particle (point) is labeled positive if it is from LC, and otherwise, it is labeled
negative. Note that this task is highly imbalanced, and only about 3.9% of points are labeled positive.
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Table 6: Point Features in the two tasks.

Task Variable Definition

Tracking

r Radial distance from the beam axis in cylindrical coordinates.
ϕ Azimuthal angle around the beam axis in cylindrical coordinates.
z Longitudinal position along the beam axis.
η Pseudorapidity, measuring the angle of particle trajectory relative to the beam axis.
u Local coordinate axis in a detector plane, orthogonal to v.
v Local coordinate axis in a detector plane, orthogonal to u.
charge frac Fraction of the charge collected by a sensor, indicating the quality of a hit.
ℓη Local pseudorapidity, calculated within a specific sub-detector region.
ℓϕ Local azimuthal angle, measured within a specific sub-detector region.
ℓx Local x coordinate, representing position within a sub-detector.
ℓy Local y coordinate, representing position within a sub-detector.
ℓz Local z coordinate, representing position along the beam axis within a sub-detector.
gη Global pseudorapidity, calculated with respect to the overall detector geometry.
gϕ Global azimuthal angle, measured with respect to the overall detector geometry.

Pileup

η Pseudorapidity, a measure of the angle relative to the beam axis.
ϕ Azimuthal angle around the beam axis in cylindrical coordinates.
px Momentum component of the particle in the x direction.
py Momentum component of the particle in the y direction.
pt Transverse momentum, calculated from the x and y momentum components.
Rapidity A measure of the particle’s velocity in the direction of the beam.
E Energy of the particle.
PID Particle ID, indicating the type of the particle, e.g., muon, electron, etc.

A.3. Task Formulation

Below we describe how they are formulated as ML tasks.

Tracking-6k & Tracking-60k. To learn clustered embeddings for hits originating from the same particle, we adopt
contrastive learning with InfoNCE loss (Oord et al., 2018). For any pairs of hits from the same particle, they are labeled as
positive samples to be learned with similar embeddings, while for each hit its neighboring 256 hits from other particles are
labeled as negative pairs. Therefore, with learned embeddings for a point u, denoted as hu, the loss is computed as

LInfoNCE = − log
exp(sim(hu,h

+
v ))

exp(sim(hu,h
+
v )) +

∑
h−

v ∈N exp(sim(hu,h
−
v ))

,

where sim is some similarity metric, h+
v is the embeddings of a point v that is a positive pair with point u, and N is a set of

negative pairs for point u, whose embeddings are denoted as h−
v . In our experiments, we adopt sim as exp(−∥hu−hv∥2/τ),

where τ is a positive hyperparamter. We also experimented with angular distances and dot product as the similarity metric,
and they can hardly work even with GNNs that need no approximation in computation. The dataset split is done in a
cloud-wise way, i.e., 80%/10%/10% of point clouds are used to train/validate/test models, respectively.

Pileup-10k. Each point cloud consists of both charged and neutral particles (points), and models are only trained to predict
the class of each neutral particle, i.e., from LC or PCs. Since this is an imbalanced binary classification task, meaning more
points are labeled from PCs, the Focal loss (Lin et al., 2017) is adopted, i.e., a variant of cross-entropy loss for imbalanced
classification, for better performance. The dataset split is also done in a cloud-wise way, i.e., 80%/10%/10% of point clouds
are used to train/validate/test models, respectively.

B. Extended Related Work
Efficient Transformers in NLP. Leveraging local inductive biases in NLP, several works introduce local attention pat-
terns (Child et al., 2019; Tay et al., 2020; Beltagy et al., 2020; Zaheer et al., 2020). Other approaches focus on exploiting
the inherent properties of the attention matrix, employing techniques such as RFF or Nystrom for low-rank approxima-
tions (Wang et al., 2020; Xiong et al., 2021; Peng et al., 2021; Choromanski et al., 2021), leveraging the sparsity of
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the attention matrix with various LSH-based methods (Kitaev et al., 2020; Daras et al., 2020; Zandieh et al., 2023; Han
et al., 2024), or combining both properties (Chen et al., 2021). Research has also been conducted on optimizing attention
computation on hardware like GPUs (Dao et al., 2022; Dao, 2024) and in designing new linear transformers that replace the
original Softmax attention (Katharopoulos et al., 2020; Sun et al., 2023).

Other Efficient Transformers. In CV, domain-specific knowledge has led to the adoption of local neighborhood atten-
tion (Zhao et al., 2021; Mao et al., 2021) and the techniques that partition 2D spaces into grids for parallel processing (Fan
et al., 2022; Sun et al., 2022). To further improve computational regularity, some methods (Liu et al., 2023; Wang et al.,
2023) project points/voxels onto axes, forming equal-sized point sets along each axis. In scalable graph transformers, where
the input graphs are assumed to be given, approaches vary from sampling-based techniques for large graphs (Chen et al.,
2022; Zhang et al., 2022; Wu et al., 2022) to those that approximate the spectral properties of input graphs (Shirzad et al.,
2023).

Attention Kernels & Relevant Positional Encoding. The original transformer (Vaswani et al., 2017) utilizes the attention
kernel exp(q⊤

i kj) with absolute positional encoding (PE) added to the query/key vectors to capture positional information
between tokens in sentences. Following this idea, many works, such as those for 3D detection from CV (Liu et al., 2023;
Wang et al., 2023) adopt PE similar to this. Instead of absolute PE, there are also studies utilizing relative positional
encoding (RPE), and one way to formulate it is exp(q⊤

i kj + bj−i), where bj−i could be some learnable parameters for
each relative position (Shaw et al., 2018; Wu et al., 2021). Recently, FLT (Choromanski et al., 2023) also considers
generalizing the idea of RPE to GDL tasks with point coordinates, and they adopt RFF-based methods with a kernel,
e.g., exp(q⊤

i kj + ω exp(−∥ρi − ρj∥2/σ2)), where ρ is point coordinates. However, as demonstrated by our analysis
and empirically in Table 1, such RFF-based RPE implementation does not work well for large-scale point clouds with
local inductive bias (and there may not be an easy way to adopt LSH-based methods to approximate this kernel). Our
proposed kernel can also be viewed as a type of RPE regarding the way to leverage the point coordinates, as it effectively
incorporates distance information between points in attention computation. However, no efficient transformers (with
near-linear complexity) have been developed to enable the approximation of our type of RPE. HEPT is the first work that
enables effective approximations of it via LSH and makes the obtained efficient transformer better suited for GDL tasks
with local inductive bias.

Point Cloud Serialization for Efficient Point Cloud Processing. Recently, Point Transformer V3 (Wu et al., 2024)
summarizes a series of works in CV as point cloud serialization (PCS) techniques, which project irregular point cloud data
into regular sequences with locality in the original 3D space being preserved to some degree for efficient computation (Liu
et al., 2023; Wang et al., 2023; Wang, 2023c). These studies typically employ fixed serialization patterns, such as those
induced from Hilbert or Z-order curves (Wu et al., 2024). Actually, HEPT can also be seen as a PCS technique, but it uses
randomized serialization patterns through LSH to project point clouds into regular sequences for computing block-diagonal
attention. Since those fixed serialization patterns would overlook specific locality patterns (Wu et al., 2024) and only work
for low-dimensional data, the randomized approach in HEPT offers an effective alternative or complementary PCS method,
due to its guaranteed and analyzable ability to capture locality in the data, even when it is high-dimensional.

C. Implementation Details
C.1. Implementation of HEPT

We follow the standard architecture of the transformer (Vaswani et al., 2017), i.e.,

H = LN(Hℓ)

Q = [HWQ∥
√
2ωρ], K = [HWK∥

√
2ωρ], V = HWV

H ′ = H +MHSA(Q,K,V )

Hℓ+1 = H ′ + FFN(LN(H ′)),

where Hℓ ∈ Rn×h is the learned point embeddings at the ℓth layer, LN is the layer normalization (Ba et al., 2016),
WQ,WK ,WV are learnable projection matrices, ρ ∈ Rn×k2 is point coordinate matrix, ω ∈ R+ are positive learnable
parameters, ∥ concatenates two matrices along the column dimension, and FFN denotes a feed-forward layer. MHSA is the
multi-head self-attention mechanism, and in our case, the unnormalized attention scores between query-key pairs will be
computed via our kernel, and the full attention matrix is approximated by our LSH-based methods illustrated in Fig. 1.
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Table 7: FLOPs (G) and GPU memory usage (GB). The Bold†, Bold‡, and Bold highlight the first, second, and third best
results, respectively. Note that SOTA GNNs for the Tracking datasets employ rather large models and involve complex
operations along edges, leading to a significant amount of FLOPs. Besides these two models, other models for the same
dataset are ensured to have the same number of trainable parameters and similar FLOPs if possible. GNNs, despite with
fewer FLOPs, may have high training/test time due to (dynamic) graph construction and irregular computations.

Tracking-6k Tracking-60k Pilup-10k

FLOPs Train Mem. Test Mem. FLOPs Train Mem. Test Mem. FLOPs Train Mem. Test Mem.

SOTA GNNs 316.1 4.7 1.8 3717.8 OOM 16.9 3.9 3.3 1.5

Reformer 6.8 1.8 0.7 101.0 19.0 9.4 8.0 1.4 0.6
SMYRF 5.3 1.4 0.6 54.6 20.9 3.6 8.1 1.6 0.5
HyperAttn 5.2 1.2‡ 0.52 54.3 19.4 3.3 8.7 1.5 0.6
Performer 5.6 1.3 0.6 58.6 20.0 3.7 9.7 1.5 0.6
FLT 6.4 1.2‡ 0.5‡ 66.9 19.2 3.5 9.9 1.3‡ 0.6
ScatterBrain 6.4 2.1 0.7 58.8 21.0 5.2 9.7 2.6 0.8
PointTrans 2.9 1.2‡ 0.5‡ 30.6 18.3‡ 4.4 4.9 1.3‡ 0.7
FlatFormer 5.7 1.3 0.5‡ 58.7 19.8 2.5‡ 9.6 1.6 0.4‡

GCN 2.0 1.2‡ 0.6 20.9 18.6 4.1 3.4 1.3‡ 0.4‡

DGCNN 11.9 1.6 0.6 124.0 22.3 4.1 15.5 1.9 0.6
GravNet 2.1 0.8† 0.2† 21.9 14.5† 2.4† 4.3 0.7† 0.4‡

GatedGNN 2.4 2.5 1.2 24.8 23.8 10.6 3.9 3.3 1.5

HEPT 5.0 1.3 0.5‡ 52.2 19.9 2.9 8.5 1.3† 0.2†

In our implementation for the three datasets, HEPT uses 4 layers and 24 hidden dimensions with 8 attention heads in each
layer. In addition, we adopt m1 = 3 hash tables, each with m2 = 3 hash functions for the three datasets. The block size of
attention computation is set to 100, and we use only point coordinates without point hidden representations as the AND
hash inputs, i.e., L(i(1+ℓ))

qu
= L

(i(1+ℓ))
ku

= haℓ
(ρu)(= aℓ · ρu), for ℓ = 1, 2, where in HEP, the points are in a 2-d η − ϕ

space (Thais et al., 2022), as detailed in Appendix A.2. The total number of buckets
∏m2

j=2Bij is tuned for different datasets.

For the Tracking datasets, the resulting 24-dimensional point embeddings are first projected into 12 dimensions to ensure a
fair comparison with SOTA GNNs, which output 12-dimensional final point embeddings. Then, the embeddings are fed into
the InfoNCE loss as described in Sec. A.3 to learn similar point embeddings for points from the same particle and dissimilar
embeddings for those from different particles. For the Pileup dataset, the resulting point embeddings are projected into 1
dimension with a sigmoid layer for the computation of Focal loss.

C.2. Implementation of Baselines & Hyperparameter Tuning

All baseline transformers are implemented following the same standard transformer architecture as above with the full
self-attention module replaced with the corresponding proposed efficient attention modules, and GNNs are realized using
the implementation from PyTorch Geometric (Fey & Lenssen, 2019).

For baseline transformers, as the number of trainable parameters and the architecture is fixed, we only need to tune
method-specific hyperparameters, and we are to tune these hyperparameters in a (small) range of FLOPs that would not
deviate too much (e.g., ±10% GFLOPs) if possible such that all baseline transformers are ensured to be with similar FLOPs
for a fair comparison. For GNN baselines, we mainly follow the implementation from the authors’ code and change the
hidden dimensions to align the number of trainable parameters. In the following, we describe in detail how each baseline is
implemented and tuned, and Table 2 and Table 7 benchmark the computational speed, FLOPs, and GPU memory usage for
the tuned baseline models.

Basic Settings. For all datasets and baselines, Adam optimizer (Kingma & Ba, 2015) is used. For the two Tracking datasets,
the learning rate is tuned from {1e−2, 1e−3}, and is multiplied by a factor of 0.5 every 500 epochs. Any model will be
early-stopped if there is no improvement in the validation set over 200 consecutive epochs, and models can be trained
for up to 2000 epochs to ensure convergence. Models for these two datasets are set with 0.33M trainable parameters for
efficiency. For the Pileup dataset, the learning rate is tuned from {1e−3, 1e−4}, and is multiplied by a factor of 0.5 if there
is no improvement in the validation set for 20 epochs. For this dataset, models can be trained for up to 200 epochs for
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Table 8: Computational cost of each module in HEPT for inference latency (ms).

Module Tracking-6k Tracking-60k Pileup-10k

Attn 5.8 (83%) 52.8 (91%) 9.2 (86%)
Other 1.2 (17%) 5.1 (9%) 1.5 (14%)

Total 7.0 (100%) 57.9 (100%) 10.7 (100%)

Table 9: Computational cost of each module in HEPT for training latency (ms).

Module Tracking-6k Tracking-60k Pileup-10k

Loss+Backward 330 (97.6%) 2248 (97.2%) 28.2 (70%)
Attn 6.6 (2.0%) 57.1 (2.5%) 10.4 (26%)
Other 1.3 (0.4%) 6.2 (0.3%) 1.7 (4%)

Total 338 (100%) 2312 (100%) 40.3 (100%)

convergence, and they are set with 0.31M trainable parameters.

HEPT. Denote G the total number of desired buckets (i.e., the number of unique aux hash codes allowed) when obtain-
ing AND hash codes, which is tuned from {10, 15, 20} for Tracking-6k, from {100, 150, 200} for Tracking-60k, from
{100, 120, 140} for Pileup-10k. And Bij’s are generated randomly such that

∏m2

j=2Bij = G. Note that Bij’s do not have
to be integers.

Reformer (Kitaev et al., 2020) is implemented via (Wang, 2023b). Its hyperparameters are tuned from {(Block Size :
150, # Hash Tables : 3), (Block Size : 100, # Hash Tables : 3), (Block Size : 100, # Hash Tables : 2)}.

SMYRF (Daras et al., 2020) is implemented via (Dao & Chen, 2023). Its hyperparameters are tuned from {(Block Size :
150, # Hash Tables : 3), (Block Size : 100, # Hash Tables : 3), (Block Size : 100, # Hash Tables : 2)}.

HyperAttn (Han et al., 2024) is implemented via the author-provided code. Its hyperparameters are tuned from
{(Block Size : 100, Sample Size : 300), (Block Size : 150, Sample Size : 200), (Block Size : 100, Sample Size : 200)}.

Performer (Choromanski et al., 2021) is implemented via (Wang, 2023a). Its number of feature map dimensions is tuned
from {150, 200, 250}.

FLT (Choromanski et al., 2023) is implemented via (Wang, 2023a; Idiap, 2023). Its hyperparameters are tuned from
{(# Feature Maps for RPE : 10, # Feature Maps for Attn : 150), (# Feature Maps for RPE : 10, # Feature Maps for Attn :
100), (# Feature Maps for RPE : 20, # Feature Maps for Attn : 100)}.

ScatterBrain (Chen et al., 2021) is implemented via (Dao & Chen, 2023). Its hyperparameters are tuned from {(Block Size :
100, # Hash Tables : 2, # Feature Maps : 100), (Block Size : 100, # Hash Tables : 3, # Feature Maps : 50), (Block Size :
50, # Hash Tables : 2, # Feature Maps : 150)}.

FlatFormer (Liu et al., 2023) is implemented via the author-provided code to adapt to general point-cloud data. We follow
its proposed architecture, which is a bit different from the standard transformer. We tune its “window shape” by projecting
points into each axis and partitioning each axis equally into N parts. This N is tuned from {20, 30, 40} for Tracking-6k,
{100, 150, 200} for Tracking-60k, from {30, 40, 50} for Pileup-10k.

Other Baselines. For Point Transformer (Zhao et al., 2021), GCN (Kipf & Welling, 2017), and GravNet (Qasim et al.,
2019), we directly adopt the implementation from PyTorch Geometric. For DGCNN (Qu & Gouskos, 2020), we follow the
description in the paper and modify the implementation from PyTorch Geometric accordingly. For GatedGNN (Li et al.,
2023), we use the author-provided code, which is also based on PyTroch Geometric. These methods do not have extra
hyperparameters to tune, and we change their hidden dimensions accordingly to align the number of trainable parameters.

C.3. Implementation of Numerical Experiments

The numerical experiments conducted in Sec. 3.3 generate n = 30, 000 points uniformly distributed across a 2D square with
a side length of 10. To model local inductive bias, each point interacts only with its 64 nearest neighbors, approximating a
ground-truth kernel value of exp

(
− 1

2∥x− y∥2
)

(we select this kernel because it is the well-known Gaussian kernel (Seeger,
2004) and aligns with our proposed attention kernel, but our theoretical results are not limited to this kernel). Points beyond
this neighborhood have a kernel value of 0.

19



Locality-Sensitive Hashing-Based Efficient Point Transformer

Then, E2LSH is utilized for approximation. Given a budget of FLOPs F , OR-only LSH approximates the kernel values by
setting the number of hash functions per table to 1 and searching the bucket size and the number of hash tables to find its
optimized approximation error ϵ in this point cloud system; OR & AND LSH searches the bucket size, the number of hash
tables, and the number of hash functions per table, to obtain the optimized error for a given number of FLOPs.

The bucket size in E2LSH is determined by adjusting the quantization term r (see Sec. 2), which is searched from 0.01 to 5
with a step size of 0.05. If searched, both the number of hash tables and the number of hash functions per table are searched
from 1 to 20, with a step size of 1.

D. Latency Breakdown
Table 8 and Table 9 evaluate the computational cost of each module in HEPT using the same checkpoints from Table 2. We
can see that the majority of time is spent on attention computation during inference. On the other hand, during training, the
computation of loss and gradient backpropagation dominates the total running time for the tasks considered in this work.

E. Theoretical Results
In this section, we provide the proof omitted in the main text. Recall the following settings for our analysis:

Definition 3.1 (Bounded-Support Kernels). Consider a properly normalized shift-invariant kernel defined as ks(x,y) =
ks(x− y), where ks(x,y) ∈ [0, 1], s > 0 and ks(0) = 1. This kernel exhibits bounded support, i.e., ks(x− y) = 0 for
∥x− y∥2 > s. For any x,y ∈ Rd, the computational complexity of ks(x,y) is linear in d.

Assumption 3.2 (Local Inductive Bias). Consider a bounded point cloud system C with n points located at {x1, ...,xn}
in a d-dim unit ball, i.e., xi ∈ Rd and ∥xi∥2 ≤ 1. Denote the empirical distribution of the point-pair distances as
ϕ(z) = 1

n(n−1)

∑
i,j∈[n],i̸=j δ∥xi−xj∥2

(z) where δa(·) is 1-dim dirac delta function. C is said to hold local inductive bias if
the ground-truth function for the learning task over C can be approximated by a transformer with full attention matrices
whose attention weights can be represented as a bounded-support kernel ks between point locations xi’s, where the bound s
satisfies

∫ s

0
ϕ(z)dz ∼ Õ( 1n ).

Note that the point cloud system C may be a given deterministic or sample from a distribution C ∼ P. In the latter case, we
slightly abuse the notation by still using ϕ to denote the distance density function defined in Assumption 3.2 while after the
expectation over P, EP(ϕ).

To simplify our notation, we denote ks(z) = Ex,y∈C [ks(x − y) | ∥x − y∥2 = z] and k2s(z) = Ex,y∈C [k
2
s(x − y) |

∥x− y∥2 = z] in the following subsections.

E.1. Proof of Theorem 3.3

Theorem 3.3 (ϵ− F Tradeoff of RFF). Assume ks(x,y) is positive definite. If approximating it by RFF ψ(x)⊤ψ(y) in
point cloud systems described in Assumption 3.2, the error ϵ = Θ(ndF ).

Proof. Denote k̂s(x,y) = ψ(x)⊤ψ(y). Since ψ(x) =
√

2
D

[
sin(w⊤

1 x), cos(w
⊤
1 x), . . . , sin(w

⊤
D/2x), cos(w

⊤
D/2x)

]⊤
with wi

iid∼ k∗s(w), its expected squared error w.r.t. w (Sutherland & Schneider, 2015) is

MSEks

(
k̂s(x,y)

)
= Ew

[(
k̂s(x,y)− ks(x,y)

)2]
=

1

D
(1 + ks(2(x− y))− 2ks(x− y)2).

Therefore, the squared error averaged over all point pairs in the system is

ϵ = Ez∼ϕ(z)

[
1

D

(
1 + ks(2z)− 2ks(z)

2
)]

=
1

D

(
1 + Ez∼ϕ(z) [ks(2z)]− 2Ez∼ϕ(z)

[
k2s(z)

])
.

Since
∫ s

0
ϕ(z)dz ∼ Õ( 1n ) (Assumption 3.2) and ks(z) ∈ [0, 1], we have ϵ = Θ( 1

D ).

To use this RFF to approximate the attention mechanism AV , where V ∈ Rn×d is the value matrix and A ∈ Rn×n is
the unnormalized attention matrix with each entry Ax,y = ks(x,y), we first obtain X ′,Y ′ ∈ Rn×D with each row given
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by ψ(x) and ψ(y), respectively, which requires nD(2d− 1) + nd = Θ(nDd) FLOPs. Then, AV ≈ X ′(Y ′⊤V ) needs
Dd(2n− 1) + nd(2D − 1) = Θ(nDd) FLOPs. Note that when using RFF, it is important to first compute Y ′⊤V to avoid
the complexity of n2 for computing X ′Y ′⊤. Thus, the total FLOPs required are F = Θ(ndD).

Therefore, with ϵ = Θ( 1
D ) and F = Θ(ndD), we have ϵ = Θ

(
nd
F

)
.

E.2. Proof of Theorem 3.4

Lemma E.1. Consider the collision probability pr(z) in E2LSH, employing the hash function ha,b(x) = ⌊a·x+b
r ⌋, for two

points x,y ∈ Rd with distance z = ∥x− y∥2. This probability can be bounded as follows:

For z < r,

1−
√

2

π

z

r
≤ pr(z) ≤ 1−

√
1

2π

z

r
.

For z ≥ r, √
2

3
√
π

r

z
≤ pr(z) ≤

1√
2π

r

z
.

Consequently, the expected collision probability for pairs of points in the point cloud systems described in Assumption 3.2
can be bounded as:

Ez∼ϕ(z) [pr(z)] ≤
∫ r

0

(
1−

√
1

2π

z

r

)
ϕ(z)dz +

√
1

2π
r

∫ ∞

r

1

z
ϕ(z)dz.

Proof. With hash functions from E2LSH, the collision probability for two distinct points x,y ∈ Rd with distance
z = ∥x− y∥2 is (Datar et al., 2004):

pr(z) = P [ha,b(x) = ha,b(y)] =

∫ r

0

1

z
f2

(
t

z

)(
1− t

r

)
dt,

where f2(·) denotes the PDF of the absolute value of the 2-stable distribution. Thus,

pr(z) = Erf

(
r√
2z

)
−
√

2

π

z

r

(
1− exp

(
− r2

2z2

))
,

where Erf(u) = 2√
π

∫ u

0
e−t2 dt.

Let u = r√
2z

, pr(z) = f(u) = Erf(u)− 1
u
√
π

(
1− exp

(
−u2

))
. We are to bound f(u) for u > 1√

2
and 0 < u ≤ 1√

2
.

Bounding f(u) for u > 1√
2

. Consider g(u) = f(u) − (1 − 1
u
√
π
). Since g′(u) = − exp(−u2)√

πu2 < 0, g( 1√
2
) > 0, and

limu→∞ g(u) = 0, we have f(u) ≥ 1− 1
u
√
π

. Now, consider g(u) = f(u)− (1−
√

1
π

1
2u ). Since g′(u) = −2+exp(u2)

2 exp(u2)
√
πu2 ,

it has a local minima at u =
√
ln 2. Because g′(u) < 0 when 1√

2
< u <

√
ln 2, g′(u) > 0 when u >

√
ln 2, g( 1√

2
) < 0,

and limu→∞ f(u) = 0, we have f(u) ≤ 1−
√

1
π

1
2u .

Bounding f(u) for 0 < u ≤ 1√
2

. Consider g(u) = f(u) − 2
3
√
π
u. Since g′(u) = 3−(2u2+3/ exp(u2))

3
√
πu2 > 0 when

0 < u ≤ 1√
2

, f( 1√
2
) > 0, and limu→0 f(u) = 0, we have f(u) ≥ 2

3
√
π
u. Now, consider g(u) = f(u) − 1√

π
u. Since

g′(u) = 1−(u2+exp(−u2))√
πu2 < 0 when 0 < u ≤ 1√

2
, f( 1√

2
) < 0, and limu→0 f(u) = 0, we have f(u) ≤ 1√

π
u.

Therefore, substituting the u back, we yield the above bounds for pr(z), which directly gives the bound for Ez∼ϕ(z) [pr(z)].

Lemma E.2. Consider using E2LSH to approximate the attention mechanism AV , where V ∈ Rn×d is the value matrix
and A ∈ Rn×n is the unnormalized attention matrix with each entry Ax,y = ks(x,y). If performing OR-only LSH with m1

hash functions for the approximation, the required FLOPs are F = Θ
(
m1dn

2Ez∼ϕ(z) [pr(z)] +m1nd
)
. If constructing

m1 hash tables (OR LSH), with each having m hash functions (AND LSH) for the approximation, the required FLOPs are
F = Θ

(
m1dn

2Ez∼ϕ(z) [pr(z)
m] +m1ndm

)
.
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Proof. First, consider performing OR-only LSH with m1 hash functions. Let Ez∼ϕ(z)[pr(z)] denote the expected collision
probability for pairs of points in the point cloud system described in Assumption 3.2.

1. Obtaining Hash Codes & Computing Kernel Values. With n points in the system, it needs n(2d− 1) FLOPs to obtain
hash code from each hash function. Then,

(
n
2

)
point pairs result in

(
n
2

)
Ez∼ϕ(z)[pr(z)] expected number of collisions (pairs

of points with the same hash code) from each of the m1 hash functions. To compute ks for all collided pairs, it requires
Θ(d

(
n
2

)
Ez∼ϕ(z)[pr(z)]) FLOPs.

2. Approximating the Attention Mechanism. If one hash function results in B buckets and in each bucket b there are ob
collisions (pairs of points with the same hash code) and nb unique points, then

∑
b∈[B] ob =

(
n
2

)
Ez∼ϕ(z)[pr(z)],

(
nb

2

)
= ob,

and
∑

b∈[B] nb = n. Computing ÂV̂ for each bucket b needs dnb(2nb − 1) FLOPs, since Â is nb × nb and V̂ is nb × d.
So, it needs 4d

(
n
2

)
Ez∼ϕ(z)[pr(z)] +nd FLOPs for all buckets since

∑
b∈[B] dnb(2nb − 1) =

∑
b∈[B] 2(n

2
b −nb)d+nbd =∑

b∈[B] 4obd+ nbd.

3. Combing m1 Hash Results. The above process is repeated for m1 times, and (m1 − 1)nd extra FLOPs are needed to
combine the m1 hash results. Therefore, the total FLOPs required is F = Θ(m1dn

2Ez∼ϕ(z) [pr(z)] +m1nd) if OR-only
LSH is performed with m1 hash functions.

Now, consider constructing m1 hash tables (OR LSH), each with m hash functions (AND LSH). This results in collision
probability pr(z)m and now needs Θ(m1ndm) FLOPs to obtain all hash codes and combine all results. Then, the total
FLOPs required are F = Θ

(
m1dn

2Ez∼ϕ(z) [pr(z)
m] +m1ndm

)
.

Theorem 3.4 (ϵ−F Tradeoff of OR-only E2LSH). Assume there exists r such that
∫ r

0
ϕ(z)dz ≤ c1r and

∫∞
r

1
zϕ(z)dz ≤ c2

for some positive constants c1 and c2. The OR-only E2LSH may achieve ϵ = Θ̃(exp
(
− c3F

dn2s

)
1
n ) where c3 is a positive

constant depending on c1 and c2.

Proof. Consider performing OR-only E2LSH with m1 hash functions to approximate ks in the point cloud sys-
tem described in Assumption 3.2. The resulting squared error averaged over all point pairs in the system is then
ϵ = Ez∼ϕ(z)

[
(1− pr(z))

m1k2s(z)
]
, where pr(z) is the collision probability of E2LSH.

First, the complexity F has a natural lower bound: Due to Lemma E.2 and the bound of pr(z) in Lemma E.1,

F = Θ(dm1n
2Ez∼ϕ(z) [pr(z)] +m1nd) ≥ Θ

(
dm1n

2(

∫ r

0

ϕ(z)(1−
√

2

π

z

r
)dz +

∫ 1

r

ϕ(z)

√
2

3
√
π

r

z
dz)

)

≥ Θ

(
dm1n

2(

∫ r

0

ϕ(z)dz + r

∫ 1

r

ϕ(z)dz)

)
≥ Θ

(
dm1n

2r
)
.

Upper bound: Here, we first show that for some positive c3,

ϵ = Õ(exp

(
− c3F

dn2s

)
1

n
).

We are only interested in the regime with limited complexity where F = O(dn2s). Otherwise, the above error is almost 0
and the complexity is already super linear because s ≫ 1

n in general (see the discussion in Sec.3.1). Since for OR-only
E2LSH, F ≥ Θ

(
dm1n

2r
)
, this means, in practice, to satisfy F = O(dn2s), we will set r ≤ s. To better understand this

point, if we set r > s, intuitively, one single hash function is sufficient to put points within distance s into the same hash
bucket with high probability, which is able to compute the attention weights accurately. However, in this case, there will be
n
√
s many points mapped into the same bucket, which gives complexity as much as Ω

(
dm1n

2s
)
. This can be understood

from the lower bound F ≥ Θ
(
dm1n

2r
)
:x when r > s, the above bound of F implies F ≥ Θ

(
dm1n

2r
)
≥ Θ

(
dm1n

2s
)
.

Let us next suppose r ≤ s. With Lemma E.1, we have

ϵ ≤ (1− c′′
r

s
)m1Ez∼ϕ(z)

[
k2s(z)

]
≤ exp

(
−c

′′m1r

s

)
Ez∼ϕ(z)

[
k2s(z)

]
,

where c′′ =
√
2

3
√
π

.
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By assumption, there exists r such that
∫ r

0
ϕ(z)dz ≤ c1r and

∫∞
r

1
zϕ(z)dz ≤ c2 for some positive constants c1 and c2, we

have Ez∼ϕ(z) [pr(z)] ≤ c′r, where c′ = c1 + c2

√
1
2π . Then, since F = Θ(dm1n

2Ez∼ϕ(z) [pr(z)] +m1nd) (Lemma E.2),

we have F = O(dm1n
2c′r). Thus,

ϵ ≤ exp

(
− c3F

dn2s

)
Ez∼ϕ(z)

[
k2s(z)

]
,

where c3 is a positive constant depending on c1 and c2.

Since
∫ s

0
ϕ(z)dz ∼ Õ

(
1
n

)
(Assumption 3.2) and ks(z) ∈ [0, 1], we have

ϵ = Õ(exp

(
− c3F

dn2s

)
1

n
).

Now, we lower bound ϵ.

Lower bound: Next, we show that there exists a point cloud system C and the kernel ks that satisfy the assumption, while
for some positive c5,

ϵ = Ω(exp

(
− c5F

dn2s

)
1

n
).

We consider a very common case when ks(z) = 1 when z ∈ [0, s] and the point cloud is uniformly allocated in the unit ball.
In this case, ϕ(z) ∝ zd−1, and s ∼ 1

n1/d as shown in Sec. 3.1. It is easy to verify that if r satisfies r ≤ s, the conditions in
the theorem statement are true: This is because

∫ r

0
ϕ(z)dz ≲ rd < r and

∫ 1

r
1
zϕ(z)dz ≤

d
d−1 . Again, we only focus on the

regime r ≤ s. It is not hard to show that when r ≫ s, the lower bound is even higher than above.

When r ≤ s, the above lower bound of F already gives F = Ω(dm1n
2r). With Lemma E.1 and ks(z) = 1 for z ≤ s, we

have

ϵ =

∫ s

0

(1− pr(z))
m1ϕ(z)dz ≥

∫ r

0

(1− pr(z))
m1ϕ(z)dz +

∫ s

r

(1− pr(z))
m1ϕ(z)dz

≥ Θ

(∫ r

0

(
1√
2π

z

r

)m1

zd−1dz +

∫ s

r

(
1− 1√

2π

r

z

)m1

zd−1dz

)
≥ Θ(rd(

1√
2π

)m1 + (1− 1√
2π

)m1(sd − rd))

= Θ(exp(−c5m1) · sd) = Ω(exp

(
− c5F

dn2r

)
· 1
n
), where c5 is a positive constant.

This completes the proof.

E.3. Proof of Theorem 3.5

Theorem 3.5 (ϵ− F Tradeoff of OR & AND E2LSH). Suppose each hash table contains m hash functions. Assume there
exists m such that

∫ r

0
ϕ(z)dz = Õ( 1n ) and

∫∞
r
ϕ(z) r

m

zm dz ≤
∫ r

0
(
√
2π − z

r )
mϕ(z)dz, where r = ms. By choosing such r

as the bucket size, the OR & AND E2LSH may achieve ϵ = Õ(exp(− c4F
dn(polylog(n)+m) )

1
n ).

Proof. Consider using E2LSH to construct m1 hash tables (OR LSH), each with m hash functions (AND LSH). To
approximate ks in the point cloud systems described in Assumption 3.2, the resulting squared error averaged over all point
pairs in the system is ϵ = Ez∼ϕ(z)

[
(1− pr(z)

m)
m1 k2s(z)

]
and the FLOPs required are F = Θ(m1dn

2Ez∼ϕ(z) [pr(z)
m] +

m1ndm) (Lemma E.2).

Pick the smallest m that satisfies
∫ r

0
ϕ(z)dz = Õ( 1n ) and

∫∞
r
ϕ(z) r

m

zm dz ≤
∫ r

0
(
√
2π − z

r )
mϕ(z)dz, where r = ms,

combined with Lemma E.1, then we have

F = O
(
m1dn

2

∫ ms

0

(
1− 1√

2π

z

ms

)m

ϕ(z)dz +m1ndm

)
= O

(
m1dn

2

∫ ms

0

ϕ(z)dz +m1ndm

)
.

Similarly, with r = ms and Lemma E.1, we have

ϵ ≤
(
1−

(
1− c′

s

ms

)m)m1

Ez∼ϕ(z)

[
k2s(z)

]
≤ exp(−c′′m1)Ez∼ϕ(z)

[
k2s(z)

]
,
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where c′ =
√

2
π and c′′ = 1− c′.

Therefore,

ϵ = O

(
exp

(
− c′′F

dn2
∫ms

0
ϕ(z)dz + ndm

)
Ez∼ϕ(z)

[
k2s(z)

])
.

Since
∫ r

0
ϕ(z)dz = Õ

(
1
n

)
,
∫ s

0
ϕ(z)dz ∼ Õ

(
1
n

)
, and ks(z) ∈ [0, 1], we yield

ϵ = Õ
(
exp

(
− c4F

dn(polylog(n) +m)

)
1

n

)
,

where c4 is some positive constant.
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