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ABSTRACT

The manifold hypothesis suggests a natural criterion for clustering: partition
data according to the manifold component from which they are drawn. This
criterion is useful because, intuitively, the separability of manifold components
is governed by the ambient separation between components relative to the largest
gap in the sample’s coverage. The analysis integrates topology (e.g., manifold
volume and reach) with estimation (e.g., fill radius and sample density). Formally
it identifies a criticality: when a threshold is exceeded, nearest-neighbor data
graphs avoid bridging edges and clusters are preserved; otherwise, bridges appear
and components fuse. Practically, criticality is sandwiched between bounds that
imply a measure of cluster confidence, and motivates an algorithm—Manifold-
Based Clustering (MBC)—that constructs a candidate neighborhood graph. MBC
is parameter-light and, unlike density-based methods (e.g., HDBSCAN), avoids
hand-tuned scale thresholds. Instead, MBC yields a monotone bracket on the
number of components by a natural sweep of neighborhood size. Across curved
and high-dimensional benchmarks, MBC matches state-of-the-art accuracy and
exposes ambiguity near the critical thresholds.

data
A c .. E raw data.
8y - S
. hp o “ / -
N / ‘v‘ Ch, border i '\I Ch, border
l,‘hz border o th, border
0= Dlhmge= 157 15770 p= M= 07037777
D
12
o
separable B
A
.

A (offset)
°

transitory -7,

onseparable

p=Ahmax= 11072777 =

01 02 03 04 05 06 07 08
hmax (fill distance)

Figure 1: (A-C) A non-pure manifold with two components: a disc (left, in blue) and softened
peanut (right, in orange). We show worst-case fill distances (1, h2), the minimal offset A, and two
boundaries of the peanut boundary, hs (dashed) and C' ks (dotted) where C' is a constant determined by
the geometry of the manifold. The ratio p = A/hpax (hmax = max{hy, ho}) governs separability:
A is separable (p > C), B is transitory (C < p < C), and C is nonseparable (p < C, with A > 0).
(D) Decision map in (hmax, A) with thresholds A = C hyax (dashed) and A = C hyyax (dotted);
regions are labeled and the empirical cases A—C are overlaid. (E) MBC Algorithm schematic: build
a local neighborhood graph at the sampling scale, sparsify to remove spurious bridges, and take
connected components; yielding the correct split.
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1 INTRODUCTION

Clustering is a notoriously thorny problem: results depend on criteria (Kleinberg, [2002), separation
(Hennig} 2015) and sampling (Tibshirani et al.,[2001), for starters. To cope, researchers can appeal to
domain knowledge (e.g. genomics (Eisen et al.,|1998)) or use a popular algorithm (MclInnes et al.|
2018 |[Ester et al. 1996} |Ankerst et al.,{1999; Campello et al., 2013} 2015)). But the statistical power
of these algorithms is difficult to assess (Dalmaijer et al.,[2022)), and blindly using any one could be
problematic (Chari & Pachter, [2023). While many neuroscience studies could be misleading (Button
et al.,2013)), even determining whether data are (in fact) clustered remains an important open problem
(Dyballa et al.| 2024b). We address this problem from a general, topological perspective, and ask:
were our data sampled from a connected or separated object, and by what margin? Adopting the
manifold hypothesis, we model high-dimensional observations as samples from a compact subset
M C RP thatis either a single connected C submanifold or a finite union of disjoint C> components.
(Fefferman et al.| | 2023)) This viewpoint reframes clustering as a decision problem: given i.i.d. samples
X = {=;}?_, from a distribution supported on M, can it be decided whether the support is connected
or decomposes into separated components. This view allows us to develop a criterion to determine
whether clusters exist and, by extension, determine the number of clusters present in the data.

Our analysis reveals a single quantity that governs this decision for components estimated from
k-nearest neighbor (KNN) graphs: the ratio p between the offset A (the minimal Euclidean distance
between any two components) and the fill distance h of the sample on those components (the worst-
case sampling gap). Intuitively, the fill distance measures the size of the largest hole in our sample
coverage; smaller fill distance implies denser, more uniform sampling. Thus large values of p indicate
the presence of clearly separated clusters (relative to sample density), while small values mean the
estimated components should be blurred together into a single cluster. Classic random geometric graph
(RGQG) results justify this strategy: RGGs exhibit sharp connectivity thresholds as the neighborhood
scale changes with sample size n: they become connected around radii r, < ((logn)/n)/® or
when the k-NN parameter scales like £ =< logn, under mild regularity (Penrosel 2003} Balister
et al., 2005)). We translate this picture to the problem of separating manifold components. In our
setting, the constants depend only on standard intrinsic geometry properties such as two-sided volume
growth (lower/upper bounds on the volume of small balls) and positive reach (Niyogi et al., 2008).
This translation allows us to formally quantify when distinct manifold components will remain
disconnected in a kNN graph, rather than linked by spurious “bridging” edges.

We implement this theory into a practical algorithm (MBC) that leverages the above result and the
extension to the tubular-noise regime to detect components within data with high probability. In
summary, we make the following contributions:

1. Geometric criterion for cluster preservation. We introduce the offset-fill-distance ratio
and prove upper and lower thresholds that predict when clusters remain distinct in the
standard and noisy regime (Theorem 3.3).

2. Manifold-Based Clustering Algorithm We develop an algorithm for leveraging this thresh-
old to uncover the clusters present in a dataset, as well as a criterion for handling noise
robustly using the distance-to-measure (Algorithm [T}).

2 BACKGROUND

Neighborhood graphs and threshold scales. Manifold-learning methods—Isomap, LLE, Lapla-
cian Eigenmaps—reconstruct geometry from neighborhood graphs using shortest-path or spectral
surrogates (Tenenbaum et al., |2000; Roweis & Saull, [2000; Belkin & Niyogi, [2003; (Coifman &
Lafon, [2006), and spectral clustering relies critically on the same graph quality (von Luxburg), 2007}
Zelnik-manor & Perona, 2004). Popular dimensionality reduction methods such as UMAP optimize
objectives to preserve local neighborhoods (Mclnnes et al.l 2018]). The reliability of these pipelines
depends on choosing neighborhoods at the intrinsic sampling scale: if neighborhoods are too large,
graphs connect across gaps and destroy component structure. Random graph theory formalizes
this with sharp transitions: connectivity emerges around radii 7,, < (logn/n)'/?, and union-kNN
graphs become connected near k < log n, with constants depending on dimension and local volume
regularity (Penrosel 2003} Balister et al.l 2005). We leverage these scales in practice by setting
k to be on the order of log n so that the graph is close to its connectivity threshold—neither too
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sparse (disconnected) nor too dense (over-connected). Moreover, we “bracket” the true number of
meaningful components in the data between two close values for &, thus defining a “confidence
bracket” in a loose statistical sense.

Fill distance, two-sided volume growth, and uniform kNN radii. The fill distance h(R, M) =
SUp, e oq min, ||z — 74| is the worst-case sampling gap on M. Under two-sided volume growth
(lower and upper bounds on the volume of small metric balls) and positive reach, covering radii and
nearest-neighbor distances concentrate uniformly at the intrinsic scale; in particular, for samples on a
d-dimensional support, 4 and kNN radii Dj,(z) scale respectively like (logn)/n)*/¢ and (k/n)/¢
up to constants (Niyogi et al.l 2008} [Boissonnat et al., 2018)). Our separability condition compares A
t0 Amax across components; when A /hy, . exceeds a curvature-dependent constant, stabilized NN
neighborhoods do not mix components.

Relationship to reach and curvature. The reach 7, of a smooth subset M C RP is the largest radius
for which every point in the tubular neighborhood of M has a unique nearest-point projection onto
M (Federer, |1959)); equivalently, it is the infimum distance from M to its medial axis, i.e. the set
of points with multiple nearest neighbors. . Reach captures both local curvature—r,, is bounded
above by the reciprocal of the largest principal curvature—and global bottlenecks—narrow necks
shrink 75,. Practical estimators recover 7, (and related geometric quantities) from point samples
with nonasymptotic guarantees (Aamari et al., 2019); recent analyses clarify how reach behaves for
unions and under set operations (Boissonnat & Wintraecken, [2023). Our ratio A/h can be viewed
as a relaxation of reach tailored to distinct components: A is twice the bottleneck radius between
components in the medial-axis picture, while h measures sample dispersion. Requiring A/h to
exceed a constant ensures that sampling density lie below the relevant bottleneck scale, preventing
spurious graph connections between components.

Robust local statistics, transitivity, and density-based clustering. Raw Euclidean distances are
notoriously sensitive to density variation and moderate noise. The distance-to-measure (DTM),
which averages nearest-neighbor distances, provides a robust, scale-aware alternative with stability
guarantees (Chazal et al., [2011). A directional two-scale DTM cancels leading density bias on-
manifold, yet grows linearly with ambient offset; this property underpins our conservative add-only
rescue. Requiring shared-neighbor (triangle) support suppresses spurious asymmetric short links
and enforces minimal transitivity (cf. shared-nearest-neighbor clustering) (Jarvis & Patrick, [1973)).
Density-based methods such as DBSCAN, BIRCH, OPTICS, and HDBSCAN infer clusters by
thresholding density or mutual-reachability graphs and depend on user parameters that implicitly
decide whether bridges persist (Ester et al.l 1996} |Ankerst et al.l|[1999; Campello et al.,|2013;2015};
Zhang et all [1996). In contrast, our approach places the decision on a geometric offset-versus-
sampling scale, eliminates the need to hand-tune bridging thresholds, and yields a monotone bracket
on the component count by varying k& within a principled confidence range.

3  GEOMETRIC CLUSTER-SEPARATION CRITERION

We now introduce our main theoretical framework for understanding cluster separability with mani-
folds. Drawing parallels to Gaussian Mixture Models, we regard offset as the analog of inter-cluster
distance and fill distance as a proxy for “variance” or dispersion within each manifold component.

Suppose our data lie on the union
M= MU UMk,
where each M, is a connected manifold component in R?. Let
A = mi { —yl| rx € € }
min e =yl + 2 € M, y € My

be the offset (minimal ambient distance) between distinct components. In parallel, define the fill
distance for M’s sampled approximation as follows:

Definition 3.1 (Fill Distance). Let R = {r;}I_; C M be a finite point set. The fill distance is

hR,M = fé]_/gl 12%1””%_””.

We say R is quasi-uniform if hz r( and the minimum pairwise distance among 7, r; differ only by a
constant factor. A small fill distance indicates that R forms a dense covering of M.
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Remark 3.2. In analogy to the sampling density criterion and variance in Gaussian Mixture Models,
we treat fill distance hr ¢ as a measure of sampling dispersion. A smaller hr ¢ translates to higher
sampling density, which is often necessary for manifold learning algorithms to reliably approximate
geodesic distances and local neighborhoods.

We denote hr q as b for convenience and then consider the following ratio: p =

=|>

3.1 MANIFOLD SEPARATION CRITERION

We now establish a threshold phenomenon for the connectivity of a kNN graph constructed on
points sampled from two disjoint, compact d-dimensional Riemannian manifolds. We prove that in
a kNN graph, there is a clear transition, or threshold: when manifolds are far enough apart relative
to sampling density, no edges cross; when they are close enough, a bridging edge almost surely
appears. In other words, under the assumption that clusters are separate iff they are sampled from
two distinct manifold components, this theorem quantifies how sampling density (as measured by the
fill distance) and intrinsic separation determines whether the components remain disconnected or
become connected in the kNN graph.

Theorem 3.3 (Threshold for Manifold Separation in the union-kNN graph). Let M, My C RP be
disjoint, compact, connected, d-dimensional C? submanifolds with positive reach.

Local mass bounds. Assume there exist constants 0 < ¢ < ¢ < oo and a radius v > 0 such that for
allv € M;and0 <r <r,,
cr® < pB(x,r)) < erf,

where p; is the normalized surface measure on M.

Sampling. Draw n; and ns samples independently from py and ps; write n = ny + ng and
Nmin = Min{ny, na}. Let S; denote the sample on M, define the fill distances

h; = sup min ||z — z||, hmax = max{hy,ha},
zEM,; z€S;

and the ambient offset A = inf{||lz —y| : x € My, y € Ms}.

Graph construction. Form the union-kNN (symmetrized kNN) graph using k = [A log(4n/é)],
where € € (0,1) is fixed and A > 3 /.

Threshold statement. There exist explicit constants C,C > 0 (depending only on d, ¢, ¢, A, and ¢)
such that, with probability at least 1 — ¢, the following hold:

(i) If A/hmax > C, then no edge connects My and M.

(ii) If A/hmax < C and BA < r, for some a € (0,1/8) with B = 1 + 2a, then the graph
contains a cross edge with probability at least

1 — ZGXP(— QadnrninAd) - exp(—’yk),

for a universal constant vy > 0.

Scaling of the thresholds. Let R = log(4n/§) / log(numin/0) and M = (¢/c)*/?. Then
C = o(AY'MRYY),  C = e(AY4/(BM)).

In particular, under balanced sampling (R =~ 1), fixed ¢, a, and bounded geometry (¢/c = ©(1)),
both thresholds are G)(Al/ ) with constants depending only on d.

Proof sketch. The fill distances satisfy h; =< (log(n;/d)/n;)"/® with explicit upper and
lower constants from a standard covering/packing argument under the local mass bounds, hence
Pmax > Cin (10g(min/3)/Mmin) /4. Choosing k = [Alog(4n/5)] and applying Chernoff
with a union bound over all n sample locations gives a uniform kNN-radius upper bound

Di(Z) < (1 — 5)—1/d(2k;/(nming))l/d for every sample Z. Dividing by the lower fill bound
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yields Dy,(Z) < C hyayx with C as above, so if A > C hyay no cross edge is possible. For bridging,
fix a € (0,1/8) and B = 1 + 2a and assume BA < r,; occupancy of intrinsic caps of radius aA
on each manifold occurs with probability at least 1 — 2 exp(—ca ny,inA?), and an upper-mass
Chernoff bound ensures that within radius BA around the near-boundary sample there are fewer than
k same-component neighbors with probability at least 1 — exp(—~k) provided A/hmax < C. In that
event the cross sample lies within distance BA and must enter the top-k, producing a bridging edge.
We offer full details alongside extensions to gaussian kernel graphs, in the Appendix [A.T]

3.2 EXTENDING CRITERION TO NOISY REGIMES

Empirical samples rarely lie exactly on a smooth manifold; instead, one observes noise as a tubular
perturbation. This may shrink the separation between components and inflate the neighborhood
radii. To account for this, we replace the original offset A by an effective offset A.g, and show
that kNN radii remain well-behaved. We adopt the following model: each component M, C RP
is compact, connected, C?, with reach 7, > 0, and data points are of the form z = m_(7) + &,
where 7, denotes nearest-point projection (well-defined whenever ||€|| < 75) and & is a mean-
zero ambient perturbation that is either bounded almost surely by ¢ < Tp,in := ming 75 or sub-
Gaussian with scale o. In this regime the relevant offset becomes an effective quantity A.g satisfying
A — 20 < Agg < A + 20 with high probability, while kNN radii concentrate around their noiseless
counterparts with an additive O(o) deviation when k < log(n/d).

The next statement upgrades the noiseless radius control used in Theorem [3.3]to the tubular-noise
model and will allow us to distinguish between connected and separated components.

Proposition 3.4 (Uniform £NN radii under tubular noise). Under the assumptions above, with
probability at least 1 — 0, for every sample x drawn from component M,

Qshs - CVlo’ < Dk:(x) < éshs + 0207

where hg is the (clean) fill distance on Mg, the constants Qs,és depend only on (d,c,¢) and
the choice of A, e (via the uniform clean bounds), and C1,Cs > 0 are universal. In particular,
H; := Dy(z;) = ©(hs) + O(0) uniformly on M.

An additional problem is that nearest-neighbor distances based on a single global scale may be
too sensitive to density fluctuations. Instead, we compare averages over two scales of neighbors,
whose distance distributions, as we show, differ significantly for within- vs. cross-component. To
make local decisions robust we employ a two-scale distance-to-measure approach (Chazal et al.|
2018) that cancels leading density terms yet reacts to ambient offsets. Fix § > 1; for a query
z and a finite set 7', let 1 be the k;-th nearest-neighbor distance from z to T with k1 =< k, set
ko =#{u €T :|u—z| <0ri}, let a; and ay be the means of the k; and ko smallest distances,

and define dg(z —=T') = (6 a1 — a2)/(0 — 1). as the two-scale DTM statistic. When T' is drawn from
a d-dimensional manifold, dy cancels the first-order © (k) bias of the distance-to-measure, leaving a

smaller on-manifold remainder, whereas for a point at ambient offset A g it grows linearly in Aqg.
The next proposition makes this separation precise after normalizing by fill distance.

Proposition 3.5 (Directional two-scale typicality with noise). Let H; = Dy(z;) and form S; by
trimming the kNN list of x; at radius ¢ H; for fixed ¢ > 1 (and, if desired, capping |S;| by a constant).
Fix 6 > 1. Then there exist constants A, B > 0 depending only on (d, c, ) such that, with probability
at least 1 — 6, the following hold uniformly over i:
 If x; lies on the same component as x;, then
dg(:L‘j—>Si) o k\1/d
A A(Hi + (%) )

o If z; lies on a different component, let Ao := max{A — 20, 0}. Then
Jg(xj—nS’i) Aeﬂ‘ o k\1/d
> =t Az o+ (9.
H; = H; H; + (n)
Consequently, when Aog [ himax exceeds a sufficiently large constant (depending on (d, ¢, 0) and the

local mass bounds), the within- and cross-component distributions of the normalized statistic are
separated by a fixed gap.
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4 MANIFOLD-BASED CLUSTERING

We now describe a practical pipeline that realizes the geometric principles above without requiring
specified hyperparameters. Given data X € R™"*P, we first standardize each feature to zero mean
and unit variance. We then estimate an intrinsic dimension d.g as the smallest number of principal
components explaining at least 90% of the variance, capped at 64 to avoid instability in high
dimensions. For a failure budget 6 € (0, 1), we take a connectivity-safe pilot * = [log(4n/d)] and
assign a slightly adaptive per-node degree k; via the pilot radii (ensuring k; > k*), as detailed in
App. to mitigate the effects of non-uniform sampling not accounted for by our theory. We then
compute top-k; Euclidean neighbors for each point, record local radii H; = Dy, (z;), and form the
symmetric candidate edge set by keeping {4, j} if either ¢ lists j or j lists i. Edges are then filtered in
two remove-only passes, followed by an add-only step:

(i) The Euclidean geometric-mean gate pass enforces scale-adaptive proximity by retaining {4, j}
only if |z; — z;|| < \/H;H,. It discards edges that are too long relative to local sampling density,
ensuring that connections respect intrinsic scale.

(i) The subsequent triangle support pass requires a shared nearest neighbor to support an edge
between two points, preventing spurious links caused by sampling fluctuations. By Theorem [3.3]and
its noisy extension, these two passes eliminate cross-component edges once A/l exceeds the
corresponding upper threshold.

(iii) Finally, to avoid disconnecting thin structures (like curved manifolds or boundary points), the
add-only rescue step conservatively reintroduces edges that failed triangle support but are statistically
typical of their local neighborhoods. For each node i, we form a trimmed local set S; C Ny, (i) by
discarding neighbors beyond ¢ H; for a fixed multiplier ¢ > 1 and, if necessary, capping |S;| by a
small constant. We then compute a local threshold 7; (high local quantile) based on the distribution
of neighboring distances in .S;:

{J@(q—>s,-)

- :qesi}7

7; = Quantile,_

setting @ = 2 and ¢, = 0.90 in all experiments. An excluded edge {i, j} is rescued if and only if
neither of its endpoints both look ‘typical” with respect to each other’s neighborhoods: dg(x; —

S;)/H; < 7; and dg(z; — S;)/H; < ;. Theoremensures that, above the noisy separation
threshold, this procedure does not introduce cross-component edges while repairing within-component
connectivity near curvature and boundary effects. Finally, labels are obtained as the connected
components of the resulting unweighted graph.

The method also provides an interpretable measure of uncertainty in the number of clusters without

extra tuning. Let ¢, = +/log(2n/a)/2k for a confidence parameter o € (0, 1), and define kiow =
[(1 —ex)k] and knign = [(1 + €)k]. Recomputing only the remove-only base graph (Euclidean
gate and triangle support, omitting rescue) at these two scales yields a monotone bracket [Knigh, Kiow]
for the number of connected components, since the edge set is nondecreasing in k, the component
count is nonincreasing. Narrow brackets indicate a stable scale in the given representation; wide
brackets signal genuine ambiguity about K.

Computationally, nearest-neighbor search dominates time complexity. In moderate ambient dimen-
sions, tree-based backends provide near-linear scaling in n; in high dimensions, brute-force backends
incur O(n2D) distance evaluations. The Euclidean gate is a single pass over O(nk) candidate edges;
triangle support reduces to intersections of neighbor lists of length k; and the rescue operates only
on edges rejected by triangle support and uses trimmed sets S; of bounded size. Throughout we fix
0 = 2, g; = 0.90, the trimming multiplier ¢ = 4, and a cap |.S;| < 32, so that the only exposed knob
is k determined by n and 9.

Lastly, we can justify our algorithm by combining Propositions [3.4H3.5| with the noiseless thresholds.
This yields a noisy analog of Theorem that is aligned with what we implement. Intuitively,
when inter-cluster separation is larger than sampling noise, our ‘remove-only’ and ‘add-only’ steps
guarantee true cluster identification; when separation is smaller, bridging edges inevitably appear.

Theorem 4.1 (Noisy separation and safe add-only rescue). Under the assumptions above (local mass
bounds on a fixed small-ball scale, tubular noise of radius o, and k = [ Alog(4n/d)]), there exist
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Algorithm 1 MBC: Euclidean Gate, Triangle Support, Quantile Two-Scale DTM Rescue

Require: X € R"*P 5 a € (0,1)
1: Fixed: 0«2, ¢, <0.90, Ctrim <4, Smax 32, tao<+2
2: Standardize X set dor +— #PCA comps for > 90% EVR (cap 64); k* < [log(4n/0)]
3: Pilot k*: get HP'' = Dy (zy); set Hyer < median{ H""**>0}, kmin < [0.5log(4n/d)],
kmax ¢ min(n—1, 3k*)
Local-k: k; +max(k*, clip(|k*(Hyor/ max(HP™, 1072)) % || Epnin, Kmax) )
kNN & candidates: for each i, get V; (top-k;) and H; = Dy, (x;); P={{i,j}: je N;orie N,}
Euclidean gate: Eo < {{i,j}€P: ||z;—z;|| < /H;H,}
Triangle support: Ei; < {{i,j} € Ecue : |[N; VN;| > ta}
Rescue-eligible: R< Foyc1 \ Eiri
9: fori =1tondo > per-node 7;
10: Si<—{qeN; : ||zg—z;|| < corimH;}; if [Si] > Smax, keep closest Siax
11: zq = TwoScaleDTM(z, | S;,0)/H;; 7+ Quantile, {z,: ¢€S;}
12: end for

AN

13: for each {i,j} € R do > add-only rescue
14: Yij TWOSC&leDTM(CCj ‘ Si; 9)/Hl, Yji (—TWOSC&IGDTM(Z‘i | Sj, 9)/HJ

15: ifyufj < Ti and Yji < T then

16: Etri <_Etri U {{’L, j}}

17: end if

18: end for

19: Clusters: labels L <+ CC(V=[n], Ey)

20: K-bracket (remove-only): €5 < 4/ 5 1 log(2"/ @) (clip < 0.45); recompute GM + Triangle at

scales (1+ey) - k; to get Kcr= [K(l—i—sk), K(1—¢)]
21: N1 noise: on the (1+4¢y) remove-only graph, mark nodes with degree < 1 as noise (L; < —1)

constants C ., C, > 0 such that, with probability at least 1 — §, the Euclidean geometric-mean gate
followed by triangle support has no cross-component edges whenever

>C, =C+C

hmax hmax
where C is the noiseless threshold from Theorem and C > 0 is universal. Moreover, if one
performs an add-only rescue that reinstates an edge {i, j} precisely when both directional statistics
satisfy do(z; — S;)/H; < 7, and dg(x; — S;)/H; < T, with 7; the high local quantile of
{do(q— S;)/H; : q € S;}, then no cross-component edges are added under the same condition.
Conversely, if

A
<d,=0C0-C
hIIlaX - o hmax
with C from Theorem[3.3], then a cross-component edge appears in the kNN graph with non-negligible
probability.

Proof sketch. By Proposition the geometric-mean gate /H; H; stays at scale hyax up to

O(o), hence if A/hmax > C + C 0/hmax every cross pair violates the Euclidean gate and triangle
support cannot reintroduce it. For the rescue rule, Proposition [3.5] plus a high local quantile ensures
an off-component point is atypical from at least one side, so mutual acceptance fails. The lower-
threshold direction follows from the noisy overlap argument after replacing A by A.g as above. See
Appendix [A.T4]for the proofs of the corresponding propositions and theorem.

5 EMPIRICAL RESULTS

We evaluate clustering quality across synthetic and real regimes under a single, scale-aware protocol.
Two Moons (2D, sampled with noise) and Concentric Circles (2D, sampled with noise) probe curva-
ture and nonconvexity; Gaussian Blobs (50D, std 3.0, K,,.=4) test high-dimensional separation;
Digits (8 x8 grayscale, PCA— 50) and MNIST (28 x28, PCA— 50) stress representation entanglement
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without learned embeddings. Features are standardized; d. is the smallest PCA dimension account-
ing for 90% variance (cap 64). For MBC we use the standard configuration as outlined in Algorithm
see the Appendix E] for further details. Baselines (DBSCAN, OPTICS, BIRCH, HDBSCAN) use
library defaults (Pedregosa et al.,[2011)); details provided in Appendix m Metrics are ARI, NMI,
and mean predicted K over three seeds (Vinh et al., | 2010); for MBC we also report the monotone
bracket [Kjow, K high], computed from two remove-only neighborhood scales (Sec. 4)) and reported
as the median across runs. Our results align with the offset—fill-distance picture: when A/h is large
(Moons, Circles), MBC recovers ground truth with narrow brackets; on high-D separated blobs, MBC
matches OPTICS/HDBSCAN; when embeddings are entangled (Digits, MNIST) (Dengl |2012; Xiao
et al.,|2017)), all methods degrade yet MBC widens the bracket rather than forcing spurious partitions.
This explains the larger brackets on the 2D Two Moons and Concentric Circles datasets, due to the
presence of noise and therefore ambiguity in the sampling. On the synthetic suite, K, almost
always lies within the reported bracket, and extended noise/anisotropy variants (Appendix Table 3]
show the expected widening of the bracket as separation diminishes. As an additional stress test, we
construct a heterogeneous—dimension mixture (helix—plane—sphere) lifted to D=10; MBC recovers
the three components while density/centroid methods over- or under-split or mark large fractions as
noise (Appendix Fig.[3).

Table 1: Representative results (three seeds; best per row in bold). "MBC Bracket” is the median
across runs of the reported monotone component-count interval.

Dataset (Kirue) Method ARIT NMIt Mean K MBC Bracket
MBC 1.000 1.000 2.00 [2, 11]
S
HDBSCAN 0.487 0.548 5.67 -
MBC 1.000 1.000 2.00 [2, 13]
Concentric Circles (2D; Kiue=2) gﬁgé%s 8:8?? 8:5?3 12;:(6)(7) -
HDBSCAN  0.041 0.251 10.67 -
MBC 1.000 0.999 4.67 [4, 16]
Cosim oo,y QTS Lo dme i
HDBSCAN 1.000 1.000 4.00 -
MBC 0.000 0.008 4.00 [8, 9]
ocs oml om i
HDBSCAN  0.006 0.101 3.00 -
MBC 0.000 0.001 2.00 [9, 14]
omcs o aos wm -
HDBSCAN  0.000 0.000 1.00 -

Neural case study. To better understand how our algorithm behaved on real world data where
sampling density often prevents distinguishable clusters, we analyzed neuronal representations
from two stages of the visual pathway—Retina and the primary visual cortex (V1). The original
study (Dyballa et al.,[2024b)) argued that retinal responses cluster into functionally coherent groups,
specifically 7 cell types, while primary visual cortex (V1) responses do not. Treating each dataset as
a point cloud where each point was a neuron, we ran MBC, HDBSCAN, and BIRCH on the labeled
Retina, the complete (labeled and unlabeled) Retina and V1 data. MBC'’s cluster estimate was K =1
for both datasets (no forced partition), but the brackets diverged: V1 yielded a near-degenerate interval
[1, 3], indicating one component at the available sampling scale; Retina produced a substantially
wider interval—[1, 14] on the labeled subset and [1, 9] on all points—that consistently contains the
true count (K,w=7). This likely implies a transitory regime: additional sampling (or a slightly
finer neighborhood scale) could plausibly cross the separation threshold. In contrast, baselines
forced clusters—on V1 they returned K=3 (HDBSCAN) and K=222 (BIRCH); on Retina they
returned K =28 and K =21—without an uncertainty notion. At the upper end of the retinal bracket
(K=9), agreement with labels becomes nontrivial (best ARI 0.205, best NMI 0.477), supporting
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the interpretation that retinal classes are plausibly present but under-sampled, whereas V1 remains
effectively unclustered, corroborating the physiological understanding of both systems in the original
study. We provide the results obtained from our analysis of the neural data in Table 2] Visual
summaries are provided in Appendix Fig. |5|(separable/transitory/nonseparable regimes via the (A, h)
geometry) and Fig. 4| (comparing baselines to MBC and illustrating bracket cluster assignments).

Table 2: Neural representations (Retina vs V1).

Dataset (Kirue) Method ARIT NMI1T Mean K MBC Bracket
MBC 1.000 1.000 1.00 [1, 3]
. . BIRCH 0.000 0.000 222.00 -
VI (all points; Kiue=1) HDBSCAN ~ 0.000  0.000 3.00 -
MBC -0.001 0.005 1.00 [1, 14]
Retina (labeled subset; Kiue=7) gg},%% AN 8%(1) 8;2% 1;88 B
MBC 0.000 0.000 1.00 [1,9]
BIRCH 0.593 0.748 21.00 -

Retina (all points; Kune=T) HDBSCAN 0484 0649 2800 -

6 DISCUSSION

Taken together, the experiments support a simple operational view: recoverability is governed by
the offset—to—sampling ratio A/h, and what can be said with confidence at the available scale is
captured by the monotone bracket. When A/ is large and separability is clear the bracket is tight
and MBC matches the strongest baselines; when embeddings are entangled (Digits, MNIST with
linear PCA) all methods struggle, but MBC surfaces this as a widened bracket rather than committing
to a spurious partition. The neural case study emphasizes the same point: V1’s bracket collapses
around one component, whereas Retina’s bracket contains the annotated count and admits competitive
agreement at its upper end, indicating a transitory, sampling-limited regime. This identification of
potentially separable or nonseparable data offers guidance particularly when choosing the types of
pre-processing pipelines practitioners may use, such as choosing the number of dimensions to embed
one’s data in or choosing the type of embedding to use prior to applying a clustering algorithm.

Limitations. As with all graph-based clustering, conclusions are representation-dependent: if the
embedding entangles classes, increasing neighborhood size cannot manufacture separation. Our
empirical coverage—that K, lies within the bracket on the synthetic suite—relies on the local mass
and smoothness conditions used in our analysis; strong heterogeneity in sampling rate or intrinsic
dimension, severe imbalance, or heavy-tailed/non-tubular noise can widen or bias the bracket. Future
work will attempt to resolve these challenges by adopting alternative adaptive procedures for local
sampling density estimation. Finally, baseline comparisons were kept conservative (primarily relying
on library defaults; see Appendix [B.0.T); stronger hand-tuning can improve baselines on specific
datasets but does not address the core issue that they return a single K which, when the ground truth
clustering is unknown, opens up the unsupervised learning process to additional bias through arbitrary
hyperparameter estimation.

7 CONCLUSION

MBC offers a theoretically grounded, parameter-light approach to manifold clustering and recasts the
task as a scale-calibrated geometric decision. A local Euclidean gate, a minimal transitivity check, and
a quantile two-scale DTM rescue together recover correct components when the separation-to-density
ratio A/h is favorable and, otherwise, returns an uncertainty bracket that reflects the sampling limits.
The method is robust across curvature and dimension, exposes uncertainty when scale is ambiguous,
and degrades transparently as information declines, while remaining simple to implement. In short,
MBC makes clustering more accountable to the data: it provides a proposed partition with geometric
justification—or an indication that at the given sampling scale the data cannot support one.
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A APPENDIX

A.1 PROOF OF THE THRESHOLD THEOREM FOR kNN GRAPHS

A.1.1 ASSUMPTIONS, LOCAL MASS BOUNDS, AND NOTATION

Let M = M;UM, C RP, where each M, is compact, connected, d-dimensional, C2, with positive
reach. Assume two-sided intrinsic ball-volume growth: for some 0 < ¢; < ¢o and rg > 0,

art < VOI(BMi(a;,r)) < eord, Ve M;, 0<r<rg.

Fix r, € (0,7¢] and L > 1 so that, for all 2 and r < r,,
BMi(x,%) C B(z,r)NM; C B, (z, Lr).

Let u;(-) := Vol((-) N M;)/ Vol(M;) be the normalized surface measure. Define local mass
constants (valid for all » < r,):
C1

c = E’ C = C2Ld’ Q?"d S IU,Z(B(.’L‘,T)) S E?“d.

Independently draw Xq,..., X, b prand Yy, ..., Y, bLgh La2; setm := ny + no and Ny, 1=

1 2
min{ny, no}. Fori = 1,2,

h; := sup min |z — z|,
zeM; 2€{X1,....Xn,
huax := max{hi, ha}, A = inf{||lz —y||: € My, y € My}

We construct the undirected kNN graph by symmetrizing the directed k-neighbor lists under the
ambient Euclidean distance.

A.1.2 TWwWO-SIDED FILL-DISTANCE BOUND

Lemma A.1 (Fill-distance sandwich with explicit dependence on local mass). For r; :=
(log(ni/d)/n;)'/® there exist constants

@:@(dag)v @:@(daE%

depending only on (d, ¢, ¢), such that for all sufficiently large n; (so that Canr; < r. and Canr; < ry),

— 1)
Canr; < h;y < Canry with probability at least 1 — 3

One admissible choice is )

N 2
Can = Chn = Sald

e/’

Proof. Upper bound. Fix r € (0,r,] and cover M; by N(r) ambient balls B(z;,r) with N(r) <
Ceov 7%, where Ceoy = Ceoy(d). For each center, by u;(B(x;,7)) > cr?, the emptiness probability
is < exp(—cn;r?). By the union bound,

Pr (Elj : B(zj,r)is empty) < Copyr™ @ exp(fgnird).
Choose 7 so that cn;r? = 2log(n; /), i.e.

B 2174 rlog(n;/8)\!/@
Then

Pr (Fempty B(z;,7)) < Coov € o < o for all large n;
Py AL -2 n; log(n;/8) — 4 ge -

12
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If no cover ball is empty, each B(z;, ) contains a sample; any © € M; lies within r of some z;,
hence within 2r of a sample; therefore h; < 2r. With the chosen 7, this gives

2

h; < Crnrs, Can = a7

Lower bound. Let P be a packing by M (r) disjoint ambient balls of radius /2 centered on M,
with M (1) > Cpack 7~ and Cpack = Cpack(d). If every such ball contains a sample, then h; < 7;
conversely, if at least one is empty then h; > 7/2. For any packed ball B, p;(B) < ¢(r/2)%, so

d
Pr(B is occupied) < n;c (g) .

By the union bound over M (r) disjoint balls,

. _/r\d Cpack €
Pr (all packed balls occupied) < M(r) nbc(i) < 5a T

Choose r = Cry ; with Cripy = = s=i72- Then n; ¢ (r/2)* = 1 log(n;/d) and

C ac %
Pr (all packed balls occupied) < 2§+1k . log(ﬁzi/é)

< g for all large n;.

With probability at least 1 — 6/4 some packed ball is empty, whence h; > r/2; our definition of Can
includes this factor, so h; > Cpgy ;. Combining the two tails (upper and lower) across ¢ = 1, 2 yields
the claim with probability > 1 — 6/2. O

A.1.3 UNIFORM CONCENTRATION OF kNN RADII AT THE SAMPLES

Lemma A.2 (Uniform £NN upper bound). Fix e € (0,1) and choose

= (2] an 2

Let Dy (Z) be the distance from a sample Z to its kth nearest neighbor among all n — 1 points. Then,
with probability at least 1 — g, simultaneously for all samples Z from component M,

1 2k \/d
Dip(Z) < .
k( ) - (1_5)1/d (nming)

Proof. Fix a sample Z € M;. For any r < r,, the count
S(r) = #{j#2: |2, - 2| <r}

is Bin(n — 1,p(r)) w ( ) > cr? (we only need same-component mass to lower bound p(r)). Let
7 satisfy (n; — 1)cr? Then E[S(r)] > k, and Chernoff’s lower tail gives

2 5
Pr(S(r)<(1—e)k) < exp<f %k) < e
by the choice of k. Thus S(r) > (1 — €)k with probability > 1 — ¢/(4n); equivalently,
r 1 k 1/d
Di(2) < = ( )
M8 = g T e e

Apply a union bound over all n samples and use n; — 1 > 7y, /2 to conclude

Di(Z) <

1 (2k

1/d 5
(A= ey/d ) for all samples Z with probability at least 1 — 3

Nmin C

13
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From Dy, to a multiple of h,,,«x. By Lemma for the worse component,

log(Nmin/0)\1/4
o > Co (200,
Tmin
Combining with Lemmaand k = Alog(4n/6) yields, uniformly over all samples Z,
1/d
Dy(Z) < 1 2A log(4n/d) / B 1 (2AR)1/d
hmax  — (1 —€)Y4Cqn \ ¢ 1og(1min/0) S e R '

Proposition A.3 (No-bridge regime). Define

T 1 ( 2AR )1/ d
- (1—-e)Y4Can '
IfA > C hmax, then the (symmetrized) kNN graph contains no edge connecting My and M.

c

Proof. For any sample Z and any point W on the other manifold, ||Z — W|| > A > C hyax
Dy(Z), so W cannot be among the & nearest neighbors of Z.

v

A.1.4 BRIDGING AT SMALL SEPARATION

Proposition A.4 (Bridge existence under controlled crowding). Fix a € (0,1/8) and write B(a) :
1+ 2a. Assume B(a) A < r.. Define

J— 1 AR 1/d
an as in LemmalA_]l, o ( )d>

If A < C hyax, then with probability at least
1 -2 exp( —ca’npi, Ad) — exp(—vk)
(for some absolute v > 0) the kNN graph contains a cross-component edge.

Proof. Let (z9,y0) € M1 X My realize ||xg — yo|| = A and consider the intrinsic caps
U := Bam, (x9,aA), V := B, (Yo, ad)).
By the lower mass bound, i1 (U), u2(V) > ¢ (aA)4, so

Pr(U empty) < emeatm At Pr(V empty) < emea’na AT

A

Hence with probability at least 1 — 2e7< a” nmin A% there exist samples z € U and y € V, and

lz =yl < [lz =20l + lzo — woll + llyo — yll < B(a) A.
Let
Sy = #{X; e My : || X; —z| < B(a) A}
By the upper mass bound,
E[S,] < (n1 —1)2(B(a)A)%.
Assume h,.x = hy (the harder case). If we write A = C hyyax and use the upper fill bound from
LemmalA.1}

hmax < Can (M)Ud’

min

then

E[S,] < ©B(a)* (CCan)’ 1og(”f§i“).
With k£ = Alog(4n/d) = A R 10g(nmin/0), the condition
AR
4

ensures E[S,] < k/4 and, by Chernoff, Pr(S, > k/2) < e~ " for some absolute y > 0. On this
event, fewer than & same-component points lie inside B(z, B(a)A) while y also lies in this ball, so
at least one of the k nearest neighbors of z is cross-component. Solving the displayed condition for
C yields the stated value. ]

¢B(a)! (CCa)" <

14
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A.1.5 THRESHOLD THEOREM

Theorem A.5 (Critical separation for the symmetrized kNN graph). Fixe € (0,1), a € (0,1/8),
and choose k = [Alog(4n/d)] with A > 3/e%. Let C be as in Proposition and C as in

Proposition[A.4] Then, with probability at least 1 — § (up to the explicit tails in Proposition|A.4)):

1. (Disconnected regime) If > C, the kNN graph contains no cross-component edge.

max

A
2. (Bridged regime) If B(a) A < r. and . < C, the kNN graph contains at least one
cross-component edge with probability at least
1 -2 exp( —ca®nmi, Ad) — exp(—vk).

Remark A.6. On the constants C and C' With the definitions and choices in Section (in particular,
k = [Alog(4n/d)], R = log(4n/d)/log(nmin/J), B = 1 + 2a, and the local mass bounds ¢, ©),
the threshold constants that govern the disconnected and bridged regimes are

1/d 1/d
o - 2 2ARc o = ARc
B (1—¢)l/d c ’ = = |\ 92d+25Rd )

Monotonicity and interpretation. Both C and C scale like A'/?: increasing k (via A) makes the
no-bridge condition stricter (larger C') and the bridge condition easier to meet (larger C), consistent
with the fact that larger & adds edges. The ratio ¢/c measures geometry/density skew: C' grows with
(¢/c)*/?, while C shrinks with (¢/c)'/, reflecting that heavier local mass and distortion increase
same-component crowding. The guard buffer B appears only in C' (as 1/B after the d-th root),
encoding that a larger buffer makes it harder to force a cross edge. The dependence on d is via
1/d-powers, so in higher dimensions both constants vary more gently with A, B, and ¢/c.

Practical choices for constants. For balanced sampling one has R = 1. Choosing a moderate tail
slack ¢ = 1 gives the benign factor (1 — ¢)~1/4 = 21/, In typical practice k = ©(log(n/5)) witha
small constant, so A can be taken in a tight range, and one uses a small collara so B =1+ 2a =~ 1
while still meeting the small-radius condition. Under these settings, and in benign geometry where
¢/c = 1, the formulas simplify to the order-one approximations

1 A 1/d
C w2V cw <C> :

- 2B c

so taking A ~ 1, B =~ 1, and ¢/c =~ 1 leaves both thresholds at a natural, dimension-controlled

constant scale, with their gap dominated by the simple 1/(2B) factor in C.

A.1.6 COROLLARIES FOR KERNEL GRAPHS

Corollary A.7 (Gaussian (RBF) kernel: inter-manifold suppression and activation). Fix a bandwidth
o > 0 and define

wtea) = oo M) W = S wtea)

g
r€eS1 yeS2

where S1, S are the sample sets on My, M. On the high-probability event of Theorem[A.5] the
following hold.

1. (Disconnected regime) If A > C hyax, then for every x € St and y € Ss,
AQ
le—yl = A = w@y < eop(-),
and hence
A2
ng S ning exp(——2).
(o)
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2. (Bridged regime) Assume the small-radius condition B A < r, and suppose A < C hyax.
Then, with probability at least

1 -2 exp(gad Nmin Ad) — exp(—vk),

there exist x € Sy and y € Sy such that

lo—yl < BA = w(zy) = exp(-

and consequently

BQAQ).

Wiz > exp(— 2

g

Proof. On the event of Theorem[A.3] the no-bridge regime ensures all cross-component pairs are at
distance at least A; the displayed upper bound follows by monotonicity of 7 — exp(—r?/0?), and
the bound on W4 follows by summing over nino pairs.

In the bridged regime, Proposition guarantees the existence of a cross pair with ||z — y|| < BA
with the stated probability. The lower bound follows by monotonicity and by retaining one such pair
in the sum defining W15. O]

A.2 DTM AND NoOISY THRESHOLD CRITERION
A.3 TUBULAR NOISE MODEL AND A TWO-SCALE AVERAGED-DISTANCE STATISTIC

We adopt the tubular-noise model from the main text. For each component M, C R” (compact,
connected, C2, reach 7, > 0), each observed sample x is generated as

= 7M. (r) + &, ey
where 7 4, is the nearest-point projection (well-defined whenever ||£|| < 75) and £ is either (i) almost
surely bounded with ||£]] < 0 < Tin = ming 7y, or (ii) sub-Gaussian with scale o truncated to

Hé-” < Tmin-

Noise-sparsity regime. We work under
o S Cnoise hmax (2)

for a fixed constant ¢ypise € (0, 1), so that kNN radii are at least of order o and the local small-ball
law remains d-dimensional up to absolute constants. All constants below may depend on c¢yse-

Definition A.8 (Two-scale averaged-distance statistic). Let 7" be a finite subset of R” and z € R,
Form € {1,...,|T|} let r,,(z | T) be the mth nearest-neighbor distance from z to T', and define

B 1 m
d = — .
w(z|T) = =3 (| T)
=1
Fix a scale factor # > 1. Given an integer k1 > 1, set

~ i T) — d T
by = #{ueT: Ju—z| <Oru(z|T)},  do(emsT) = LaE] g_ldka(z‘ )

Given the global k from the k-choice in Section[A.1|(namely k = [Alog(4n/5)] with A > 3/£2),
let H; := Dy (z;) and define the trimmed neighbor set

S; = {q € Ni(i) : |Jwg — x| < Corim Hi }, |Si| < Smax; 3)
for fixed constants ¢y > 1 and Shax € N. Trimming ensures bounded differences for the per-node

statistics used below.
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A.3.1 TUBULAR SMALL-BALL PROBABILITIES AND NOISY kNN RADII
Throughout, let the local mass bounds from Section @hold onradii < r,:
cr? < MS(B(QL‘,’I“)) < er, forallz € Mg, 0 <7r <y,

where p5 is the normalized surface measure on M.

Lemma A.9 (Tubular local-mass sandwich). Fix M and a point x = mwaq, (x)+E with ||€|| < o < 75.
There exist radii 0 < 7oy < Te < T4 With

Tlow = 20, re := min{r, — o, 75/2}, %)

and constants

c. = Q(l—CU/TS), [ES E<1+Cg/Ts)a

e

such that, for all T € [Tiow, Te),

o < P X —af| <r) < Erd o)

(o

where X is an independent sample from the tubular model on M and C' > 0 is an absolute constant.

Proof. Write m := w4, (x) and work in normal coordinates at m. Any sample X can be written as
X = M + ¢ with M ~ ps on Mg and ¢ an independent noise with ||{|| < 7,. For any r > 20 and
any [|¢]| < o,

B, (m, r=[Cl]) € {ueMs: [lu+ -zl <r} © Ba,(m, v+ <)

Integrating the indicator 1{||M + ¢ — z|| < r} over ¢ and using that r & ||{|| € [r/2, 3r/2] when
r > 20 shows that Pr(||X — z|| < r) is equivalent, up to multiplicative constants independent of z
and 7, to ps(Bag, (m, 7)) at scales < r,.. The Jacobian bounds for the exponential map on radii < 7,
and the truncation ||¢|| < o produce only a relative (1 + C'o /7,) distortion. Absorbing fixed factors
into ¢,,, ¢, yields equation 5] O

Lemma A.10 (Noisy £NN radius concentration (uniform at the samples)). Let x lie on component
M under the tubular model with o < T, and assume equation[2| Let k = [Alog(4n/d)] with
A > 3/e2. There exist C1,Cy > 0 such that, with probability at least 1 — 6,

k

((k)cgf/d - Cio < Dk(x) < ((ns—l)cg)l/d + 02(77 (6)

ng — 1
uniformly over all samples x drawn from M. In particular Dy(x) = O((k/ns)*/?) and, for
k =<logn, Di(z) < hs.

Proof. Letro(x) solve (ny — 1) Pr(||X — z|| < ro) = k. By LemmalA.9] provided r¢ € [20,74],

(ﬁ)w < rola) < (ﬁ)w.

In the regime equationand k > logn, one has o > (k/ns)'/¢ > h, > o, hence rq € [20,7,]
for all large n,. For fixed z, S(r) := #{j # = : [|X; — x| < r}is Bin(ns — 1, p(r)) with
p(r) =Pr(||X — x| < r). Atr = ro(z), ES(ro) = k. Chernoff implies

Pr(|S(ro) — k| > ek) < 2exp(—ce’k).
On the complement, (1 — €)rg < Dy(z) < (14 €)ro. A union bound over all x together with

k = [Alog(4n/d)] (and A > 3/£?) yields the claim; the additive O(c) terms follow from the
(1 + Co/7s) perturbation of ¢, ¢ in Lemma O
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A.3.2 TWO-SCALE STATISTIC: BIAS CANCELLATION AND OFFSET RESPONSE

Lemma A.11 (Bias cancellation on-manifold). Let T be i.i.d. samples from M satisfying the local
mass bounds on radii < r.. Fix 0 > 1 and take k; =< k with k = [Alog(4n/d)]. There exist
constants Ay, By > 0 (depending on d, ¢, ¢, 0) such that, with probability at least 1 — 0, uniformly
for z on Mg,

EY h B = o, ™

[do(z—T) = B,(2)] < Ao
Proof. Write F(r) := Pr(||X — z|| < r) for X ~ ps. In normal coordinates (valid for r < r.),
F(r) = /\drd(l + Kor? + 0(7“3))7
with Ay € [c,¢] and k2 depending on curvature. The quantile Q(u) := F~!(u) satisfies Q(u) =
(u/Aa)Y4(1 + Fou?/? + O(u3/)) for small u. For m = o(n),

" Q) du = ea( ) b (I L o(mymay ),

S nS

- n

Ed, (2| T) = 2=
cim=2 |

with ¢4 > 0 and b depending on curvature. Put o := (k;/n,)*/¢. One has ky/n, = 0% ky /ng (1 +

O(a?)), and 1y, = Ory, (1 + O(a?)). Therefore

HEJkl — EJ/CQ _ ba1+2/d [9 — 91+2/d]
6—1 B 6—1

so the linear term in « cancels. Since o < (k/n,)Y/? < h, and o' T2/¢ = ©((k/n,)"/?h,), the bias

is O(ht™/"). Concentration of d,,, is O(c/Tog(n/8)/k), dominated by a!+2/4 for k = logn. A

covering at scale 7, and a union bound give the uniform bound with probability > 1 — 4. O

Lemma A.12 (Offset response). Let z satisfy dist(z, M) = Aeg. For any trimmed S C Ny(i)
with equatianand any 0 > 1, there exists B{) > 0 (depending on d, ¢, ¢, 0, ctyim) such that, with
probability at least 1 — 6,

Edg(z—T) = + O(alt¥/d),

~ k\1/d
do(2—S) > ByAg — Coo — Ao(—) h. ®)
N
Proof. Foranyu € S,
|z —ul| > dist(z, M) — dist(u, Ms) > Aeg — ||E(w)|| > Aeg — 0.
Thus dy, (2 | S) > Aeg — o and dy, (2 | S) > Acg — 0, hence
0 di, — dp,
6—-1 —

Curvature and trimming affect this by a fixed factor B}, € (0, 1]; sampling fluctuations contribute the
Ao((k/ns)"%hy) term via LemmalA.11} giving equation [§] O

Lemma A.13 (Quantile stability). Fix ¢ and let Z, := gg(l'q — S;)/H; for q € S;. Let 7; be the
empirical q,-quantile with q; € (0.9,1). There exists C; > 0 such that, with probability at least
1-4,

do(z—8) = At — 0.

1 5
|7 = Qilgr) | < Cr (%ﬁ;lp’ o

where Q; is the population quantile of Z, when q ranges over same-component neighbors in S;.
Proof. Condition on S;. Each Z; € [0, cyyim] since S; is trimmed. Replacing one neighbor ¢ € S;

changes the multiset {Z, } in at most one coordinate within a bounded interval, so the empirical CDF
varies by at most 1/|S;|. McDiarmid’s inequality yields

2t2 |Si|
Iz )
for some L < ciyim- Sett = Cr+/log(n/d)/|S;| and absorb the bias |E[r; | S;] — Qi(¢-)| into C-
using standard quantile smoothness under the two-sided mass bound. A union bound over ¢ gives
equation 9] O

Pr(m—E[msin > ¢ ‘ s) < 2exp(
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A.3.3 NOISY SEPARATION THRESHOLDS AND SAFETY OF ADD-ONLY RESCUE

Let C and C be the noiseless threshold constants defined in Section
1 (QAR)l/d o 1 ( AR )1/d

(1—e)/d Cay =7 Cm

with R = log(4n/6)/10g(nmin/d) ~ 1, Can = 1/(2¢/%), Can = 2/c'/4, and B(a) = 1 + 2a.
Theorem A.14 (Noisy thresholds and safety of add-only rescue). Under the tubular-noise model
equation [Il-equation 2| and with k = [Alog(4n/5)] (the factor 4n inside log(4n/d) originates
from a union bound over n sample points and two Chernoff tails per point), there exist constants
K4, k— > 0 (depending only on d, c, ¢, 0, ctyim) such that, with probability at least 1 — §:

6:

c 4¢ B(a)?

1. (Upper/no-bridge) If

> 6 + KR4 (]O)

)
hmax hmax

then the Euclidean geometric-mean gate followed by triangle support yields no cross-
component edges.

2. (Add-only rescue is safe) Under equation the add-only rescue that reinstates {i,j} iff
do(x; —S;) < 1 and do(x; — S;) < 7; does not add any cross-component edge.
3. (Lower/bridge) If

A
< C — k_ g

o and A2 < min{%, 1;*2a} (11)

(for some fixed a € (0,1/8); the choice 1/8 is convenient because (1 + 2a) < 5/4), then a
bridging edge appears in the union-kNN graph with probability at least

1 — 2exp ( — N Nmin (A — 20)d) — exp(—vk),

where 1 = ca® and vy > 0 are absolute constants.

hmax

Proof. Intersect the following events, each holding with probability > 1 — §/5 after adjust-
ing constants: (i) the noiseless fill-distance sandwich (Lemma ; (i) the uniform ANN
bound (Lemma [A.2)); (iii) the noisy sandwich (Lemma [A.T0); (iv) the two-scale bounds (Lem-
mas A TTHALTS).

For (1), any cross pair (i, j) satisfies
lzi =zl = 7m(@i) — mpaalz) = 11&Gl = 11§11 = A =20
On the other hand, by Lemmas [A.2]and [A-T0}
\/HiHj < maX{Hi,Hj} < éhmax—l—CQO'.

Thus if A —20 > C hyax +Ca0,i.. A/hmax > C + (24 Cs) 0 /hmax, the Euclidean gate removes
{4, j}; triangle support cannot revive it. This yields equation|[10|with k = 2 + Cs.

For (2), consider y;.; := gg(l’j —S;)/H;. By Lemma ,
Bj(A —20) Ay 7 k\V/d C,o

oy z BUAZ2) _ Ao(kys,  Coo

Lemma gives H; > ¢ hax for some ¢o € (0,1) (depending on c¢yeise), hence
By A o _c/,(k)l/d hs

/
Yie s > - .
Y €0 Pmax Pmax

s

Ns hmax

By Lemma [A.11} the same-component quantile 7; obeys 7; < C"(k/ns)"/%(hs/H;) + o(1) <
C""(hs/hmax) + 0o(1). Under equation for k. large enough to absorb these terms, one has
Yi—j > T;. The same bound holds from j’s side, so the add-only rule does not add any cross-
component edge.

19



Under review as a conference paper at ICLR 2026

For (3), apply the noiseless bridging proof (Proposition[A.4) with A replaced by Acg := A — 20.
Choose intrinsic caps of radii aA.g and use radius p = B(a)A.g for the same-component crowding
test. The small-radius condition in equation [TT]ensures both radii lie within the bi-Lipschitz regime.
Exactly as in the noiseless case,

E[S,] < (n1 —1)eB(a)* A% < nieB(a)* (C — k72 )dhd

max max*

If A/hmax < C — K_0/hmax With k_ chosen to compensate for the O(o) slack in Lemma
then E[S,] < k/4, whence Pr(S, > k/2) < e~7%. Cap-occupancy holds with probability at least
1-2 exp(—nnminAedH), producing a cross edge with the stated probability. O

A.3.4 ADAPTIVE LOCAL FILL DISTANCE AND THE FLOOR-ANCHORED LOCAL-k SCHEDULE

Why an adaptive fill proxy? A single global degree k produces kNN radii Dy () that fluctuate
with local sampling density: dense regions yield tiny radii, sparse regions yield large ones. This
heterogeneity harms both (i) the geometric-mean Euclidean gate ||z; — ;|| < /H;H; (decisions
become asymmetric when one endpoint is much denser) and (ii) the add-only rescue, whose directional
statistic normalizes by a per-node scale. Our remedy is to equalize the intrinsic neighborhood scale
by adapting k per node, while never dropping below the RGG-safe pilot k*.

Setup and notation. Let M C RP be a finite union of compact, connected d-dimensional C?
submanifolds with positive reach, and assume the two-sided local mass bounds on a fixed small-ball
scale 7, > 0: there exist 0 < ¢ < ¢ < cosuchthatforallz € M,0<r <r,,

cr? < w(B(z,r)) < erd,

where p is the (componentwise) normalized surface measure. For a node z, write Dy (z) for the kNN
radius. We denote the (unknown) clean fill distance by h and use H for computable per-node proxies.

A.4 THE ADAPTIVE FILL-DISTANCE PROXY

Pilot radii and local degrees. We work at a connectivity-safe pilot k* = [log(4n/ 6)] €
{2,...,n — 1} and compute pilor radii Hf"l"t := Dy (m;). Let Hyop := mediaun{HlPllOt > 0}
and choose

4
Kmin := [0.5 logjn—‘, Emax := min{n — 1, 3k*}.

We then set the per-node degree by
ki = max(k*, Cllp( Lk* (Href/max(Hfilot, 10712)) dCfva kmin; kmax))» (12)

and define the local fill proxy H; := Dy, (x;). The geometric-mean gate and all normalizations use
H;.

Why equation [12| equalizes scale. Under the mass bounds, standard order-statistic arguments
imply
Dy(w) = O((£)")  (clean, uniformly in ) (13)

More precisely, with probability > 1 — ¢, there exist explicit C_, Cy > 0 depending only on (d, ¢,¢)
such that

\L/d \L/d
ol (7) < Du(z) < C4 (7) Vo € M, Yk € [kmin, Kmas]- (14)
Heuristically, Dy, (z) ~ (= Ck(z) ) Y * where c(x) € [c, ¢ is the local mass constant. Evaluated at the

pilot, HP'" (nf(;_))l/d, so c(z;) =~ % (HP"") =4, To make Dy, (z;) match a target radius T,
we would set k; = nc(z;) rtdg’t. Plugging the pilot estimate of ¢(z;) and choosing 7 := Hyer gives
k; ~ k* (Href/HfﬂOt)d, which is equation with deg in place of d and with clipping/flooring for
stability.
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B EMPIRICAL ANALYSIS

Default Hyperparameters (All Experiments) Unless otherwise noted, all results use a single,
dataset-agnostic configuration with no per-dataset tuning. Table 3]lists the exposed knobs and fixed
design choices; these settings were held constant across all benchmarks.

Group Name (symbol) Default and rationale
Failure budget (9) 0.05  (sets pilot scale k* = [log(4n/d)])
Pilot & bracket Bracket level () 0.05  (defines e, = /1 log(2n/acr)/k*; clip 0.45)

k bracket

Report [K (1+€x), K(1—¢x)] on remove-only graphs

Graph construction

Local-k schedule

Candidate edges
Euclidean gate
Triangle support

Floor-anchored: k; = max(k*, |k*(med(H)/H;)%"]),
with kmin = [0.510g(4n/§)], kmax = 3k*

Union-k: keep {4, j} ifi € Njorj € N;

Keep {4, j} if ||z:i—x;|| < /H;H;j (local, scale-adaptive)
Require |N; N N;| > 2 (suppresses one-sided coincidences)

DTM rescue (add-only)

Enabled

Two-scale factor (6)
Quantile (ghigh)
Trimming / cap

True by default (off in certain ablations experiments)
2.0  (radius-doubling statistic; stable and simple)
0.90 (mutual typicality threshold; conservative)
Multiplier c=4, within-set cap Smax=32

Standardization z-score per feature

Representation dest (PCA) Smallest #PCs for > 90% explained variance (cap 64)
Tangent projection Run MBC on PCA scores

Noise handling N1 heuristic On bracket-high remove-only graph, mark degree < 1 as noise

K reporting

K counts all labels including —1; we also report the K -bracket
from remove-only graphs

Table 3: MBC defaults used in all experiments. No per-dataset tuning.

Notes.

(i) Triangle support = 2 is the default; = 1 is too permissive (admits bridges), while = 3

can over-fragment the remove-only bracket on sparse scales. (if) DTM rescue is conservative: it often
does not fire on clearly separable data; disabling it in that regime yields 2~3x faster runs without
changing ARI/NMLI. (iii) The K-bracket is a monotonicity diagnostic from remove-only graphs; large
widths typically reflect micro-fragmentation at sparser scales rather than errors in the final labels.
(7iii) Additional ablations (triangle strength, DTM thresholds, PCA EVR) were done on our algorithm
using the datasets in Table[5|and showed our default parameters are robust on clean/separable regimes.
That is, our choice in such parameters, including g4, and ¢, did not noticeably change our decided
K nor bracket for reasonable perturbations.

B.0.1 EXTENDED RESULTS (NOISE AND ANISOTROPY)

How the Baselines Are Configured Let each method be run with library defaults to reflect typical
out-of-the-box usage. We specify the details in the below table.

Table 4: Baseline configuration

Method Library Defaults and optional sweep

DBSCAN scikit-learn  Default: eps=0.5, min_samples=5 (Euclidean).

OPTICS scikit-learn  Default: Euclidean metric; min_samples=5; x1=0.05.

BIRCH scikit-learn  Default: threshold = 0.5; branching factor = 50; nciusters = None.
Parameter sweep (For appendix table only): threshold € {0.3,0.5,0.7}; branching
factor € {25, 50,100}.

HDBSCAN hdbscan  Default: min_cluster_size = max{5, |0.02n|}; min_samples=None; Eu-

clidean metric; cluster selection=1eaf.
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HD: Helix-Plane-Sphere (D=10)

MBC HDBSCAN DBSCAN
ARI=1.000 NMI=1.000 Sil=0.272 ARI=0.954 NMI=0.890 Sil=0.361 ARI=0.877 NMI=0.808 Sil=0.201
=3 noise=0 ise=149 K=5 noise=8

GroundTruth K=2 noise=1

Figure 3: Mixed—dimension, high—D stress test (Helix-Plane-Sphere, D = 10). We synthesize
three manifold pieces with different intrinsic dimensions in R3—a 1D helix, a 2D plane patch, and a
noisy 2D sphere—then embed them into R'° via a random orthonormal map and add small isotropic
tubular noise. Each panel shows the predicted partition together with ARI, NMI, silhouette, the
number of clusters K, and the count of points labeled as “noise” by the method. MBC recovers all
three components exactly despite the heterogeneous shapes and dimensions. Density/graph baselines
either merge or overfragment components and often declare large fractions of points as noise (e.g.,
OPTICS, DBSCAN); HDBSCAN collapses two structures (KX = 2). Centroid/spectral (KMeans,
Spectral) methods given K, fail due to these being nonconvex, anisotropic manifolds.

Ground Truth (K = 8) HDBSCAN (K = 28) BIRCH (K = 21) MBC (K = 1)

Retina

KCI:[1,9]

MBC Bracket

Ground Truth (K = 1) HDBSCAN (K = 3) BIRCH (K = 222) MBC (K = 2)
.

VA1 \, N w % AN
; b . : Pé?{#?j:ég;‘t ; KCl:[1, 3]

Figure 4: Retina vs VI—MBC bracket reveals sampling-limited ambiguity. Top row:
Retina—ground truth (K'=8) vs HDBSCAN (K =28), BIRCH (K=21), and an MBC partition
(point K=1) with reported Kc1=[1,9]. Middle: MBC bracket panels at K € {1,3,9} illustrate
the plausible range supported by the data. Bottom row: V1—ground truth (X=1) vs HDBSCAN
(K=3), BIRCH (K=222), and an MBC partition (point K'=1) with bracket [1, 3]. MBC refrains
from forcing clusters and instead surfaces the intrinsic transitory regime via the bracket.
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Table 5: Extended results (three seeds; best per row in bold). “MBC Bracket” is the median across
runs of the monotone component—count interval.

Dataset Method ARIT NMI1T Mean K MBC Bracket
MBC 0.333 0.333 1.33 [1, 8]
Two Moons OPTICS 0.006 0.182 112.00 -
2D; additive Gaussian noise 0.08; K;..=2 BIRCH 0.558 0.577 3.00 -
HDBSCAN  0.083 0.254 7.33 -
MBC 1.000 0.999 2.33 [2, 8]
Concentric Circles OPTICS 0.007 0.186 119.67 -
2Dy factor 0.3, noise 0.06; Kyue=2 BIRCH 0.250 0.347 3.00 -
HDBSCAN  0.038 0.232 10.67 -
MBC 0.465 0.583 4.33 [3, 25]
Gaussian Blobs OPTICS 0.096 0.274 4.67 -
10D; std 3.0; Kie=6 BIRCH 0.509 0.734 3.00 -
HDBSCAN  0.439 0.628 7.00 -
MBC 0.856 0.938 6.67 [6, 17]
Gaussian Blobs OPTICS 0.716 0.857 5.67 -
25D; std 3.5; Kyue=6 BIRCH 0.509 0.734 3.00 -
HDBSCAN  0.783 0.857 7.00 -
MBC 0.998 0.997 7.67 [6, 18]
Gaussian Blobs (Anisotropic) OPTICS 0.856 0.936 6.67 -
20D; K,.=6 BIRCH 0.478 0.722 3.00 -
HDBSCAN  0.994 0.993 6.67 -
MBC 0.381 0.489 2.00 [2, 11]
Gaussian Blobs (Variable Variance) OPTICS 0.006 0.243 119.00 -
2D; Kye=3 BIRCH 0.495 0.590 3.00 -
HDBSCAN  0.784 0.816 3.67 -
MBC 0.388 0.607 2.33 [2,7]
Gaussian Blobs OPTICS 0.006 0.278 111.00 -
2D; std 0.9; Kpye=4 BIRCH 0.653 0.776 3.00 -
HDBSCAN  0.756 0.816 4.67 -
MBC 0.111 0.188 2.33 [1, 34]
Gaussian Blobs (Anisotropic) OPTICS 0.008 0.294 115.33 -
2D; Kye=4 BIRCH 0.675 0.793 3.00 -
HDBSCAN  0.504 0.636 6.33 -
MBC 0.070 0.157 1.67 [1, 6]
Gaussian Blobs OPTICS 0.004 0.227 64.33 -
3D; std 2.3; Kyue=5 BIRCH 0.555 0.741 3.00 -
HDBSCAN  0.390 0.596 5.67 -
MBC 0.000 0.002 3.00 [10, 30]
Fashion-MNIST OPTICS 0.000 0.041 29.00 -
28x28 grayscale; PCA—50; Ke=10 BIRCH 0.124 0.307 3.00 -
HDBSCAN  0.000 0.000 1.00 -
MBC 0.552 0.701 4.00 [1,5]
Iris OPTICS 0.051 0.292 6.00 -
4 features (tabular); Ke=3 BIRCH 0.661 0.733 3.00 -
HDBSCAN  0.139 0.347 5.00 -
MBC 0.000 0.000 1.00 [1, 5]
Wine OPTICS 0.036 0.195 5.00 -
13 features (tabular); Kue=3 BIRCH 0.790 0.786 3.00 -
HDBSCAN  0.266 0.361 3.00 -
MBC 0.007 0.015 2.00 [2,9]
Breast Cancer OPTICS 0.028 0.051 2.00 -
30 features (tabular); Kie=2 BIRCH 0.536 0.443 3.00 —
HDBSCAN  0.000 0.000 1.00 -
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Separability Summary — Synthetic vs Neural

Far Blobs — Separable Overlapping Blobs — Nonseparable

Circles — Transitory Moons — Transitory

Neural — Transitory Neural — Nonseparable

Figure 5: Separability summary—synthetic and neural. Each panel shows two components with
ambient offset A and worst-case fill radii h1, ho (dashed). Top: well-separated and overlapping
Gaussian blobs (separable vs. nonseparable). Middle: Circles and Moons at intermediate noise
(transitory). Bottom: retinal neuron pairs exhibit both transitory and nonseparable cases. Larger
A /hmax favors separability; small A /Ay induces bridging and fusion.
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