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Abstract

Image Captioning for state-of-the-art VLMs001
has significantly improved over time; however,002
this comes at the cost of increased computa-003
tional complexity, making them less accessi-004
ble for resource-constrained applications such005
as mobile devices and assistive technologies.006
Alternatively, smaller VLMs prioritize high-007
level scene descriptions, overlooking finer de-008
tails that contribute to a richer understanding009
of an image. In this paper, we introduce a010
training-free framework that enhances caption011
diversity and informativeness by explicitly at-012
tending to distinct image regions using a com-013
parably small VLM, BLIP, as the backbone.014
Our approach leverages structured segmenta-015
tion to produce hierarchical representations that016
capture both global and localized semantics.017
Without requiring additional model training,018
we demonstrate that our method allows smaller019
VLMs to achieve performance comparable to020
larger models in terms of image-caption align-021
ment, semantic integrity, and diversity. We eval-022
uate our framework on MSCOCO, Flickr30k,023
and Nocaps test datasets, achieving a Div-024
2 score of 0.735, 0.750, and 0.748 for each025
dataset respectively, while maintaining strong026
image-caption relevancy and semantic integrity027
with the human-annotated captions.028

1 Introduction029

Visual-Language Models (VLMs) have seen rapid030

advancements in image captioning, benefiting from031

increasingly sophisticated architectures and larger032

training datasets (Alayrac et al., 2022; Li et al.,033

2022b; Radford et al., 2021a; Wang et al., 2022a).034

State-of-the-art large-scale models generate highly035

detailed and diverse captions, yet their extensive036

computational requirements can be prohibitive in037

resource-constrained settings. Conversely, smaller038

VLMs, while more efficient, often prioritize dom-039

inant visual elements and overlook fine-grained040

details, resulting in captions that lack the depth041

and specificity seen in human-generated captions 042

(Aneja et al., 2019a; Bianco et al., 2023; Chen et al., 043

2023; Yuksekgonul et al., 2022). 044

Inspired by previous work (Ji et al., 2021; Shao 045

et al., 2023; Shukor et al., 2022) that demonstrates 046

the advantages of hierarchical approaches in im- 047

age understanding, our method leverages structured 048

segmentation to capture both global and regional as- 049

pects of an image. We sample segmentation-driven 050

embeddings to explicitly attend to distinct image 051

regions while preserving contextual relationships, 052

generating captions at multiple levels of granular- 053

ity. This approach offers an efficient alternative 054

to enhancing caption diversity in smaller VLMs 055

that lack LLM encoders, achieving performance 056

comparable to larger LLM based models in terms 057

of caption diversity and image-caption alignment. 058

We validate our approach, namely, HBoP - 059

Hierarchical Bags of Phrases, by evaluating gen- 060

erated captions for MSCOCO (Lin et al., 2014), 061

Flickr30k (Young et al., 2014), and Nocaps 062

(Agrawal et al., 2019) datasets on conventional 063

diversity metrics such as mBLEU-4, n-gram di- 064

versity (Aneja et al., 2019b), and newly presented 065

pairwise cosine distance (PCD). Our findings show 066

that structured caption generation effectively im- 067

proves diversity while maintaining relevancy with 068

images and human-generated captions (compare 069

BLIP (Li et al., 2022a), HBoP, and gold captions 070

in Figure 1). 071

2 Related Works 072

Vision-language models have shown strong per- 073

formance in multi-modal tasks, with caption gen- 074

eration as a key benchmark. Models like CLIP 075

(Radford et al., 2021a), Flamingo (Alayrac et al., 076

2022), and BLIP-2 (Li et al., 2023) use contrastive 077

learning and large-scale pre-training to enhance 078

vision-language alignment. However, they often 079

produce high-level scene descriptions, missing fine- 080
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airplanes at the 
tarmac looking out 

of a window

Planes on a wet 
tarmac unloading at 

arrival gates.

a window with a view 
of planes on the 

tarmac

airplanes sit parked 
against a curtain at 
an airport terminal

Window view from the 
inside of airplanes, 
baggage carrier and 

tarmac.

a window view of 
planes parked at an 

airport

a gray airplane at an 
airport window 
overlooking the 

terminal

An airport filled 
with planes sitting 

on tarmacs.

a large window with 
airplanes parked on 

the runway

a plane sitting on the 
tarmac looking out to 

a runway of three 
different planes

The view of runway 
from behind the 

windows of airport.

a group of planes 
are parked in a 

terminal

a view of airplanes 
taxi along the 

tarmac of an airport

a truck driving 
towards some planes 
parked on the runway

an airport terminal 
with planes parked 

on the tarmac

Figure 1: Comparison of captions generated by BLIP, HBoP, and human annotations. The images are overlaid with
GradCAM heatmaps to highlight the regions focused on by the pretrained image-text matching model (Li et al.,
2022a). HBoP captions exhibit greater diversity compared to BLIP captions and are closer to human-annotated gold
captions.

grained details needed for detailed image under-081

standing. Traditional captioning approaches treat082

images holistically, overlooking hierarchical de-083

tails (Xu et al., 2021), unless explicitly trained for084

diversity, as in ModeCap (Chen et al., 2022) and085

Seq-CVAE (Aneja et al., 2019b).086

Inspired by hierarchical representation tech-087

niques (Ji et al., 2021; Shao et al., 2023; Shukor088

et al., 2022), our approach samples latent image089

embeddings from structured segmentation to gen-090

erate multi-level captions. This aligns with recent091

region-based methods using SAM (Shlapentokh-092

Rothman et al., 2024) and studies on caption qual-093

ity focused on informational sufficiency, minimal094

redundancy, and human comprehensibility (Chen095

et al., 2024). Our evaluation metrics reflect these096

aspects: CLIP score for informational sufficiency,097

mBLEU and Div-2 for redundancy, and SBERT for098

comprehensibility.099

3 Methodology100

In this section, we introduce our proposed frame-101

work, HBoP (depicted in Fig 2), a modular ar-102

chitecture that uses pre-trained segmentation and103

captioning models. We show that HBoP ensures104

multiple levels of captions (i.e., global, regional,105

fine-grained) by inducing a hierarchical structure106

for image understanding.107

3.1 Image Segmentation Module (ISM) 108

The first component of HBoP, ISM, selects patch 109

embeddings (EX ) corresponding to image regions 110

(X = (X1,X2, ...,Xn)) from the original image 111

embeddings extracted using a Vision Transformer 112

(ViT) (Dosovitskiy et al., 2020) encoder. These 113

regions are selected based on segmentation masks 114

produced by a segmentation model. In our imple- 115

mentation, we use the Segment Anything Model 116

(SAM) 1 (Kirillov et al., 2023) due to its strong 117

segmentation performance across diverse bench- 118

marks. For a set of p segmentation masks in the im- 119

age, the resulting masks for the selected image re- 120

gions would be: MX = {MX1 ,MX2 , ...,MXp } = 121

SAM(X),X ∈ RH×W×C , where H , W , and C 122

represent the height, width, and channels of X . 123

3.2 Hierarchical Composition Module (HCM) 124

The second component, HCM, is a key component 125

that can control the level of captions. Specifically, 126

we present three types of captions that can be de- 127

rived using HCM. 128

1While we use SAM in our experiments, the HBoP frame-
work is flexible and compatible with any segmentation model
that can provide region masks. Additionally, several prior
works (Suo et al., 2023; Yu et al., 2023; Wang et al., 2025)
have adopted training-free methods that incorporate unsuper-
vised segmentation models for similar purposes. Additionally,
a recent efficient implementation of SAM achieves up to 50×
higher run-time speed, helping address concerns around com-
putational overhead (Zhao et al., 2023).
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Figure 2: The proposed HBoP framework consists of three components: (1) Image Segmentation Module (ISM),
(2) Hierarchical Composition Module (HCM), and (3) Image Captioning Module (ICM). HBoP controls caption
granularity by selecting meaningful patch embeddings of varying sizes from the segmentation model.

Global/Fine-grained level captions The global129

segmentation masks (MG) are selected by choos-130

ing the top-k (5 in our case) largest segmentation131

masks from MX after applying non-maximum sup-132

pression (NMS)2(Hosang et al., 2017):133

MG = {Mg1 ,Mg2 , ...,Mng},134

Mgi = NMS(Top-k(MX)), i = 1, ..., ng135

NMS removes multiple segmentation masks with136

overlapping, similar contexts using the Intersection137

over Union (IoU) and predicted confidence from138

SAM. The remaining masks, after applying NMS,139

can also be used to generate fine-grained captions140

(discussed in Appendix D.3):141

MF = {Mf1 ,Mf2 , ...,Mnf
},142

Mfi = NMS(MX) ∖MG, i = 1, ..., nf143

Regional level captions To create regional-level144

segmentation masks, MR, we use K-means clus-145

tering to partition all the segmentation masks (MX )146

and apply NMS to each cluster individually:147

MR = {Mr1 ,Mr2 , ...,MK},148

Mri = NMS(K-means(MX)), i = 1, ...,K149

The hierarchical segmentation masks (Mg, Mr150

and Mf ) are used to extract relevant patch embed-151

dings, Eg, Er and Ef using EX from the first stage.152

2NMS introduces a hyperparameter (IoU threshold), which
is set to 0.1 in this case, to aggressively filter overlapping
masks. While this step introduces a minor deviation from end-
to-end processing, the hyperparameter is intuitive and fixed,
requiring minimal tuning.

We extract (⊙) the corresponding embeddings by 153

concatenating the extracted patch embeddings of 154

different levels. Thus, the final selected image em- 155

beddings can be categorized as: 156

EG = {Eg1 ,Eg2 , ...,Egng
},Egi = EX ⊙Mgi 157

ER = {Er1 ,Er2 , ...,EK },Eri = EX ⊙Mri 158

EF = {Ef1 ,Ef2 , ...,Enf
},Efi = EX ⊙Mfi 159

3.3 Image Captioning Module (ICM) 160

To generate captions for different levels of image 161

embeddings, we use BLIP fine-tuned on image 162

captioning (Li et al., 2022a) with the stochastic 163

sampling method, following the same procedure as 164

(Tiong et al., 2022). The caption generation process 165

is repeated for ng, nr, and nf patch embeddings 166

corresponding to the number of selected hierarchi- 167

cal masks. Since the patch embedding size may 168

vary due to the different mask sizes, we use zero 169

padding before using the captioning module. Our 170

final HBoP captions would be: 171

HBoPG = { sg1 , ..., sng }, sgi = BLIP(Egi) 172

HBoPR = { sr1 , ..., sK }, sri = BLIP(Eri) 173

HBoPF = { sf1 , ..., snf
}, sfi = BLIP(Efi) 174

4 Results 175

HBoP achieves the best diversity scores while 176

maintaining relevance among smaller VLMs. 177

We evaluate the diversity and relevance of captions 178

generated by different models in Table 1, using 179

five captions per image. For HBoP, two global cap- 180

tions are randomly sampled, and all three regional 181
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MSCOCO (5k test set) Flickr30K (1k test set)
LLM # of Relevancy Diversity Relevancy Diversity

Encoder Param SBERT ↑ CLIP-S ↑ PCD mBLEU-4 ↓ Div-2 ↑ SBERT ↑ CLIP-S ↑ PCD mBLEU-4 ↓ Div-2 ↑
Random - - - 17.77 0.963 0.001 0.868 - 17.54 0.962 0.003 0.860

BLIP (−NS) ✗ 446M 56.00 29.98 0.600 1.000 0.179 55.78 28.58 0.600 1.000 0.179
BLIP (+NS) ✗ 446M 57.23 30.33 0.668 0.658 0.387 46.99 29.56 0.690 0.664 0.384
Seq-CVAE ✗ - - - - 0.640 0.480 - - - - -
ModeCap ✗ - - 29.35 0.714 0.281 0.594 - - - - -

BLIP-2 ✓ 3.9B 65.47 30.66 0.651 0.712 0.345 57.81 30.37 0.667 0.732 0.336
Honeybee ✓ 7B 53.55 28.21 0.792 0.062 0.716 47.41 27.65 0.827 0.057 0.732
Honeybee ✓ 13B 55.11 27.41 - 0.014 0.872 50.41 27.27 - 0.013 0.875
LLaVA-1.5 ✓ 13B 59.61 30.08 - 0.180 0.658 54.74 29.54 - 0.176 0.680
LLaVA-1.6 ✓ 7B 55.99 29.36 - 0.046 0.787 51.00 27.46 - 0.028 0.809
Gold - - - 30.33 0.753 0.043 0.748 - 30.87 0.776 0.049 0.760

HBoP (ours) ✗ 1B 56.30 29.12 0.772 0.049 0.735 54.00 28.46 0.815 0.042 0.750
HBoP Ranking 4/8 8/11 1/7 5/12 5/12 4/8 6/10 1/6 4/10 5/10

Table 1: Relevance and diversity scores across different models on the MSCOCO and Flickr30K datasets. HBoP
achieves stronger diversity with higher Div-2 and PCD scores and a lower mBLEU-4 score compared to smaller
VLMs and models trained to enhance diversity, while maintaining comparable relevance scores (SBERT and
CLIP-S). Additionally, HBoP demonstrates competitive performance relative to much larger LLM encoder-based
VLMs. Cell colors indicate relative comparison to HBoP, with red showing higher values and blue showing lower
values. Arrows next to each metric denote whether a higher (↑) or lower (↓) value indicates better performance.

captions are included3. Although HBoP increases182

the parameter count relative to BLIP, it remains183

significantly smaller than VLMs with LLM-based184

encoders, achieving a strong trade-off between di-185

versity and model size. HBoP consistently achieves186

diversity scores closest to the gold-standard cap-187

tions among smaller models, as measured by PCD188

(see Appendix C), mBLEU-4, and Div-2 (Aneja189

et al., 2019b). Specifically, it reduces mBLEU-4190

by over 60% and improves Div-2 by more than191

30% compared to BLIP (NS) while maintaining192

comparable relevancy scores. We also compare193

our embedding-sampling approach to a baseline194

where segmented regions are directly cropped and195

captioned; while cropping improves diversity, it re-196

duces relevance due to loss of global context. Full197

results are provided in Appendix C.198

Compared to baselines such as BLIP (Li et al.,199

2022a), Seq-CVAE (Aneja et al., 2019b), and200

ModeCap4(Chen et al., 2022), HBoP achieves the201

lowest mBLEU-4 and highest Div-2 scores. No-202

tably, it even outperforms larger models like BLIP-203

2, Honeybee-7B(Cha et al., 2023), and LLaVA-204

1.5 (Liu et al., 2023a) in several diversity metrics,205

despite using 4× to 13× fewer parameters. This206

3Fine-grained captions are excluded from this evaluation
because they function more as image tags than full descriptive
captions.

4The dataset annotations and features necessary to train
ModeCap are exclusively available for the MSCOCO dataset,
making it difficult to replicate the experiments for fair com-
parison on the NoCaps and Flickr30k datasets.

highlights HBoP’s effectiveness as a lightweight 207

alternative for generating diverse captions without 208

the overhead of large-scale models. 209

HBoP maintains strong similarity between gen- 210

erated captions and reference texts and image-text 211

alignment, as measured by SBERT and CLIP-Score 212

respectively. It achieves scores comparable to BLIP, 213

BLIP-NS, and LLaVA, while outperforming Hon- 214

eyBee. Although BLIP-2 scores the highest, HBoP 215

demonstrates a strong balance between relevance 216

and diversity. Further semantic integrity evalua- 217

tions are detailed in Appendix ??. 218

5 Conclusion 219

We propose HBoP, a hierarchical caption gener- 220

ation framework that leverages a modular archi- 221

tecture combining lightweight pre-trained VLMs 222

and segmentation models to generate semanti- 223

cally meaningful yet diverse captions. Our experi- 224

mental results demonstrate HBoP’s ability to pro- 225

duce meaningful image embeddings for captioning, 226

achieving performance comparable to larger VLMs 227

and human-generated captions. HBoP sets a solid 228

baseline for future work aiming to extract more 229

relevant knowledge by controlling the intermediate 230

image embeddings. 231

6 Limitations 232

The current implementation of HBoP relies on 233

bounding box approximations of segmentation 234

masks to extract image embeddings. While ef- 235
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fective, this may occasionally miss fine-grained236

or irregular-shaped image details. Exploring the237

use of full, irregular-shaped segmentation masks238

for embedding extraction is a promising direction239

for future work. Additionally, while our method240

demonstrates competitive performance with signif-241

icantly fewer parameters, we do not provide an242

explicit comparative analysis of the computational243

requirements of all evaluated models.244

7 Ethical Statement245

Captions generated with HBoP might inadvertently246

contain harmful content. However, the final cap-247

tion outputs mainly depend on the image content248

and pretrained image captioning model. Therefore,249

unless the images themselves are harmful or the250

pretrained model produces unsafe captions, HBoP251

captions are expected to pose minimal risk.252
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A Appendix522

B Additional Related Works523

B.1 Vision-Language Models (VLMs)524

A growth of interest in VLMs has continued due to the wide availability of multi-modal data on the web.525

Foundation VLMs can be applied to a range of tasks in a zero-shot manner. Notably, CLIP (Radford et al.,526

2021b) jointly pre-trains an image encoder and a text encoder by maximizing and minimizing the cosine527

similarity of correct and incorrect image-text pair embeddings respectively with image-text contrastive528

(ITC) loss. In contrast, BLIP (Li et al., 2022a) uses both ITC and image-text matching (ITM) loss for529

enhanced image-text data representation. Additionally, the BLIP (Li et al., 2022a) captioner uses language530

modeling (LM) loss for autoregressive image caption generation along with a filter, capfilt to improve the531

quality of image-text pairs for training.532

Flamingo (Alayrac et al., 2022) shows remarkable zero-shot ability in image captioning, visual question-533

answering (VQA), and image-text retrieval (ITR) tasks by leveraging the few-shot learning ability of534

pre-trained vision-only and language-only models. It simply interleaves input visual data with task-specific535

text examples, producing free-form texts for unseen visual data. Another general-purpose model, BEIT3536

(Wang et al., 2022b) with Multiway Transformer structure, uses different types of modality experts537

to perform fusion and modality-specific training. A masked modeling objective on images only and538

image-text pairs is performed for computer vision tasks (e.g., image classification, semantic segmentation,539

object detection) and vision-language tasks (e.g., VQA), respectively. Whereas the VQA task uses a fused540

encoder for image-text pairs, the ITR task encodes images and texts independently with ITC loss. Lastly,541

sequence-to-sequence learning is applied to generate texts from images for the image captioning task.542

Inspired by these previous works, we propose a meta-VLM model that utilizes a pre-trained BLIP (Li543

et al., 2022a) image captioning module to generate enhanced textual representations, which can later serve544

as useful data for various downstream tasks.545

B.2 Hierarchical Representation546

Identifying and extracting regions of interest within images is crucial for a hierarchical representation.547

The most intuitive way to achieve this would typically involve the use of object detectors (Yao et al.,548

2019; Cornia et al., 2020; Zhang et al., 2021). However, the heavy computational demands of the object549

detectors inevitably lead to inefficiency during the inference stage (Yao et al., 2019; Cornia et al., 2020;550

Zhang et al., 2021). In response, recent works sought to replace these cumbersome detectors by adopting551

visual concepts in the form of object tags (Fang et al., 2022; Shukor et al., 2022) as an alternative.552

However, this detector-free approach is contingent upon the availability of object-specific data within the553

dataset. Employing pre-trained models is a more efficient way to identify areas of interest within images.554

GradCAM (Selvaraju et al., 2017) highlights essential regions that the pre-trained models used to predict555

any target concept using its gradients with respect to feature map activations of the final convolutional556

layer. DINOv2 (Oquab et al., 2023) capitalizes on existing self-supervised pre-trained models to generate557

robust, all-purpose visual features, supporting a wide array of tasks ranging from image-level classification558

to pixel-level segmentation. However, the image regions/features delineated by GradCAM/DINOv2 tend559

to show saliency for specific tasks and are unable to capture the full spectrum of visual representations.560

Conversely, SAM (Kirillov et al., 2023) intricately segments every semantically significant component561

of an image into high-quality segmentation masks generated by prompting with various inputs such as562

point, box, mask, or free-form text, unrestricted with types of tasks. In our framework, we integrate563

SAM (Kirillov et al., 2023) to create semantically meaningful segmentation masks for an entire image564

automatically.565

Several prior studies have incorporated the principles of hierarchy or multi-scale representation into566

their model architectures, aiming to enhance the alignment between images and texts (Ji et al., 2021; Shao567

et al., 2023; Shukor et al., 2022). SHAN (Ji et al., 2021) deconstructs the image-text matching process into568

two distinct facets: fragment-level and context-level alignments enabling matches across three different569

scopes: local-to-local, global-to-local, and global-to-global. HiVLP (Shao et al., 2023) leverages both low-570
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and high-dimensional features to represent coarse and fine details. ViCHA (Shukor et al., 2022) aligns 571

images and texts across various layers of neural network encoders with the underlying assumption that 572

each layer reflects varying semantic levels. Unlike these approaches, we divide the segmentation masks 573

hierarchically and use the embeddings of the extracted individual image patches for caption generation. 574

B.3 Caption Evaluation 575

Common image captioning evaluation metrics, including BLEU (Papineni et al., 2002a), METEOR 576

(Banerjee and Lavie, 2005), ROUGE (Lin, 2004), and CIDEr (Vedantam et al., 2015) scores are primarily 577

n-gram approaches that assess the quality of generated captions by considering their overlap with human- 578

generated captions. Most SOTA VLMs frequently exhibit promising scores across these conventional 579

evaluation metrics. However, these metrics are limited in their capabilities to measure the diversity of 580

the generated captions. This limitation leads to a bias in these models towards generating an "average" 581

and "safe" caption reflecting the most basic information in the image, rendering them less informative 582

than human-generated captions. To address this gap, we incorporate several diversity metrics, including 583

mBLEU-4, Div-2 (Aneja et al., 2019b), and the proposed pairwise cosine distance (PCD), along with 584

semantic integrity and relevance scores to ensure that the captions generated by our framework are not 585

only diverse but also meaningful and directly relevant to the given image and human-annotated captions. 586

C Experiments 587

C.1 Implementation Details 588

The ISM (Section 3.1) employs the fully automated SAM with no prompting (Kirillov et al., 2023), 589

along with the image encoder initialized from ViT (ViT-L/16) pre-trained on ImageNet (Dosovitskiy 590

et al., 2021), following the same settings as BLIP (Li et al., 2022a). Note that we use BLIP (Li et al., 591

2022a) for captioning instead of BLIP-2 (Li et al., 2023) since BLIP-2 uses intermediate representations 592

trained on pairs of entire images and texts for caption generation using an LLM, which is not directly 593

applicable to HBoP that uses pairs of image patches and texts. The HCM (Section 3.2) creates the global 594

level by selecting the top (k =) 5 masks with the largest areas and designating the remaining masks as 595

fine-grained. To create the regional level, K-means clustering, with (K =) 5 clusters per image, is applied 596

to the bounding boxes of the segmentation masks. NMS with a threshold of 0.1 is applied at all three 597

levels. Lastly, the ICM (Section 3.3) follows the methodology outlined in Tiong et al., 2022. 598

Although HBoP presents a three-tier hierarchical structure, it is crucial to note that we adjust the 599

different hierarchy levels depending on a given dataset. A dataset with information-rich complex images 600

would require using all three hierarchy levels. However, a dataset with relatively simpler images, such as 601

the MSCOCO dataset (Lin et al., 2014), would benefit from a two-tier hierarchy with just the global and 602

regional captions. We use the first two levels during evaluations unless specified otherwise. 603

All the model captions in Tables 1 and 4 are regenerated, except for Seq-CVAE (Aneja et al., 2019b), 604

where the results are taken directly from the original paper. While HBoP benefits from bounding box 605

information, it is important to note that other baseline methods (e.g., ModeCap) have the additional 606

advantage of explicit learning objectives to improve diversity. The exact prompts we use for Honeybee 607

(Cha et al., 2023) (top) and LLaVA-1.5/1.6 (Liu et al., 2023a) are in Table 5. 608

C.2 Crop vs. Embedding Sampling Comparison 609

We present a comparison between our embedding-sampling approach (HBoP) and a baseline where 610

segmented image regions are directly cropped and captioned using BLIP. Table 2 shows that while 611

cropping can improve diversity scores, it often sacrifices relevance as indicated by SBERT. In contrast, 612

HBoP preserves contextual understanding by sampling from full-image embeddings. 613

C.3 Evaluation 614

We evaluate the model captions using three distinct metrics: 1) diversity across captions per image, 2) 615

relevancy with images, and 3) semantic coherence and meaningfulness. The datasets we use for evaluation 616

are: the Karpathy test split (Karpathy and Fei-Fei, 2015) of MSCOCO (5k images) (Lin et al., 2014), 617
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Model MSCOCO Flickr30k
SBERT ↑ mBLEU-4 ↓ Div-2 ↑ SBERT ↑ mBLEU-4 ↓ Div-2 ↑

BLIP (-NS) 56.00 1.00 0.179 55.78 1.00 0.179
BLIP (+NS) 57.23 0.66 0.387 46.99 0.66 0.387
Crop 52.03 0.10 0.600 50.00 0.08 0.610
HBoP 56.30 0.05 0.735 54.00 0.04 0.750

Table 2: Comparison of our embedding sampling approach (HBoP) with direct cropping of segmented regions.

Flickr30K zero-shot (1k test images) (Young et al., 2014), and NoCaps validation (4.5k images) (Agrawal618

et al., 2019).619

C.3.1 Diversity620

We measure the diversity in the generated captions using the cosine similarity between the sentence621

embeddings of all the corresponding captions per image. The comparison baselines are random captions,622

where each caption corresponds to different images, BLIP (Li et al., 2022a) with and without nucleus623

sampling (NS5) (Holtzman et al., 2019), BLIP-2 (Li et al., 2023), ModeCap (Chen et al., 2022), Honeybee624

(Cha et al., 2023), and gold captions6. The diversity of the generated captions (s1, s2, ...sn) per dataset625

instance7 is measured using pairwise cosine distance (PCD):626

PCD(s1, s2, ...sn) =
1

n

n

∑
i=1

j<i

∑
j=1

(1 − cos(M(si),M(sj))) (1)627

In the above equation, cos represents the cosine similarity of the input embeddings. We use sentence628

embeddings from a pre-trained sentence transformer model (all-MiniLM-L6-v2) (Reimers and Gurevych,629

2019), denoted as M in the Eq. 1 that can capture the semantic relationships between captions. This630

measure evaluates the extent to which the generated captions differ from each other per image. We report631

the final diversity score for each dataset as the averaged PCD scores of all images in the dataset. Ideally,632

the PCD score should be lower than that of random captions that serve as the upper bound of the diversity633

score, but it should be higher than that for captions generated by existing baselines.634

Additionally, we use mBLEU-4 and n-gram diversity (e.g., Div-1, Div-2) (Aneja et al., 2019b), to635

compare with more challenging baseline models, such as ModeCap (Chen et al., 2022) and Seq-CVAE636

(Aneja et al., 2019b) that are built to achieve diversity within captions per image. For ModeCap (Chen637

et al., 2022), we follow the default settings from the original paper to reproduce the results based on638

training the Transformer-DML model. We also prompt a recently introduced multimodal LLM called639

Honeybee (Cha et al., 2023) as follows: "Describe this image with 5 diverse captions, using less than 20640

words for each caption."641

C.3.2 Relevancy642

While confirming that each dataset contains captions with high semantic integrity is crucial, the captions643

must also be relevant to the corresponding images. We employ CLIP-Score (Hessel et al., 2021) that644

calculates the correlation between visual and textual CLIP embeddings (Radford et al., 2021b) using645

pre-trained ViT (openai/ clip-vit-base-patch32) without relying on human-generated references.646

Similar to the comparison baseline datasets for semantic integrity evaluation, we compare HBoP with647

PnP-VQA (Tiong et al., 2022), BLIP (Li et al., 2022a), BLIP-2 (Li et al., 2023), gold captions, along648

with random captions. We generate random captions by selecting five random captions for each image649

from a pool of HBoP captions corresponding to different images. In other words, although the random650

caption itself should make sense, they depict mismatched images. We randomly select one out of a total651

of five captions per image for each dataset and compute the correlation between CLIPScores of generated652

captions and gold captions.653

5Unless otherwise specified, all the BLIP models in this paper refer to BLIP with NS.
6We exclude PnP-VQA since the captions are generated per question instead of per image, unlike other baselines.
7Note that n = 5 for all dataset instances, and we use one global caption and five regional captions for HBoP.
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Additionally, we measure the semantic similarity between ground-truth (or gold) captions and captions 654

generated with models using transformer-based SBERT (Reimers and Gurevych, 2019). Note that this 655

metric is robust to synonyms or paraphrasing, unlike n-gram metrics (Papineni et al., 2002b; Lin, 2004). 656

C.3.3 Semantic Integrity 657

HBoP generates semantically meaningful captions. We evaluate the semantic integrity of HBoP 658

captions using LLMs, LLaMA-2-13b (Touvron et al., 2023) and GPT-4 (Fu et al., 2023), which have 659

shown high correlation with human judgment (Chiang and yi Lee, 2023; Liu et al., 2023b; Fu et al., 660

2023). Table 3 shows that HBoP achieves semantic integrity scores close to the gold captions and notably 661

outperforms models like PnP-VQA (Tiong et al., 2022). We attribute this improvement to our method’s 662

ability to sample more meaningful image embeddings via the proposed Hierarchical Composition Module 663

(HCM). 664

We prompt Llama-2-13B (Llama-2-13b-chat -hf) (Touvron et al., 2023) to access the semantic 665

integrity of HBoP captions along with gold and other baselines (PnP-VQA (Tiong et al., 2022), BLIP 666

(Li et al., 2022a), BLIP-2 (Li et al., 2023)) captions. Specifically, we randomly select two captions out 667

of a total of five captions per image for each dataset and evaluate the semantic integrity by averaging 668

the coherency and meaningfulness scores for each caption using the prompt shown in Table 6. We use 669

the prompt "This is a picture of" to generate captions for all models in our experiments. This deliberate 670

choice ensures a fair comparison of the general caption generation ability across models, as altering the 671

prompt can yield significantly different results, making fair evaluation challenging. 672

Similarly, we use GPT-4 (Fu et al., 2023) for additional Semantic Integrity evaluation using only a 673

single caption per image with the prompt shown in Table 7. Note that we sample the first 1k image 674

instances in each dataset for this evaluation due to the cost limitations. 675

PnP-VQA BLIP BLIP-2 Gold HBoP

LLama-2-13B
7.70

(±0.09)
9.36

(±0.05)
9.69

(±0.05)
9.17

(±0.06)
8.56

(±0.07)

GPT-4
2.18

(±0.84)
2.97

(±0.10)
2.96

(±0.19)
2.94

(±0.49)
2.48

(±0.73)

Table 3: Semantic Integrity scores exhibit a similar trend across two LLM evaluations for the Flickr30K dataset (1k
test set).

D Additional Results 676

D.1 Relevancy 677

In Figure 3, HBoP captions (y-axis values in the last column) show comparable relevance scores with gold 678

captions (x-axis values in the last column) with the slope of a linear regression line8 being close to 0.5. 679

Although the slopes of these regression lines (MSCOCO (Lin et al., 2014): 0.42, Flickr30k (Young et al., 680

2014): 0.39, Nocaps (Agrawal et al., 2019): 0.34) are less than those of BLIP (Li et al., 2022a) (0.49, 0.44, 681

and 0.45) and BLIP-2 (Li et al., 2023) (0.51, 0.45, 0.43), we observe a trend of having relevance scores in 682

the range of 20 to 40 for both x and y axes values. On the other hand, relevance scores for random and 683

PnP-VQA (Tiong et al., 2022) captions have a spurious and less-correlated relation with those of gold 684

captions. 685

D.2 GradCAM Results 686

In addition to the evaluation results of the generated captions (samples in Figure 4), we illustrate how the 687

generated captions correlate with specific image regions through GradCAMs (Selvaraju et al., 2017). The 688

visual representation identifies the image regions on which the generated captions are based. Specifically, 689

we aggregate the gradients from all cross-attention layers of the pre-trained ITM model in PnP-VQA 690

8The p-values for all the regression lines are less than 0.001, except for the those of lines in the first columns, which are not
statistically significant
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# Param PCD mBLEU-4 ↓ Div-2 ↑
Random - 0.962 (+0.223) 0.001 0.867

BLIP (−NS) 446M 0.600 (-0.129) 1.000 0.178
BLIP-2 3.9B 0.654 (-0.075) 0.715 0.340
BLIP (+NS) 446M 0.679 (-0.050) 0.629 0.400
Honeybee 7B 0.791 (+0.062) 0.080 0.705
Gold - 0.729 0.078 0.666

HBoP (ours) 1B 0.783 (+0.054) 0.041 0.748
HBoP Ranking 2/6 2/7 2/7

Table 4: Diversity scores for Nocaps test set. We observe a similar diversity trend across model captions as Table 1.

The following is a conversation between a curious human and AI assistant. The assistant gives
helpful, detailed, and polite answers to the user’s questions.
Human: <image>
Human: Describe this image with 5 captions with numberings.
AI:

A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful,
detailed, and polite answers to the human’s questions.
Human: <im_start><image><im_end>
Human: Describe this image with 5 captions.###Assistant:

[INST] <image> What is shown in this image? Describe this image with 5 captions. [/INST]

Table 5: Image caption generation prompts for Honeybee (top) and LLaVA-1.5/1.6 (bottom).

(Tiong et al., 2022). Whereas PnP-VQA (Tiong et al., 2022) feeds the question for the textual input, we691

input BLIP (Li et al., 2022a) and gold captions, along with HBoP captions. As shown in Figures 1 and692

5, the highlighted regions in the image for HBoP captions closely resemble the same pattern as those693

observed using human-generated captions. On the contrary, BLIP exhibits a more constrained range,694

predominantly concentrating on specific image regions.695

D.3 Fine-grained Captions696

Although not evaluated in the perspectives of three main evaluation metrics, we can also create what we697

refer to as fine-grained captions that can serve as image tags using our proposed methodology. These698

serve as supplementary information, enhancing the depth of understanding of the image. They are more699

vital when dealing with complex images containing various small or intricate objects, which conventional700

caption generation processes may often overlook. By introducing the additional layer of granularity, our701

approach ensures a more detailed and inclusive interpretation of the image.702
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[INST] <<SYS>>
You will be given a caption generated from an image. Given criteria and rating options, rate the
response. Respond with a number only.
Evaluation Criteria: [CRITERION]: [DEFINITION]
Scale: from 1 to 10
Answer: <</SYS>>
INPUT [/INST]

[CRITERION]: Coherence/Meaningfulness
[DEFINITION]: the logical and clear connection between ideas or elements within a context. It is
characterized by the consistency, integrity, and clarity of information or arguments presented./the
relevance and significance of the content in the caption. A meaningful caption goes beyond a
literal description, providing insight, context, or emotion that enhances the viewer’s understanding
or appreciation of the image.

Table 6: The prompt for evaluating semantic integrity (coherence + meaningfulness) of generated model captions
using Llama-2-13B.

You will be given one caption written for describing an image.

Your task is to rate the caption on one metric.

Please make sure you read and understand these instructions carefully. Please keep this
document open while reviewing, and refer to it as needed.

Evaluation Criteria:
Fluency (1-3): the quality of the caption in terms of grammar, spelling, punctuation, word choice,
and sentence structure.
- 1: Poor. The caption has many errors that make it hard to understand or sound unnatural.
- 2: Fair. The caption has some errors that affect the clarity or smoothness of the text, but the main
points are still comprehensible.
- 3: Good. The caption has few or no errors and is easy to read and follow.

Example:
Caption:
Caption

Evaluation Form (scores ONLY):
- Fluency (1-3):

Table 7: The prompt for evaluating semantic integrity (i.e., fluency) of generated model captions using GPT-4.
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Figure 3: Correlation of relevance scores between gold captions and model captions. We observe higher correlations
for HBoP, BLIP, and BLIP-2 captions as comapred to random and PnP-VQA captions.

≠

• a young man with a baseball bat in a baseball field

• a catcher and a batter during a minor baseball game
• a young boy who is standing in a baseball field

• a little league baseball game is being played
• a group of people watching a baseball game in progress

H
B
oP

• a baseball batter is getting ready to take a swing

• a baseball game with a catcher and umpire
• a batter, catcher and umpire during a baseball game

• a stadium sits in the background
• a crowd of people sitting on the bleachers watching

• a baseball player holding a bat on a field

• a baseball player holding a bat on a baseball field
• a man holding a baseball bat on a baseball field

• a baseball player holding a bat on the field
• a man holding a baseball bat on a field

B
L
IP
-2

• a baseball player holding a bat on a baseball field

• a baseball player holding a bat in front of a crowd
• a baseball player holding a bat in front of a crowd of people

• a baseball player holding a baseball bat on a baseball field
• a baseball player is getting ready to hit the ball

≈

≠

Figure 4: Comparison between captions generated using BLIP-2 (Li et al., 2023) and HBoP. Our captions contain
more diverse interpretations of the images while maintaining high relevancy.
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this is a nice and 
modern bathroom with 

a shower

a bathroom with a 
shower, toilet and 

sink

a bathroom with a 
toilet, sink, and 

shower

a bathroom with a 
stand up shower next 

to a toilet

a small corner 
shower for a toilet

a very neat and neat 
looking bathroom 
with a walk in

a white toilet 
sitting next to a 

white sink

a bathroom with a 
toilet, walk in 

shower, and

A bathroom with an 
enclosed shower next 

to a sink and a 
toilet.

A clean, spacious 
bathroom with a 

large shower stall.

There are a toilet, 
a sink, and a shower 

stall in a large 
bathroom.

A bathroom featuring 
a walk in shower, 
mirror, sink and 

toilet.

Bathroom with a 
shower, sink, and 

toilet in it. 

a bathroom with a 
toilet, sink, and 

shower

a bathroom with a 
toilet, sink, and 

shower

B
LI

P
H

B
oP

 (o
ur
s)

G
ol

d
BL
IP

H
Bo
P

Go
ld

a painting of a 
silver pitchers, 
oranges and a candle

a painting of a 
still life with 

oranges and a tea

A painting of a 
table with fruit on 

top of it.

a painting of a 
pitcher, oranges and 

a bowl

a painting with a 
copper pitcher and 
an orange is shown 
near an antique bowl

Painting of oranges, 
a bowl, candle, and 

a pitcher

a painting of a 
still life with 

oranges and a teapot

an oil painting of a
orange and a silver 
tea pot

a painting of fruit 
and a candle with a 

vase

"a still life with 
metal vessel, 
oranges and a teapot

A painting of a 
candlestick holder 

with a candle, 
several pieces of 
fruit and a vase, 
with a gold frame 

around the painting.

a painting of a 
copper pitcher and a 

bowl of oranges

a painting of a red 
and white pitcher 
near a group of 
fruits and a silver

A painting that has 
a gold frame on it.

a painting of a 
copper pitcher, 

oranges and a candle

Figure 5: Additional visualizations of GradCAMs across different model captions.
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