ONE CLUSTER OR TWO? A MANIFOLD-BASED APPROACH

Anonymous authors

Paper under double-blind review

ABSTRACT

The manifold hypothesis suggests a natural criterion for clustering: partition data according to the manifold component from which they are drawn. This criterion is useful because, intuitively, the separability of manifold components is governed by the ambient separation between components relative to the largest gap in the sample's coverage. The analysis integrates topology (e.g., manifold volume and reach) with estimation (e.g., fill radius and sample density). Formally it identifies a criticality: when a threshold is exceeded, nearest-neighbor data graphs avoid bridging edges and clusters are preserved; otherwise, bridges appear and components fuse. Practically, criticality is sandwiched between bounds that imply a measure of cluster confidence, and motivates an algorithm—Manifold-Based Clustering (MBC)—that constructs a candidate neighborhood graph. MBC is parameter-light and, unlike density-based methods (e.g., HDBSCAN), avoids hand-tuned scale thresholds. Instead, MBC yields a monotone bracket on the number of components by a natural sweep of neighborhood size. Across curved and high-dimensional benchmarks, MBC matches state-of-the-art accuracy and exposes ambiguity near the critical thresholds.

Figure 1: (A–C) A non-pure manifold with two components: a disc (left, in blue) and softened peanut (right, in orange). We show worst-case fill distances (h_1,h_2) , the minimal offset Δ , and two boundaries of the peanut boundary, h_2 (dashed) and \overline{C} h_2 (dotted) where \overline{C} is a constant determined by the geometry of the manifold. The ratio $\rho = \Delta/h_{\max}$ ($h_{\max} = \max\{h_1,h_2\}$) governs separability: A is separable $(\rho > \overline{C})$, B is transitory $(\underline{C} < \rho < \overline{C})$, and C is nonseparable $(\rho < \underline{C})$, with $\Delta > 0$. (D) Decision map in (h_{\max}, Δ) with thresholds $\Delta = \underline{C} h_{\max}$ (dashed) and $\Delta = \overline{C} h_{\max}$ (dotted); regions are labeled and the empirical cases A–C are overlaid. (E) MBC Algorithm schematic: build a local neighborhood graph at the sampling scale, sparsify to remove spurious bridges, and take connected components; yielding the correct split.

1 Introduction

Clustering is a notoriously thorny problem: results depend on criteria (Kleinberg, 2002), separation (Hennig, 2015) and sampling (Tibshirani et al., 2001), for starters. To cope, researchers can appeal to domain knowledge (e.g. genomics (Eisen et al., 1998)) or use a popular algorithm (McInnes et al., 2018; Ester et al., 1996; Ankerst et al., 1999; Campello et al., 2013; 2015). But the statistical power of these algorithms is difficult to assess (Dalmaijer et al., 2022), and blindly using any one could be problematic (Chari & Pachter, 2023). While many neuroscience studies could be misleading (Button et al., 2013), even determining whether data are (in fact) clustered remains an important open problem (Dyballa et al., 2024b). We address this problem from a general, topological perspective, and ask: were our data sampled from a connected or separated object, and by what margin? Adopting the manifold hypothesis, we model high-dimensional observations as samples from a compact subset $\mathcal{M} \subset \mathbb{R}^D$ that is either a single connected C^2 submanifold or a finite union of disjoint C^2 components. (Fefferman et al., 2023) This viewpoint reframes clustering as a decision problem: given i.i.d. samples $X = \{x_i\}_{i=1}^n$ from a distribution supported on \mathcal{M} , can it be decided whether the support is connected or decomposes into separated components. This view allows us to develop a criterion to determine whether clusters exist and, by extension, determine the number of clusters present in the data.

Our analysis reveals a single quantity that governs this decision for components estimated from k-nearest neighbor $(k{\rm NN})$ graphs: the ratio ρ between the *offset* Δ (the minimal Euclidean distance between any two components) and the *fill distance* h of the sample on those components (the worst-case sampling gap). Intuitively, the fill distance measures the size of the largest hole in our sample coverage; smaller fill distance implies denser, more uniform sampling. Thus large values of ρ indicate the presence of clearly separated clusters (relative to sample density), while small values mean the estimated components should be blurred together into a single cluster. Classic random geometric graph (RGG) results justify this strategy: RGGs exhibit sharp connectivity thresholds as the neighborhood scale changes with sample size n: they become connected around radii $r_n \asymp ((\log n)/n)^{1/d}$ or when the k-NN parameter scales like $k \asymp \log n$, under mild regularity (Penrose, 2003; Balister et al., 2005). We translate this picture to the problem of separating manifold components. In our setting, the constants depend only on standard intrinsic geometry properties such as two-sided volume growth (lower/upper bounds on the volume of small balls) and positive reach (Niyogi et al., 2008). This translation allows us to formally quantify when distinct manifold components will remain disconnected in a kNN graph, rather than linked by spurious "bridging" edges.

We implement this theory into a practical algorithm (MBC) that leverages the above result and the extension to the tubular-noise regime to detect components within data with high probability. In summary, we make the following contributions:

- 1. **Geometric criterion for cluster preservation.** We introduce the offset-fill-distance ratio and prove upper and lower thresholds that predict when clusters remain distinct in the standard and noisy regime (Theorem 3.3).
- 2. **Manifold-Based Clustering Algorithm** We develop an algorithm for leveraging this threshold to uncover the clusters present in a dataset, as well as a criterion for handling noise robustly using the distance-to-measure (Algorithm 1).

2 BACKGROUND

Neighborhood graphs and threshold scales. Manifold-learning methods—Isomap, LLE, Laplacian Eigenmaps—reconstruct geometry from neighborhood graphs using shortest-path or spectral surrogates (Tenenbaum et al., 2000; Roweis & Saul, 2000; Belkin & Niyogi, 2003; Coifman & Lafon, 2006), and spectral clustering relies critically on the same graph quality (von Luxburg, 2007; Zelnik-manor & Perona, 2004). Popular dimensionality reduction methods such as UMAP optimize objectives to preserve local neighborhoods (McInnes et al., 2018). The reliability of these pipelines depends on choosing neighborhoods at the intrinsic sampling scale: if neighborhoods are too large, graphs connect across gaps and destroy component structure. Random graph theory formalizes this with sharp transitions: connectivity emerges around radii $r_n \approx (\log n/n)^{1/d}$, and union-kNN graphs become connected near $k \approx \log n$, with constants depending on dimension and local volume regularity (Penrose, 2003; Balister et al., 2005). We leverage these scales in practice by setting k to be on the order of $\log n$ so that the graph is close to its connectivity threshold—neither too

sparse (disconnected) nor too dense (over-connected). Moreover, we "bracket" the true number of meaningful components in the data between two close values for k, thus defining a "confidence bracket" in a loose statistical sense.

Fill distance, two-sided volume growth, and uniform kNN radii. The fill distance $h(R,\mathcal{M})=\sup_{x\in\mathcal{M}}\min_i\|x-r_i\|$ is the worst-case sampling gap on \mathcal{M} . Under two-sided volume growth (lower and upper bounds on the volume of small metric balls) and positive reach, covering radii and nearest-neighbor distances concentrate uniformly at the intrinsic scale; in particular, for samples on a d-dimensional support, h and kNN radii $D_k(x)$ scale respectively like $(\log n)/n)^{1/d}$ and $(k/n)^{1/d}$ up to constants (Niyogi et al., 2008; Boissonnat et al., 2018). Our separability condition compares Δ to h_{\max} across components; when Δ/h_{\max} exceeds a curvature-dependent constant, stabilized kNN neighborhoods do not mix components.

Relationship to reach and curvature. The reach τ_M of a smooth subset $M \subset \mathbb{R}^D$ is the largest radius for which every point in the tubular neighborhood of M has a unique nearest-point projection onto M (Federer, 1959); equivalently, it is the infimum distance from M to its medial axis, i.e. the set of points with multiple nearest neighbors. Reach captures both local curvature— τ_M is bounded above by the reciprocal of the largest principal curvature—and global bottlenecks—narrow necks shrink τ_M . Practical estimators recover τ_M (and related geometric quantities) from point samples with nonasymptotic guarantees (Aamari et al., 2019); recent analyses clarify how reach behaves for unions and under set operations (Boissonnat & Wintraecken, 2023). Our ratio Δ/h can be viewed as a relaxation of reach tailored to distinct components: Δ is twice the bottleneck radius between components in the medial-axis picture, while h measures sample dispersion. Requiring Δ/h to exceed a constant ensures that sampling density lie below the relevant bottleneck scale, preventing spurious graph connections between components.

Robust local statistics, transitivity, and density-based clustering. Raw Euclidean distances are notoriously sensitive to density variation and moderate noise. The distance-to-measure (DTM), which averages nearest-neighbor distances, provides a robust, scale-aware alternative with stability guarantees (Chazal et al., 2011). A directional two-scale DTM cancels leading density bias onmanifold, yet grows linearly with ambient offset; this property underpins our conservative add-only rescue. Requiring shared-neighbor (triangle) support suppresses spurious asymmetric short links and enforces minimal transitivity (cf. shared-nearest-neighbor clustering) (Jarvis & Patrick, 1973). Density-based methods such as DBSCAN, BIRCH, OPTICS, and HDBSCAN infer clusters by thresholding density or mutual-reachability graphs and depend on user parameters that implicitly decide whether bridges persist (Ester et al., 1996; Ankerst et al., 1999; Campello et al., 2013; 2015; Zhang et al., 1996). In contrast, our approach places the decision on a geometric offset-versus-sampling scale, eliminates the need to hand-tune bridging thresholds, and yields a monotone bracket on the component count by varying k within a principled confidence range.

3 GEOMETRIC CLUSTER-SEPARATION CRITERION

We now introduce our main theoretical framework for understanding cluster separability with manifolds. Drawing parallels to Gaussian Mixture Models, we regard *offset* as the analog of inter-cluster distance and *fill distance* as a proxy for "variance" or dispersion within each manifold component.

Suppose our data lie on the union

$$\mathcal{M} = \mathcal{M}_1 \cup \cdots \cup \mathcal{M}_K$$

where each \mathcal{M}_k is a connected manifold component in \mathbb{R}^D . Let

$$\Delta = \min_{k \neq \ell} \left\{ ||x - y|| : x \in \mathcal{M}_k, y \in \mathcal{M}_\ell \right\}$$

be the *offset* (minimal ambient distance) between distinct components. In parallel, define the fill distance for \mathcal{M} 's sampled approximation as follows:

Definition 3.1 (Fill Distance). Let $R = \{r_i\}_{i=1}^n \subset \mathcal{M}$ be a finite point set. The *fill distance* is

$$h_{R,\mathcal{M}} = \sup_{x \in \mathcal{M}} \min_{1 \le i \le n} ||x - r_i||.$$

We say R is quasi-uniform if $h_{R,\mathcal{M}}$ and the minimum pairwise distance among r_i, r_j differ only by a constant factor. A small fill distance indicates that R forms a dense covering of \mathcal{M} .

Remark 3.2. In analogy to the sampling density criterion and variance in Gaussian Mixture Models, we treat fill distance $h_{R,\mathcal{M}}$ as a measure of sampling dispersion. A smaller $h_{R,\mathcal{M}}$ translates to higher sampling density, which is often necessary for manifold learning algorithms to reliably approximate geodesic distances and local neighborhoods.

We denote $h_{R,\mathcal{M}}$ as h for convenience and then consider the following ratio: $\rho = \frac{\Delta}{h}$.

3.1 Manifold Separation Criterion

 We now establish a threshold phenomenon for the connectivity of a kNN graph constructed on points sampled from two disjoint, compact d-dimensional Riemannian manifolds. We prove that in a kNN graph, there is a clear transition, or threshold: when manifolds are far enough apart relative to sampling density, no edges cross; when they are close enough, a bridging edge almost surely appears. In other words, under the assumption that clusters are separate iff they are sampled from two distinct manifold components, this theorem quantifies how sampling density (as measured by the fill distance) and intrinsic separation determines whether the components remain disconnected or become connected in the kNN graph.

Theorem 3.3 (Threshold for Manifold Separation in the union-kNN graph). Let $\mathcal{M}_1, \mathcal{M}_2 \subset \mathbb{R}^D$ be disjoint, compact, connected, d-dimensional C^2 submanifolds with positive reach.

Local mass bounds. Assume there exist constants $0 < \underline{c} \le \overline{c} < \infty$ and a radius $r_* > 0$ such that for all $x \in \mathcal{M}_i$ and $0 < r \le r_*$,

$$\underline{c} r^d \leq \mu_i (B(x,r)) \leq \overline{c} r^d,$$

where μ_i is the normalized surface measure on \mathcal{M}_i .

Sampling. Draw n_1 and n_2 samples independently from μ_1 and μ_2 ; write $n = n_1 + n_2$ and $n_{\min} = \min\{n_1, n_2\}$. Let S_i denote the sample on \mathcal{M}_i , define the fill distances

$$h_i = \sup_{x \in \mathcal{M}_i} \min_{z \in S_i} ||x - z||, \qquad h_{\max} = \max\{h_1, h_2\},$$

and the ambient offset $\Delta = \inf\{\|x - y\| : x \in \mathcal{M}_1, y \in \mathcal{M}_2\}.$

Graph construction. Form the union-kNN (symmetrized kNN) graph using $k = \lceil A \log(4n/\delta) \rceil$, where $\varepsilon \in (0,1)$ is fixed and $A \ge 3/\varepsilon^2$.

Threshold statement. There exist explicit constants \overline{C} , $\underline{C} > 0$ (depending only on d, \underline{c} , \overline{c} , A, and ε) such that, with probability at least $1 - \delta$, the following hold:

- (i) If $\Delta/h_{\text{max}} > \overline{C}$, then no edge connects \mathcal{M}_1 and \mathcal{M}_2 .
- (ii) If $\Delta/h_{\max} < \underline{C}$ and $B\Delta \le r_*$ for some $a \in (0, 1/8)$ with B = 1 + 2a, then the graph contains a cross edge with probability at least

$$1 - 2\exp(-\underline{c}a^d n_{\min}\Delta^d) - \exp(-\gamma k),$$

for a universal constant $\gamma > 0$.

Scaling of the thresholds. Let $R = \log(4n/\delta)/\log(n_{\min}/\delta)$ and $M = (\bar{c}/c)^{1/d}$. Then

$$\overline{C} \; = \; \Theta \! \left(A^{1/d} M \, R^{1/d} \right), \qquad \underline{C} \; = \; \Theta \! \left(A^{1/d} / (BM) \right).$$

In particular, under balanced sampling $(R \approx 1)$, fixed ε , a, and bounded geometry $(\overline{c}/\underline{c} = \Theta(1))$, both thresholds are $\Theta(A^{1/d})$ with constants depending only on d.

Proof sketch. The fill distances satisfy $h_i \asymp (\log(n_i/\delta)/n_i)^{1/d}$ with explicit upper and lower constants from a standard covering/packing argument under the local mass bounds, hence $h_{\max} \ge \frac{C_{\text{fill}}}{\log(n_{\min}/\delta)/n_{\min})^{1/d}}$. Choosing $k = \lceil A\log(4n/\delta) \rceil$ and applying Chernoff with a union bound over all n sample locations gives a uniform kNN-radius upper bound $D_k(Z) \le (1-\varepsilon)^{-1/d} \left(2k/(n_{\min}\underline{c})\right)^{1/d}$ for every sample Z. Dividing by the lower fill bound

yields $D_k(Z) \leq \overline{C} \, h_{\max}$ with \overline{C} as above, so if $\Delta > \overline{C} \, h_{\max}$ no cross edge is possible. For bridging, fix $a \in (0,1/8)$ and B=1+2a and assume $B\Delta \leq r_*$; occupancy of intrinsic caps of radius $a\Delta$ on each manifold occurs with probability at least $1-2\exp(-\underline{c}\,a^d\,n_{\min}\Delta^d)$, and an upper-mass Chernoff bound ensures that within radius $B\Delta$ around the near-boundary sample there are fewer than k same-component neighbors with probability at least $1-\exp(-\gamma k)$ provided $\Delta/h_{\max} < \underline{C}$. In that event the cross sample lies within distance $B\Delta$ and must enter the top-k, producing a bridging edge. We offer full details alongside extensions to gaussian kernel graphs, in the Appendix A.1.

3.2 EXTENDING CRITERION TO NOISY REGIMES

Empirical samples rarely lie exactly on a smooth manifold; instead, one observes noise as a tubular perturbation. This may shrink the separation between components and inflate the neighborhood radii. To account for this, we replace the original offset Δ by an effective offset $\Delta_{\rm eff}$, and show that $k{\rm NN}$ radii remain well-behaved. We adopt the following model: each component $\mathcal{M}_s \subset \mathbb{R}^D$ is compact, connected, C^2 , with reach $\tau_s > 0$, and data points are of the form $x = \pi_{\mathcal{M}_s}(x) + \xi$, where $\pi_{\mathcal{M}_s}$ denotes nearest-point projection (well-defined whenever $\|\xi\| < \tau_s$) and ξ is a mean-zero ambient perturbation that is either bounded almost surely by $\sigma < \tau_{\min} := \min_s \tau_s$ or sub-Gaussian with scale σ . In this regime the relevant offset becomes an effective quantity $\Delta_{\rm eff}$ satisfying $\Delta - 2\sigma \le \Delta_{\rm eff} \le \Delta + 2\sigma$ with high probability, while $k{\rm NN}$ radii concentrate around their noiseless counterparts with an additive $O(\sigma)$ deviation when $k \asymp \log(n/\delta)$.

The next statement upgrades the noiseless radius control used in Theorem 3.3 to the tubular-noise model and will allow us to distinguish between connected and separated components.

Proposition 3.4 (Uniform kNN radii under tubular noise). Under the assumptions above, with probability at least $1 - \delta$, for every sample x drawn from component \mathcal{M}_s ,

$$\underline{C}_s h_s - C_1 \sigma \leq D_k(x) \leq \overline{C}_s h_s + C_2 \sigma,$$

where h_s is the (clean) fill distance on \mathcal{M}_s , the constants \underline{C}_s , \overline{C}_s depend only on $(d,\underline{c},\overline{c})$ and the choice of A,ε (via the uniform clean bounds), and $C_1,C_2>0$ are universal. In particular, $H_i:=D_k(x_i)=\Theta(h_s)+O(\sigma)$ uniformly on \mathcal{M}_s .

An additional problem is that nearest-neighbor distances based on a single global scale may be too sensitive to density fluctuations. Instead, we compare averages over two scales of neighbors, whose distance distributions, as we show, differ significantly for within- vs. cross-component. To make local decisions robust we employ a two-scale distance-to-measure approach (Chazal et al., 2018) that cancels leading density terms yet reacts to ambient offsets. Fix $\theta > 1$; for a query z and a finite set T, let r_1 be the k_1 -th nearest-neighbor distance from z to T with $k_1 \asymp k$, set $k_2 = \#\{u \in T: \|u-z\| \le \theta r_1\}$, let a_1 and a_2 be the means of the k_1 and k_2 smallest distances, and define $\widetilde{d}_{\theta}(z \to T) = (\theta \, a_1 - a_2)/(\theta - 1)$. as the *two-scale DTM statistic*. When T is drawn from a d-dimensional manifold, \widetilde{d}_{θ} cancels the first-order $\Theta(h_s)$ bias of the distance-to-measure, leaving a smaller on-manifold remainder, whereas for a point at ambient offset Δ_{eff} it grows linearly in Δ_{eff} . The next proposition makes this separation precise after normalizing by fill distance.

Proposition 3.5 (Directional two-scale typicality with noise). Let $H_i = D_k(x_i)$ and form S_i by trimming the kNN list of x_i at radius c H_i for fixed c > 1 (and, if desired, capping $|S_i|$ by a constant). Fix $\theta > 1$. Then there exist constants A, B > 0 depending only on (d, c, θ) such that, with probability at least $1 - \delta$, the following hold uniformly over i:

• If x_i lies on the same component as x_i , then

$$\frac{\widetilde{d}_{\theta}(x_{j} \to S_{i})}{H_{i}} \; \leq \; A\Big(\frac{\sigma}{H_{i}} \; + \; \big(\frac{k}{n}\big)^{1/d}\Big).$$

• If x_j lies on a different component, let $\Delta_{\text{eff}} := \max\{\Delta - 2\sigma, 0\}$. Then

$$\frac{\widetilde{d}_{\theta}(x_j \to S_i)}{H_i} \ge B \frac{\Delta_{\text{eff}}}{H_i} - A \left(\frac{\sigma}{H_i} + \left(\frac{k}{n}\right)^{1/d}\right).$$

Consequently, when $\Delta_{\rm eff}/h_{\rm max}$ exceeds a sufficiently large constant (depending on (d,c,θ) and the local mass bounds), the within- and cross-component distributions of the normalized statistic are separated by a fixed gap.

4 Manifold-Based Clustering

We now describe a practical pipeline that realizes the geometric principles above without requiring specified hyperparameters. Given data $X \in \mathbb{R}^{n \times D}$, we first standardize each feature to zero mean and unit variance. We then estimate an intrinsic dimension d_{eff} as the smallest number of principal components explaining at least 90% of the variance, capped at 64 to avoid instability in high dimensions. For a failure budget $\delta \in (0,1)$, we take a connectivity-safe pilot $k^* = \lceil \log(4n/\delta) \rceil$ and assign a slightly adaptive per-node degree k_i via the pilot radii (ensuring $k_i \geq k^*$), as detailed in App. A.4, to mitigate the effects of non-uniform sampling not accounted for by our theory. We then compute top- k_i Euclidean neighbors for each point, record local radii $H_i = D_{k_i}(x_i)$, and form the symmetric candidate edge set by keeping $\{i,j\}$ if either i lists j or j lists i. Edges are then filtered in two remove-only passes, followed by an add-only step:

- (i) The Euclidean geometric-mean gate pass enforces scale-adaptive proximity by retaining $\{i,j\}$ only if $||x_i x_j|| \le \sqrt{H_i H_j}$. It discards edges that are too long relative to local sampling density, ensuring that connections respect intrinsic scale.
- (ii) The subsequent *triangle support* pass requires a shared nearest neighbor to support an edge between two points, preventing spurious links caused by sampling fluctuations. By Theorem 3.3 and its noisy extension, these two passes eliminate cross-component edges once $\Delta/h_{\rm max}$ exceeds the corresponding upper threshold.
- (iii) Finally, to avoid disconnecting thin structures (like curved manifolds or boundary points), the add-only rescue step conservatively reintroduces edges that failed triangle support but are statistically typical of their local neighborhoods. For each node i, we form a trimmed local set $S_i \subseteq N_{k_i}(i)$ by discarding neighbors beyond c H_i for a fixed multiplier c > 1 and, if necessary, capping $|S_i|$ by a small constant. We then compute a local threshold τ_i (high local quantile) based on the distribution of neighboring distances in S_i :

$$\tau_i \ = \ \mathrm{Quantile}_{q_\tau} \Big\{ \frac{\widetilde{d}_\theta(q \! \to \! S_i)}{H_i} : q \in S_i \Big\},$$

setting $\theta=2$ and $q_{\tau}=0.90$ in all experiments. An excluded edge $\{i,j\}$ is rescued if and only if neither of its endpoints both look 'typical' with respect to each other's neighborhoods: $\widetilde{d}_{\theta}(x_{j} \to S_{i})/H_{i} \leq \tau_{i}$ and $\widetilde{d}_{\theta}(x_{i} \to S_{j})/H_{j} \leq \tau_{j}$. Theorem A.14 ensures that, above the noisy separation threshold, this procedure does not introduce cross-component edges while repairing within-component connectivity near curvature and boundary effects. Finally, labels are obtained as the connected components of the resulting unweighted graph.

The method also provides an interpretable measure of uncertainty in the number of clusters without extra tuning. Let $\varepsilon_k = \sqrt{\log(2n/\alpha)/2k}$ for a confidence parameter $\alpha \in (0,1)$, and define $k_{\text{low}} = \lceil (1-\varepsilon_k)k \rceil$ and $k_{\text{high}} = \lceil (1+\varepsilon_k)k \rceil$. Recomputing only the remove-only base graph (Euclidean gate and triangle support, omitting rescue) at these two scales yields a monotone bracket $[k_{\text{high}}, k_{\text{low}}]$ for the number of connected components, since the edge set is nondecreasing in k, the component count is nonincreasing. Narrow brackets indicate a stable scale in the given representation; wide brackets signal genuine ambiguity about K.

Computationally, nearest-neighbor search dominates time complexity. In moderate ambient dimensions, tree-based backends provide near-linear scaling in n; in high dimensions, brute-force backends incur $O(n^2D)$ distance evaluations. The Euclidean gate is a single pass over O(nk) candidate edges; triangle support reduces to intersections of neighbor lists of length k; and the rescue operates only on edges rejected by triangle support and uses trimmed sets S_i of bounded size. Throughout we fix $\theta=2$, $q_{\tau}=0.90$, the trimming multiplier c=4, and a cap $|S_i|\leq 32$, so that the only exposed knob is k determined by n and δ .

Lastly, we can justify our algorithm by combining Propositions 3.4–3.5 with the noiseless thresholds. This yields a noisy analog of Theorem 3.3 that is aligned with what we implement. Intuitively, when inter-cluster separation is larger than sampling noise, our 'remove-only' and 'add-only' steps guarantee true cluster identification; when separation is smaller, bridging edges inevitably appear.

Theorem 4.1 (Noisy separation and safe add-only rescue). *Under the assumptions above (local mass bounds on a fixed small-ball scale, tubular noise of radius* σ , and $k = \lceil A \log(4n/\delta) \rceil$), there exist

Algorithm 1 MBC: Euclidean Gate, Triangle Support, Quantile Two-Scale DTM Rescue

```
325
                  Require: X \in \mathbb{R}^{n \times D}, \delta, \alpha \in (0, 1)
326
                    1: Fixed: \theta \leftarrow 2, q_{\tau} \leftarrow 0.90, c_{\text{trim}} \leftarrow 4, S_{\text{max}} \leftarrow 32, t_{\triangle} \leftarrow 2
2: Standardize X; set d_{\text{eff}} \leftarrow \text{\#PCA comps for} \geq 90\% EVR (cap 64); k^{\star} \leftarrow \lceil \log(4n/\delta) \rceil
327
328
                    3: Pilot k^{\star}: get H_i^{\text{pilot}} = D_{k^{\star}}(x_i); set H_{\text{ref}} \leftarrow \text{median}\{H_i^{\text{pilot}} > 0\}, k_{\min} \leftarrow \lceil 0.5 \log(4n/\delta) \rceil,
                          k_{\text{max}} \leftarrow \min(n-1, 3k^{\star})
330
                    4: Local-k: k_i \leftarrow \max(k^*, \operatorname{clip}(\lfloor k^*(H_{\text{ref}}/\max(H_i^{\text{pilot}}, 10^{-12}))^{d_{\text{eff}}}\rfloor, k_{\min}, k_{\max}))
331
                    5: kNN & candidates: for each i, get N_i (top-k_i) and H_i = D_{k_i}(x_i); P = \{\{i, j\}: j \in N_i \text{ or } i \in N_j\}
332
                    6: Euclidean gate: E_{\text{eucl}} \leftarrow \{\{i, j\} \in P : ||x_i - x_j|| \le \sqrt{H_i H_j}\}
333
                    7: Triangle support: E_{\text{tri}} \leftarrow \{\{i,j\} \in E_{\text{eucl}}: |N_i \cap N_j| \geq t_{\triangle}\}
8: Rescue-eligible: R \leftarrow E_{\text{eucl}} \setminus E_{\text{tri}}
334
335
                    9: for i = 1 to n do
                                                                                                                                                                                               \triangleright per-node \tau_i
336
                                 \begin{array}{l} S_i \leftarrow \{q \in N_i: \ \|x_q - x_i\| \leq c_{\text{trim}} H_i\}; \text{if } |S_i| > S_{\text{max}}, \text{keep closest } S_{\text{max}} \\ z_q \leftarrow \text{TwoScaleDTM}(x_q \mid S_i, \theta) / H_i; \quad \tau_i \leftarrow \text{Quantile}_{q_\tau} \{z_q : q \in S_i\} \end{array}
337
338
                  12: end for

    b add-only rescue

339
                  13: for each \{i, j\} \in R do
                                  y_{i \leftarrow j} \leftarrow \text{TwoScaleDTM}(x_j \mid S_i, \theta) / H_i; y_{j \leftarrow i} \leftarrow \text{TwoScaleDTM}(x_i \mid S_i, \theta) / H_i
340
                  14:
                                  \begin{aligned} & \text{if } y_{i \leftarrow j} \leq \tau_i \text{ and } y_{j \leftarrow i} \leq \tau_j \text{ then } \\ & E_{\text{tri}} \leftarrow E_{\text{tri}} \cup \left\{ \left\{ i, j \right\} \right\} \end{aligned} 
341
                  15:
                  16:
342
                  17:
343
                  18: end for
344
                  19: Clusters: labels L \leftarrow CC(V=[n], E_{tri})
345
                 20: K-bracket (remove-only): \varepsilon_k \leftarrow \sqrt{\frac{1}{2} \frac{\log(2n/\alpha)}{k^*}} (clip \leq 0.45); recompute GM + Triangle at
346
347
                          scales (1 \pm \varepsilon_k) \cdot k_i to get K_{\text{CI}} = [K(1 + \varepsilon_k), K(1 - \varepsilon_k)]
348
                  21: N1 noise: on the (1+\varepsilon_k) remove-only graph, mark nodes with degree \leq 1 as noise (L_i \leftarrow -1)
```

constants \underline{C}_{σ} , $\overline{C}_{\sigma} > 0$ such that, with probability at least $1 - \delta$, the Euclidean geometric-mean gate followed by triangle support has no cross-component edges whenever

$$\frac{\Delta}{h_{\text{max}}} > \overline{C}_{\sigma} := \overline{C} + C \frac{\sigma}{h_{\text{max}}},$$

where \overline{C} is the noiseless threshold from Theorem 3.3 and C>0 is universal. Moreover, if one performs an add-only rescue that reinstates an edge $\{i,j\}$ precisely when both directional statistics satisfy $\widetilde{d}_{\theta}(x_j \to S_i)/H_i \le \tau_i$ and $\widetilde{d}_{\theta}(x_i \to S_j)/H_j \le \tau_j$, with τ_i the high local quantile of $\{\widetilde{d}_{\theta}(q \to S_i)/H_i : q \in S_i\}$, then no cross-component edges are added under the same condition. Conversely, if

$$\frac{\Delta}{h_{\text{max}}} < \underline{C}_{\sigma} := \underline{C} - C \frac{\sigma}{h_{\text{max}}},$$

with \underline{C} from Theorem 3.3, then a cross-component edge appears in the kNN graph with non-negligible probability.

Proof sketch. By Proposition 3.4, the geometric-mean gate $\sqrt{H_iH_j}$ stays at scale $h_{\rm max}$ up to $O(\sigma)$, hence if $\Delta/h_{\rm max} > \overline{C} + C\,\sigma/h_{\rm max}$ every cross pair violates the Euclidean gate and triangle support cannot reintroduce it. For the rescue rule, Proposition 3.5 plus a high local quantile ensures an off-component point is atypical from at least one side, so mutual acceptance fails. The lower-threshold direction follows from the noisy overlap argument after replacing Δ by $\Delta_{\rm eff}$ as above. See Appendix A.14 for the proofs of the corresponding propositions and theorem.

5 EMPIRICAL RESULTS

We evaluate clustering quality across synthetic and real regimes under a single, scale-aware protocol. *Two Moons* (2D, sampled with noise) and *Concentric Circles* (2D, sampled with noise) probe curvature and nonconvexity; *Gaussian Blobs* (50D, std 3.0, $K_{\rm true}$ =4) test high-dimensional separation; *Digits* (8×8 grayscale, PCA \rightarrow 50) and *MNIST* (28×28, PCA \rightarrow 50) stress representation entanglement

without learned embeddings. Features are standardized; deff is the smallest PCA dimension accounting for 90% variance (cap 64). For MBC we use the standard configuration as outlined in Algorithm 1, see the Appendix 3 for further details. Baselines (DBSCAN, OPTICS, BIRCH, HDBSCAN) use library defaults (Pedregosa et al., 2011); details provided in Appendix B.0.1. Metrics are ARI, NMI, and mean predicted K over three seeds (Vinh et al., 2010); for MBC we also report the monotone bracket $[K_{low}, K_{high}]$, computed from two remove-only neighborhood scales (Sec. 4) and reported as the median across runs. Our results align with the offset-fill-distance picture: when Δ/h is large (Moons, Circles), MBC recovers ground truth with narrow brackets; on high-D separated blobs, MBC matches OPTICS/HDBSCAN; when embeddings are entangled (Digits, MNIST) (Deng, 2012; Xiao et al., 2017), all methods degrade yet MBC widens the bracket rather than forcing spurious partitions. This explains the larger brackets on the 2D Two Moons and Concentric Circles datasets, due to the presence of noise and therefore ambiguity in the sampling. On the synthetic suite, K_{true} almost always lies within the reported bracket, and extended noise/anisotropy variants (Appendix Table 5) show the expected widening of the bracket as separation diminishes. As an additional stress test, we construct a heterogeneous-dimension mixture (helix-plane-sphere) lifted to D=10; MBC recovers the three components while density/centroid methods over- or under-split or mark large fractions as noise (Appendix Fig. 3).

Table 1: **Representative results** (three seeds; best per row in **bold**). "MBC Bracket" is the median across runs of the reported monotone component-count interval.

Dataset (K _{true})	Method	ARI ↑	NMI ↑	$\mathbf{Mean}\;K$	MBC Bracket
	MBC	1.000	1.000	2.00	[2, 11]
Two Moons (2D, V 2)	OPTICS	0.006	0.193	130.67	_
Two Moons (2D; $K_{\text{true}}=2$)	BIRCH	0.499	0.512	3.00	_
	HDBSCAN	0.487	0.548	5.67	_
	MBC	1.000	1.000	2.00	[2, 13]
Componentia Ciroles (2D: V 9)	OPTICS	0.006	0.189	127.67	_
Concentric Circles (2D; $K_{\text{true}}=2$)	BIRCH	0.011	0.010	3.00	_
	HDBSCAN	0.041	0.251	10.67	_
	MBC	1.000	0.999	4.67	[4, 16]
Compiler Dish (50D) V (4)	OPTICS	1.000	1.000	4.00	_
Gaussian Blobs (50D; K_{true} =4)	BIRCH	0.714	0.857	3.00	_
	HDBSCAN	1.000	1.000	4.00	_
	MBC	0.000	0.008	4.00	[8, 9]
D:-: (V 10)	OPTICS	0.001	0.082	14.00	_
Digits ($K_{\text{true}}=10$)	BIRCH	0.000	0.006	3.00	_
	HDBSCAN	0.006	0.101	3.00	_
	MBC	0.000	0.001	2.00	[9, 14]
MNICT (V 10)	OPTICS	0.000	0.073	50.00	
MNIST ($K_{\text{true}} = 10$)	BIRCH	0.000	0.001	3.00	_
	HDBSCAN	0.000	0.000	1.00	_

Neural case study. To better understand how our algorithm behaved on real world data where sampling density often prevents distinguishable clusters, we analyzed neuronal representations from two stages of the visual pathway—Retina and the primary visual cortex (V1). The original study (Dyballa et al., 2024b) argued that retinal responses cluster into functionally coherent groups, specifically 7 cell types, while primary visual cortex (V1) responses do not. Treating each dataset as a point cloud where each point was a neuron, we ran MBC, HDBSCAN, and BIRCH on the labeled Retina, the complete (labeled and unlabeled) Retina and V1 data. MBC's cluster estimate was K=1 for both datasets (no forced partition), but the brackets diverged: V1 yielded a near-degenerate interval [1,3], indicating one component at the available sampling scale; Retina produced a substantially wider interval—[1,14] on the labeled subset and [1,9] on all points—that consistently contains the true count ($K_{\rm true}=7$). This likely implies a transitory regime: additional sampling (or a slightly finer neighborhood scale) could plausibly cross the separation threshold. In contrast, baselines forced clusters—on V1 they returned K=3 (HDBSCAN) and K=222 (BIRCH); on Retina they returned K=28 and K=21—without an uncertainty notion. At the upper end of the retinal bracket (K=9), agreement with labels becomes nontrivial (best ARI 0.205, best NMI 0.477), supporting

the interpretation that retinal classes are plausibly present but under-sampled, whereas V1 remains effectively unclustered, corroborating the physiological understanding of both systems in the original study. We provide the results obtained from our analysis of the neural data in Table 2. Visual summaries are provided in Appendix Fig. 5 (separable/transitory/nonseparable regimes via the (Δ, h) geometry) and Fig. 4 (comparing baselines to MBC and illustrating bracket cluster assignments).

Table 2: Neural representations (Retina vs V1).

Dataset (K _{true})	Method	ARI ↑	NMI ↑	Mean K	MBC Bracket
	MBC	1.000	1.000	1.00	[1, 3]
V1 (-11 V 1)	BIRCH	0.000	0.000	222.00	_
V1 (all points; $K_{\text{true}} = 1$)	HDBSCAN	0.000	0.000	3.00	_
	MBC	-0.001	0.005	1.00	[1, 14]
Detine (labeled subsets V 7)	BIRCH	0.671	0.782	17.00	_
Retina (labeled subset; $K_{\text{true}} = 7$)	HDBSCAN	0.790	0.823	8.00	_
	MBC	0.000	0.000	1.00	[1, 9]
Dating (all asints V 7)	BIRCH	0.593	0.748	21.00	_
Retina (all points; $K_{\text{true}}=7$)	HDBSCAN	0.484	0.649	28.00	_

6 Discussion

Taken together, the experiments support a simple operational view: recoverability is governed by the offset-to-sampling ratio Δ/h , and what can be said with confidence at the available scale is captured by the monotone bracket. When Δ/h is large and separability is clear the bracket is tight and MBC matches the strongest baselines; when embeddings are entangled (Digits, MNIST with linear PCA) all methods struggle, but MBC surfaces this as a widened bracket rather than committing to a spurious partition. The neural case study emphasizes the same point: V1's bracket collapses around one component, whereas Retina's bracket contains the annotated count and admits competitive agreement at its upper end, indicating a transitory, sampling-limited regime. This identification of potentially separable or nonseparable data offers guidance particularly when choosing the types of pre-processing pipelines practitioners may use, such as choosing the number of dimensions to embed one's data in or choosing the type of embedding to use prior to applying a clustering algorithm.

Limitations. As with all graph-based clustering, conclusions are representation-dependent: if the embedding entangles classes, increasing neighborhood size cannot manufacture separation. Our empirical coverage—that $K_{\rm true}$ lies within the bracket on the synthetic suite—relies on the local mass and smoothness conditions used in our analysis; strong heterogeneity in sampling rate or intrinsic dimension, severe imbalance, or heavy-tailed/non-tubular noise can widen or bias the bracket. Future work will attempt to resolve these challenges by adopting alternative adaptive procedures for local sampling density estimation. Finally, baseline comparisons were kept conservative (primarily relying on library defaults; see Appendix B.0.1); stronger hand-tuning can improve baselines on specific datasets but does not address the core issue that they return a single K which, when the ground truth clustering is unknown, opens up the unsupervised learning process to additional bias through arbitrary hyperparameter estimation.

7 Conclusion

MBC offers a theoretically grounded, parameter-light approach to manifold clustering and recasts the task as a scale-calibrated geometric decision. A local Euclidean gate, a minimal transitivity check, and a quantile two-scale DTM rescue together recover correct components when the separation-to-density ratio Δ/h is favorable and, otherwise, returns an uncertainty bracket that reflects the sampling limits. The method is robust across curvature and dimension, exposes uncertainty when scale is ambiguous, and degrades transparently as information declines, while remaining simple to implement. In short, MBC makes clustering more accountable to the data: it provides a proposed partition with geometric justification—or an indication that at the given sampling scale the data cannot support one.

REFERENCES

- Eddie Aamari, Jisu Kim, Frédéric Chazal, Bertrand Michel, Alessandro Rinaldo, and Larry Wasserman. Estimating the reach of a manifold, 2019. URL https://arxiv.org/abs/1705.04565.
- Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. Optics: Ordering points to identify the clustering structure. In *Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data*, pp. 49–60, 1999. doi: 10.1145/304181.304187.
- Paul Balister, Béla Bollobás, Anirban Sarkar, and Mark Walters. Connectivity of random k-nearest-neighbour graphs. *Advances in Applied Probability*, 37(1):1–24, 2005. doi: 10.1239/aap/1113402397.
- Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. *Neural Computation*, 15(6):1373–1396, 2003. doi: 10.1162/089976603321780317.
- Jean-Daniel Boissonnat and Mathijs Wintraecken. The reach of subsets of manifolds. *Journal of Applied and Computational Topology*, 7(3):619–641, 2023.
- Jean-Daniel Boissonnat, Frédéric Chazal, and Mariette Yvinec. *Geometric and Topological Inference*. Cambridge University Press, Cambridge, 2018. doi: 10.1017/9781108297806.
- Katherine S Button, John PA Ioannidis, Claire Mokrysz, Brian A Nosek, Jonathan Flint, Emma SJ Robinson, and Marcus R Munafò. Power failure: why small sample size undermines the reliability of neuroscience. *Nature reviews neuroscience*, 14(5):365–376, 2013.
- Ricardo J. G. B. Campello, Davoud Moulavi, and Jörg Sander. Density-based clustering based on hierarchical density estimates. In *Proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Part II*, volume 7819 of *Lecture Notes in Computer Science*, pp. 160–172. Springer, 2013. doi: 10.1007/978-3-642-37456-2_14.
- Ricardo J. G. B. Campello, Davoud Moulavi, Arthur Zimek, and Jörg Sander. Hierarchical density estimates for data clustering, visualization, and outlier detection. *ACM Transactions on Knowledge Discovery from Data*, 10(1):5:1–5:51, 2015. doi: 10.1145/2733381.
- Tara Chari and Lior Pachter. The specious art of single-cell genomics. *PLOS Computational Biology*, 19(8):e1011288, 2023.
- Frédéric Chazal, David Cohen-Steiner, and Quentin Mérigot. Geometric inference for probability measures. *Foundations of Computational Mathematics*, 11(6):733–751, 2011. doi: 10.1007/s10208-011-9098-0.
- Frédéric Chazal, Brittany Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, and Larry Wasserman. Robust topological inference: Distance to a measure and kernel distance. *Journal of Machine Learning Research*, 18(159):1–40, 2018. URL http://jmlr.org/papers/v18/15-484.html.
- Ronald R. Coifman and Stéphane Lafon. Diffusion maps. *Applied and Computational Harmonic Analysis*, 21(1):5–30, July 2006. ISSN 10635203. doi: 10.1016/j.acha.2006.04.006.
- Edwin S Dalmaijer, Camilla L Nord, and Duncan E Astle. Statistical power for cluster analysis. *BMC bioinformatics*, 23(1):205, 2022.
- Li Deng. The mnist database of handwritten digit images for machine learning research [best of the web]. *IEEE Signal Processing Magazine*, 29(6):141–142, 2012. doi: 10.1109/MSP.2012.2211477.
 - Luciano Dyballa, Greg D Field, Michael P Stryker, and Steven W Zucker. Functional organization and natural scene responses across mouse visual cortical areas revealed with encoding manifolds. *bioRxiv*, 2024b.
 - Michael B Eisen, Paul T Spellman, Patrick O Brown, and David Botstein. Cluster analysis and display of genome-wide expression patterns. *Proceedings of the National Academy of Sciences*, 95 (25):14863–14868, 1998.

- Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In *Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96)*, pp. 226–231, 1996.
 - Herbert Federer. Curvature measures. *Transactions of the American Mathematical Society*, 93(3): 418–491, 1959. doi: 10.1090/S0002-9947-1959-0110078-1.
 - Charles Fefferman, Sergei Ivanov, Matti Lassas, and Hariharan Narayanan. Fitting a manifold to data in the presence of large noise, December 2023.
 - Christian Hennig. What are the true clusters? *Pattern Recognition Letters*, 64:53–62, 2015.
 - R. A. Jarvis and E. A. Patrick. Clustering using a similarity measure based on shared near neighbors. *IEEE Transactions on Computers*, C-22(11):1025–1034, 1973. doi: 10.1109/T-C.1973.223640.
 - Jon Kleinberg. An impossibility theorem for clustering. *Advances in neural information processing systems*, 15, 2002.
 - Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection for dimension reduction, 2018.
 - Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the Homology of Submanifolds with High Confidence from Random Samples. *Discrete & Computational Geometry*, 39(1):419–441, March 2008. ISSN 1432-0444. doi: 10.1007/s00454-008-9053-2.
 - Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning in python. *Journal of Machine Learning Research*, 12(85):2825–2830, 2011. URL http://jmlr.org/papers/v12/pedregosalla.html.
 - Mathew D. Penrose. Random Geometric Graphs. Oxford University Press, Oxford, 2003.
 - Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by locally linear embedding. *Science*, 290(5500):2323–2326, 2000. doi: 10.1126/science.290.5500.2323.
 - Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework for nonlinear dimensionality reduction. *Science*, 290(5500):2319–2323, 2000. doi: 10.1126/science. 290.5500.2319.
 - Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of clusters in a data set via the gap statistic. *Journal of the royal statistical society: series b (statistical methodology)*, 63(2):411–423, 2001.
 - Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. *Journal of Machine Learning Research*, 11(95):2837–2854, 2010. URL http://jmlr.org/papers/v11/vinh10a.html.
 - Ulrike von Luxburg. A tutorial on spectral clustering. *Statistics and Computing*, 17(4):395–416, 2007. doi: 10.1007/s11222-007-9033-z.
 - Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. URL https://arxiv.org/abs/1708.07747.
 - Lihi Zelnik-manor and Pietro Perona. Self-tuning spectral clustering. In L. Saul, Y. Weiss, and L. Bottou (eds.), *Advances in Neural Information Processing Systems*, volume 17. MIT Press, 2004. URL https://proceedings.neurips.cc/paper_files/paper/2004/file/40173ea48d9567f1f393b20c855bb40b-Paper.pdf.
 - Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data clustering method for very large databases. In *Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data*, SIGMOD '96, pp. 103–114, New York, NY, USA, 1996. Association for Computing Machinery. ISBN 0897917944. doi: 10.1145/233269.233324. URL https://doi.org/10.1145/233269.233324.

A APPENDIX

A.1 PROOF OF THE THRESHOLD THEOREM FOR kNN GRAPHS

A.1.1 ASSUMPTIONS, LOCAL MASS BOUNDS, AND NOTATION

Let $\mathcal{M} = \mathcal{M}_1 \cup \mathcal{M}_2 \subset \mathbb{R}^D$, where each \mathcal{M}_i is compact, connected, d-dimensional, C^2 , with positive reach. Assume two-sided intrinsic ball-volume growth: for some $0 < c_1 \le c_2$ and $c_1 \le c_2$ and $c_2 \le c_3$ and $c_3 \le c_4$ and $c_4 \le c_5$ and $c_5 \le c_5$ and $c_5 \le c_5$ and $c_7 \le c_5$ and c

$$c_1 r^d \leq \operatorname{Vol}(B_{\mathcal{M}_i}(x,r)) \leq c_2 r^d, \quad \forall x \in \mathcal{M}_i, \ 0 < r \leq r_0.$$

Fix $r_* \in (0, r_0]$ and $L \ge 1$ so that, for all x and $r \le r_*$,

$$B_{\mathcal{M}_i}\!\!\left(x,\frac{r}{L}\right) \subseteq B(x,r) \cap \mathcal{M}_i \subseteq B_{\mathcal{M}_i}(x,Lr).$$

Let $\mu_i(\cdot) := \operatorname{Vol}((\cdot) \cap \mathcal{M}_i)/\operatorname{Vol}(\mathcal{M}_i)$ be the normalized surface measure. Define local mass constants (valid for all $r \leq r_*$):

$$\underline{c} \,:=\, \frac{c_1}{L^d}, \qquad \overline{c} \,:=\, c_2\,L^d, \qquad \underline{c}\,r^d \,\leq\, \mu_i\big(B(x,r)\big) \,\leq\, \overline{c}\,r^d.$$

Independently draw $X_1, \ldots, X_{n_1} \overset{\text{i.i.d.}}{\sim} \mu_1$ and $Y_1, \ldots, Y_{n_2} \overset{\text{i.i.d.}}{\sim} \mu_2$; set $n := n_1 + n_2$ and $n_{\min} := \min\{n_1, n_2\}$. For i = 1, 2,

$$h_i := \sup_{x \in \mathcal{M}_i} \min_{z \in \{X_1, \dots, X_{n_i}\}} ||x - z||,$$

$$h_{\max} := \max\{h_1, h_2\}, \qquad \Delta := \inf\{\|x - y\| : x \in \mathcal{M}_1, y \in \mathcal{M}_2\}.$$

We construct the undirected kNN graph by symmetrizing the directed k-neighbor lists under the ambient Euclidean distance.

A.1.2 TWO-SIDED FILL-DISTANCE BOUND

Lemma A.1 (Fill-distance sandwich with explicit dependence on local mass). For $r_i := (\log(n_i/\delta)/n_i)^{1/d}$ there exist constants

$$\overline{C_{\mathrm{fill}}} = \overline{C_{\mathrm{fill}}}(d,\underline{c}), \qquad \underline{C_{\mathrm{fill}}} = \underline{C_{\mathrm{fill}}}(d,\overline{c}),$$

depending only on $(d, \underline{c}, \overline{c})$, such that for all sufficiently large n_i (so that $\overline{C_{\mathrm{fill}}} r_i \leq r_*$ and $\underline{C_{\mathrm{fill}}} r_i \leq r_*$),

$$\underline{C_{\text{fill}}} r_i \leq h_i \leq \overline{C_{\text{fill}}} r_i$$
 with probability at least $1 - \frac{\delta}{2}$.

One admissible choice is

$$\overline{C_{\mathrm{fill}}} = \frac{2}{c^{1/d}}, \qquad \underline{C_{\mathrm{fill}}} = \frac{1}{2\,\overline{c}^{1/d}}.$$

Proof. Upper bound. Fix $r \in (0, r_*]$ and cover \mathcal{M}_i by N(r) ambient balls $B(x_j, r)$ with $N(r) \leq C_{\text{cov}} r^{-d}$, where $C_{\text{cov}} = C_{\text{cov}}(d)$. For each center, by $\mu_i(B(x_j, r)) \geq \underline{c}r^d$, the emptiness probability is $\leq \exp(-\underline{c}n_i r^d)$. By the union bound,

$$\Pr\left(\exists j:\ B(x_j,r) \text{ is empty}\right) \ \leq \ C_{\text{cov}} \, r^{-d} \, \exp(-\underline{c} n_i r^d).$$

Choose r so that $\underline{c}n_i r^d = 2\log(n_i/\delta)$, i.e.

$$r = \frac{2^{1/d}}{\underline{c}^{1/d}} \left(\frac{\log(n_i/\delta)}{n_i} \right)^{1/d}.$$

646 Then

$$\Pr\left(\exists \text{ empty } B(x_j,r)\right) \ \leq \ \frac{C_{\text{cov}} \, \underline{c}}{2} \cdot \frac{\delta^2}{n_i \, \log(n_i/\delta)} \ \leq \ \frac{\delta}{4} \quad \text{for all large } n_i.$$

If no cover ball is empty, each $B(x_j, r)$ contains a sample; any $x \in \mathcal{M}_i$ lies within r of some x_j , hence within 2r of a sample; therefore $h_i \leq 2r$. With the chosen r, this gives

$$h_i \leq \overline{C_{\text{fill}}} r_i, \qquad \overline{C_{\text{fill}}} := \frac{2}{\underline{c}^{1/d}}.$$

Lower bound. Let \mathcal{P} be a packing by M(r) disjoint ambient balls of radius r/2 centered on \mathcal{M}_i , with $M(r) \geq C_{\text{pack}} \, r^{-d}$ and $C_{\text{pack}} = C_{\text{pack}}(d)$. If every such ball contains a sample, then $h_i < r$; conversely, if at least one is empty then $h_i \geq r/2$. For any packed ball B, $\mu_i(B) \leq \overline{c}(r/2)^d$, so

$$\Pr(B \text{ is occupied}) \leq n_i \, \overline{c} \left(\frac{r}{2}\right)^d.$$

By the union bound over M(r) disjoint balls,

$$\Pr\left(\text{all packed balls occupied}\right) \ \leq \ M(r) \, n_i \, \overline{c} \left(\frac{r}{2}\right)^d \ \leq \ \frac{C_{\text{pack}} \, \overline{c}}{2^d} \, n_i.$$

Choose $r=\underline{C_{\mathrm{fill}}}\,r_i$ with $\underline{C_{\mathrm{fill}}}:=\frac{1}{2\,\overline{c}^{1/d}}.$ Then $n_i\,\overline{c}\,(r/2)^d=\frac{1}{2}\log(n_i/\delta)$ and

$$\Pr\left(\text{all packed balls occupied}\right) \, \leq \, \frac{C_{\text{pack}}}{2^{d+1}} \cdot \frac{n_i}{\log(n_i/\delta)} \, \leq \, \frac{\delta}{4} \quad \text{for all large } n_i.$$

With probability at least $1-\delta/4$ some packed ball is empty, whence $h_i \geq r/2$; our definition of $C_{\rm fill}$ includes this factor, so $h_i \geq C_{\rm fill} \, r_i$. Combining the two tails (upper and lower) across i=1,2 yields the claim with probability $\geq 1-\delta/2$.

A.1.3 Uniform concentration of kNN radii at the samples

Lemma A.2 (Uniform kNN upper bound). Fix $\varepsilon \in (0,1)$ and choose

$$k = \left\lceil A \log\left(\frac{4n}{\delta}\right) \right\rceil, \quad A \ge \frac{3}{\varepsilon^2}.$$

Let $D_k(Z)$ be the distance from a sample Z to its kth nearest neighbor among all n-1 points. Then, with probability at least $1-\frac{\delta}{2}$, simultaneously for all samples Z from component \mathcal{M}_i ,

$$D_k(Z) \leq \frac{1}{(1-\varepsilon)^{1/d}} \left(\frac{2k}{n_{\min} c}\right)^{1/d}.$$

Proof. Fix a sample $Z \in \mathcal{M}_i$. For any $r \leq r_*$, the count

$$S(r) := \#\{j \neq Z : \|Z_j - Z\| \le r\}$$

is $\mathrm{Bin}(n-1,p(r))$ with $p(r) \geq \underline{c}r^d$ (we only need same-component mass to lower bound p(r)). Let r satisfy $(n_i-1)\underline{c}r^d=k$. Then $\mathbb{E}[S(r)]\geq k$, and Chernoff's lower tail gives

$$\Pr\left(S(r) \le (1-\varepsilon)k\right) \le \exp\left(-\frac{\varepsilon^2}{2}k\right) \le \frac{\delta}{4n}$$

by the choice of k. Thus $S(r) \ge (1 - \varepsilon)k$ with probability $\ge 1 - \delta/(4n)$; equivalently,

$$D_k(Z) \leq \frac{r}{(1-\varepsilon)^{1/d}} = \frac{1}{(1-\varepsilon)^{1/d}} \left(\frac{k}{(n_i-1)\underline{c}}\right)^{1/d}.$$

Apply a union bound over all n samples and use $n_i - 1 \ge n_{\min}/2$ to conclude

$$D_k(Z) \ \leq \ \frac{1}{(1-\varepsilon)^{1/d}} \left(\frac{2k}{n_{\min} \, c}\right)^{1/d} \quad \text{for all samples Z with probability at least $1-\frac{\delta}{2}$}.$$

From D_k to a multiple of h_{max} . By Lemma A.1, for the worse component,

$$h_{\text{max}} \geq \underline{C_{\text{fill}}} \left(\frac{\log(n_{\text{min}}/\delta)}{n_{\text{min}}} \right)^{1/d}.$$

Combining with Lemma A.2 and $k = A \log(4n/\delta)$ yields, uniformly over all samples Z,

$$\frac{D_k(Z)}{h_{\max}} \, \leq \, \frac{1}{(1-\varepsilon)^{1/d} \, \underline{C_{\mathrm{fill}}}} \left(\frac{2A \, \log(4n/\delta)}{\underline{c} \, \log(n_{\min}/\delta)} \right)^{1/d} \, = \, \frac{1}{(1-\varepsilon)^{1/d} \, \underline{C_{\mathrm{fill}}}} \, \left(\frac{2A \, R}{\underline{c}} \right)^{1/d}.$$

Proposition A.3 (No-bridge regime). Define

$$\overline{C} \,:=\, \frac{1}{(1-\varepsilon)^{1/d}\,C_{\mathrm{fill}}} \, \Big(\frac{2A\,R}{\underline{c}}\Big)^{1/d}.$$

If $\Delta > \overline{C} h_{\text{max}}$, then the (symmetrized) kNN graph contains no edge connecting \mathcal{M}_1 and \mathcal{M}_2 .

Proof. For any sample Z and any point W on the other manifold, $||Z - W|| \ge \Delta > \overline{C} h_{\max} \ge D_k(Z)$, so W cannot be among the k nearest neighbors of Z.

A.1.4 BRIDGING AT SMALL SEPARATION

Proposition A.4 (Bridge existence under controlled crowding). Fix $a \in (0, 1/8)$ and write B(a) := 1 + 2a. Assume $B(a) \Delta \leq r_*$. Define

$$\overline{C_{\rm fill}} \ \ \textit{as in Lemma A.1}, \qquad \underline{C} \ := \ \frac{1}{\overline{C_{\rm fill}}} \left(\frac{A\,R}{4\,\overline{c}\,B(a)^d} \right)^{\!1/d}\!.$$

If $\Delta < \underline{C} h_{\max}$, then with probability at least

$$1 - 2 \exp(-\underline{c} a^d n_{\min} \Delta^d) - \exp(-\gamma k)$$

(for some absolute $\gamma > 0$) the kNN graph contains a cross-component edge.

Proof. Let $(x_0, y_0) \in \mathcal{M}_1 \times \mathcal{M}_2$ realize $||x_0 - y_0|| = \Delta$ and consider the intrinsic caps

$$U := B_{\mathcal{M}_1}(x_0, a\Delta), \qquad V := B_{\mathcal{M}_2}(y_0, a\Delta).$$

By the lower mass bound, $\mu_1(U)$, $\mu_2(V) \geq \underline{c} (a\Delta)^d$, so

$$\Pr(U \text{ empty}) \leq e^{-\underline{c} a^d n_1 \Delta^d}, \qquad \Pr(V \text{ empty}) \leq e^{-\underline{c} a^d n_2 \Delta^d}.$$

Hence with probability at least $1 - 2e^{-\underline{c} a^d n_{\min} \Delta^d}$ there exist samples $x \in U$ and $y \in V$, and

$$||x - y|| \le ||x - x_0|| + ||x_0 - y_0|| + ||y_0 - y|| \le B(a) \Delta.$$

Let

$$S_x := \#\{X_i \in \mathcal{M}_1 : \|X_i - x\| \le B(a) \Delta\}.$$

By the upper mass bound,

$$\mathbb{E}[S_x] \leq (n_1 - 1) \, \bar{c} \, \big(B(a) \, \Delta \big)^d.$$

Assume $h_{\max} = h_1$ (the harder case). If we write $\Delta = \underline{C} h_{\max}$ and use the *upper* fill bound from Lemma A.1,

$$h_{\text{max}} \leq \overline{C_{\text{fill}}} \left(\frac{\log(n_{\text{min}}/\delta)}{n_{\text{min}}} \right)^{1/d},$$

then

$$\mathbb{E}[S_x] \leq \bar{c} B(a)^d \left(\underline{C} \overline{C_{\text{fill}}}\right)^d \log\left(\frac{n_{\min}}{\delta}\right).$$

With $k = A \log(4n/\delta) = A R \log(n_{\min}/\delta)$, the condition

$$\bar{c} B(a)^d \left(\underline{C} \overline{C_{\text{fill}}}\right)^d \le \frac{AR}{4}$$

ensures $\mathbb{E}[S_x] \leq k/4$ and, by Chernoff, $\Pr(S_x \geq k/2) \leq e^{-\gamma k}$ for some absolute $\gamma > 0$. On this event, fewer than k same-component points lie inside $B(x, B(a)\Delta)$ while y also lies in this ball, so at least one of the k nearest neighbors of x is cross-component. Solving the displayed condition for C yields the stated value.

A.1.5 THRESHOLD THEOREM

 Theorem A.5 (Critical separation for the symmetrized kNN graph). Fix $\varepsilon \in (0,1)$, $a \in (0,1/8)$, and choose $k = \lceil A \log(4n/\delta) \rceil$ with $A \geq 3/\varepsilon^2$. Let \overline{C} be as in Proposition A.3 and \underline{C} as in Proposition A.4. Then, with probability at least $1 - \delta$ (up to the explicit tails in Proposition A.4):

- 1. (Disconnected regime) If $\frac{\Delta}{h_{\max}} > \overline{C}$, the kNN graph contains no cross-component edge.
- 2. (Bridged regime) If $B(a) \Delta \leq r_*$ and $\frac{\Delta}{h_{\max}} < \underline{C}$, the kNN graph contains at least one cross-component edge with probability at least

$$1 - 2 \exp(-\underline{c} a^d n_{\min} \Delta^d) - \exp(-\gamma k).$$

Remark A.6. On the constants \overline{C} and \underline{C} With the definitions and choices in Section A.1 (in particular, $k = \lceil A \log(4n/\delta) \rceil$, $R = \log(4n/\delta)/\log(n_{\min}/\delta)$, B = 1 + 2a, and the local mass bounds $\underline{c}, \overline{c}$), the threshold constants that govern the disconnected and bridged regimes are

$$\overline{C} = \frac{2}{(1-\varepsilon)^{1/d}} \left(\frac{2AR\overline{c}}{\underline{c}} \right)^{1/d}, \qquad \underline{C} = \left(\frac{AR\underline{c}}{2^{d+2}\overline{c}B^d} \right)^{1/d}.$$

Monotonicity and interpretation. Both \overline{C} and \underline{C} scale like $A^{1/d}$: increasing k (via A) makes the no-bridge *condition* stricter (larger \overline{C}) and the bridge *condition* easier to meet (larger \underline{C}), consistent with the fact that larger k adds edges. The ratio $\overline{c}/\underline{c}$ measures geometry/density skew: \overline{C} grows with $(\overline{c}/\underline{c})^{1/d}$, while \underline{C} shrinks with $(\overline{c}/\underline{c})^{1/d}$, reflecting that heavier local mass and distortion increase same-component crowding. The guard buffer B appears only in \underline{C} (as 1/B after the d-th root), encoding that a larger buffer makes it harder to force a cross edge. The dependence on d is via 1/d-powers, so in higher dimensions both constants vary more gently with A, B, and $\overline{c}/\underline{c}$.

Practical choices for constants. For balanced sampling one has $R\approx 1$. Choosing a moderate tail slack $\varepsilon=\frac{1}{2}$ gives the benign factor $(1-\varepsilon)^{-1/d}=2^{1/d}$. In typical practice $k=\Theta(\log(n/\delta))$ with a small constant, so A can be taken in a tight range, and one uses a small collar a so $B=1+2a\approx 1$ while still meeting the small-radius condition. Under these settings, and in benign geometry where $\overline{c}/\underline{c}\approx 1$, the formulas simplify to the order-one approximations

$$\overline{C} \approx 2^{1/d} \left(4A\right)^{1/d}, \qquad \underline{C} \approx \frac{1}{2B} \left(\frac{A\underline{c}}{\overline{c}}\right)^{1/d},$$

so taking $A \approx 1$, $B \approx 1$, and $\overline{c}/\underline{c} \approx 1$ leaves both thresholds at a natural, dimension-controlled constant scale, with their gap dominated by the simple 1/(2B) factor in \underline{C} .

A.1.6 COROLLARIES FOR KERNEL GRAPHS

Corollary A.7 (Gaussian (RBF) kernel: inter-manifold suppression and activation). *Fix a bandwidth* $\sigma > 0$ *and define*

$$w(x,y) := \exp\left(-\frac{\|x-y\|^2}{\sigma^2}\right), \qquad W_{12} := \sum_{x \in S_1} \sum_{y \in S_2} w(x,y),$$

where S_1, S_2 are the sample sets on $\mathcal{M}_1, \mathcal{M}_2$. On the high-probability event of Theorem A.5 the following hold.

1. (Disconnected regime) If $\Delta > \overline{C} h_{\max}$, then for every $x \in S_1$ and $y \in S_2$,

$$||x - y|| \ge \Delta$$
 \Longrightarrow $w(x,y) \le \exp\left(-\frac{\Delta^2}{\sigma^2}\right)$,

and hence

$$W_{12} \leq n_1 n_2 \exp\left(-\frac{\Delta^2}{\sigma^2}\right).$$

2. (Bridged regime) Assume the small-radius condition $B \Delta \le r_*$ and suppose $\Delta < \underline{C} h_{\max}$. Then, with probability at least

$$1 - 2 \exp(\underline{c} a^d n_{\min} \Delta^d) - \exp(-\gamma k),$$

there exist $x \in S_1$ and $y \in S_2$ such that

$$\|x-y\| \ \leq \ B \, \Delta \qquad \Longrightarrow \qquad w(x,y) \ \geq \ \exp\Bigl(-\frac{B^2 \, \Delta^2}{\sigma^2}\Bigr),$$

and consequently

$$W_{12} \ge \exp\left(-\frac{B^2 \Delta^2}{\sigma^2}\right).$$

Proof. On the event of Theorem A.5, the no-bridge regime ensures all cross-component pairs are at distance at least Δ ; the displayed upper bound follows by monotonicity of $r \mapsto \exp(-r^2/\sigma^2)$, and the bound on W_{12} follows by summing over n_1n_2 pairs.

In the bridged regime, Proposition A.4 guarantees the existence of a cross pair with $||x-y|| \le B\Delta$ with the stated probability. The lower bound follows by monotonicity and by retaining one such pair in the sum defining W_{12} .

A.2 DTM AND NOISY THRESHOLD CRITERION

A.3 TUBULAR NOISE MODEL AND A TWO-SCALE AVERAGED-DISTANCE STATISTIC

We adopt the tubular-noise model from the main text. For each component $\mathcal{M}_s \subset \mathbb{R}^D$ (compact, connected, C^2 , reach $\tau_s > 0$), each observed sample x is generated as

$$x = \pi_{\mathcal{M}_s}(x) + \xi, \tag{1}$$

where $\pi_{\mathcal{M}_s}$ is the nearest-point projection (well-defined whenever $\|\xi\| < \tau_s$) and ξ is either (i) almost surely bounded with $\|\xi\| \le \sigma < \tau_{\min} := \min_s \tau_s$, or (ii) sub-Gaussian with scale σ truncated to $\|\xi\| < \tau_{\min}$.

Noise-sparsity regime. We work under

$$\sigma \le c_{\text{noise}} h_{\text{max}}$$
 (2)

for a fixed constant $c_{\text{noise}} \in (0, 1)$, so that kNN radii are at least of order σ and the local small-ball law remains d-dimensional up to absolute constants. All constants below may depend on c_{noise} .

Definition A.8 (Two-scale averaged-distance statistic). Let T be a finite subset of \mathbb{R}^D and $z \in \mathbb{R}^D$. For $m \in \{1, \dots, |T|\}$ let $r_m(z \mid T)$ be the mth nearest-neighbor distance from z to T, and define

$$\bar{d}_m(z \mid T) := \frac{1}{m} \sum_{\ell=1}^m r_{\ell}(z \mid T).$$

Fix a scale factor $\theta > 1$. Given an integer $k_1 \ge 1$, set

$$k_2 \; := \; \# \big\{ u \in T : \; \|u - z\| \leq \theta \, r_{k_1}(z \mid T) \big\}, \qquad \widetilde{d}_{\theta}(z \to T) \; := \; \frac{\theta \, \bar{d}_{k_1}(z \mid T) \, - \, \bar{d}_{k_2}(z \mid T)}{\theta - 1}.$$

Given the global k from the k-choice in Section A.1 (namely $k = \lceil A \log(4n/\delta) \rceil$ with $A \ge 3/\varepsilon^2$), let $H_i := D_k(x_i)$ and define the trimmed neighbor set

$$S_i := \{ q \in N_k(i) : ||x_q - x_i|| \le c_{\text{trim}} H_i \}, \quad |S_i| \le S_{\text{max}},$$
 (3)

for fixed constants $c_{\text{trim}} > 1$ and $S_{\text{max}} \in \mathbb{N}$. Trimming ensures bounded differences for the per-node statistics used below.

A.3.1 TUBULAR SMALL-BALL PROBABILITIES AND NOISY kNN RADII

Throughout, let the local mass bounds from Section A.1 hold on radii $\leq r_*$:

$$\underline{c}r^d \leq \mu_s(B(x,r)) \leq \overline{c}r^d$$
, for all $x \in \mathcal{M}_s$, $0 < r \leq r_*$,

where μ_s is the normalized surface measure on \mathcal{M}_s .

Lemma A.9 (Tubular local-mass sandwich). Fix \mathcal{M}_s and a point $x = \pi_{\mathcal{M}_s}(x) + \xi$ with $\|\xi\| \le \sigma < \tau_s$. There exist radii $0 < r_{\text{low}} \le r_{\bullet} \le r_*$ with

$$r_{\text{low}} := 2\sigma, \qquad r_{\bullet} := \min\{r_* - \sigma, \tau_s/2\},$$
 (4)

and constants

$$\underline{c}_{\sigma} := \underline{c} (1 - C\sigma/\tau_s), \quad \overline{c}_{\sigma} := \overline{c} (1 + C\sigma/\tau_s),$$

such that, for all $r \in [r_{low}, r_{\bullet}]$,

$$\underline{c}_{\sigma} r^d \leq \Pr(\|X - x\| \leq r) \leq \overline{c}_{\sigma} r^d,$$
 (5)

where X is an independent sample from the tubular model on \mathcal{M}_s and C>0 is an absolute constant.

Proof. Write $m:=\pi_{\mathcal{M}_s}(x)$ and work in normal coordinates at m. Any sample X can be written as $X=M+\zeta$ with $M\sim \mu_s$ on \mathcal{M}_s and ζ an independent noise with $\|\zeta\|<\tau_s$. For any $r\geq 2\sigma$ and any $\|\zeta\|\leq \sigma$,

$$B_{\mathcal{M}_s}(m, r - ||\zeta||) \subseteq \{u \in \mathcal{M}_s : ||u + \zeta - x|| \le r\} \subseteq B_{\mathcal{M}_s}(m, r + ||\zeta||).$$

Integrating the indicator $\mathbf{1}\{\|M+\zeta-x\|\leq r\}$ over ζ and using that $r\pm\|\zeta\|\in[r/2,3r/2]$ when $r\geq 2\sigma$ shows that $\Pr(\|X-x\|\leq r)$ is equivalent, up to multiplicative constants independent of x and x, to $\mu_s(B_{\mathcal{M}_s}(m,r))$ at scales $\leq r_*$. The Jacobian bounds for the exponential map on radii $\leq r_*$ and the truncation $\|\zeta\|\leq \sigma$ produce only a relative $(1\pm C\sigma/\tau_s)$ distortion. Absorbing fixed factors into \underline{c}_{σ} , \overline{c}_{σ} yields equation 5.

Lemma A.10 (Noisy kNN radius concentration (uniform at the samples)). Let x lie on component \mathcal{M}_s under the tubular model with $\sigma < \tau_s$ and assume equation 2. Let $k = \lceil A \log(4n/\delta) \rceil$ with $A \geq 3/\varepsilon^2$. There exist $C_1, C_2 > 0$ such that, with probability at least $1 - \delta$,

$$\left(\frac{k}{(n_s-1)\overline{c}_{\sigma}}\right)^{1/d} - C_1 \sigma \le D_k(x) \le \left(\frac{k}{(n_s-1)\underline{c}_{\sigma}}\right)^{1/d} + C_2 \sigma, \tag{6}$$

uniformly over all samples x drawn from \mathcal{M}_s . In particular $D_k(x) = \Theta((k/n_s)^{1/d})$ and, for $k \approx \log n$, $D_k(x) \approx h_s$.

Proof. Let $r_0(x)$ solve $(n_s-1)\Pr(\|X-x\| \le r_0) = k$. By Lemma A.9, provided $r_0 \in [2\sigma, r_{\bullet}]$,

$$\left(\frac{k}{(n_s-1)\,\overline{c}_\sigma}\right)^{1/d} \, \leq \, r_0(x) \, \leq \, \left(\frac{k}{(n_s-1)\,\underline{c}_\sigma}\right)^{1/d}.$$

In the regime equation 2 and $k \gtrsim \log n$, one has $r_0 \gtrsim (k/n_s)^{1/d} \gtrsim h_s \gtrsim \sigma$, hence $r_0 \in [2\sigma, r_{\bullet}]$ for all large n_s . For fixed x, $S(r) := \#\{j \neq x : \|X_j - x\| \leq r\}$ is $\mathrm{Bin}(n_s - 1, p(r))$ with $p(r) = \Pr(\|X - x\| \leq r)$. At $r = r_0(x)$, $\mathbb{E}S(r_0) = k$. Chernoff implies

$$\Pr(|S(r_0) - k| \ge \varepsilon k) \le 2 \exp(-c \varepsilon^2 k).$$

On the complement, $(1-\varepsilon)r_0 \leq D_k(x) \leq (1+\varepsilon)r_0$. A union bound over all x together with $k = \lceil A \log(4n/\delta) \rceil$ (and $A \geq 3/\varepsilon^2$) yields the claim; the additive $O(\sigma)$ terms follow from the $(1 \pm C\sigma/\tau_s)$ perturbation of $\underline{c}, \overline{c}$ in Lemma A.9.

A.3.2 TWO-SCALE STATISTIC: BIAS CANCELLATION AND OFFSET RESPONSE

Lemma A.11 (Bias cancellation on-manifold). Let T be i.i.d. samples from \mathcal{M}_s satisfying the local mass bounds on radii $\leq r_*$. Fix $\theta > 1$ and take $k_1 \asymp k$ with $k = \lceil A \log(4n/\delta) \rceil$. There exist constants $A_0, B_0 > 0$ (depending on $d, \underline{c}, \overline{c}, \theta$) such that, with probability at least $1 - \delta$, uniformly for z on \mathcal{M}_s ,

$$\left|\widetilde{d}_{\theta}(z \to T) - \beta_s(z)\right| \le A_0 \left(\frac{k}{n_s}\right)^{1/d} h_s, \qquad \beta_s(z) = O(h_s^{1+2/d}). \tag{7}$$

Proof. Write $F(r) := \Pr(\|X - z\| \le r)$ for $X \sim \mu_s$. In normal coordinates (valid for $r \le r_*$),

$$F(r) = \lambda_d r^d (1 + \kappa_2 r^2 + O(r^3)),$$

with $\lambda_d \in [\underline{c}, \overline{c}]$ and κ_2 depending on curvature. The quantile $Q(u) := F^{-1}(u)$ satisfies $Q(u) = (u/\lambda_d)^{1/d} (1 + \tilde{\kappa}_2 u^{2/d} + O(u^{3/d}))$ for small u. For $m = o(n_s)$,

$$\mathbb{E}\,\bar{d}_m(z\mid T) = \frac{n_s}{m} \int_0^{m/n_s} Q(u) \, du = c_d \left(\frac{m}{n_s}\right)^{1/d} + b \left(\frac{m}{n_s}\right)^{(1+2/d)} + O\left((m/n_s)^{1+3/d}\right),$$

with $c_d>0$ and b depending on curvature. Put $\alpha:=(k_1/n_s)^{1/d}$. One has $k_2/n_s=\theta^d\,k_1/n_s\,(1+O(\alpha^2))$, and $r_{k_2}=\theta r_{k_1}\,(1+O(\alpha^2))$. Therefore

$$\mathbb{E}\,\widetilde{d}_{\theta}(z \to T) = \frac{\theta\,\mathbb{E}\,\bar{d}_{k_1} - \mathbb{E}\,\bar{d}_{k_2}}{\theta - 1} = \frac{b\,\alpha^{1 + 2/d} \left[\theta - \theta^{1 + 2/d}\right]}{\theta - 1} \ + \ O(\alpha^{1 + 3/d}),$$

so the linear term in α cancels. Since $\alpha \asymp (k/n_s)^{1/d} \asymp h_s$ and $\alpha^{1+2/d} = \Theta((k/n_s)^{1/d}h_s)$, the bias is $O(h_s^{1+2/d})$. Concentration of \bar{d}_m is $O(\alpha\sqrt{\log(n/\delta)/k})$, dominated by $\alpha^{1+2/d}$ for $k\asymp\log n$. A covering at scale r_{k_1} and a union bound give the uniform bound with probability $\geq 1-\delta$.

Lemma A.12 (Offset response). Let z satisfy $\operatorname{dist}(z, \mathcal{M}_s) = \Delta_{\operatorname{eff}}$. For any trimmed $S \subseteq N_k(i)$ with equation 3 and any $\theta > 1$, there exists $B_0' > 0$ (depending on $d, \underline{c}, \overline{c}, \theta, c_{\operatorname{trim}}$) such that, with probability at least $1 - \delta$,

$$\widetilde{d}_{\theta}(z \to S) \ge B_0' \Delta_{\text{eff}} - C_{\sigma} \sigma - A_0 \left(\frac{k}{n_s}\right)^{1/d} h_s.$$
 (8)

Proof. For any $u \in S$,

$$||z - u|| \ge \operatorname{dist}(z, \mathcal{M}_s) - \operatorname{dist}(u, \mathcal{M}_s) \ge \Delta_{\text{eff}} - ||\xi(u)|| \ge \Delta_{\text{eff}} - \sigma.$$

Thus $\bar{d}_{k_1}(z \mid S) \geq \Delta_{\text{eff}} - \sigma$ and $\bar{d}_{k_2}(z \mid S) \geq \Delta_{\text{eff}} - \sigma$, hence

$$\widetilde{d}_{\theta}(z \to S) = \frac{\theta \, \overline{d}_{k_1} - \overline{d}_{k_2}}{\theta - 1} \ge \Delta_{\text{eff}} - \sigma.$$

Curvature and trimming affect this by a fixed factor $B_0' \in (0,1]$; sampling fluctuations contribute the $A_0((k/n_s)^{1/d}h_s)$ term via Lemma A.11, giving equation 8.

Lemma A.13 (Quantile stability). Fix i and let $Z_q := \widetilde{d}_{\theta}(x_q \to S_i)/H_i$ for $q \in S_i$. Let τ_i be the empirical q_{τ} -quantile with $q_{\tau} \in (0.9, 1)$. There exists $C_{\tau} > 0$ such that, with probability at least $1 - \delta$,

$$\left| \tau_i - Q_i(q_\tau) \right| \le C_\tau \sqrt{\frac{\log(n/\delta)}{|S_i|}},$$
 (9)

where Q_i is the population quantile of Z_q when q ranges over same-component neighbors in S_i .

Proof. Condition on S_i . Each $Z_q \in [0, c_{\text{trim}}]$ since S_i is trimmed. Replacing one neighbor $q \in S_i$ changes the multiset $\{Z_q\}$ in at most one coordinate within a bounded interval, so the empirical CDF varies by at most $1/|S_i|$. McDiarmid's inequality yields

$$\Pr\Big(|\tau_i - \mathbb{E}[\tau_i \,|\, S_i]| \ge t \,\Big|\, S_i\Big) \le 2\exp\Big(-\frac{2t^2\,|S_i|}{L^2}\Big),$$

for some $L \lesssim c_{\text{trim}}$. Set $t = C_{\tau} \sqrt{\log(n/\delta)/|S_i|}$ and absorb the bias $|\mathbb{E}[\tau_i \mid S_i] - Q_i(q_{\tau})|$ into C_{τ} using standard quantile smoothness under the two-sided mass bound. A union bound over i gives equation 9.

A.3.3 Noisy separation thresholds and safety of add-only rescue

Let \overline{C} and C be the noiseless threshold constants defined in Section A.1:

$$\overline{C} \ = \ \frac{1}{(1-\varepsilon)^{1/d}\,C_{\rm fill}} \left(\frac{2A\,R}{\underline{c}}\right)^{1/d}, \qquad \underline{C} \ = \ \frac{1}{\overline{C_{\rm fill}}} \left(\frac{A\,R}{4\,\overline{c}\,B(a)^d}\right)^{1/d},$$

with
$$R = \log(4n/\delta)/\log(n_{\min}/\delta) \approx 1$$
, $C_{\text{fill}} = 1/(2\overline{c}^{1/d})$, $\overline{C_{\text{fill}}} = 2/\underline{c}^{1/d}$, and $B(a) = 1 + 2a$.

Theorem A.14 (Noisy thresholds and safety of add-only rescue). Under the tubular-noise model equation 1-equation 2 and with $k = \lceil A \log(4n/\delta) \rceil$ (the factor 4n inside $\log(4n/\delta)$ originates from a union bound over n sample points and two Chernoff tails per point), there exist constants $\kappa_+, \kappa_- > 0$ (depending only on $d, c, \bar{c}, \theta, c_{\text{trim}}$) such that, with probability at least $1 - \delta$:

1. (Upper/no-bridge) If

$$\frac{\Delta}{h_{\text{max}}} > \overline{C} + \kappa_{+} \frac{\sigma}{h_{\text{max}}}, \tag{10}$$

then the Euclidean geometric-mean gate followed by triangle support yields no cross-component edges.

- 2. (Add-only rescue is safe) Under equation 10, the add-only rescue that reinstates $\{i, j\}$ iff $\widetilde{d}_{\theta}(x_{j} \rightarrow S_{i}) \leq \tau_{i}$ and $\widetilde{d}_{\theta}(x_{i} \rightarrow S_{j}) \leq \tau_{j}$ does not add any cross-component edge.
- 3. (Lower/bridge) If

$$\frac{\Delta}{h_{\max}} < \underline{C} - \kappa_{-} \frac{\sigma}{h_{\max}}, \quad and \quad \Delta - 2\sigma \le \min \left\{ \frac{r_{*}}{a}, \frac{r_{*}}{1 + 2a} \right\}$$
 (11)

(for some fixed $a \in (0, 1/8)$; the choice 1/8 is convenient because $(1+2a) \le 5/4$), then a bridging edge appears in the union-kNN graph with probability at least

$$1 - 2\exp\left(-\eta n_{\min}(\Delta - 2\sigma)^d\right) - \exp(-\gamma k),$$

where $\eta = \underline{c} a^d$ and $\gamma > 0$ are absolute constants.

Proof. Intersect the following events, each holding with probability $\geq 1-\delta/5$ after adjusting constants: (i) the noiseless fill-distance sandwich (Lemma A.1); (ii) the uniform kNN bound (Lemma A.2); (iii) the noisy sandwich (Lemma A.10); (iv) the two-scale bounds (Lemmas A.11–A.13).

For (1), any cross pair (i, j) satisfies

$$||x_i - x_i|| \ge ||\pi_{\mathcal{M}}(x_i) - \pi_{\mathcal{M}}(x_i)|| - ||\xi_i|| - ||\xi_i|| \ge \Delta - 2\sigma.$$

On the other hand, by Lemmas A.2 and A.10,

$$\sqrt{H_i H_j} \le \max\{H_i, H_j\} \le \overline{C} h_{\max} + C_2 \sigma.$$

Thus if $\Delta - 2\sigma > \overline{C} h_{\max} + C_2\sigma$, i.e. $\Delta/h_{\max} > \overline{C} + (2 + C_2) \sigma/h_{\max}$, the Euclidean gate removes $\{i, j\}$; triangle support cannot revive it. This yields equation 10 with $\kappa_+ = 2 + C_2$.

For (2), consider $y_{i \leftarrow j} := \widetilde{d}_{\theta}(x_j \rightarrow S_i)/H_i$. By Lemma A.12,

$$y_{i \leftarrow j} \ge \frac{B_0'(\Delta - 2\sigma)}{H_i} - \frac{A_0}{H_i} \left(\frac{k}{n_s}\right)^{1/d} h_s - \frac{C_\sigma \sigma}{H_i}.$$

Lemma A.10 gives $H_i \ge c_0 h_{\text{max}}$ for some $c_0 \in (0,1)$ (depending on c_{noise}), hence

$$y_{i \leftarrow j} \geq \frac{B_0'}{c_0} \cdot \frac{\Delta}{h_{\text{max}}} - C' \cdot \frac{\sigma}{h_{\text{max}}} - C'' \left(\frac{k}{n_s}\right)^{1/d} \frac{h_s}{h_{\text{max}}}.$$

By Lemma A.11, the same-component quantile τ_i obeys $\tau_i \leq C''''(k/n_s)^{1/d}(h_s/H_i) + o(1) \leq C'''''(h_s/h_{\max}) + o(1)$. Under equation 10, for κ_+ large enough to absorb these terms, one has $y_{i\leftarrow j} > \tau_i$. The same bound holds from j's side, so the add-only rule does not add any cross-component edge.

For (3), apply the noiseless bridging proof (Proposition A.4) with Δ replaced by $\Delta_{\rm eff} := \Delta - 2\sigma$. Choose intrinsic caps of radii $a\Delta_{\rm eff}$ and use radius $\rho = B(a)\Delta_{\rm eff}$ for the same-component crowding test. The small-radius condition in equation 11 ensures both radii lie within the bi-Lipschitz regime. Exactly as in the noiseless case,

$$\mathbb{E}[S_x] \leq (n_1 - 1) \, \overline{c} \, B(a)^d \, \Delta_{\text{eff}}^d \leq n_1 \, \overline{c} \, B(a)^d \, \left(\underline{C} - \kappa_{-\frac{\sigma}{h_{\text{max}}}}\right)^d h_{\text{max}}^d.$$

If $\Delta/h_{\max} < \underline{C} - \kappa_- \sigma/h_{\max}$ with κ_- chosen to compensate for the $O(\sigma)$ slack in Lemma A.10, then $\mathbb{E}[S_x] \leq k/4$, whence $\Pr(S_x \geq k/2) \leq e^{-\gamma k}$. Cap-occupancy holds with probability at least $1 - 2\exp(-\eta n_{\min}\Delta_{\mathrm{eff}}^d)$, producing a cross edge with the stated probability.

A.3.4 ADAPTIVE LOCAL FILL DISTANCE AND THE FLOOR-ANCHORED LOCAL-k SCHEDULE

Why an adaptive fill proxy? A single global degree k produces kNN radii $D_k(x)$ that fluctuate with local sampling density: dense regions yield tiny radii, sparse regions yield large ones. This heterogeneity harms both (i) the geometric-mean Euclidean gate $\|x_i - x_j\| \leq \sqrt{H_i H_j}$ (decisions become asymmetric when one endpoint is much denser) and (ii) the add-only rescue, whose directional statistic normalizes by a per-node scale. Our remedy is to equalize the intrinsic neighborhood scale by adapting k per node, while $ext{never}$ dropping below the RGG-safe pilot $ext{never}$.

Setup and notation. Let $\mathcal{M} \subset \mathbb{R}^D$ be a finite union of compact, connected d-dimensional C^2 submanifolds with positive reach, and assume the two-sided local mass bounds on a fixed small-ball scale $r_* > 0$: there exist $0 < \underline{c} \le \overline{c} < \infty$ such that for all $x \in \mathcal{M}$, $0 < r \le r_*$,

$$\underline{c} r^d \le \mu(B(x,r)) \le \overline{c} r^d,$$

where μ is the (componentwise) normalized surface measure. For a node x, write $D_k(x)$ for the kNN radius. We denote the (unknown) clean fill distance by h and use H for computable per-node proxies.

A.4 THE ADAPTIVE FILL-DISTANCE PROXY

Pilot radii and local degrees. We work at a connectivity-safe pilot $k^* = \lceil \log(4n/\delta) \rceil \in \{2,\ldots,n-1\}$ and compute *pilot* radii $H_i^{\text{pilot}} := D_{k^*}(x_i)$. Let $H_{\text{ref}} := \text{median}\{H_i^{\text{pilot}} > 0\}$ and choose

$$k_{\min} := \left[0.5 \log \frac{4n}{\delta}\right], \qquad k_{\max} := \min\{n - 1, 3k^*\}.$$

We then set the per-node degree by

$$k_i = \max\left(k^*, \operatorname{clip}\left(\lfloor k^* \left(H_{\operatorname{ref}} / \max(H_i^{\operatorname{pilot}}, 10^{-12})\right)^{d_{\operatorname{eff}}} \rfloor, k_{\min}, k_{\max}\right)\right), \tag{12}$$

and define the local fill proxy $H_i := D_{k_i}(x_i)$. The geometric-mean gate and all normalizations use H_i .

Why equation 12 equalizes scale. Under the mass bounds, standard order-statistic arguments imply

$$D_k(x) = \Theta\left(\left(\frac{k}{n}\right)^{1/d}\right)$$
 (clean, uniformly in x). (13)

More precisely, with probability $\geq 1-\delta$, there exist explicit $C_-,C_+>0$ depending only on $(d,\underline{c},\overline{c})$ such that

$$C_{-}\left(\frac{k}{n}\right)^{1/d} \leq D_{k}(x) \leq C_{+}\left(\frac{k}{n}\right)^{1/d} \quad \forall x \in \mathcal{M}, \ \forall k \in [k_{\min}, k_{\max}]. \tag{14}$$

Heuristically, $D_k(x) \approx \left(\frac{k}{n \, c(x)}\right)^{1/d}$, where $c(x) \in [\underline{c}, \overline{c}]$ is the local mass constant. Evaluated at the pilot, $H_i^{\text{pilot}} \approx \left(\frac{k^\star}{n \, c(x_i)}\right)^{1/d}$, so $c(x_i) \approx \frac{k^\star}{n} \, (H_i^{\text{pilot}})^{-d}$. To make $D_{k_i}(x_i)$ match a target radius r_{tgt} , we would set $k_i \approx n \, c(x_i) \, r_{\text{tgt}}^d$. Plugging the pilot estimate of $c(x_i)$ and choosing $r_{\text{tgt}} := H_{\text{ref}}$ gives $k_i \approx k^\star \, (H_{\text{ref}}/H_i^{\text{pilot}})^d$, which is equation 12 with d_{eff} in place of d and with clipping/flooring for stability.

B EMPIRICAL ANALYSIS

Default Hyperparameters (All Experiments) Unless otherwise noted, all results use a single, dataset-agnostic configuration with no per-dataset tuning. Table 3 lists the exposed knobs and fixed design choices; these settings were held constant across all benchmarks.

Group	Name (symbol)	Default and rationale			
	Failure budget (δ)	0.05 (sets pilot scale $k^* = \lceil \log(4n/\delta) \rceil$)			
Pilot & bracket	Bracket level (α_{CI})	0.05 (defines $\varepsilon_k = \sqrt{\frac{1}{2} \log(2n/\alpha_{\rm CI})/k^*}$; clip 0.45)			
	k bracket	Report $[K(1+\varepsilon_k), K(1-\varepsilon_k)]$ on remove-only graphs			
	Local-k schedule	Floor-anchored: $k_i = \max(k^*, \lfloor k^* (\text{med}(H)/H_i)^{d_{\text{eff}}} \rfloor),$ with $k_{\min} = \lceil 0.5 \log(4n/\delta) \rceil, k_{\max} = 3k^*$			
Graph construction	Candidate edges	Union-k: keep $\{i, j\}$ if $i \in N_j$ or $j \in N_i$			
	Euclidean gate	Keep $\{i, j\}$ if $ x_i - x_j \le \sqrt{H_i H_j}$ (local, scale-adaptive)			
	Triangle support	Require $ N_i \cap N_j \ge 2$ (suppresses one-sided coincidences)			
DTM rescue (add-only)	Enabled Two-scale factor (θ) Quantile (q_{high}) Trimming / cap	True by default (off in certain ablations experiments) 2.0 (radius-doubling statistic; stable and simple) 0.90 (mutual typicality threshold; conservative) Multiplier c =4, within-set cap $S_{\rm max}$ =32			
Representation	Standardization $d_{\rm eff}$ (PCA) Tangent projection	z-score per feature Smallest #PCs for $\geq 90\%$ explained variance (cap 64) Run MBC on PCA scores			
Noise handling K reporting		On bracket-high remove-only graph, mark degree ≤ 1 as noise K counts all labels including -1 ; we also report the K -bracket from remove-only graphs			

Table 3: MBC defaults used in all experiments. No per-dataset tuning.

Notes. (i) Triangle support = 2 is the default; = 1 is too permissive (admits bridges), while = 3 can over-fragment the remove-only bracket on sparse scales. (ii) DTM rescue is conservative: it often does not fire on clearly separable data; disabling it in that regime yields $2\sim3\times$ faster runs without changing ARI/NMI. (iii) The K-bracket is a monotonicity diagnostic from remove-only graphs; large widths typically reflect micro-fragmentation at sparser scales rather than errors in the final labels. (iiii) Additional ablations (triangle strength, DTM thresholds, PCA EVR) were done on our algorithm using the datasets in Table 5 and showed our default parameters are robust on clean/separable regimes. That is, our choice in such parameters, including q_{high} and θ , did not noticeably change our decided K nor bracket for reasonable perturbations.

B.0.1 EXTENDED RESULTS (NOISE AND ANISOTROPY)

How the Baselines Are Configured Let each method be run with library defaults to reflect typical out-of-the-box usage. We specify the details in the below table.

Table 4: Baseline configuration

Method	Library	Defaults and optional sweep
DBSCAN OPTICS	scikit-learn scikit-learn	Default: eps=0.5, min_samples=5 (Euclidean). Default: Euclidean metric; min_samples=5; xi=0.05.
BIRCH	scikit-learn	Default: threshold = 0.5; branching factor = 50; n_{clusters} = None. Parameter sweep (For appendix table only): threshold $\in \{0.3, 0.5, 0.7\}$; branching factor $\in \{25, 50, 100\}$.
HDBSCAN	hdbscan	$\label{eq:Default:min_cluster_size} Default: \mbox{min_cluster_size} = \max\{5, \lfloor 0.02n \rfloor\}; \mbox{min_samples=None}; Euclidean metric; cluster selection=leaf.}$

Figure 2: A visual summary of performance on canonical clustering datasets for MBC (left column) against current state-of-the-art algorithms (DBSCAN, HDBSCAN, OPTICS and BIRCH) with default parameters (Table B.0.1).

Figure 3: **Mixed-dimension, high-D stress test (Helix-Plane-Sphere,** D=10). We synthesize three manifold pieces with different intrinsic dimensions in \mathbb{R}^3 —a 1D helix, a 2D plane patch, and a noisy 2D sphere—then embed them into \mathbb{R}^{10} via a random orthonormal map and add small isotropic tubular noise. Each panel shows the predicted partition together with ARI, NMI, silhouette, the number of clusters K, and the count of points labeled as "noise" by the method. MBC recovers all three components exactly despite the heterogeneous shapes and dimensions. Density/graph baselines either merge or overfragment components and often declare large fractions of points as noise (e.g., OPTICS, DBSCAN); HDBSCAN collapses two structures (K=2). Centroid/spectral (KMeans, Spectral) methods given $K_{\rm true}$ fail due to these being nonconvex, anisotropic manifolds.

Figure 4: **Retina vs V1—MBC bracket reveals sampling-limited ambiguity.** Top row: Retina—ground truth (K=8) vs HDBSCAN (K=28), BIRCH (K=21), and an MBC partition (point K=1) with reported $K_{\rm CI}=[1,9]$. Middle: *MBC bracket panels* at $K\in\{1,3,9\}$ illustrate the plausible range supported by the data. Bottom row: V1—ground truth (K=1) vs HDBSCAN (K=3), BIRCH (K=222), and an MBC partition (point K=1) with bracket [1,3]. MBC refrains from forcing clusters and instead surfaces the intrinsic transitory regime via the bracket.

Table 5: **Extended results** (three seeds; best per row in **bold**). "MBC Bracket" is the median across runs of the monotone component—count interval

Dataset	Method	ARI ↑	NMI ↑	$\mathbf{Mean}\;K$	MBC Bracket
Two Moons 2D; additive Gaussian noise 0.08; K_{true} =2	MBC	0.333	0.333	1.33	[1, 8]
	OPTICS	0.006	0.182	112.00	-
	BIRCH	0.558	0.577	3.00	-
	HDBSCAN	0.083	0.254	7.33	-
Concentric Circles 2D; factor 0.3, noise 0.06; K_{true} =2	MBC OPTICS BIRCH HDBSCAN	1.000 0.007 0.250 0.038	0.999 0.186 0.347 0.232	2.33 119.67 3.00 10.67	[2, 8]
Gaussian Blobs 10D; std 3.0; K_{true} =6	MBC	0.465	0.583	4.33	[3, 25]
	OPTICS	0.096	0.274	4.67	-
	BIRCH	0.509	0.734	3.00	-
	HDBSCAN	0.439	0.628	7.00	-
Gaussian Blobs 25D; std 3.5; K_{true} =6	MBC OPTICS BIRCH HDBSCAN	0.856 0.716 0.509 0.783	0.938 0.857 0.734 0.857	6.67 5.67 3.00 7.00	[6, 17] - - -
Gaussian Blobs (Anisotropic) 20D; K _{true} =6	MBC OPTICS BIRCH HDBSCAN	0.998 0.856 0.478 0.994	0.997 0.936 0.722 0.993	7.67 6.67 3.00 6.67	[6, 18] - - -
Gaussian Blobs (Variable Variance) 2D; K_{true} =3	MBC	0.381	0.489	2.00	[2, 11]
	OPTICS	0.006	0.243	119.00	-
	BIRCH	0.495	0.590	3.00	-
	HDBSCAN	0.784	0.816	3.67	-
Gaussian Blobs 2D; std 0.9; K_{true} =4	MBC	0.388	0.607	2.33	[2, 7]
	OPTICS	0.006	0.278	111.00	-
	BIRCH	0.653	0.776	3.00	-
	HDBSCAN	0.756	0.816	4.67	-
Gaussian Blobs (Anisotropic) 2D; K _{true} =4	MBC	0.111	0.188	2.33	[1, 34]
	OPTICS	0.008	0.294	115.33	-
	BIRCH	0.675	0.793	3.00	-
	HDBSCAN	0.504	0.636	6.33	-
Gaussian Blobs 3D; std 2.3; K _{true} =5	MBC OPTICS BIRCH HDBSCAN	0.070 0.004 0.555 0.390	0.157 0.227 0.741 0.596	1.67 64.33 3.00 5.67	[1, 6] - - -
Fashion–MNIST 28×28 grayscale; $PCA \rightarrow 50$; $K_{true} = 10$	MBC	0.000	0.002	3.00	[10, 30]
	OPTICS	0.000	0.041	29.00	-
	BIRCH	0.124	0.307	3.00	-
	HDBSCAN	0.000	0.000	1.00	-
Iris 4 features (tabular); $K_{true}=3$	MBC	0.552	0.701	4.00	[1, 5]
	OPTICS	0.051	0.292	6.00	-
	BIRCH	0.661	0.733	3.00	-
	HDBSCAN	0.139	0.347	5.00	-
Wine 13 features (tabular); $K_{true}=3$	MBC	0.000	0.000	1.00	[1, 5]
	OPTICS	0.036	0.195	5.00	-
	BIRCH	0.790	0.786	3.00	-
	HDBSCAN	0.266	0.361	3.00	-
Breast Cancer 30 features (tabular); $K_{true}=2$	MBC	0.007	0.015	2.00	[2, 9]
	OPTICS	0.028	0.051	2.00	-
	BIRCH	0.536	0.443	3.00	-
	HDBSCAN	0.000	0.000	1.00	-

Figure 5: Separability summary—synthetic and neural. Each panel shows two components with ambient offset Δ and worst-case fill radii h_1, h_2 (dashed). Top: well-separated and overlapping Gaussian blobs (separable vs. nonseparable). Middle: *Circles* and *Moons* at intermediate noise (transitory). Bottom: retinal neuron pairs exhibit both transitory and nonseparable cases. Larger $\Delta/h_{\rm max}$ favors separability; small $\Delta/h_{\rm max}$ induces bridging and fusion.