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ABSTRACT

The manifold hypothesis suggests a natural criterion for clustering: partition data
according to the manifold component from which each point is drawn. This
criterion is useful because, intuitively, the separability of manifold components
depends on how their ambient separation between components compares to the
largest sampling gap. The analysis integrates topology (e.g., manifold volume
and reach) with estimation (e.g., fill radius and sample density). Formally, it
identifies a criticality: when a threshold is exceeded, nearest-neighbor data graphs
avoid bridging edges and clusters are preserved; otherwise, bridges appear and
components fuse. In practice, this critical threshold lies between bounds that imply
a measure of cluster confidence and motivates an algorithm—Manifold-Based
Clustering (MBC)—that constructs a candidate neighborhood graph. MBC is
parameter-light and, unlike density-based methods (e.g., HDBSCAN), avoids hand-
tuned scale thresholds. Instead, MBC yields a monotone bound, or bracket, on the
number of components by a natural sweep of neighborhood size. Across curved
and high-dimensional benchmarks, MBC matches state-of-the-art accuracy and
exposes ambiguity near the critical thresholds.

1 INTRODUCTION

Clustering is a notoriously thorny problem. Results depend on criteria (Kleinberg, 2002), separation
(Hennig, 2015), and sampling (Tibshirani et al., 2001), among other factors. To address this,
researchers traditionally rely on domain knowledge (e.g. genomics (Eisen et al., 1998)) or on popular
algorithms (McInnes et al., 2018; Ester et al., 1996; Ankerst et al., 1999; Campello et al., 2013; 2015).
However, the statistical power of these algorithms is difficult to assess (Dalmaijer et al., 2022), and
blindly using any of them could be problematic (Chari & Pachter, 2023). This is especially true
in neuroscience (Button et al., 2013), where even determining whether data are (in fact) clustered
remains an important open problem (Dyballa et al., 2024b).

We illustrate two extremes in Fig. 1. Typically, when one mentions clusters, an artificial image
comes to mind as shown in blue and orange: two collections of well-separated data points. However,
in reality, data can be distributed as the neuroscience plots at the top. These data are drawn from
recordings of retinal ganglion cells, and the neuroscientists involved estimate that there are about
eight clusters of cells, based on separately measured physiological properties (Dyballa et al., 2024a)).
Applying the above traditions, popular algorithms are off by a factor of 3–4. We embrace the
uncertainty directly, and propose an algorithm that yields a bracket [1–9] for the number of clusters.
The algorithm is based on topological analysis, and takes both shape and sampling into consideration.
Thus,clusters may be clearly separable, non-separable, or lie in a transitional regime. The neural data
falls within the latter two.

To motivate the analysis, we ask: were the data sampled from a connected or separated object, and
by what margin? Adopting the manifold hypothesis, we model high-dimensional observations as
samples from a compact subsetM⊂ RD that is either a single connected C2 submanifold or a finite
union of disjoint C2 components (Fefferman et al., 2023). This viewpoint reframes clustering as a
decision problem: given i.i.d. samples X = {xi}ni=1 from a distribution supported onM, can it be
decided whether the support is connected or decomposes into separated components? A threshold
criterion emerges that determines whether clusters exist and, by extension, estimates their number.
The resulting bracket captures this threshold region.
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Figure 1: Motivating example. Neural spiking data are often mixed, with clusters embedded in
significant noise. We show how the number of clusters, estimated on physiological grounds to be
about 8, cannot be reliably determined by standard unsupervised clustering algorithms (HDBSCAN
and BIRCH). The MBC algorithm provides a feasible bracket for the number of clusters that includes
the physiologically expected number. We highlight the geometric principle of cluster separation in the
main panel, where (A–C) depict a non-pure manifold with two components: a disc (left, in blue) and
a softened peanut (right, in orange). We show worst-case fill distances (h1, h2), the minimal offset ∆,
and two boundaries of the peanut, h2 (dashed) and C h2 (dotted) where C is a constant determined
by the geometry of the manifold. The ratio ρ = ∆/hmax, where hmax = max{h1, h2}, governs
separability: A is separable (ρ > C), B is transitional (C < ρ < C), and C is non-separable (ρ < C,
with ∆ > 0). We also provide examples of transitional and non-separable true neural clusters.

The criterion that governs this decision is estimated from k-nearest neighbor (kNN) graphs: the ratio
ρ between the offset ∆ (the minimal Euclidean distance between any two components) and the fill
distance h of the sample over those components (the worst-case sampling gap). Intuitively, the fill
distance measures the size of the largest hole in the sample coverage; smaller fill distance implies
denser, more uniform sampling. Thus, large values of ρ indicate the presence of clearly separated
clusters (relative to sample density), while small values mean the estimated components should be
blurred together into a single cluster. Classic random geometric graph (RGG) results justify this
strategy: RGGs exhibit sharp connectivity thresholds as the neighborhood scale changes with sample
size n. They become connected around radii rn ≍ ((logn)/n)1/d or when the k-NN parameter
scales like k ≍ log n, under mild regularity conditions (Penrose, 2003; Balister et al., 2005). We
translate this picture to the problem of separating manifold components. In our setting, the constants
depend only on standard intrinsic geometry properties such as the two-sided volume growth (bounds
small-ball volumes) and positive reach (Niyogi et al., 2008). This translation allows us to formally
quantify when distinct manifold components will remain disconnected in a kNN graph, rather than
linked by spurious ‘bridging’ edges.

We leverage this result into an algorithm (MBC), extend it to the tubular noise regime, and compute
the confidence bracket using a fill-distance approximation, resulting in the following contributions:
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1. Geometric criterion for cluster preservation. We introduce the offset-fill-distance ratio
and prove upper and lower thresholds that predict when clusters remain distinct in the
standard and noisy regimes (Theorem 3.3).

2. Manifold-Based Clustering Algorithm (MBC). We develop an algorithm that applies
this threshold to uncover clusters and handle noise robustly using the distance-to-measure
framework (Algorithm 2).

3. Density criterion for bracket relaxation. We exploit the derivation of MBC to develop
Corollary 4.1, reflecting the uncertainty in the underlying number of clusters with respect to
the framework established in Theorem 3.3.

Finally, we show empirically that the bracket captures k, the number of clusters, for synthetic datasets
as well as the neuroscience example shown in Fig. 1. Blindly applying popular algorithms can
be misleading; instead, we highlight the uncertainty in clustering real-world data, and the delicate
interplay between sampling and topology inherent in this task.

2 BACKGROUND

Neighborhood graphs and threshold scales. Manifold-learning methods—Isomap, LLE, Lapla-
cian Eigenmaps—reconstruct geometry from neighborhood graphs using shortest-path or spectral
surrogates (Tenenbaum et al., 2000; Roweis & Saul, 2000; Belkin & Niyogi, 2003; Coifman &
Lafon, 2006), and spectral clustering relies critically on the quality of the same neighborhood graph
(von Luxburg, 2007; Zelnik-manor & Perona, 2004). Popular dimensionality reduction methods
such as UMAP explicitly optimize objectives that preserve local neighborhoods (McInnes et al.,
2018). The reliability of these pipelines depends on choosing neighborhoods that match the intrinsic
sampling scale: if neighborhoods are too large, graphs connect across gaps and destroy component
structure. Random graph theory formalizes this with sharp transitions: connectivity emerges at
radii rn ≍ (logn/n)1/d, and union-kNN graphs become connected when k ≍ log n, with constants
depending on dimension and local volume regularity (Penrose, 2003; Balister et al., 2005). We
leverage these scales in practice by setting k = O(logn) so the graph lies near its connectivity
threshold—neither too sparse (disconnected) nor too dense (over-connected). Moreover, we ‘bracket’
the true number of meaningful components in the data between two close values for k, thus defining
a confidence bracket in a loose statistical sense.

Fill distance, two-sided volume growth, and uniform kNN radii. The fill distance h(R,M) =
supx∈Mminri∈R ∥x− ri∥ is the worst-case sampling gap onM. Under two-sided volume growth
(i.e., lower and upper bounds on small-ball volumes) and positive reach, covering radii and nearest-
neighbor distances concentrate uniformly around the intrinsic sampling scale; in particular, for
samples on a d-dimensional support, h and kNN radii Dk(x) scale respectively like ((log n)/n)1/d

and (k/n)1/d up to constants (Niyogi et al., 2008; Boissonnat et al., 2018). Our separability condition
compares ∆ to hmax across components; when ∆/hmax exceeds a curvature-dependent constant,
stabilized kNN neighborhoods do not mix components.

Relationship to reach and curvature. The reach τM of a smooth subset M ⊂ RD is the largest radius
for which every point in the tubular neighborhood of M has a unique nearest-point projection onto
M (Federer, 1959); equivalently, it is the infimum distance from M to its medial axis, i.e. the set
of points with multiple nearest neighbors. Reach captures both local curvature—τM is bounded
above by the reciprocal of the largest principal curvature—and global bottlenecks, since narrow necks
shrink τM . Practical estimators recover τM and related geometric quantities from point samples,
with non-asymptotic guarantees (Aamari et al., 2019); recent analyses clarify how reach behaves for
unions and under set operations (Boissonnat & Wintraecken, 2023). The ratio ∆/h can be interpreted
as a relaxation of the reach, tailored to distinct components: ∆ is twice the bottleneck radius between
components in the medial-axis picture, while h measures sample dispersion. Requiring ∆/h to
exceed a constant ensures that sampling density lies below the relevant bottleneck scale, preventing
spurious graph connections between components.

Robust local statistics, transitivity, and density-based clustering. Raw Euclidean distances are
notoriously sensitive to density variation and moderate noise. The distance-to-measure (DTM), which
averages local nearest-neighbor distances, provides a robust and scale-aware alternative with stability
guarantees (Chazal et al., 2011). A directional two-scale DTM cancels leading density bias on the
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manifold, yet grows linearly with ambient offset; this property underpins our conservative add-only
rescue procedure. Requiring shared-neighbor (triangle) support suppresses spurious asymmetric
short links and enforces minimal transitivity, cf. shared-nearest-neighbor clustering (Jarvis & Patrick,
1973). Density-based methods such as DBSCAN, BIRCH, OPTICS, and HDBSCAN infer clusters
by thresholding density or mutual-reachability graphs and rely on user-specified parameters that
implicitly decide whether bridges persist (Ester et al., 1996; Ankerst et al., 1999; Campello et al.,
2013; 2015; Zhang et al., 1996). In contrast, our approach grounds this decision on a geometric
offset–sampling scale, eliminates the need to hand-tune bridging thresholds, and yields a monotonic
bracket on the component count by varying k within a principled confidence range.

3 GEOMETRIC CLUSTER-SEPARATION CRITERION

We now introduce our main theoretical framework for understanding cluster separability in the
manifold setting. Drawing parallels to Gaussian Mixture Models, we regard offset as the analogue of
inter-cluster distance and fill distance as a proxy for “variance” or dispersion within each manifold
component. We next extend this framework into an algorithm for detecting clusters under uncertainty.
The procedure motivated by our framework is outlined in Figure 2.

Suppose our data lie on the union

M = M1 ∪ · · · ∪MK , Mi ∩Mj = ∅, ∀i ̸= j ∈ {1, . . . ,K}

where eachMk is a connected manifold component in RD. Let

∆ = min
k ̸=ℓ

{
∥x− y∥ : x ∈Mk, y ∈Mℓ

}
be the offset (minimal ambient distance) between distinct components. In parallel, define the fill
distance forM’s sampled approximation as follows:

Definition 3.1 (Fill Distance). Let R = {ri}ni=1 ⊂M be a finite point set. The fill distance is

hR,M = sup
x∈M

min
1≤i≤n

∥x− ri∥.

We say R is quasi-uniform if hR,M and the minimum pairwise distance among ri, rj differ only by a
constant factor. A smaller fill distance indicates that R provides a denser covering ofM.

Remark 3.2. In analogy to the sampling density criterion and variance in Gaussian Mixture Models,
we treat fill distance hR,M as a measure of sampling dispersion. A smaller hR,M corresponds
to higher sampling density, which is often necessary for manifold learning algorithms to reliably
approximate geodesic distances and local neighborhoods.

We denote hR,M as h for convenience and then consider the following ratio: ρ = ∆
h .

3.1 MANIFOLD SEPARATION CRITERION

We now establish a threshold phenomenon governing the connectivity of kNN graphs constructed on
points sampled from two disjoint, compact, d-dimensional Riemannian manifolds. We prove that in a
kNN graph there exists a sharp transition, or threshold: when manifolds are far enough apart relative
to sampling density, no edges cross; when they are close enough, bridging edges appear with high
probability. In other words, under the assumption that clusters are separate if and only if they are
sampled from two distinct manifold components, this theorem quantifies how sampling density (as
measured by the fill distance) and intrinsic separation together determine whether the components
remain disconnected or become connected in the kNN graph.

Theorem 3.3 (Threshold for manifold separation in the union-kNN graph). LetM1,M2 ⊂ RD be
disjoint, compact, connected, d-dimensional C2 submanifolds with positive reach. Assume there exist
constants 0 < c ≤ c <∞ and a radius r∗ > 0 such that for all x ∈Mi and 0 < r ≤ r∗,

c rd ≤ µi

(
B(x, r)

)
≤ c rd.

Here µi denotes the normalized surface measure onMi.
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Sampling. Independently draw n1 and n2 samples from µ1 and µ2, respectively; write n = n1 + n2

and nmin = min{n1, n2}. Let Si denote the set of sampled points onMi, define the fill distances

hi = sup
x∈Mi

min
z∈Si

∥x− z∥, hmax = max{h1, h2},

and the ambient offset ∆ = inf{∥x− y∥ : x ∈M1, y ∈M2}.

Graph construction. Form the union-kNN (symmetrized kNN) graph using k =
⌈
A log(4n/δ)

⌉
,

where ε ∈ (0, 1) is fixed and A ≥ 3/ε2.

Threshold statement. There exist explicit constants C,C > 0 (depending only on d, c, c, A, and ε)
such that, with probability at least 1− δ, the following hold:

(i) If ∆/hmax > C, then no edges connectM1 andM2.

(ii) If ∆/hmax < C and B∆ ≤ r∗ for some a ∈ (0, 1/8) with B = 1 + 2a, then the graph
contains a cross edge with probability at least

1 − 2 exp
(
− c ad nmin∆

d
)
− exp(−γk),

for a universal constant γ > 0.
Remark 3.4 (Scaling of the thresholds). Let R = log(4n/δ)

/
log(nmin/δ) and M = (c/c)1/d. Then

C = Θ
(
A1/dM R1/d

)
, C = Θ

(
A1/d/(BM)

)
.

In particular, under balanced sampling (R ≈ 1), fixed ε and a, and bounded geometry (c/c = Θ(1)),
both thresholds are Θ(A1/d), with constants depending only on d.

Proof sketch. The fill distances satisfy hi ≍ (log(ni/δ)/ni)
1/d with explicit upper and lower

constants from a standard covering/packing argument under the local mass bounds, hence hmax ≥
Cfill (log(nmin/δ)/nmin)

1/d. Choosing k = ⌈A log(4n/δ)⌉ and applying Chernoff with a union
bound over all n sample locations yields a uniform upper bound on the kNN-radius Dk(Z) ≤
(1− ε)−1/d

(
2k/(nminc)

)1/d
, for every sample Z. Dividing by the lower fill bound yields Dk(Z) ≤

C hmax with C as above, so if ∆ > C hmax, no cross-edge is possible. For bridging, fix a ∈ (0, 1/8)
and B = 1 + 2a and assume B∆ ≤ r∗. Occupancy of intrinsic caps of radius a∆ on each manifold
occurs with probability at least 1−2 exp(−c ad nmin∆

d), and an upper-mass Chernoff bound ensures
that within radius B∆ around the near-boundary sample there are fewer than k same-component
neighbors with probability at least 1− exp(−γk) provided ∆/hmax < C. In that event, the cross-
manifold sample lies within distance B∆ and must enter the top-k, producing a bridging edge. We
offer full details, along with extensions to gaussian kernel graphs, in Appendix A.2.

3.2 EXTENDING CRITERION TO NOISY REGIMES

Empirical samples rarely lie exactly on a smooth manifold; instead, one observes noise as a tubular
perturbation. This may shrink the separation between components and inflate the neighborhood
radii. To account for this, we replace the original offset ∆ by an effective offset ∆eff , and show
that kNN radii remain well-behaved. We adopt the following model: each componentMs ⊂ RD

is compact, connected, C2, with reach τs > 0, and data points are of the form x = πMs
(x) + ξ,

where πMs
denotes nearest-point projection (well-defined whenever ∥ξ∥ < τs) and ξ is a mean-

zero ambient perturbation that is either bounded almost surely by σ < τmin := mins τs or sub-
Gaussian with scale σ. In this regime the relevant offset becomes an effective quantity ∆eff satisfying
∆− 2σ ≤ ∆eff ≤ ∆+ 2σ with high probability, while kNN radii concentrate around their noiseless
counterparts with an additive O(σ) deviation when k ≍ log(n/δ).

The next statement upgrades the noiseless radius control used in Theorem 3.3 to the tubular-noise
model and will allow us to distinguish between connected and separated components.
Proposition 3.5 (Uniform kNN radii under tubular noise). Under the assumptions above, with
probability at least 1− δ, for every sample x drawn from componentMs,

Cs hs − C1 σ ≤ Dk(x) ≤ Cs hs + C2 σ,

5
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Figure 2: MBC Algorithm 2 schematic. (A–B) depicts building a local neighborhood graph for
Pattern A in Fig. 1 at the desired sampling scale(s) corresponding to steps 1-4 in Alg. 2, (B–C) depicts
to remove unsupported spurious bridges (Alg. 2 steps: 5–6), and (C–D) depicts taking connected
components (Alg. 2 steps:7–9); recompute for different k∗ from bracket yields the same clusters i.e.
a tight bracket of [2, 2] due to the offset-fill distance ratio denoting separability for this dataset.

where hs is the (clean) fill distance on Ms, the constants Cs, Cs depend only on (d, c, c) and
the choice of A, ε (via the uniform clean bounds), and C1, C2 > 0 are universal. In particular,
Hi := Dk(xi) = Θ(hs) +O(σ) uniformly onMs.

An additional problem is that nearest-neighbor distances based on a single global scale may be
too sensitive to density fluctuations. Instead, we compare averages over two scales of neighbors,
whose distance distributions, as we show, differ significantly for within- vs. cross-component. To
make local decisions robust we employ a two-scale distance-to-measure approach (Chazal et al.,
2018) that cancels leading density terms yet reacts to ambient offsets. Fix θ > 1; for a query
z and a finite set T , let r1 be the k1-th nearest-neighbor distance from z to T with k1 ≍ k, set
k2 = #{u ∈ T : ∥u − z∥ ≤ θr1}, let a1 and a2 be the means of the k1 and k2 smallest distances,
and define d̃θ(z→T ) = (θ a1 − a2)/(θ− 1). as the two-scale DTM statistic. When T is drawn from
a d-dimensional manifold, d̃θ cancels the first-order Θ(hs) bias of the distance-to-measure, leaving a
smaller on-manifold remainder, whereas for a point at ambient offset ∆eff it grows linearly in ∆eff .
The next proposition makes this separation precise after normalizing by fill distance.
Proposition 3.6 (Directional two-scale typicality with noise). Let Hi = Dk(xi) and form Si by
trimming the kNN list of xi at radius cHi for fixed c > 1 (and, if desired, capping |Si| by a constant).
Fix θ > 1. Then there exist constants A,B > 0 depending only on (d, c, θ) such that, with probability
at least 1− δ, the following hold uniformly over i:
• If xj lies on the same component as xi, then

d̃θ(xj→Si)

Hi
≤ A

( σ

Hi
+
(
k
n

)1/d)
.

• If xj lies on a different component, let ∆eff := max{∆− 2σ, 0}. Then

d̃θ(xj→Si)

Hi
≥ B

∆eff

Hi
− A

( σ

Hi
+
(
k
n

)1/d)
.

Consequently, when ∆eff/hmax exceeds a sufficiently large constant (depending on (d, c, θ) and the
local mass bounds), the within- and cross-component distributions of the normalized statistic are
separated by a fixed gap.

4 MANIFOLD-BASED CLUSTERING AND THE BRACKET

We now describe a practical clustering pipeline that implements the geometric principles above. Given
data X ∈ Rn×D, we first standardize each feature to zero mean and unit variance. We then estimate
an intrinsic dimension deff as the smallest number of principal components explaining at least 90%
of the variance, capped at 64 components to avoid instability in high dimensions. For a failure budget
δ ∈ (0, 1), we take a connectivity-safe pilot degree k⋆ = ⌈log(4n/δ)⌉ and assign a slightly adaptive
per-node degree ki via the pilot radii (ensuring ki ≥ k⋆), as detailed in Appendix A.4, to mitigate the
effects of non-uniform sampling not accounted for by our theory. We then compute top-ki Euclidean
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neighbors for each point, record local radii Hi = Dki
(xi), and form the symmetric candidate edge

set by keeping {i, j} if either i lists j or j lists i. Edges are then filtered in two remove-only passes,
followed by an add-only step:

(i) The Euclidean geometric-mean gate pass enforces scale-adaptive proximity by retaining {i, j}
only if ∥xi − xj∥ ≤

√
HiHj . It discards edges that are too long relative to local sampling density,

ensuring connections respect the intrinsic scale.

(ii) The subsequent triangle support pass requires a shared nearest neighbor to support an edge
between two points, preventing spurious links caused by sampling fluctuations. By Theorem 3.3 and
its noisy extension, these two passes eliminate cross-component edges once ∆/hmax exceeds the
corresponding upper threshold.

(iii) Finally, to avoid disconnecting thin structures, e.g., curved manifolds or boundary points, the
add-only rescue step conservatively reintroduces edges that failed triangle support but are statistically
typical of their local neighborhoods. For each node i, we form a trimmed local set Si ⊆ Nki

(i) by
discarding neighbors beyond cHi (for a fixed multiplier c > 1) and, if necessary, capping |Si| by a
small constant. We then compute a local threshold τi (high local quantile) based on the distribution
of neighboring distances in Si: τi = Quantileqτ {(d̃θ(q→ Si))/Hi : q ∈ Si}, setting θ = 2
and qτ = 0.90 in all experiments. An excluded edge {i, j} is rescued if and only if neither of its
endpoints both look ‘typical’ with respect to each other’s neighborhoods: d̃θ(xj→ Si)/Hi ≤ τi
and d̃θ(xi→ Sj)/Hj ≤ τj . Theorem 4.2 ensures that, above the noisy-separation threshold, this
procedure does not introduce cross-component edges while repairing within-component connectivity
near regions of high curvature or at manifold boundaries. Finally, cluster labels are obtained as the
connected components of the resulting unweighted graph.

Uncertainty Bracket. A key aspect of MBC is that it provides an interpretable measure of uncer-
tainty in the number of clusters. We start from the theoretically motivated degree k⋆ = ⌈A log(4n/δ)⌉
given by Theorem 3.3, and define εk =

√
log(2n/α)/(2k⋆) for confidence level α ∈ (0, 1). This

choice inverts the same binomial Chernoff bounds used in our fill-distance and kNN-radius estimates:
at the intrinsic sampling radius, the neighbor count around each point has mean Θ(k⋆) and, with
probability at least 1 − α, deviates by at most εkk⋆ uniformly over all n samples. We therefore
consider the degree window klow = ⌈(1 − εk)k

⋆⌉ and khigh = ⌈(1 + εk)k
⋆⌉. We then recompute

only the remove-only base graph (Euclidean gate and triangle support) at these two scales, and set
Klow := #Comp(khigh) and Khigh := #Comp(klow). Because the candidate edge set is nonde-
creasing in k, the component count is nonincreasing, so [Klow,Khigh] forms a monotone bracket
capturing all intermediate degrees. Narrow brackets indicate a stable intrinsic scale for the given data;
wider brackets signal that the manifold-separation decision is unstable as outlined below.

Corollary 4.1 (Bracket behavior under the separation threshold). Assume the setting of Theorem 3.3.
For any k ∈ [klow, khigh] we can write k = ⌈A′ log(4n/δ)⌉ with A′ ∈ [A(1− εk), A(1 + εk)]. With
thresholds C(A′) and C(A′) as in Remark A.6, the k−bracket has the property that ∆/hmax lies in
the region

C
(
A(1− εk)

)
≤ ∆/hmax ≤ C

(
A(1 + εk)

)
.

Therefore, the learned number of clusters Klow and Khigh differ, in effect pushing the uncertainty band
on the correct scale for k∗ to the threshold in Theorem 3.3. Moreover, since khigh − klow ≈ 2εkk

⋆

and k⋆ = A log(4n/δ), the relative width (khigh − klow)/k
⋆ is bounded at O(A−1/2).

Computationally, MBC shares the same leading cost as other kNN-based density methods (e.g.,
DBSCAN, HDBSCAN): constructing the neighborhood graph. In moderate ambient dimension, tree-
or graph-based backends yield near-linear scaling in n, while in high dimensions brute-force search
incurs O(n2D) distance evaluations. Once the kNN lists are available, all subsequent passes are
linear in the number of candidate edges: the Euclidean geometric-mean gate is a single sweep over
O(nk) edges, triangle support reduces to intersections of neighbor lists of length k, and the add-only
rescue is applied only to edges rejected by triangle support, using trimmed neighborhoods Si of
bounded size. The bracket stage requires recomputing only the remove-only graph at two nearby
degrees, incurring a constant-factor overhead on top of a single kNN construction. Throughout, we
fix θ = 2, qτ = 0.90, the trimming multiplier c = 4, and a cap |Si| ≤ 32, so that the only exposed
scale parameter is k, determined by (n, δ) via the connectivity theory in Theorem 3.3.
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Algorithm 1 MBC: Manifold-Based Clustering
Require: X ∈ Rn×D, δ, α ∈ (0, 1)

1: Preprocess: standardize X; set deff← PCA dims; k⋆←⌈log(4n/δ)⌉
2: Pilot / local-k: Hpilot

i = Dk⋆(xi); Href ← median{Hpilot
i >0}; choose ki around k⋆ from

(Hpilot
i , Href); set Hi=Dki

(xi)
3: kNN & candidates: for each i, get Ni (top-ki); P ={{i, j} : j∈Ni or i∈Nj}
4: Euclidean gate: Eeucl←{{i, j}∈P : ∥xi−xj∥ ≤

√
HiHj}

5: Triangle support: Etri←{{i, j}∈Eeucl : |Ni ∩Nj | ≥ t△}; R←Eeucl \ Etri

6: Add-only DTM rescue: for each {i, j} ∈ R, compute yi←j , yj←i as normalized two-scale
DTM scores w.r.t. (Si, Hi) and (Sj , Hj) where Si = Ni capped by |Ni| = 32

7: if yi←j ≤ τi and yj←i ≤ τj , update Etri←Etri ∪ {{i, j}}
8: Clusters: L←ConnectedComponents(V=[n], Etri)
9: K-bracket: choose εk from (n, α, k⋆); recompute graphs at (1±εk) · ki to get Kmin and Kmax

Finally, we justify our algorithm by combining Propositions 3.5–3.6 with the noiseless thresholds.
This yields a noisy analog of Theorem 3.3, consistent with the algorithm we implement. Intuitively,
when inter-cluster separation is larger than sampling noise, our remove-only and add-only steps
guarantee true cluster identification; when separation is smaller, bridging edges inevitably appear.
Theorem 4.2 (Noisy separation and safe add-only rescue). Under the assumptions above (local mass
bounds on a fixed small-ball scale, tubular noise of radius σ, and k = ⌈A log(4n/δ)⌉), there exist
constants Cσ, Cσ > 0 such that, with probability at least 1− δ, the Euclidean geometric-mean gate
followed by triangle support has no cross-component edges whenever

∆

hmax
> Cσ := C + C

σ

hmax
,

where C is the noiseless threshold from Theorem 3.3 and C > 0 is universal. Moreover, if one
performs an add-only rescue that reinstates an edge {i, j} precisely when both directional statistics
satisfy d̃θ(xj → Si)/Hi ≤ τi and d̃θ(xi → Sj)/Hj ≤ τj , with τi the high local quantile of
{d̃θ(q→ Si)/Hi : q ∈ Si}, then no cross-component edges are added under the same condition.
Conversely, if

∆

hmax
< Cσ := C − C

σ

hmax
,

with C from Theorem 3.3 , then a cross-component edge appears in the kNN graph with non-negligible
probability.

Proof sketch. By Proposition 3.5, the geometric-mean gate
√
HiHj stays at scale hmax up to

O(σ), hence if ∆/hmax > C + C σ/hmax, then every cross pair violates the Euclidean gate and
triangle support cannot reintroduce it. For the rescue rule, Proposition 3.6 together with a high local
quantile ensures that an off-component point is atypical from at least one side, so mutual acceptance
fails. The lower-threshold direction follows from the noisy-overlap argument after replacing ∆ by
∆eff as above. See Appendix A.14 for the proofs of the corresponding propositions and theorem.

5 EMPIRICAL RESULTS

We evaluate clustering quality across both synthetic and real regimes under a single, scale-aware
protocol. Two Moons (2D, sampled with noise) and Concentric Circles (2D, sampled with noise)
probe curvature and nonconvexity; Gaussian Blobs (50D, std. 3.0, Ktrue=4) test high-dimensional
separation; Digits (8×8 grayscale, PCA→50) and MNIST (28×28, PCA→50) stress representation
entanglement without learned embeddings. All features are standardized; deff is the smallest PCA
dimension accounting for 90% variance (cap 64). For MBC, we use the standard configuration
outlined in Algorithm 2; see the Appendix 2 for further implementation details. We ran baselines
(DBSCAN, OPTICS, BIRCH, HDBSCAN) using library defaults (Pedregosa et al., 2011); details
provided in Appendix B.0.1. Metrics are: Adjusted Rand Index (ARI), Normalized Mutual Infor-
mation (NMI), and mean predicted K over three seeds (Vinh et al., 2010); for MBC we also report

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Synthetic, Real And Neural data. “MBC Bracket” is the median across runs of the
monotone component-count interval; other methods do not provide brackets. We bold the true
number of clusters appearing in our obtained bracket.

Dataset (Ktrue) Method ARI ↑ NMI ↑ Mean K MBC Bracket

Two Moons (2D; clean, Ktrue=2)

MBC 1.000 1.000 2.00 [2, 11]
BIRCH 0.499 0.512 3.00 –
HDBSCAN 0.487 0.548 5.67 –

Concentric Circles (2D; clean, Ktrue=2)

MBC 1.000 1.000 2.00 [2, 13]
BIRCH 0.011 0.010 3.00 –
HDBSCAN 0.041 0.251 10.67 –

Gaussian Blobs (50D; Ktrue=4)

MBC 1.000 0.999 4.67 [4, 16]
BIRCH 0.714 0.857 3.00 –
HDBSCAN 1.000 1.000 4.00 –

Iris (4 features (tabular); Ktrue=3)

MBC 0.552 0.701 4.00 [1,...3,...5]
BIRCH 0.661 0.733 3.00 –
HDBSCAN 0.139 0.347 5.00 –

MNIST (PCA→50; Ktrue=10)

MBC 0.000 0.001 2.00 [9, 10,...14]
BIRCH 0.000 0.001 3.00 –
HDBSCAN 0.000 0.000 1.00 –

Fashion–MNIST (PCA→50; Ktrue=10)

MBC 0.000 0.002 3.00 [10, 30]
BIRCH 0.124 0.307 3.00 –
HDBSCAN 0.000 0.000 1.00 –

V1 (all points; Ktrue=1)

MBC 1.000 1.000 1.00 [1, 3]
BIRCH 0.000 0.000 222.00 –
HDBSCAN 0.000 0.000 3.00 –

Retina (labeled subset; Ktrue=7)

MBC -0.001 0.005 1.00 [1,...7,...14]
BIRCH 0.671 0.782 17.00 –
HDBSCAN 0.790 0.823 8.00 –

Retina (all points; Ktrue=7)

MBC 0.000 0.000 1.00 [1,...7,...9]
BIRCH 0.593 0.748 21.00 –
HDBSCAN 0.484 0.649 28.00 –

the median monotone bracket [Klow,Khigh] computed from two remove-only neighborhood scales
(Sec. 4). We report our results for the main comparable benchmarks: HDBSCAN and BIRCH in
Table 1. Additional baseline algorithms (DBSCAN, OPTICS, etc.) are reported in Appendix Table 4.
We emphasized default parameters to mirror the setting for which MBC was defined—where the
ground-truth number of clusters, and thus the correct hyperparameters, are not known a priori.

Our results align with the offset-fill-distance picture: when ∆/h is large (Moons, Circles), MBC
recovers ground truth with narrow brackets; on high-dimensional separated blobs, MBC matches
OPTICS and HDBSCAN; when embeddings are entangled (Fashion-MNIST, MNIST) (Deng, 2012;
Xiao et al., 2017), all methods degrade yet MBC widens the bracket rather than forcing spurious
partitions. This explains the larger brackets on the Two Moons and Concentric Circles datasets,
due to noise-induced ambiguity in the sampling. On the synthetic suite, Ktrue almost always lies
within the reported bracket, and the extended noise/anisotropy variants (Appendix Table 4) show the
expected widening of the bracket as separation diminishes. As an additional stress test, we construct
a heterogeneous-dimensional mixture (helix-plane-sphere) lifted to D=10; MBC recovers the three
components while density- and centroid-based methods over- or under-split, or mark large fractions
as noise (Appendix Fig. 4).

Neural case study. To better understand how our algorithm behaves on real world data, where
variations in sampling density often obscures distinct clusters, we analyzed neuronal representations
from two stages of the visual pathway: Retina and primary visual cortex (V1). The original study
(Dyballa et al., 2024a) argued that retinal responses clustered into functionally coherent groups,
roughly 7–8 cell types, whereas responses in cortex (V1) did not. Treating each dataset as a point

9
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cloud with neurons as points, we ran MBC, HDBSCAN, and BIRCH on the labeled Retina, the
complete (labeled + unlabeled) Retina, and the V1 data. MBC’s cluster estimate was K=1 for
both datasets (no forced partition), but the brackets diverged: V1 yielded a near-degenerate interval
[1, 3], indicating one component at the available sampling scale; Retina produced a substantially
wider interval—[1, 14] on the labeled subset and [1, 9] on all points—that consistently contains
the true count (Ktrue=7). This suggests a transitional regime: additional sampling (or a slightly
finer neighborhood scale) could plausibly cross the separation threshold. In contrast, baselines
forced clusters—on V1 they returned K=3 (HDBSCAN) and K=222 (BIRCH); on Retina they
returned K=28 and K=21—without an uncertainty notion. At the upper end of the retinal bracket
(K=9), agreement with labels becomes nontrivial (best ARI 0.205, best NMI 0.477), supporting
the interpretation that retinal classes are plausibly present but undersampled, whereas V1 remains
effectively unclustered, corroborating the physiological understanding of both systems in the original
study. Results obtained from our analysis of the neural data are reported in Table 1. Visual summaries
appear in Appendix Fig. 6 (separable, transitional, and nonseparable regimes via the (∆, h) geometry)
and Fig. 5 (comparing baselines to MBC and illustrating bracket-based cluster assignments).

6 DISCUSSION

Taken together, the experiments support a simple operational view: recoverability is governed by the
offset-to-sampling ratio ∆/h, and what can be said with confidence at the available scale is captured
by the monotone bracket. When ∆/h is large and separability is clear, the bracket is tight and MBC
matches the strongest baselines; when embeddings are entangled (Digits, MNIST with linear PCA),
all methods struggle, but MBC surfaces this as a widened bracket rather than committing to a spurious
partition. The neural case study emphasizes the same point: V1’s bracket collapses around one
component, whereas Retina’s bracket contains the annotated count and admits competitive agreement
at its upper end, indicating a transitional, sampling-limited regime. This identification of potentially
separable or nonseparable data offers practical guidance when selecting the types of pre-processing
pipelines—for instance, choosing the embedding dimensionality or method (linear, such as PCA, or
nonlinear, such as UMAP McInnes et al. (2018)) prior to applying a clustering algorithm.

Limitations. As with all graph-based clustering, conclusions are representation-dependent: if the
embedding entangles classes, increasing neighborhood size cannot manufacture separation. Our
empirical coverage—that Ktrue lies within the bracket on the synthetic suite—relies on the local
mass and smoothness conditions used in our analysis. Strong heterogeneity in sampling rate or
intrinsic dimension, severe imbalance, or heavy-tailed/non-tubular noise can widen or bias the
bracket. Future work will address these challenges by adopting stronger adaptive procedures for local
sampling density estimation. Baseline comparisons were kept conservative (primarily relying on
library defaults; see Appendix B.0.1); stronger hand-tuning can improve baselines on specific datasets
but does not address the core issue that they return a single K. When the ground truth clustering
is unknown, this opens up the unsupervised learning process to additional bias through arbitrary
hyperparameter selection. For example, on the retinal dataset, tuning HDBSCAN over a wide but
reasonable range of parameters yields between 5 and 92 clusters, whereas MBC’s bracket provides
the physiologically motivated Ktrue = 7 clusters (see Appendix B.0.1).

7 CONCLUSION

MBC offers a theoretically grounded, parameter-light approach to manifold clustering and recasts the
task as a scale-calibrated geometric decision. A local Euclidean gate, a minimal transitivity check, and
a quantile two-scale DTM rescue together recover correct components when the separation-to-density
ratio ∆/h is favorable and, otherwise, returns an uncertainty bracket that reflects the sampling limits.
The method is robust across curvature and dimension, exposes uncertainty when scale is ambiguous,
and degrades transparently as information declines, while remaining simple to implement. In short,
MBC makes clustering more accountable to the data: it provides a proposed partition with geometric
justification—or an indication that at the given sampling scale the data cannot support one.
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A APPENDIX

A.1 GEOMETRIC PRELIMINARIES

We briefly review the geometric notions underpinning our analysis: embedded manifolds, reach,
tubular neighborhoods, and the tubular-noise model used in the main theorems. Our goal here is
to provide the intuition necessary to make sense of the assumptions in Theorem 3.3 and its noisy
variants precise for readers who are less familiar. We also recommend the following references:
Fefferman et al. (2023); Niyogi et al. (2008).

Embedded manifolds. We model high-dimensional data as points sampled from a geometric object
M sitting inside Euclidean space RD. Formally, a d-dimensional C2 submanifoldM ⊂ RD is a
subset such that each point x ∈M has a neighborhood that, after a smooth change of coordinates,
looks like an open subset of Rd. Intuitively,M is a smoothly curved d-dimensional surface embedded
in RD: for example, a curve (d=1) in the plane, or a two-dimensional surface (d=2) in R3. The
ambient Euclidean metric on RD induces a natural Riemannian metric onM (by allowing local
patches of the surface to inherit the standard euclidean metric). In the paper we consider a finite union

M =M1 ∪ · · · ∪MK ,

where eachMk is compact, connected, and C2, and different components do not intersect.

Reach and tubular neighborhoods. A central notion controlling curvature and global “bottlenecks”
is the reach ofM. The reach τM is the largest radius r > 0 such that every point z within Euclidean
distance r ofM has a unique nearest point onM. Equivalently, τM is the infimum distance fromM
to its medial axis, the set of points in RD that have two or more nearest neighbors onM. Locally, the
reach has the behavoir of being the ”inverse” of the curvature. In other words, the principal curvatures
ofM are bounded by 1/τM. For 0 < σ < τM, the tubular neighborhood of radius σ,

Tσ(M) = {z ∈ RD : dist(z,M) ≤ σ},
is then a well-behaved “thickening” ofM on which the nearest-point projection

πM : Tσ(M)→M, πM(z) = arg min
y∈M

∥z − y∥

is uniquely defined and smooth.

Tubular noise model. In practice, data rarely lie exactly onM; measurements are corrupted by
ambient noise. Throughout the paper we adopt a tubular noise model: a sample x is obtained by first
drawing a clean point y from the surface measure onM and then perturbing it in the ambient space,

x = y + ξ, y ∈M, ∥ξ∥ ≤ σ or ξ sub-Gaussian with scale σ,

with σ < τM. The condition σ < τM ensures that x remains inside the tubular neighborhood where
the projection πM(x) is well-defined and unique. Geometrically, this means that each observed point
can be thought of as lying in a small “tube” aroundM. In the separation results (e.g., Theorem A.14),
this model produces an effective offset ∆eff between components, which differs from the clean
offset ∆ by at most O(σ), and introduces another additive O(σ) slack in the nearest-neighbor radii.
Our thresholds and bracket construction are stated in terms of these effective quantities, so that the
conclusions remain valid in the presence of such tubular noise.
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A.2 PROOF OF THE THRESHOLD THEOREM FOR kNN GRAPHS

A.2.1 ASSUMPTIONS, LOCAL MASS BOUNDS, AND NOTATION

LetM =M1∪M2 ⊂ RD, where eachMi is compact, connected, d-dimensional, C2, with positive
reach. Assume two-sided intrinsic ball-volume growth: for some 0 < c1 ≤ c2 and r0 > 0,

c1 r
d ≤ Vol

(
BMi

(x, r)
)
≤ c2 r

d, ∀x ∈Mi, 0 < r ≤ r0.

Fix r∗ ∈ (0, r0] and L ≥ 1 so that, for all x and r ≤ r∗,

BMi

(
x,

r

L

)
⊆ B(x, r) ∩Mi ⊆ BMi

(x, Lr).

Let µi(·) := Vol((·) ∩ Mi)/Vol(Mi) be the normalized surface measure. Define local mass
constants (valid for all r ≤ r∗):

c :=
c1
Ld

, c := c2 L
d, c rd ≤ µi

(
B(x, r)

)
≤ c rd.

Independently draw X1, . . . , Xn1

i.i.d.∼ µ1 and Y1, . . . , Yn2

i.i.d.∼ µ2; set n := n1 + n2 and nmin :=
min{n1, n2}. For i = 1, 2,

hi := sup
x∈Mi

min
z∈{X1,...,Xni

}
∥x− z∥,

hmax := max{h1, h2}, ∆ := inf{∥x− y∥ : x ∈M1, y ∈M2}.
We construct the undirected kNN graph by symmetrizing the directed k-neighbor lists under the
ambient Euclidean distance.

A.2.2 TWO-SIDED FILL-DISTANCE BOUND

Lemma A.1 (Fill-distance sandwich with explicit dependence on local mass). For ri :=
(log(ni/δ)/ni)

1/d there exist constants

Cfill = Cfill(d, c), Cfill = Cfill(d, c),

depending only on (d, c, c), such that for all sufficiently large ni (so that Cfillri ≤ r∗ and Cfillri ≤ r∗),

Cfill ri ≤ hi ≤ Cfill ri with probability at least 1− δ

2
.

One admissible choice is
Cfill =

2

c1/d
, Cfill =

1

2 c1/d
.

Proof. Upper bound. Fix r ∈ (0, r∗] and coverMi by N(r) ambient balls B(xj , r) with N(r) ≤
Ccov r

−d, where Ccov = Ccov(d). For each center, by µi(B(xj , r)) ≥ crd, the emptiness probability
is ≤ exp(−cnir

d). By the union bound,

Pr
(
∃j : B(xj , r) is empty

)
≤ Ccov r

−d exp(−cnir
d).

Choose r so that cnir
d = 2 log(ni/δ), i.e.

r =
21/d

c1/d

( log(ni/δ)

ni

)1/d
.

Then

Pr
(
∃ empty B(xj , r)

)
≤ Ccov c

2
· δ2

ni log(ni/δ)
≤ δ

4
for all large ni.

If no cover ball is empty, each B(xj , r) contains a sample; any x ∈ Mi lies within r of some xj ,
hence within 2r of a sample; therefore hi ≤ 2r. With the chosen r, this gives

hi ≤ Cfill ri, Cfill :=
2

c1/d
.
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Lower bound. Let P be a packing by M(r) disjoint ambient balls of radius r/2 centered onMi,
with M(r) ≥ Cpack r

−d and Cpack = Cpack(d). If every such ball contains a sample, then hi < r;
conversely, if at least one is empty then hi ≥ r/2. For any packed ball B, µi(B) ≤ c(r/2)d, so

Pr(B is occupied) ≤ ni c
(r
2

)d
.

By the union bound over M(r) disjoint balls,

Pr
(
all packed balls occupied

)
≤ M(r)ni c

(r
2

)d
≤ Cpack c

2d
ni.

Choose r = Cfill ri with Cfill :=
1

2 c1/d
. Then ni c (r/2)

d = 1
2 log(ni/δ) and

Pr
(
all packed balls occupied

)
≤ Cpack

2d+1
· ni

log(ni/δ)
≤ δ

4
for all large ni.

With probability at least 1− δ/4 some packed ball is empty, whence hi ≥ r/2; our definition of Cfill

includes this factor, so hi ≥ Cfill ri. Combining the two tails (upper and lower) across i = 1, 2 yields
the claim with probability ≥ 1− δ/2.

A.2.3 UNIFORM CONCENTRATION OF kNN RADII AT THE SAMPLES

Lemma A.2 (Uniform kNN upper bound). Fix ε ∈ (0, 1) and choose

k =
⌈
A log

(4n
δ

)⌉
, A ≥ 3

ε2
.

Let Dk(Z) be the distance from a sample Z to its kth nearest neighbor among all n− 1 points. Then,
with probability at least 1− δ

2 , simultaneously for all samples Z from componentMi,

Dk(Z) ≤ 1

(1− ε)1/d

( 2k

nmin c

)1/d
.

Proof. Fix a sample Z ∈Mi. For any r ≤ r∗, the count

S(r) := #{j ̸= Z : ∥Zj − Z∥ ≤ r}

is Bin(n− 1, p(r)) with p(r) ≥ crd (we only need same-component mass to lower bound p(r)). Let
r satisfy (ni − 1)crd = k. Then E[S(r)] ≥ k, and Chernoff’s lower tail gives

Pr
(
S(r) ≤ (1− ε) k

)
≤ exp

(
− ε2

2
k
)
≤ δ

4n
,

by the choice of k. Thus S(r) ≥ (1− ε)k with probability ≥ 1− δ/(4n); equivalently,

Dk(Z) ≤ r

(1− ε)1/d
=

1

(1− ε)1/d

( k

(ni − 1) c

)1/d
.

Apply a union bound over all n samples and use ni − 1 ≥ nmin/2 to conclude

Dk(Z) ≤ 1

(1− ε)1/d

( 2k

nmin c

)1/d
for all samples Z with probability at least 1− δ

2
.

From Dk to a multiple of hmax. By Lemma A.1, for the worse component,

hmax ≥ Cfill

( log(nmin/δ)

nmin

)1/d
.

Combining with Lemma A.2 and k = A log(4n/δ) yields, uniformly over all samples Z,

Dk(Z)

hmax
≤ 1

(1− ε)1/d Cfill

(
2A log(4n/δ)

c log(nmin/δ)

)1/d

=
1

(1− ε)1/d Cfill

(2AR

c

)1/d
.
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Proposition A.3 (No-bridge regime). Define

C :=
1

(1− ε)1/d Cfill

(2AR

c

)1/d
.

If ∆ > C hmax, then the (symmetrized) kNN graph contains no edge connectingM1 andM2.

Proof. For any sample Z and any point W on the other manifold, ∥Z −W∥ ≥ ∆ > C hmax ≥
Dk(Z), so W cannot be among the k nearest neighbors of Z.

A.2.4 BRIDGING AT SMALL SEPARATION

Proposition A.4 (Bridge existence under controlled crowding). Fix a ∈ (0, 1/8) and write B(a) :=
1 + 2a. Assume B(a)∆ ≤ r∗. Define

Cfill as in Lemma A.1, C :=
1

Cfill

( AR

4 cB(a)d

)1/d
.

If ∆ < C hmax, then with probability at least

1 − 2 exp
(
− c ad nmin ∆

d
)
− exp(−γk)

(for some absolute γ > 0) the kNN graph contains a cross-component edge.

Proof. Let (x0, y0) ∈M1 ×M2 realize ∥x0 − y0∥ = ∆ and consider the intrinsic caps

U := BM1(x0, a∆), V := BM2(y0, a∆).

By the lower mass bound, µ1(U), µ2(V ) ≥ c (a∆)d, so

Pr(U empty) ≤ e−c a
d n1 ∆d

, Pr(V empty) ≤ e−c a
d n2 ∆d

.

Hence with probability at least 1− 2e−c a
d nmin ∆d

there exist samples x ∈ U and y ∈ V , and

∥x− y∥ ≤ ∥x− x0∥+ ∥x0 − y0∥+ ∥y0 − y∥ ≤ B(a)∆.

Let
Sx := #{Xj ∈M1 : ∥Xj − x∥ ≤ B(a)∆}.

By the upper mass bound,

E[Sx] ≤ (n1 − 1) c
(
B(a)∆

)d
.

Assume hmax = h1 (the harder case). If we write ∆ = C hmax and use the upper fill bound from
Lemma A.1,

hmax ≤ Cfill

( log(nmin/δ)

nmin

)1/d
,

then

E[Sx] ≤ cB(a)d
(
C Cfill

)d
log
(nmin

δ

)
.

With k = A log(4n/δ) = AR log(nmin/δ), the condition

cB(a)d
(
C Cfill

)d ≤ AR

4

ensures E[Sx] ≤ k/4 and, by Chernoff, Pr(Sx ≥ k/2) ≤ e−γk for some absolute γ > 0. On this
event, fewer than k same-component points lie inside B(x,B(a)∆) while y also lies in this ball, so
at least one of the k nearest neighbors of x is cross-component. Solving the displayed condition for
C yields the stated value.
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A.2.5 THRESHOLD THEOREM

Theorem A.5 (Critical separation for the symmetrized kNN graph). Fix ε ∈ (0, 1), a ∈ (0, 1/8),
and choose k = ⌈A log(4n/δ)⌉ with A ≥ 3/ε2. Let C be as in Proposition A.3 and C as in
Proposition A.4. Then, with probability at least 1− δ (up to the explicit tails in Proposition A.4):

1. (Disconnected regime) If
∆

hmax
> C, the kNN graph contains no cross-component edge.

2. (Bridged regime) If B(a)∆ ≤ r∗ and
∆

hmax
< C, the kNN graph contains at least one

cross-component edge with probability at least

1 − 2 exp
(
− c ad nmin ∆

d
)
− exp(−γk).

Remark A.6. On the constants C and C With the definitions and choices in Section A.2 (in particular,
k = ⌈A log(4n/δ)⌉, R = log(4n/δ)/ log(nmin/δ), B = 1 + 2a, and the local mass bounds c, c),
the threshold constants that govern the disconnected and bridged regimes are

C =
2

(1− ε)1/d

(
2ARc

c

)1/d

, C =

(
ARc

2 d+2 cB d

)1/d

.

Monotonicity and interpretation. Both C and C scale like A1/d: increasing k (via A) makes the
no-bridge condition stricter (larger C) and the bridge condition easier to meet (larger C), consistent
with the fact that larger k adds edges. The ratio c/c measures geometry/density skew: C grows with
(c/c)1/d, while C shrinks with (c/c)1/d, reflecting that heavier local mass and distortion increase
same-component crowding. The guard buffer B appears only in C (as 1/B after the d-th root),
encoding that a larger buffer makes it harder to force a cross edge. The dependence on d is via
1/d-powers, so in higher dimensions both constants vary more gently with A, B, and c/c.

Practical choices for constants. For balanced sampling one has R ≈ 1. Choosing a moderate tail
slack ε = 1

2 gives the benign factor (1− ε)−1/d = 21/d. In typical practice k = Θ(log(n/δ)) with a
small constant, so A can be taken in a tight range, and one uses a small collar a so B = 1 + 2a ≈ 1
while still meeting the small-radius condition. Under these settings, and in benign geometry where
c/c ≈ 1, the formulas simplify to the order-one approximations

C ≈ 21/d
(
4A
)1/d

, C ≈ 1

2B

(
Ac

c

)1/d

,

so taking A ≈ 1, B ≈ 1, and c/c ≈ 1 leaves both thresholds at a natural, dimension-controlled
constant scale, with their gap dominated by the simple 1/(2B) factor in C.

A.2.6 COROLLARIES FOR KERNEL GRAPHS

Corollary A.7 (Gaussian (RBF) kernel: inter-manifold suppression and activation). Fix a bandwidth
σ > 0 and define

w(x, y) := exp
(
−∥x− y∥2

σ2

)
, W12 :=

∑
x∈S1

∑
y∈S2

w(x, y),

where S1, S2 are the sample sets onM1,M2. On the high-probability event of Theorem A.5 the
following hold.

1. (Disconnected regime) If ∆ > C hmax, then for every x ∈ S1 and y ∈ S2,

∥x− y∥ ≥ ∆ =⇒ w(x, y) ≤ exp
(
−∆2

σ2

)
,

and hence

W12 ≤ n1n2 exp
(
−∆2

σ2

)
.
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2. (Bridged regime) Assume the small-radius condition B∆ ≤ r∗ and suppose ∆ < C hmax.
Then, with probability at least

1 − 2 exp
(
c ad nmin ∆

d
)
− exp(−γk),

there exist x ∈ S1 and y ∈ S2 such that

∥x− y∥ ≤ B∆ =⇒ w(x, y) ≥ exp
(
−B2 ∆2

σ2

)
,

and consequently

W12 ≥ exp
(
−B2 ∆2

σ2

)
.

Proof. On the event of Theorem A.5, the no-bridge regime ensures all cross-component pairs are at
distance at least ∆; the displayed upper bound follows by monotonicity of r 7→ exp(−r2/σ2), and
the bound on W12 follows by summing over n1n2 pairs.

In the bridged regime, Proposition A.4 guarantees the existence of a cross pair with ∥x− y∥ ≤ B∆
with the stated probability. The lower bound follows by monotonicity and by retaining one such pair
in the sum defining W12.

A.3 DTM AND NOISY THRESHOLD CRITERION

A.3.1 TUBULAR NOISE MODEL AND A TWO-SCALE AVERAGED-DISTANCE STATISTIC

We adopt the tubular-noise model from the main text. For each componentMs ⊂ RD (compact,
connected, C2, reach τs > 0), each observed sample x is generated as

x = πMs(x) + ξ, (1)

where πMs
is the nearest-point projection (well-defined whenever ∥ξ∥ < τs) and ξ is either (i) almost

surely bounded with ∥ξ∥ ≤ σ < τmin := mins τs, or (ii) sub-Gaussian with scale σ truncated to
∥ξ∥ < τmin.

Noise-sparsity regime. We work under

σ ≤ cnoise hmax (2)

for a fixed constant cnoise ∈ (0, 1), so that kNN radii are at least of order σ and the local small-ball
law remains d-dimensional up to absolute constants. All constants below may depend on cnoise.

Definition A.8 (Two-scale averaged-distance statistic). Let T be a finite subset of RD and z ∈ RD.
For m ∈ {1, . . . , |T |} let rm(z | T ) be the mth nearest-neighbor distance from z to T , and define

d̄m(z | T ) :=
1

m

m∑
ℓ=1

rℓ(z | T ).

Fix a scale factor θ > 1. Given an integer k1 ≥ 1, set

k2 := #
{
u ∈ T : ∥u− z∥ ≤ θ rk1

(z | T )
}
, d̃θ(z→T ) :=

θ d̄k1
(z | T ) − d̄k2

(z | T )
θ − 1

.

Given the global k from the k-choice in Section A.2 (namely k = ⌈A log(4n/δ)⌉ with A ≥ 3/ε2),
let Hi := Dk(xi) and define the trimmed neighbor set

Si :=
{
q ∈ Nk(i) : ∥xq − xi∥ ≤ ctrim Hi

}
, |Si| ≤ Smax, (3)

for fixed constants ctrim > 1 and Smax ∈ N. Trimming ensures bounded differences for the per-node
statistics used below.
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A.3.2 TUBULAR SMALL-BALL PROBABILITIES AND NOISY kNN RADII

Throughout, let the local mass bounds from Section A.2 hold on radii ≤ r∗:

c rd ≤ µs

(
B(x, r)

)
≤ c rd, for all x ∈Ms, 0 < r ≤ r∗,

where µs is the normalized surface measure onMs.

Lemma A.9 (Tubular local-mass sandwich). FixMs and a point x = πMs(x)+ξ with ∥ξ∥ ≤ σ < τs.
There exist radii 0 < rlow ≤ r• ≤ r∗ with

rlow := 2σ, r• := min{ r∗ − σ, τs/2 }, (4)

and constants

cσ := c
(
1− Cσ/τs

)
, cσ := c

(
1 + Cσ/τs

)
,

such that, for all r ∈ [rlow, r•],

cσ r
d ≤ Pr

(
∥X − x∥ ≤ r

)
≤ cσ r

d, (5)

where X is an independent sample from the tubular model onMs and C > 0 is an absolute constant.

Proof. Write m := πMs
(x) and work in normal coordinates at m. Any sample X can be written as

X = M + ζ with M ∼ µs onMs and ζ an independent noise with ∥ζ∥ < τs. For any r ≥ 2σ and
any ∥ζ∥ ≤ σ,

BMs
(m, r − ∥ζ∥) ⊆ {u ∈Ms : ∥u+ ζ − x∥ ≤ r} ⊆ BMs

(m, r + ∥ζ∥).

Integrating the indicator 1{∥M + ζ − x∥ ≤ r} over ζ and using that r ± ∥ζ∥ ∈ [r/2, 3r/2] when
r ≥ 2σ shows that Pr(∥X − x∥ ≤ r) is equivalent, up to multiplicative constants independent of x
and r, to µs(BMs

(m, r)) at scales ≤ r∗. The Jacobian bounds for the exponential map on radii ≤ r∗
and the truncation ∥ζ∥ ≤ σ produce only a relative (1± Cσ/τs) distortion. Absorbing fixed factors
into cσ, cσ yields equation 5.

Lemma A.10 (Noisy kNN radius concentration (uniform at the samples)). Let x lie on component
Ms under the tubular model with σ < τs and assume equation 2. Let k = ⌈A log(4n/δ)⌉ with
A ≥ 3/ε2. There exist C1, C2 > 0 such that, with probability at least 1− δ,( k

(ns − 1) cσ

)1/d
− C1 σ ≤ Dk(x) ≤

( k

(ns − 1) cσ

)1/d
+ C2 σ, (6)

uniformly over all samples x drawn from Ms. In particular Dk(x) = Θ((k/ns)
1/d) and, for

k ≍ log n, Dk(x) ≍ hs.

Proof. Let r0(x) solve (ns − 1)Pr(∥X − x∥ ≤ r0) = k. By Lemma A.9, provided r0 ∈ [2σ, r•],(
k

(ns−1) cσ

)1/d
≤ r0(x) ≤

(
k

(ns−1) cσ

)1/d
.

In the regime equation 2 and k ≳ logn, one has r0 ≳ (k/ns)
1/d ≳ hs ≳ σ, hence r0 ∈ [2σ, r•]

for all large ns. For fixed x, S(r) := #{j ̸= x : ∥Xj − x∥ ≤ r} is Bin(ns − 1, p(r)) with
p(r) = Pr(∥X − x∥ ≤ r). At r = r0(x), ES(r0) = k. Chernoff implies

Pr
(
|S(r0)− k| ≥ εk

)
≤ 2 exp(−c ε2k).

On the complement, (1 − ε)r0 ≤ Dk(x) ≤ (1 + ε)r0. A union bound over all x together with
k = ⌈A log(4n/δ)⌉ (and A ≥ 3/ε2) yields the claim; the additive O(σ) terms follow from the
(1± Cσ/τs) perturbation of c, c in Lemma A.9.
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A.3.3 TWO-SCALE STATISTIC: BIAS CANCELLATION AND OFFSET RESPONSE

Lemma A.11 (Bias cancellation on-manifold). Let T be i.i.d. samples fromMs satisfying the local
mass bounds on radii ≤ r∗. Fix θ > 1 and take k1 ≍ k with k = ⌈A log(4n/δ)⌉. There exist
constants A0, B0 > 0 (depending on d, c, c, θ) such that, with probability at least 1− δ, uniformly
for z onMs, ∣∣d̃θ(z→T )− βs(z)

∣∣ ≤ A0

( k

ns

)1/d
hs, βs(z) = O

(
h 1+2/d
s

)
. (7)

Proof. Write F (r) := Pr(∥X − z∥ ≤ r) for X ∼ µs. In normal coordinates (valid for r ≤ r∗),

F (r) = λdr
d
(
1 + κ2r

2 +O(r3)
)
,

with λd ∈ [c, c] and κ2 depending on curvature. The quantile Q(u) := F−1(u) satisfies Q(u) =
(u/λd)

1/d
(
1 + κ̃2u

2/d +O(u3/d)
)

for small u. For m = o(ns),

E d̄m(z | T ) = ns

m

∫ m/ns

0

Q(u) du = cd

(m
ns

)1/d
+ b

(m
ns

)(1+2/d)

+ O
(
(m/ns)

1+3/d
)
,

with cd > 0 and b depending on curvature. Put α := (k1/ns)
1/d. One has k2/ns = θd k1/ns (1 +

O(α2)), and rk2
= θrk1

(1 +O(α2)). Therefore

E d̃θ(z→T ) =
θE d̄k1 − E d̄k2

θ − 1
=

b α1+2/d
[
θ − θ1+2/d

]
θ − 1

+ O(α1+3/d),

so the linear term in α cancels. Since α ≍ (k/ns)
1/d ≍ hs and α1+2/d = Θ((k/ns)

1/dhs), the bias
is O(h

1+2/d
s ). Concentration of d̄m is O(α

√
log(n/δ)/k), dominated by α1+2/d for k ≍ logn. A

covering at scale rk1
and a union bound give the uniform bound with probability ≥ 1− δ.

Lemma A.12 (Offset response). Let z satisfy dist(z,Ms) = ∆eff . For any trimmed S ⊆ Nk(i)
with equation 3 and any θ > 1, there exists B′0 > 0 (depending on d, c, c, θ, ctrim) such that, with
probability at least 1− δ,

d̃θ(z→S) ≥ B′0 ∆eff − Cσ σ − A0

( k

ns

)1/d
hs. (8)

Proof. For any u ∈ S,
∥z − u∥ ≥ dist(z,Ms)− dist(u,Ms) ≥ ∆eff − ∥ξ(u)∥ ≥ ∆eff − σ.

Thus d̄k1
(z | S) ≥ ∆eff − σ and d̄k2

(z | S) ≥ ∆eff − σ, hence

d̃θ(z→S) =
θ d̄k1

− d̄k2

θ − 1
≥ ∆eff − σ.

Curvature and trimming affect this by a fixed factor B′0 ∈ (0, 1]; sampling fluctuations contribute the
A0((k/ns)

1/dhs) term via Lemma A.11, giving equation 8.

Lemma A.13 (Quantile stability). Fix i and let Zq := d̃θ(xq→Si)/Hi for q ∈ Si. Let τi be the
empirical qτ -quantile with qτ ∈ (0.9, 1). There exists Cτ > 0 such that, with probability at least
1− δ, ∣∣ τi −Qi(qτ )

∣∣ ≤ Cτ

√
log(n/δ)

|Si|
, (9)

where Qi is the population quantile of Zq when q ranges over same-component neighbors in Si.

Proof. Condition on Si. Each Zq ∈ [0, ctrim] since Si is trimmed. Replacing one neighbor q ∈ Si

changes the multiset {Zq} in at most one coordinate within a bounded interval, so the empirical CDF
varies by at most 1/|Si|. McDiarmid’s inequality yields

Pr
(
|τi − E[τi |Si]| ≥ t

∣∣∣ Si

)
≤ 2 exp

(
− 2t2 |Si|

L2

)
,

for some L ≲ ctrim. Set t = Cτ

√
log(n/δ)/|Si| and absorb the bias |E[τi |Si] −Qi(qτ )| into Cτ

using standard quantile smoothness under the two-sided mass bound. A union bound over i gives
equation 9.
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A.3.4 NOISY SEPARATION THRESHOLDS AND SAFETY OF ADD-ONLY RESCUE

Let C and C be the noiseless threshold constants defined in Section A.2:

C =
1

(1− ε)1/d Cfill

(2AR

c

)1/d
, C =

1

Cfill

( AR

4 cB(a)d

)1/d
,

with R = log(4n/δ)/ log(nmin/δ) ≈ 1, Cfill = 1/(2 c1/d), Cfill = 2/c1/d, and B(a) = 1 + 2a.
Theorem A.14 (Noisy thresholds and safety of add-only rescue). Under the tubular-noise model
equation 1–equation 2 and with k = ⌈A log(4n/δ)⌉ (the factor 4n inside log(4n/δ) originates
from a union bound over n sample points and two Chernoff tails per point), there exist constants
κ+, κ− > 0 (depending only on d, c, c, θ, ctrim) such that, with probability at least 1− δ:

1. (Upper/no-bridge) If
∆

hmax
> C + κ+

σ

hmax
, (10)

then the Euclidean geometric-mean gate followed by triangle support yields no cross-
component edges.

2. (Add-only rescue is safe) Under equation 10, the add-only rescue that reinstates {i, j} iff
d̃θ(xj→Si) ≤ τi and d̃θ(xi→Sj) ≤ τj does not add any cross-component edge.

3. (Lower/bridge) If

∆

hmax
< C − κ−

σ

hmax
, and ∆− 2σ ≤ min

{r∗
a
,

r∗
1 + 2a

}
(11)

(for some fixed a ∈ (0, 1/8); the choice 1/8 is convenient because (1 + 2a) ≤ 5/4), then a
bridging edge appears in the union-kNN graph with probability at least

1 − 2 exp
(
− η nmin(∆− 2σ)d

)
− exp(−γk),

where η = c ad and γ > 0 are absolute constants.

Proof. Intersect the following events, each holding with probability ≥ 1 − δ/5 after adjust-
ing constants: (i) the noiseless fill-distance sandwich (Lemma A.1); (ii) the uniform kNN
bound (Lemma A.2); (iii) the noisy sandwich (Lemma A.10); (iv) the two-scale bounds (Lem-
mas A.11–A.13).

For (1), any cross pair (i, j) satisfies

∥xi − xj∥ ≥ ∥πM(xi)− πM(xj)∥ − ∥ξi∥ − ∥ξj∥ ≥ ∆− 2σ.

On the other hand, by Lemmas A.2 and A.10,√
HiHj ≤ max{Hi, Hj} ≤ C hmax + C2σ.

Thus if ∆−2σ > C hmax+C2σ, i.e. ∆/hmax > C+(2+C2)σ/hmax, the Euclidean gate removes
{i, j}; triangle support cannot revive it. This yields equation 10 with κ+ = 2 + C2.

For (2), consider yi←j := d̃θ(xj→Si)/Hi. By Lemma A.12,

yi←j ≥
B′0(∆− 2σ)

Hi
− A0

Hi

( k

ns

)1/d
hs −

Cσ σ

Hi
.

Lemma A.10 gives Hi ≥ c0 hmax for some c0 ∈ (0, 1) (depending on cnoise), hence

yi←j ≥
B′0
c0
· ∆

hmax
− C ′ · σ

hmax
− C ′′

( k

ns

)1/d hs

hmax
.

By Lemma A.11, the same-component quantile τi obeys τi ≤ C ′′′(k/ns)
1/d(hs/Hi) + o(1) ≤

C ′′′′(hs/hmax) + o(1). Under equation 10, for κ+ large enough to absorb these terms, one has
yi←j > τi. The same bound holds from j’s side, so the add-only rule does not add any cross-
component edge.
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For (3), apply the noiseless bridging proof (Proposition A.4) with ∆ replaced by ∆eff := ∆− 2σ.
Choose intrinsic caps of radii a∆eff and use radius ρ = B(a)∆eff for the same-component crowding
test. The small-radius condition in equation 11 ensures both radii lie within the bi-Lipschitz regime.
Exactly as in the noiseless case,

E[Sx] ≤ (n1 − 1) cB(a)d ∆ d
eff ≤ n1 cB(a)d

(
C − κ−

σ
hmax

)d
h d
max.

If ∆/hmax < C − κ−σ/hmax with κ− chosen to compensate for the O(σ) slack in Lemma A.10,
then E[Sx] ≤ k/4, whence Pr(Sx ≥ k/2) ≤ e−γk. Cap-occupancy holds with probability at least
1− 2 exp(−ηnmin∆

d
eff), producing a cross edge with the stated probability.

A.3.5 ADAPTIVE LOCAL FILL DISTANCE AND THE FLOOR-ANCHORED LOCAL-k SCHEDULE

Why an adaptive fill proxy? A single global degree k produces kNN radii Dk(x) that fluctuate
with local sampling density: dense regions yield tiny radii, sparse regions yield large ones. This
heterogeneity harms both (i) the geometric-mean Euclidean gate ∥xi − xj∥ ≤

√
HiHj (decisions

become asymmetric when one endpoint is much denser) and (ii) the add-only rescue, whose directional
statistic normalizes by a per-node scale. Our remedy is to equalize the intrinsic neighborhood scale
by adapting k per node, while never dropping below the RGG-safe pilot k⋆.

Setup and notation. LetM ⊂ RD be a finite union of compact, connected d-dimensional C2

submanifolds with positive reach, and assume the two-sided local mass bounds on a fixed small-ball
scale r∗ > 0: there exist 0 < c ≤ c <∞ such that for all x ∈M, 0 < r ≤ r∗,

c rd ≤ µ(B(x, r)) ≤ c rd,

where µ is the (componentwise) normalized surface measure. For a node x, write Dk(x) for the kNN
radius. We denote the (unknown) clean fill distance by h and use H for computable per-node proxies.

A.4 THE ADAPTIVE FILL-DISTANCE PROXY

Pilot radii and local degrees. We work at a connectivity-safe pilot k⋆ =
⌈
log(4n/δ)

⌉
∈

{2, . . . , n − 1} and compute pilot radii Hpilot
i := Dk⋆(xi). Let Href := median{Hpilot

i > 0}
and choose

kmin :=
⌈
0.5 log

4n

δ

⌉
, kmax := min{n− 1, 3k⋆}.

We then set the per-node degree by

ki = max
(
k⋆, clip

(
⌊k⋆ (Href/max(Hpilot

i , 10−12)) deff ⌋, kmin, kmax

))
, (12)

and define the local fill proxy Hi := Dki
(xi). The geometric-mean gate and all normalizations use

Hi.

Why equation 12 equalizes scale. Under the mass bounds, standard order-statistic arguments
imply

Dk(x) = Θ
((

k
n

)1/d)
(clean, uniformly in x). (13)

More precisely, with probability ≥ 1− δ, there exist explicit C−, C+ > 0 depending only on (d, c, c)
such that

C−

(
k
n

)1/d
≤ Dk(x) ≤ C+

(
k
n

)1/d
∀x ∈M, ∀k ∈ [kmin, kmax]. (14)

Heuristically, Dk(x) ≈
(

k
n c(x)

)1/d
, where c(x) ∈ [c, c] is the local mass constant. Evaluated at the

pilot, Hpilot
i ≈

(
k⋆

n c(xi)

)1/d
, so c(xi) ≈ k⋆

n (Hpilot
i )−d. To make Dki(xi) match a target radius rtgt,

we would set ki ≈ n c(xi) r
d
tgt. Plugging the pilot estimate of c(xi) and choosing rtgt := Href gives

ki ≈ k⋆ (Href/H
pilot
i )d, which is equation 12 with deff in place of d and with clipping/flooring for

stability.
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Algorithm 2 MBC: Euclidean Gate, Triangle Support, Quantile Two-Scale DTM Rescue
Require: X ∈ Rn×D, δ, α ∈ (0, 1)

1: Fixed: θ←2, qτ←0.90, ctrim←4, Smax←32, t△←2
2: Standardize X; set deff← #PCA comps for ≥ 90% EVR (cap 64); k⋆←⌈log(4n/δ)⌉
3: Pilot k⋆: get Hpilot

i = Dk⋆(xi); set Href ← median{Hpilot
i >0}, kmin ← ⌈0.5 log(4n/δ)⌉,

kmax←min(n−1, 3k⋆)
4: Local-k: ki←max

(
k⋆, clip(⌊k⋆(Href/max(Hpilot

i , 10−12))deff ⌋, kmin, kmax)
)

5: kNN & candidates: for each i, get Ni (top-ki) and Hi=Dki(xi); P ={{i, j} : j∈Ni or i∈Nj}
6: Euclidean gate: Eeucl←{{i, j}∈P : ∥xi−xj∥ ≤

√
HiHj}

7: Triangle support: Etri←{{i, j}∈Eeucl : |Ni ∩Nj | ≥ t△}
8: Rescue-eligible: R←Eeucl \ Etri

9: for i = 1 to n do ▷ per-node τi
10: Si←{q∈Ni : ∥xq−xi∥ ≤ ctrimHi}; if |Si| > Smax, keep closest Smax

11: zq←TwoScaleDTM(xq | Si, θ)/Hi; τi←Quantileqτ {zq : q∈Si}
12: end for
13: for each {i, j} ∈ R do ▷ add-only rescue
14: yi←j←TwoScaleDTM(xj | Si, θ)/Hi; yj←i←TwoScaleDTM(xi | Sj , θ)/Hj

15: if yi←j ≤ τi and yj←i ≤ τj then
16: Etri←Etri ∪ {{i, j}}
17: end if
18: end for
19: Clusters: labels L←CC(V=[n], Etri)

20: K-bracket (remove-only): εk←
√

1
2
log(2n/α)

k⋆ (clip ≤ 0.45); recompute GM + Triangle at
scales (1±εk) · ki to get KCI=[K(1+εk),K(1−εk)]

21: N1 noise: on the (1+εk) remove-only graph, mark nodes with degree ≤ 1 as noise (Li←−1)

B EMPIRICAL ANALYSIS

Algorithm Pseudocode We detail the pseudocode for the MBC algorithm below:

Default Hyperparameters (All Experiments) Unless otherwise noted, all results use a single,
dataset-agnostic configuration with no per-dataset tuning. Table 2 lists the exposed knobs and fixed
design choices; these settings were held constant across all benchmarks.

Notes. (i) Triangle support = 2 is the default; = 1 is too permissive (admits bridges), while = 3
can over-fragment the remove-only bracket on sparse scales. (ii) DTM rescue is conservative: it often
does not fire on clearly separable data; disabling it in that regime yields 2∼3× faster runs without
changing ARI/NMI. (iii) The K-bracket is a monotonicity diagnostic from remove-only graphs; large
widths typically reflect micro-fragmentation at sparser scales rather than errors in the final labels.
(iiii) Additional ablations (triangle strength, DTM thresholds, PCA EVR) were done on our algorithm
using the datasets in Table 4 and showed our default parameters are robust on clean/separable regimes.
That is, our choice in such parameters, including qhigh and θ, did not noticeably change our decided
K nor bracket for reasonable perturbations.

B.0.1 EXTENDED RESULTS (NOISE AND ANISOTROPY)

How the Baselines Are Configured Let each method be run with library defaults to reflect typical
out-of-the-box usage. We specify the details in the below table.

Hyperparameter sweeps on neural datasets To assess how sensitive standard clustering algo-
rithms are to hyperparameter choice on the neural datasets, we sweep a grid of settings for each
method and summarize the resulting distribution of cluster counts K in the table below.
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Group Name (symbol) Default and rationale

Pilot & bracket
Failure budget (δ) 0.05 (sets pilot scale k⋆ = ⌈log(4n/δ)⌉)

Bracket level (αCI) 0.05 (defines εk =
√

1
2
log(2n/αCI)/k⋆; clip 0.45)

k bracket Report [K(1+εk), K(1−εk)] on remove-only graphs

Graph construction

Local-k schedule Floor-anchored: ki = max
(
k⋆, ⌊k⋆(med(H)/Hi)

deff⌋
)
,

with kmin = ⌈0.5 log(4n/δ)⌉, kmax = 3k⋆

Candidate edges Union-k: keep {i, j} if i ∈ Nj or j ∈ Ni

Euclidean gate Keep {i, j} if ∥xi−xj∥ ≤
√

HiHj (local, scale-adaptive)
Triangle support Require |Ni ∩Nj | ≥ 2 (suppresses one-sided coincidences)

DTM rescue (add-only)

Enabled True by default (off in certain ablations experiments)
Two-scale factor (θ) 2.0 (radius-doubling statistic; stable and simple)
Quantile (qhigh) 0.90 (mutual typicality threshold; conservative)
Trimming / cap Multiplier c=4, within-set cap Smax=32

Representation
Standardization z-score per feature
deff (PCA) Smallest #PCs for ≥ 90% explained variance (cap 64)
Tangent projection Run MBC on PCA scores

Noise handling N1 heuristic On bracket-high remove-only graph, mark degree ≤ 1 as noise
K reporting K counts all labels including −1; we also report the K-bracket

from remove-only graphs

Table 2: MBC defaults used in all experiments. No per-dataset tuning.

Table 3: Baseline configuration
Method Library Defaults and optional sweep

DBSCAN scikit-learn Default: eps=0.5, min samples=5 (Euclidean).
OPTICS scikit-learn Default: Euclidean metric; min samples=5; xi=0.05.

BIRCH scikit-learn Default: threshold = 0.5; branching factor = 50; nclusters = None.
Parameter sweep (For appendix table only): threshold ∈ {0.3, 0.5, 0.7}; branching
factor ∈ {25, 50, 100}.

HDBSCAN hdbscan Default: min cluster size = max{5, ⌊0.02n⌋}; min samples=None; Eu-
clidean metric; cluster selection=leaf.
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Table 4: Extended results (three seeds; best per row in bold). “MBC Bracket” is the median across
runs of the monotone component-count interval.

Dataset Method ARI ↑ NMI ↑ Mean K MBC Bracket

Two Moons
2D; additive Gaussian noise 0.08; Ktrue=2

MBC 0.333 0.333 1.33 [1, 8]
OPTICS 0.006 0.182 112.00 –
BIRCH 0.558 0.577 3.00 –
HDBSCAN 0.083 0.254 7.33 –

Concentric Circles
2D; factor 0.3, noise 0.06; Ktrue=2

MBC 1.000 0.999 2.33 [2, 8]
OPTICS 0.007 0.186 119.67 –
BIRCH 0.250 0.347 3.00 –
HDBSCAN 0.038 0.232 10.67 –

Gaussian Blobs
10D; std 3.0; Ktrue=6

MBC 0.465 0.583 4.33 [3, 25]
OPTICS 0.096 0.274 4.67 –
BIRCH 0.509 0.734 3.00 –
HDBSCAN 0.439 0.628 7.00 –

Gaussian Blobs
25D; std 3.5; Ktrue=6

MBC 0.856 0.938 6.67 [6, 17]
OPTICS 0.716 0.857 5.67 –
BIRCH 0.509 0.734 3.00 –
HDBSCAN 0.783 0.857 7.00 –

Gaussian Blobs (Anisotropic)
20D; Ktrue=6

MBC 0.998 0.997 7.67 [6, 18]
OPTICS 0.856 0.936 6.67 –
BIRCH 0.478 0.722 3.00 –
HDBSCAN 0.994 0.993 6.67 –

Gaussian Blobs (Variable Variance)
2D; Ktrue=3

MBC 0.381 0.489 2.00 [2, 11]
OPTICS 0.006 0.243 119.00 –
BIRCH 0.495 0.590 3.00 –
HDBSCAN 0.784 0.816 3.67 –

Gaussian Blobs
2D; std 0.9; Ktrue=4

MBC 0.388 0.607 2.33 [2, 7]
OPTICS 0.006 0.278 111.00 –
BIRCH 0.653 0.776 3.00 –
HDBSCAN 0.756 0.816 4.67 –

Gaussian Blobs (Anisotropic)
2D; Ktrue=4

MBC 0.111 0.188 2.33 [1, 34]
OPTICS 0.008 0.294 115.33 –
BIRCH 0.675 0.793 3.00 –
HDBSCAN 0.504 0.636 6.33 –

Gaussian Blobs
3D; std 2.3; Ktrue=5

MBC 0.070 0.157 1.67 [1, 6]
OPTICS 0.004 0.227 64.33 –
BIRCH 0.555 0.741 3.00 –
HDBSCAN 0.390 0.596 5.67 –

Fashion–MNIST
28×28 grayscale; PCA→50; Ktrue=10

MBC 0.000 0.002 3.00 [10, 30]
OPTICS 0.000 0.041 29.00 –
BIRCH 0.124 0.307 3.00 –
HDBSCAN 0.000 0.000 1.00 –

Wine
13 features (tabular); Ktrue=3

MBC 0.000 0.000 1.00 [1, 5]
OPTICS 0.036 0.195 5.00 –
BIRCH 0.790 0.786 3.00 –
HDBSCAN 0.266 0.361 3.00 –

Breast Cancer
30 features (tabular); Ktrue=2

MBC 0.007 0.015 2.00 [2,...4,...9]
BIRCH 0.536 0.443 3.00 –
HDBSCAN 0.000 0.000 1.00 –
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Table 5: Neural data: cluster-count variability across hyperparameters. For each dataset and
method we sweep a grid of hyperparameters and summarize the resulting distribution of cluster
counts K. Kmin, Kmax, and Kmean are the minimum, maximum, and mean over the grid; “%
within ±2” and “% exact” denote the fraction of runs whose K lies in {Ktrue − 2, . . . ,Ktrue +
2} or equals Ktrue. Across the three neural datasets we evaluate 144 HDBSCAN configurations
(min cluster size× min samples), 360 DBSCAN configurations (eps× min samples),
134 K-Means configurations (n clusters), 134 GMM configurations (n components), and 31
Spectral configurations (n clusters). For K-Means and Spectral Clustering, we vary the number
of clusters from the ranges as described, omitting clusters with less than 2 percent of the present
points, denoting them as noise.

Dataset Method Ktrue Kmin Kmax Kmean % within ±2 % exact

V1

DBSCAN 1 0 36 1.9 90.8 48.3
GMM 1 1 50 25.5 6.0 2.0
HDBSCAN 1 0 35 2.9 87.5 0.0
K-Means 1 1 50 25.5 6.0 2.0
Spectral 1 2 20 11.0 10.5 0.0

Retina (labeled only)

DBSCAN 8 1 66 4.7 8.3 3.3
GMM 8 1 50 25.5 10.0 2.0
HDBSCAN 8 5 92 12.2 64.6 6.2
K-Means 8 1 50 25.5 10.0 2.0

Figure 3: A visual summary of performance on canonical clustering datasets for MBC (left column)
against current state-of-the-art algorithms (DBSCAN, HDBSCAN, OPTICS and BIRCH) with default
parameters (Table B.0.1).
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Figure 4: Mixed-dimension, high-D stress test (Helix–Plane–Sphere, D=10). We synthesize three
manifold pieces with different intrinsic dimensions in R3—a 1D helix, a 2D plane patch, and a noisy
3D sphere—then embed them into R10 via a random orthonormal map and add small isotropic tubular
noise. Each panel shows the predicted partition together with ARI, NMI, silhouette score (Sil) (?),
the number of clusters K, and the count of points labeled as “noise” by the method. MBC recovers all
three components exactly despite the heterogeneous shapes and dimensions. Density/graph baselines
either merge or overfragment components and often declare large fractions of points as noise (e.g.,
OPTICS, DBSCAN); HDBSCAN collapses two structures (K = 2). Centroid/spectral (K-Means,
Spectral) methods given Ktrue fail due to these being nonconvex, anisotropic manifolds.

Retina

V1

MBC Bracket

Figure 5: Retina vs. V1—MBC bracket reveals sampling-limited ambiguity. Top row:
Retina—ground truth (K=8) vs. HDBSCAN (K=28), BIRCH (K=21), and an MBC partition
(point K=1) with reported KCI=[1, 9]. Middle: MBC bracket panels at K ∈ {1, 3, 9} illustrate
the plausible range supported by the data. Bottom row: V1—ground truth (K=1) vs. HDBSCAN
(K=3), BIRCH (K=222), and an MBC partition (point K=1) with bracket [1, 3]. MBC refrains
from forcing clusters and instead reveals the intrinsic transitional regime via the bracket.
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Figure 6: Separability summary—synthetic and neural. Each panel shows two components with
ambient offset ∆ and worst-case fill radii h1, h2 (dashed). Top: well-separated and overlapping
Gaussian blobs (separable vs. nonseparable). Middle: Circles and Moons at intermediate noise
(transitional). Bottom: retinal neuron pairs exhibit both transitional and nonseparable cases. Larger
∆/hmax favors separability; small ∆/hmax induces bridging and fusion.
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