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Abstract

In real-world scenarios, most of the data ob-001
tained from the information retrieval (IR) sys-002
tem is unstructured. Converting natural lan-003
guage sentences into structured Knowledge004
Graphs (KGs) remains a critical challenge. We005
identified three limitations with respect to ex-006
isting KG construction methods: (1) There007
could be a large amount of noise in real-world008
documents, which could result in extracting009
messy information. (2) Naive LLMs usually ex-010
tract inaccurate knowledge from some domain-011
specific documents. (3) Hallucination phe-012
nomenon cannot be overlooked when directly013
using LLMs to construct KGs. In this paper,014
we propose GraphJudge, a KG construction015
framework to address the aforementioned chal-016
lenges. In this framework, we designed an017
entity-centric strategy to eliminate the noise in-018
formation in the documents. And we fine-tuned019
a LLM as a graph judge to finally enhance the020
quality of generated KGs. Experiments con-021
ducted on two general and one domain-specific022
text-graph pair datasets demonstrate state-of-023
the-art performance against various baseline024
methods with strong generalization abilities.025

1 Introduction026

The transition from non-structured text to struc-027

tured Knowledge Graphs (KGs) is a pivotal step028

in the evolution of data management and informa-029

tion retrieval systems. The task of automatic KG030

construction aims to develop a structured represen-031

tation of knowledge from various data sources with-032

out the need for manual intervention. KGs usually033

serve as the backbone of numerous data science034

applications, including GraphRAG systems (Edge035

et al., 2024) (Peng et al., 2024) and recommen-036

dation systems (Wang et al., 2019) (Jiang et al.,037

2024). Exploring a way to construct high-quality038

KGs from unstructured data is crucial for different039

downstream applications based on KG (Ge et al.,040

2021) (Huang et al., 2024) (Wei et al., 2024) (Rab- 041

bani et al., 2023). 042

Recently, Large Language Models (LLMs) have 043

demonstrated significant generalization capabili- 044

ties in various Natural Language Processing (NLP) 045

tasks (Pan et al., 2024) and KG related tasks, such 046

as text generation (Li et al., 2024), KG Completion 047

(KGC) (Yao et al., 2023) and Open Information 048

Extraction (OpenIE) (Angeli et al., 2015) (Dagde- 049

len et al., 2024). Consequently, there are many 050

works that utilize LLMs to construct KGs from 051

unstructured natural language documents. The in- 052

corporation of LLMs can address the issue of gener- 053

alization in open-domain applications (Carta et al., 054

2023a). With its robust zero-shot generation ca- 055

pability, there is no need for us to gather a large 056

volume of annotated data for tasks such as named 057

entity recognition (NER), entity extraction, or rela- 058

tion extraction. 059

Although recent LLM-based methods (Mo et al., 060

2025) (Han et al., 2023) (Lairgi et al., 2024) have 061

gained some success in the KG construction task, 062

we find that they may still face three challenges: 063

(1) Noise Information. Real-world documents 064

are not only voluminous but also rife with noise, 065

which poses a significant challenge for LLMs ex- 066

tracting valuable structured information. The sheer 067

volume of data can lead to the extraction of ex- 068

cessive and irrelevant information, overshadowing 069

the critical insights that LLMs are meant to un- 070

cover (Liu et al., 2024b) (Shi et al., 2023a). For ex- 071

ample, as shown in Figure 1, the triple <Protein X, 072

is on, a 50% Discount>is incorrectly constructed 073

due to the irrelevant advertisement with red lines 074

in the document, which is the noise information 075

that makes the LLM incorrectly believed that the 076

Protein X is on sale with discounts. 077

(2) Domain-Specific Knowledge. Naive LLMs 078

often generate inaccurate triples with domain- 079

specific documents, which require a deep un- 080

derstanding of specialized terminology and con- 081
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Figure 1: An demonstration of the challenges for constructing KGs with LLMs. The original document shown in
the left part, while the constructed KG with some failure cases is displayed on the right side. The triple highlighted
in red is wrongly formulated due to the presence of noisy information, the one in blue lacks domain knowledge, and
the green-highlighted triple is a result of hallucinations by LLMs.

text (Zhong et al., 2023) (Zhu et al., 2024). And082

this kind of error is hard to be observed by naive083

LLMs. For example, in Figure 1, the triple <Pro-084

tein X, cured, Patient>is inaccurately extracted due085

to a lack of medical domain-specific knowledge.086

While the document marks a reference with blue087

lines, note that the original text only suggests a link088

between Protein X and better patient results, not089

that it can cure patients in medical fields.090

(3) Hallucinations of LLMs. When LLMs are091

directly used to build KGs, they are prone to gen-092

erating false or distorted information, which is a093

phenomenon called hallucinations (Zhang et al.,094

2023) (Ji et al., 2023). This can lead to the incorpo-095

ration of inaccurate or fabricated facts into the KG,096

undermining the reliability of the KG. For example,097

as shown in Figure 1, the triple marked in green098

<AI Technology, replaces, Chemotherapy>is in-099

correctly generated without any reference in the100

original document, even in the entity-related text101

highlighted with a green line.102

To this end, we propose a new method called103

GraphJudge, which utilizes a fine-tuned open104

source LLM (e.g., LLaMA-2 (Touvron et al.,105

2023)) as an expert to judge the correctness of the106

triples generated by another closed-source LLM107

(e.g., GPT-4o-mini). To address the first challenge,108

we introduce the Entity-Centric Text Denoising109

(ECTD) module. We clean up the original docu-110

ments by eliminating redundant words and irrele-111

vant information not pertinent to the entities iden-112

tified by the LLM. This module also leverages the113

robust zero-shot generation capabilities of LLMs114

to ensure the recall of a sufficient number of triple115

candidates (Wei et al., 2023) (Carta et al., 2023a).116

To overcome the second challenge, we suggest the117

module of Knowledge Aware Supervised Fine- 118

Tuning (KASFT). We introduce the graph judge- 119

ment task from the triple classification task. To 120

verify the accuracy of the triples generated by the 121

closed-source LLM, we conduct supervised fine- 122

tuning (SFT) on an open-source LLM, which can 123

make it achieve over 90% accuracy on graph judge- 124

ment tasks with strong generalization abilities. To 125

settle the third challenge, the Graph Judgement 126

(GJ) module is introduced. We utilize the fine- 127

tuned open-source LLM to conduct judgement on 128

the generated triples in the first module and filter 129

out the wrong items to finally improve the quality 130

of generated KGs. 131

In summary, the main contributions made in this 132

work are as follows. 133

• Addressing challenges such as information 134

noise, domain knowledge gaps and halluci- 135

nations in LLMs represents a critical step to- 136

wards improving the quality of constructed 137

KGs with real-world documents. To the best 138

of our knowledge, we are the first to leverage 139

both open- and closed-source LLMs to tackle 140

these problems. 141

• We propose a new framework named Graph- 142

Judge to leverage their capability as a graph 143

judge and enhance the performance of LLMs 144

in KG construction tasks. We design an entity- 145

centric strategy to eliminate the irrelevant 146

and messy information in original documents. 147

And we introduce graph judgment as the SFT 148

task to enhance the quality of generated KGs. 149

• Experiments on two general and one domain- 150

specific text-graph pair datasets demonstrate 151
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that GraphJudge achieves state-of-the-art per-152

formance against various baseline methods153

with strong generalization abilities.154

2 Related Work155

In this section, we will introduce recent LLM-156

based OpenIE and KG construction methods. Some157

work(Agrawal et al., 2022) (Wei et al., 2023) has158

demonstrated that LLMs have remarkable zero-159

shot and few-shot information extraction abilities.160

However, they face difficulties when it comes to161

more intricate tasks such as relation extraction and162

event extraction (Carta et al., 2023a). To address163

that, Kumar et al. (Kumar et al., 2020) propose164

a unified approach to construct KGs from unpro-165

cessed text. They initially fine-tuned a pre-trained166

language model (PLM) for NER. Subsequently,167

they introduced a ”2-model BERT” architecture168

to extract relations. GPT-RE (Wan et al., 2023)169

introduces the in-context learning method and task-170

aware representations in demonstration retrieval171

and aims to enhance the connections between ex-172

amples and triples. PiVe (Han et al., 2023) de-173

signs a paradigm that fine-tuning a PLM as the174

verifier to predict the missing triples. With iterative175

verifications, the graph-based generative capabil-176

ity of LLMs can be improved. VicunaNER (Ji,177

2023) utilizes the open-source LLM Vicuna to do178

zero-shot or few-shot NER. Similarly, it also per-179

forms recognition to identify entities that were180

not recognized in the previous phase. Carta et181

al. (Carta et al., 2023a) develops an iterative LLM182

prompting-based pipeline to generate KGs with-183

out requiring predefined sets or external ontologies.184

iText2KG (Lairgi et al., 2024) proposes a zero-shot185

method to construct consistent KGs from docu-186

ments with LLMs. It restructures the unprocessed187

documents using a preset template and identifies188

distinct entities and connections in a semantic man-189

ner. SAC-KG (Chen et al., 2024) exploits LLMs as190

skilled automatic constructors for domain KGs and191

employs a naive LLM to predict the correctness192

of constructed triples. KGGen (Mo et al., 2025)193

clusters related entities to reduce sparsity in the194

KGs constructed by LLMs.195

3 Preliminary and Definition196

In this section, we first formulate the task of KG197

construction and introduce the definitions we may198

use throughout the paper. Then we detail the defi-199

nition of the graph judgement task.200

Definition 1: (Knowledge Graph Construc- 201

tion Task) We define the KG construction task as 202

a problem of how to extract entities E and relations 203

R from a documentD, which is also called the text- 204

to-graph generation (T2G) task. The constructed 205

KG, is defined as G = {(h, r, t)|h, t ∈ E , r ∈ R}, 206

where E is the set of entities and R is the set of 207

relations in the graph G. In other words, each KG 208

G has a corresponding original text D. Our goal is 209

to get a better KG G from a document D. 210

We also define a set of KGs SG = 211

{G1,G2, ..,GN} and a set of documents SD = 212

{D1,D2, ..,DN}. In our implementation, we have 213

a set of graph-text pairs SP = {P1,P2, ..,PN}, 214

where Pi = {(Gi,Di)|Gi ∈ SG ,Di ∈ SD}. And 215

N = |SP | is the number of graph-text pairs. 216

Definition 2: (Graph Judgement Task) We 217

introduce the task of graph judgement to classify 218

each triple in generated graphs is correct or not. 219

Here we define the KG we constructed from a 220

corresponding document as Ĝ and SĜ representing 221

the set of graphs we constructed. And T̂ in Equa- 222

tion (1) represents the triples on which we need 223

to make judgements. Our goal in the graph judge- 224

ment task is to predict the label of each triple in T̂ , 225

represented as ŷ ∈ {0, 1}|T̂ |. 226

T̂ =
⋃

Ĝ∈SĜ

{(h, r, t)|(h, r, t) ∈ Ĝ}. (1) 227

4 Methodology 228

4.1 Overview 229

As shown in Figure 2, the proposed model Graph- 230

Judge consists of three modules. In the first mod- 231

ule, which is Entity-Centric Text Denoising, we 232

extract entities and relations separately following 233

results described in (Carta et al., 2023b). In the 234

phrase of entity extraction, we generate entities 235

with the denoised document. In the phrase of re- 236

lation extraction, we generate relations with the 237

entities and the denoised document as many as pos- 238

sible. Then, in the module of Knowledge Aware 239

Supervised Fine-Tuning, we perform SFT to let 240

the LLM become an expert in graph judgement by 241

enhancing their abilities to check facts from docu- 242

ments with the triple structure and deepening their 243

comprehension of domain-specific knowledge con- 244

tained in the text-graph pairs. After that, in the final 245

module we conduct the Graph Judgement. With 246

the denoised documents as contexts, we employ 247

the fine-tuned LLM as the graph judge to ascertain 248
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Figure 2: The overall architecture of our proposed GraphJudge framework for knowledge graph construction. It
consists of three modules: (a) is the Entity-Centric Text Denoising module, (b) is the Knowledge Aware Supervised
Fine Tuning module and (c) is the Graph Judgement module. The only component requiring training across the
entire architecture is the open-source LLM utilized in the second module.

the accuracy of each triple within the graphs we249

generate. And then with the predicted results, we250

can filter out the triples that are judged as wrong.251

Finally, we can get high quality KGs.252

4.2 Entity-Centric Text Denoising253

Figure 3: Illustrations of Entity-Centric Text Denoising.

In this module, a two-phrase extraction paradigm254

is designed to extract the entities and relations re-255

spectively. In phrase 1, we extract entities first and256

then denoise the original documents with extracted257

entities. In phrase 2, we conduct relation extraction258

and then we obtain the draft KGs. And Figure 3259

is an overview of this module. In both of the two260

phrases we utilize a closed-source LLM to do the261

extraction and denoising.262

4.2.1 Text denoising and entity extraction 263

In phrase 1, we consider that a substantial portion 264

of real-world documents retrieved from informa- 265

tion retrieval systems are consist of considerable 266

noise information. And that may influence the 267

quality of relations extracted by LLM (Shi et al., 268

2023b) (Liu et al., 2024c). So we design an itera- 269

tive denoising method to remove messy informa- 270

tion from the original text. 271

Specifically, we extract entities from the origi- 272

nal document using LLM. Subsequently, we input 273

these entities and the original document into LLM 274

to generate the denoised document. In this way, we 275

can achieve two goals: (1) The noise information 276

that is not related to the topic of the document can 277

be removed. (2) The content of the documents can 278

be reorganized in an entity-centric way, which is 279

friendly to the triple extraction in the next phrase. 280

Finally, for each raw document D we will get the 281

extracted entity set Ê and the denoised document 282

D∗. Note that important information can be well 283

preserved in D∗ as verified in Appendix F. 284

4.2.2 Relation extraction 285

In phrase 2, we aim to extract relationships (triples) 286

as many as feasible with the denoised document 287

D∗ and the entity set Ê obtained in phrase 1 uti- 288

lizing LLMs as shown in Equation (2). We create 289

numerous relationships between entities to ensure 290
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a sufficient number of suitable candidate triples for291

filtering with LLM judgment in the Graph Judge-292

ment module. Then we can construct a draft KG293

G∗ for each original document D, as illustrated in294

Equation (3), whereR∗ is the draft relation set we295

generate.296

R∗ = LLM(Ê ,D∗), (2)297
298

G∗ = {(h, r, t)|h, t ∈ Ê , r ∈ R∗}. (3)299

4.3 Knowledge Aware Supervised300

Fine-Tuning301

In this module, inspired by KG-LLaMA (Yao et al.,302

2023), we propose the method of treating triples303

in the draft KG G∗ as textual sequences and model304

graph judgement task as a sequence-to-sequence305

problem. We construct instruction data from the306

training set and fine-tune an open-source LLM to307

achieve the goal of both excelling at checking facts308

from documents with the triple structure and ac-309

knowledgment of domain-specific knowledge. The310

LLM can also learn how to verify the consistency311

between the document and the extracted triples.312

Checking facts with the triple structure refers to313

the general structure of triples is often analogous314

to a grammatical subject, predicate, and object or a315

subject with a relational attribute. LLMs are antic-316

ipated to have the ability to identify their correct-317

ness from the give documents. Domain-specific318

knowledge refers to the knowledge in the docu-319

ments could be a new domain (Zhong et al., 2023),320

which is typically not part of pre-training data of321

LLMs. By employing SFT, the domain-specific322

knowledge from the documents can be incorporated323

into the LLM, thus enhances its graph judgment324

performance. And only if LLMs are fine-tuned as325

graph judges, these types of knowledge can be well326

learned, as justified in Figure 5 and Appendix G.327

Before we conduct SFT on the LLM, we con-328

struct instructions for the graph judgement task329

with text-graph pair data. Because we need to en-330

sure that the LLM not only excels at verifying cor-331

rect triples but also skilled at telling the incorrect332

triples with the paired documents as contexts, we333

employ negative sampling to construct instruction334

data for training. In detail, we first sample the posi-335

tive triple set T + from the KGs of training set as336

described in Equation (4), where SGtrain is the set337

of all KGs in the training set.338

T + =
⋃

G∈SGtrain

{(h, r, t+)|(h, r, t+) ∈ G}. (4)339

Similarly, we sample negative triple set T − from 340

the KGs in training set as described in Equation (5), 341

where E represents the entity set of the graph G. 342

(h, r, t−) is a negative triple of the graph G, where 343

t− is a negative entity. We replace the positive tail 344

entity t+ in each positive triple with a randomly 345

selected negative tail entity t−. Note that if the 346

selected negative entity is the same as or similar 347

to the original one, we will skip that because they 348

may not construct a triple reflecting a false fact. 349

T − =
⋃

G∈SGtrain

{(h, r, t−)|(h, r, t+) ∈ G, t− ∈ E\{t+}}.

(5) 350

Then we merge the positive triple set T + and 351

negative triple set T − constructed from KGs 352

SGtrain . Then we can obtain all the triples Ttrain 353

we need to construct instructions. 354

Ttrain = T + ∪ T −. (6) 355

Furthermore, we transfer the triples in Ttrain to 356

natural language sentences to construct the instruc- 357

tion data with paired documents D as contexts fol- 358

lowing the prompt templates shown in Appendix H. 359

The triple sentences either represent a real fact or a 360

fake fact. Then let the LLM make judgements with 361

these instructions. Mathematically, with tokenized 362

sentences XTtrain transferred from triples Ttrain 363

and paired documents D, and tokenized instruction 364

XI , for a sequence of length L, we compute the 365

probability of generating the target output XO as 366

follows: 367

p(XO|Xt,XI) =
L∏
i=1

pθ(xi|Xt,XI,<i,XO,<i),

(7) 368

whereXt ∈ XTtrain . And θ are the learnable param- 369

eters within the open-source LLM to be fine-tuned. 370

4.4 Graph Judgement 371

The KGs created in the first module are preliminary 372

and that is also why we call that draft KGs. In this 373

module, we will verify the triples in these draft KGs 374

using our fine-tuned LLM in the second module. 375

In detail, we let LLM do the graph judgement 376

task on the draft KGs G∗. Here we define draft KG 377

set as SG∗ , and the triples in all draft KGs can be 378

symbolized as 379

T ∗ =
⋃

G∗∈SG∗

{(h, r, t)|(h, r, t) ∈ G∗}. (8) 380
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Then, the LLM needs to assess the correctness of381

each triple in T ∗ by considering whether it aligns382

with the knowledge in paired documents and avoids383

conflicting with both domain-specific knowledge384

as it learned. We obtain the predictions of all385

the triples in T ∗ with the learned parameters θ386

as shown in Equation (9). And Pred(·) is a func-387

tion that transforms the outputs of LLM into the388

binary results ŷ ∈ {0, 1}|T ∗|. Based on the judg-389

ments made by LLM, we filter the triples T ∗ in390

draft KGs to obtain high-quality triples T̂ as de-391

scribed in Equation (10), which form the final KGs392

we seek. ŷ(h,r,t) is the predicted result of a triple393

(h, r, t).394

ŷ = Pred(pθ(XT ∗)), (9)395
396

T̂ = {(h, r, t) ∈ T ∗|ŷ(h,r,t) = 1}. (10)397

Similarly, the refined relation set R̂ =398

{r|(h, r, t) ∈ G∗, ŷ(h,r,t) = 1} can also be ob-399

tained. Lastly, for each draft KG G∗ ∈ SG∗ we400

can get the refined KG Ĝ that we desire as shown401

in Equation (11). The implementation details of402

the graph judgment procedure are demonstrated in403

Appendix D.404

Ĝ = {(h, r, t)|h, t ∈ Ê , r ∈ R̂, (h, r, t) ∈ T̂ }.
(11)405

5 Experiments406

In this section, we will conduct experiments to ad-407

dress the following key research questions: RQ1:408

How well does GraphJudge perform on both gen-409

eral knowledge data and domain-specific knowl-410

edge data? RQ2: How do the different key com-411

ponents in our proposed method GraphJudge con-412

tribute to its overall performance? RQ3: How413

about the generalization capability of GraphJudge414

when applied across different datasets?415

5.1 Experimental Settings416

5.1.1 Dataset417

In our study, we conduct experiments on two gen-418

eral datasets (REBEL-Sub (Huguet Cabot and419

Navigli, 2021) and GenWiki (Jin et al., 2020))420

and one domain-specific dataset (SCIERC (Luan421

et al., 2018)) with golden ground truth KGs. We422

demonstrate the detailed information and statistics423

of each dataset in Appendix A. For each dataset we424

randomly select a sample of 2000 data points from425

the training data for validation purposes during the426

fine-tuning of the LLM.427

5.1.2 Baselines 428

In our performance comparison, we consider two 429

methods for comprehensive evaluation: GPT-4o- 430

mini: We conduct experiments on GPT-4o with 431

one-shot learning method. The instructions we 432

have developed are identical to those outlined in 433

our method. GPT-4o (Hurst et al., 2024): The 434

same settings as GPT-4o-mini. PiVe (Han et al., 435

2023): We follow the default parameter settings of 436

PiVe. We use the largest verifier module in PiVe, 437

Flan-T5-XXL (Chung et al., 2024). We employ the 438

LoRA adapter checkpoint1, which has been well 439

trained. And the LLM we use in this model is 440

GPT-4o-mini. We implement an iterative prompt- 441

ing approach with three rounds, which represents 442

the optimal number of iteration rounds as outlined 443

in their study. KGGen (Mo et al., 2025): We also 444

employ GPT-4o-mini as the LLM used in this base- 445

line. 446

5.1.3 Implementation Details 447

Large Language Model: The LLMs we employed 448

in this research are various in different modules. 449

In the ECTD module, we utilize the closed-source 450

LLM GPT-4o-mini to denoise the original docu- 451

ments and extract triples from documents. In the 452

KASFT module, an open-source LLM LLaMA- 453

2-7B (Touvron et al., 2023) is used as our base 454

model. 455

Supervised Fine-Tuning: We employ LLaMA- 456

2-7B as the base model to carry out SFT with 457

LoRA (Hu et al., 2021). The instructions are con- 458

structed with the documents, query sentences, and 459

the triple sentences. We perform SFT on autore- 460

gression generation tasks, which is a common ap- 461

proach to fine-tune LLMs (Black et al., 2022). The 462

expected responses (labels) are either ”Yes, that is 463

true.” or ”No, that is not true.”. Training settings 464

are illustrated in Appendix C. The training was 465

done using a single L20 GPU with 48GB of RAM. 466

5.1.4 Evaluation Metrics 467

We acknowledge that conventional evaluation tech- 468

niques are rule-based. They assess the resemblance 469

between predictions and ground-truth KGs through 470

strict string matching, potentially overlooking se- 471

mantic similarities. Therefore, to better evaluate 472

the quality of the produced KGs against the ground- 473

truth KGs, similar to PiVe (Han et al., 2023), we 474

utilize one semantic level and two soft string match- 475

ing evaluation metrics to calculate the Accuracy, 476

1https://huggingface.co/Jiuzhouh/flan-t5-xxl-lora-verifier
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Dataset Method G-BS-Acc↑ G-BS-Recall↑ G-BS-F1↑ G-BL-Acc↑ G-BL-Recall↑ G-BL-F1↑ G-RO-Acc↑ G-RO-Recall↑ G-RO-F1↑

REBEL-Sub

GPT-4o-mini 0.3571 0.9024 0.4289 0.2343 0.6687 0.3018 0.2095 0.6266 0.2779
GPT-4o 0.3131 0.9432 0.4163 0.2345 0.7284 0.3158 0.2201 0.6851 0.2966
PiVe 0.3082 0.9378 0.4090 0.2217 0.7089 0.3010 0.2068 0.6693 0.2823
KGGen 0.4190 0.8937 0.4995 0.2587 0.5794 0.3146 0.2233 0.5037 0.2719
GraphJudge 0.4868 0.9144 0.5796 0.3391 0.6490 0.4057 0.3032 0.5878 0.3571

GenWiki

GPT-4o-mini 0.7825 0.9334 0.8368 0.6136 0.7353 0.6577 0.5451 0.6568 0.5857
GPT-4o 0.7871 0.9393 0.8428 0.6318 0.7561 0.6774 0.5614 0.6742 0.6028
PiVe 0.7463 0.9485 0.8230 0.5884 0.7516 0.6503 0.5251 0.6746 0.5817
KGGen 0.8578 0.8230 0.8169 0.5799 0.4700 0.5542 0.4845 0.5598 0.4641
GraphJudge 0.7936 0.9375 0.8457 0.6407 0.7591 0.6836 0.5714 0.6796 0.6106

SCIERC

GPT-4o-mini 0.5974 0.9183 0.6882 0.4368 0.6725 0.5040 0.3876 0.6065 0.4490
GPT-4o 0.6272 0.9079 0.7035 0.4469 0.6530 0.5032 0.3914 0.5807 0.4425
PiVe 0.5738 0.9225 0.6725 0.4192 0.6757 0.4924 0.3719 0.6092 0.4385
KGGen 0.8394 0.6500 0.6635 0.6045 0.4594 0.4725 0.5426 0.4100 0.4211
GraphJudge 0.6847 0.8775 0.7283 0.4898 0.6273 0.5216 0.4321 0.5591 0.4603

Table 1: Comparisons of GraphJudge with other baseline methods across three datasets. The cells marked with
red color hold the worst performance in each column of Acc and Recall. The best and second-best results are also

highlighted in each column of F1 scores.

Recall, and F1 scores: G-BERTScore (G-BS),477

G-BLEU (G-BL) and G-ROUGE (G-RO). We478

elaborate on them in Appendix B.479

5.2 Overall Performance Comparison (RQ1)480

We demonstrate the evaluation results of our481

method GraphJudge with GPT-4o-mini and other482

baseline methods across three datasets in Table 1.483

We have the following insights:484

GraphJudge’s superior performance. Graph-485

Judge outperforms other baselines in most of the486

cases. The superiority of GraphJudge’s F1 scores487

(marked with gray color) demonstrates that, while488

maintaining a reasonable level of recall for triples,489

it also achieves improvement in accuracy. For ex-490

ample, as the results marked with red color show, al-491

though PiVe exhibits stronger recall ability, it over-492

looks triple accuracy. KGGen excels in accuracy493

but fails at recall. In contrast, GraphJudge lever-494

ages the ECTD module based on a closed-source495

LLM to ensure recall ability, while the KASFT and496

GJ modules with a fine-tuned open-source LLM497

guarantee accuracy, enabling its F1 score to surpass498

those of other baseline models. We can also ob-499

serve that GraphJudge excels not only with domain-500

specific documents, but also demonstrates superior501

performance with general documents.502

GraphJudge is cost-effective. Remarkably,503

GraphJudge achieves state-of-the-art performance504

by fine-tuning only a 7B LLM, which is signifi-505

cantly more efficient and cost-effective compared506

to the 70B LLM employed in PiVe. In addition,507

GraphJudge can even outperform GPT-4o with508

GPT-4o-mini, which is a small model with lower509

token cost. However, other baseline methods fail510

to achieve that. 511

5.3 Module Ablation Study (RQ2) 512

Dataset Method G-BS-F1↑ G-BL-F1↑ G-RO-F1↑

REBEL-Sub

GraphJudge 0.5796 0.4057 0.3571
w/o ECTD 0.4548 0.3343 0.3094
w/o GJ 0.4203 0.3052 0.2820
w/o KASFT 0.4506 0.3219 0.2935

SCIERC

GraphJudge 0.7283 0.5216 0.4603
w/o ECTD 0.6818 0.5029 0.4509
w/o GJ 0.7172 0.5146 0.4552
w/o KASFT 0.6700 0.4644 0.4084

Table 2: The results of ablation study on REBEL-Sub
dataset and SCIERC dataset.

We perform an ablation study to explore the 513

specific impacts of various modules within Graph- 514

Judge, and the results are reported in Table 2. The 515

insights are outlined below:

Figure 4: (a) The left map is the semantic similarity
between the original document and paired KG triples.
(b) The right map is the semantic similarity between the
denoised document and paired KG triples.

516
Effect of Entity-Centric Text Denoising. We 517

investigate the benefit of introducing entity-centric 518

denoising paradigm using the variant ”w/o ECTD”, 519

where we do not conduct document denoising and 520
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directly extract entities and relations from original521

documents. The results show that our full model522

performs significantly better than this ablated ver-523

sion. It suggests that ECTD module can avoid524

LLMs extract wrong structured information from525

irrelevance or not well-formatted corpus.526

Furthermore, to showcase the noise reduction527

capability of ECTD, we visualize the semantic528

correlation of the triples in a known KG with529

the denoised and original document, respectively.530

As shown in Figure 4, deeper color in the heat531

maps suggests a stronger relevance. The refined532

document exhibits greater relevance to the triples,533

demonstrating the effectiveness of ECTD. Imple-534

mentation details are described in Appendix E.535

Figure 5: A comparison of the capabilities of bert-
base-uncased (SFT) (Devlin et al., 2019), LLaMA-2-7B,
GPT-4o, and our GraphJudge in graph judgment tasks.

Effect of Knowledge Aware Supervised Fine-536

Tuning. We conduct graph judgement on the triples537

without fine-tuning the open-source LLM, which538

is denoted as ”w/o KASFT”. The result in Ta-539

ble 2 indicates that without SFT, the naive LLM540

has weak graph judgement abilities. And with a541

fine-tuned LLM as a graph judge, the performance542

can be improved a lot. Because KASFT enables543

the LLM to acquire both fact-checking capabilities544

and domain-specific knowledge within the triples545

in our instruction training data.546

Furthermore, we apply negative sampling to con-547

struct instructions on the test set like what we did548

on the training set. We randomly select 500 sam-549

ples and perform graph judgement to compare the550

capabilities of different models. As shown in Fig-551

ure 5 and Appendix G, both fine-tuned small mod-552

els like BERT and naive powerful LLMs like GPT-553

4o show poor performance on the graph judgement554

task even with documents as contexts. However,555

GraphJudge can achieve over 90% judgement556

accuracy on REBEL-Sub and GenWiki, which557

demonstrates the KASFT module can indeed en-558

hance the effectiveness of LLMs as a graph judge.559

Effect of Graph Judgement. We compare the560

Method
GenWiki @ REBEL-Sub

G-BS-F1↑ G-BL-F1↑ G-RO-F1↑

GPT-4o 0.4163 0.3158 0.2966
PiVe 0.4090 0.3010 0.2823
KGGen 0.4995 0.3146 0.2719
GraphJudge 0.5814 0.4055 0.3649

Table 3: Results of generalization study on REBEL-Sub
with the LLM fine-tuned on GenWiki.

performances of our full model and the model with- 561

out GJ module denoted as ”w/o GJ”. The result 562

suggests that GJ module plays a very important 563

role in GraphJudge. It can significantly enhance 564

the quality of KGs generated by the closed-source 565

LLM and reduce the effects of the inaccuracies 566

or hallucinations that may arise from LLMs. The 567

closed-source LLM excels in zero-shot generation, 568

boosting recall but suffering accuracy due to hallu- 569

cinations or knowledge inadequacy. The GJ mod- 570

ule relieves this by filtering inaccurate triples, en- 571

hancing the quality of constructed KGs. 572

5.4 Generalization Capabilities of 573

GraphJudge (RQ3) 574

To demonstrate the generalization abilities of 575

GraphJudge, we conduct experiments in cross- 576

dataset scenarios. We train it on GenWiki and then 577

evaluate it on REBEL-Sub. As shown in Table 3, 578

our method can still outperform baseline methods, 579

which indicates GraphJudge has great capabilities 580

of generalization across various corpus. This is be- 581

cause the ability to check facts with triple structure 582

learned from graph judgement tasks can be gener- 583

alized. It also suggests that GraphJudge once well 584

trained on a general dataset, can be readily applied 585

to diverse datasets with common knowledge. 586

6 Conclusions 587

In this paper, we introduce a new method called 588

GraphJudge for automatically constructing KGs, 589

which leverages the potential of LLMs to act as 590

graph judges. In GraphJudge, we propose ECTD, 591

KASFT and GJ modules to mitigate the impact of 592

irrelevant information from documents and exploit 593

the benefits of trainable open-source LLMs and 594

harnessing the strong zero-shot generation capa- 595

bilities of closed-source LLMs. The experiments 596

conducted on two general and one domain-specific 597

datasets demonstrate GraphJudge’s consistent su- 598

periority against various baseline methods. 599
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7 Limitations600

GraphJudge has the following limitations. First,601

even though we employ the LLMs act as both the602

extractor and the judge to improve the quality of603

constructed KGs, we still use the entity-level triples604

to construct KGs and there could be better knowl-605

edge units to form a better KG. Second, a more606

reasonable benchmark to evaluate the quality of607

constructed KGs should be proposed in the future.608

Currently, most of the work just utilize the ”ground609

truth” KGs to calculate the correctness and com-610

prehensiveness of constructed KGs, However, the611

quality of ”ground truth” KGs may still deserve612

suspicion. So using a self-supervised approach to613

evaluate the KGs is in demands. We will research614

for more KG constructing and evaluating method to615

improve the performance of knowledge extraction.616
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Benabdeslem, and Pierre Cléau. 2024. itext2kg: In-747
cremental knowledge graphs construction using large748
language models. arXiv preprint arXiv:2409.03284.749

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie,750
and Ji-Rong Wen. 2024. Pre-trained language mod-751
els for text generation: A survey. ACM Computing752
Surveys, 56(9):1–39.753

Chin-Yew Lin. 2004. ROUGE: A package for auto-754
matic evaluation of summaries. In Text Summariza-755
tion Branches Out, pages 74–81, Barcelona, Spain.756
Association for Computational Linguistics.757

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,758
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi759
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.760

Deepseek-v3 technical report. arXiv preprint 761
arXiv:2412.19437. 762

Jingyu Liu, Jiaen Lin, and Yong Liu. 2024b. How much 763
can rag help the reasoning of llm? arXiv preprint 764
arXiv:2410.02338. 765

Jingyu Liu, Jiaen Lin, and Yong Liu. 2024c. How 766
much can rag help the reasoning of llm? Preprint, 767
arXiv:2410.02338. 768

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh 769
Hajishirzi. 2018. Multi-task identification of entities, 770
relations, and coreferencefor scientific knowledge 771
graph construction. In Proc. Conf. Empirical Meth- 772
ods Natural Language Process. (EMNLP). 773

Belinda Mo, Kyssen Yu, Joshua Kazdan, Proud Mpala, 774
Lisa Yu, Chris Cundy, Charilaos Kanatsoulis, and 775
Sanmi Koyejo. 2025. Kggen: Extracting knowledge 776
graphs from plain text with language models. arXiv 777
preprint arXiv:2502.09956. 778

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Ji- 779
apu Wang, and Xindong Wu. 2024. Unifying large 780
language models and knowledge graphs: A roadmap. 781
IEEE Transactions on Knowledge and Data Engi- 782
neering. 783

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 784
Jing Zhu. 2002. Bleu: a method for automatic evalu- 785
ation of machine translation. In Proceedings of the 786
40th annual meeting of the Association for Computa- 787
tional Linguistics, pages 311–318. 788

Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo, 789
Haizhou Shi, Chuntao Hong, Yan Zhang, and Siliang 790
Tang. 2024. Graph retrieval-augmented generation: 791
A survey. arXiv preprint arXiv:2408.08921. 792

Kashif Rabbani, Matteo Lissandrini, and Katja Hose. 793
2023. Extraction of validating shapes from very large 794
knowledge graphs. Proceedings of the VLDB Endow- 795
ment, 16(5):1023–1032. 796

Swarnadeep Saha, Prateek Yadav, Lisa Bauer, and Mo- 797
hit Bansal. 2021. Explagraphs: An explanation graph 798
generation task for structured commonsense reason- 799
ing. arXiv preprint arXiv:2104.07644. 800

Christoph Schuhmann, Gollam Rabby, Ameya Prabhu, 801
Tawsif Ahmed, Andreas Hochlehnert, Huu Nguyen, 802
Nick Akinci Heidrich, Ludwig Schmidt, Robert Kacz- 803
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Appendix 869

A Datasets 870

Dataset REBEL-Sub GenWiki SCIERC

# of Train KGs 45,791 69,788 350
# of Test KGs 1,799 1,000 100

# of Train Triples 268,864 588,642 6,429
# of Test Triples 5,595 3,915 974

Table 4: Statistics of datasets.

Figure 6: The figure above is the normalized distribution
of the number of triplets in each dataset and the figure
below is the normalized distribution of the length of
documents in each dataset.

We conduct experiments on the following three 871

datasets, And we also calculate the percentages of 872

KGs with different numbers of triples and different 873

lengths of original documents in each dataset in 874

Figure 6. The statistics of each dataset are shown 875

in Table 4. 876

REBEL-Sub. REBEL (Huguet Cabot and Nav- 877

igli, 2021) dataset comes from Wikipedia text be- 878

fore the table of contents, as well as Wikidata for 879

the triplets annotation. The dataset is collected by 880

the extraction pipeline cRocoDiLe (Huguet Cabot 881

and Navigli, 2021). The original REBEL dataset 882

is a large-scale corpus. We utilize a subset of 883

REBEL referred to as REBEL-sub, consisting of 884
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50,000/2,000/2,000 samples for the training, vali-885

dation, and test set respectively, randomly chosen886

from the original dataset. Moreover, we filter out887

the samples with empty ground truth KG.888

GenWiki. GenWiki (Jin et al., 2020) is an ex-889

tensive dataset sourced from general Wikipedia,890

comprising 1.3 million non-parallel texts and graph-891

ics that share content. In our study, for efficient892

validation, we use a subset of GenWikiFINE893

as our training set and employ another subset of894

GenWikiFINE for testing. And the documents in895

original testing data are too short for us to validate896

our method. To enhance the quality of training data897

lacking human annotations, we also exclude the898

triples with incorrect formats.899

SCIERC. SCIERC (Luan et al., 2018) is a scien-900

tific domain-specific dataset comprises annotations901

for scientific entities, their relations, and corefer-902

ence clusters within 500 scientific abstracts. It ex-903

pands upon the datasets from SemEval 2017 Task904

10 (Augenstein et al., 2017) and SemEval 2018905

Task 7 (Gábor et al., 2018) by introducing addi-906

tional entity types, relation types, broader relation907

coverage, and incorporating cross-sentence rela-908

tions through coreference links. In addition, we909

filter out the samples with empty ground truth KG.910

B Experimental Metrics911

In this section, we explain the details of our evalua-912

tion metrics.913

G-BERTScore (G-BS): Here we use a match-914

ing metric that evaluate the degree of similarity be-915

tween the ground-truth and predicted graphs, which916

is called G-BERTScore(Saha et al., 2021). And917

it is designed as an extension of the text genera-918

tion metric BERTScore(Zhang et al., 2019). In G-919

BERTScore, each triple within knowledge graphs920

is treated as a sentence, and subsequently, the sim-921

ilarity score between sentences of triples in the922

ground-truth and predicted knowledge graphs is923

computed. And we compute the accuracy, recall,924

and F1 score of each constructed KG against the925

ground-truth using G-BERTScore, denoted as G-926

BS-Acc, G-BS-Recall, and G-BS-F1, respectively.927

G-BLEU (G-BL): BLEU (Bilingual Evalua-928

tion Understudy)(Papineni et al., 2002) is a metric929

for evaluating the quality of text which has been930

machine-translated from one natural language to931

another. Here we use this approach to determine932

the resemblance between the triple sentences in the933

ground-truth and predicted KGs, which is called G-934

BLEU. The formulas are shown in (16), (15), (12), 935

(13), (14). N is the maximum order of n-grams 936

considered in the evaluation and we set N = 4, 937

which is a default number in the Python package2. 938

BP is the brevity penalty, which is used to avoid 939

giving too much credit to short translations. And 940

we compute the accuracy, recall, and F1 score of 941

each constructed KG against the ground-truth using 942

G-BLEU, denoted as G-BL-Acc. G-BL-Recall, 943

and G-BL-F1, respectively. 944

Match(n) =∑
Xt∈XT

∑
gram(n)∈Xt

Count(gram(n),Xt̂)
(12) 945

946
Total(n) =∑

Xt∈XT

∑
gram(n)∈Xt̂

Count(gram(n),Xt̂)
(13) 947

948

BP =

1 if |Xt̂| > |Xt|

e
(1− |Xt|

|X
t̂
| ) if |Xt̂| ≤ |Xt|

(14) 949

950

wn =
Match(n)

Total(n)
(15) 951

952

G-BLEU = BP × (
N∏

n=1

wn)
1
N (16) 953

G-ROUGE (G-RO): ROUGE (Recall-Oriented 954

Understudy for Gisting Evaluation)(Lin, 2004) is 955

a set of metrics for evaluating automatic summa- 956

rization and machine translation systems. And here 957

we utilize ROUGE to compare the similarities be- 958

tween the triple sentences in the ground-truth and 959

predicted KGs, which is G-ROUGE. Here our G- 960

ROUGE score is based on the notion of n-gram 961

co-occurrence statistics and we set n = 2. For 962

G-ROUGE-N, which focuses on the overlap of 963

n-grams between the ground-truth triple sentence 964

and the predicted triple sentence, the formulas are 965

shown in (17), (18), (19). Unlike G-BLEU, G- 966

ROUGE is computed using recall as a metric. And 967

Count(gram(n),Xt̂) is the number of times the 968

n-gram appears in the predicted triple sentence Xt̂. 969

And we compute the accuracy, recall, and F1 score 970

of each constructed KG against the ground-truth 971

using G-ROUGE, denoted as G-RO-Acc, G-RO- 972

Recall, and G-RO-F1, respectively. 973

Match(n) =∑
Xt∈XT

∑
gram(n)∈Xt

Count(gram(n),Xt̂)
(17) 974

2https://pypi.org/project/bert-score/
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Total(n) =∑
Xt∈XT

∑
gram(n)∈Xt

Count(gram(n),Xt) (18)975

976

G-ROUGE =
Match(n)

Total(n)
(19)977

C Experimental Settings978

Hyper-parameter Experimental Setting
Micro Batch Size 8

Batch Size 128
Gradient Accumulation Steps 16

Training Steps 500
Learning Rate 3e−4

Lora Attention Dimension 8
Alpha Parameter 16
Target Modules q proj, v proj
Warmup Steps 100

Optimizer AdamW

Table 5: Implementation detail of SFT in GraphJudge.

During the Knowledge Aware Supervised Fine-979

Tuning module, we follow the parameter settings980

in Table 5 referring to the tuning process used for981

triple classification tasks in the KG-LLaMA (Yao982

et al., 2023).983

D Graph Judgement Algorithm984

The detailed procedure of the graph judgement985

algorithm is demonstrated in Algorithm 1.986

Dataset Context Model

LLaMA-3-8B LLaMA-3-70B

REBEL-Sub
[Lower-Upper] 47.33-99.33 76.67-100.0

D∗ 94.67 96.00
Ĝ 85.33 90.67

GenWiki-Hard
[Lower-Upper] 53.33-100.0 68.00-100.0

D∗ 98.00 96.00
Ĝ 93.00 93.00

SCIERC
[Lower-Upper] 65.00-99.67 77.00-99.67

D∗ 95.67 96.33
Ĝ 90.33 93.67

Table 6: MCQ performance across datasets. Each row
displays the lower-upper bound performance (no con-
text vs. original document), denoised document perfor-
mance, and our KG performance for different models.
Using D∗ and Ĝ preserves most information for an-
swering MCQs, perform close to the using the original
document (upper bound) across datasets and models.

E Effect of ECTD Module987

To validate that ECTD module can lead to a cleaner988

refined text, we sample a text-graph pair from the989

Algorithm 1 The Graph Judgement procedure of
GraphJudge
Input: The fine-tuned expert LLM pθ ; Candidate

triples T ∗ in the draft KGs SG∗ ; Paired refined
text D∗ of the candidate triples;

Output: The predicted KGs SĜ with refined
triples T̂ ;

1: SĜ ← {};
2: T̂ ← {};
3: for each G∗ in SG∗ ,

each denoised document d∗ in D∗ do
4: R̂ ← {};
5: Ê ← {};
6: for each triple t∗ =< h, r, t >∈ G∗ do
7: /*Transform the triple and refined text

into a sentence*/
8: Xt∗ = Sentence(< h, r, t >, d∗);
9: /*Verify the correctness of the current

triple with fine-tuned LLM*/
10: ŷt∗ = Pred(pθ(Xt∗));
11: if ŷt∗ is not ’False’ then
12: T̂ ← t∗;
13: R̂ ← R̂ ∪ {r};
14: Ê ← Ê ∪ {h, t};
15: end if
16: end for
17: Ĝ = {< h, r, t > |h, t ∈ Ê , r ∈ R̂, <

h, r, t >∈ T̂ };
18: SĜ ← SĜ ∪ {Ĝ};
19: end for

REBEL-Sub dataset. Then we split the original and 990

refined document into the same number of chunks, 991

which we set 20 here. And we use a PLM BERT 992

(bert-base-uncased3) (Devlin et al., 2019) to pro- 993

cess these chunks and get the embedding of each 994

chunk. And we calculate the cosine similarities be- 995

tween these document chunks and triple sentences, 996

as shown in Figure 4. Deeper color in the heat 997

maps suggests a stronger relevance between the 998

specific triple and document chunk. 999

F Knowledge Retention of ECTD Module 1000

and KG 1001

While the ECTD module has the ability to remove 1002

irelevant information contained in the original doc- 1003

uments, it is also necessary to verify that the impor- 1004

tant knowledge is well preserved in the documents 1005

denoised by ECTD. We test how well multiple- 1006

3https://huggingface.co/google-bert/bert-base-uncased
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Figure 7: A comparison of the capabilities of bert-base-uncased (SFT) (Devlin et al., 2019), DeepSeek-V3 (Liu
et al., 2024a), LLaMA-2-7B, LLaMA-3-8B, LLaMA-3-70B, GPT-4o, and our GraphJudge in graph judgment tasks.

choice question (MCQ) performance is preserved1007

after we refined the original documents.1008

In detail, similar to the existing work (Schuh-1009

mann et al., 2025), we generate various MCQs1010

with LLaMA-3-70B for each original document.1011

For REBEL-Sub, we randomly sample 500 docu-1012

ments and generate 3 MCQs for each document.1013

For SCIERC, because the test set of that is very1014

small, we used the full test set of SCIERC with1015

3 MCQs for each document. For GenWiki, be-1016

cause the average lengths of the documents are1017

very short, we generate only 1 MCQ for each docu-1018

ment. Then we ask LLaMA-3-8B to answer them1019

with no context (denoted as lower bound), then ask1020

them again with the original passage (denoted as1021

upper bound) for sanity check. Finally, we con-1022

duct tests using denoised documents (denoted as1023

D∗) and KG triples constructed by GraphJudge (de-1024

noted as Ĝ). The results in Table 6 demonstrates1025

that MCQs performance with D∗ or Ĝ remains far1026

above the lower bound baseline and approaches1027

the original-document upper bound. It proofs that1028

important information is well preserved in both1029

our denoised documents and constructed KG.1030

G Effect of KASFT Module1031

In this section, we extend the baseline models1032

to explore their abilities to be a graph judge1033

with the same experimental settings in Sec-1034

tion 5.3. We extend baseline models to fine-tuned1035

BERT, DeepSeek-V3, LLaMA-2-7B, LLaMA-3-1036

8B, LLaMA-3-70B, and GPT-4o. Compared with1037

them, our proposed GraphJudge demonstrates con-1038

sistent superiority in graph judgement tasks, which1039

further proofs that the KASFT module can im-1040

prove the capabilities of open-source LLMs as 1041

a graph judge. And neither fine-tuning a PLM 1042

with a smaller parameter size nor directly employ- 1043

ing a powerful closed-source LLM can achieve a 1044

high accuracy on graph judgement tasks, which 1045

suggests the necessity to introduce our proposed 1046

GraphJudge. 1047

Figure 8: The prompt template for the open-source LLM
LLaMA to construct graph judgement instructions.

H Prompt Templates 1048

As shown in Figure 8 and Figure 9, we demonstrate 1049

the prompt templates for the closed-source LLM to 1050

conduct relation extraction and for the open-source 1051

LLM to perform graph judgements on the results 1052

generated from the closed-source LLM. We also 1053

provide the prompt templates used to generate and 1054

answer MCQs in Appendix F. 1055

I Case Study 1056

In this section, we present an instance of construct- 1057

ing a KG from a document, achieved through the 1058

integration of a naive LLM (GPT-4o-mini) and our 1059

GraphJudge. We select a text-graph pair from the 1060

SCIERC dataset and contrast the results yielded by 1061

our approach with that of GPT-4o-mini. As shown 1062
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Figure 9: The prompt template for the closed-source
LLM GPT-4o-mini to construct KGs.

in Table 7, the KG constructed by GPT-4o-mini1063

with the given original document includes lots of1064

meaningless triples. For example, <We, suggest,1065

goal>, <We, suggest, evaluation criterion>, <We,1066

present, measure>, <We, present, selection func-1067

tion>, etc. It is obvious that these triples do not1068

convey any beneficial information that could be1069

applied to subsequent tasks. And the triple <eval-1070

uation criterion, new, goal>does not even follow1071

the general structure of triples, which means that1072

the adjective word ”new” is generally not employed1073

as a relational term within triples. The naive LLM1074

have strong zero-shot ability to generate them but it1075

does not have the capability to determine whether1076

they are useful. However, there are no such triples1077

in the KG constructed by our GraphJudge. On the1078

one hand, this is because the triples without any1079

useful information will be clarified as wrong triples1080

by our fine-tuned LLM in graph judgement mod-1081

ule. On the other hand, as demonstrated in the case,1082

the document refined by ECTD module exhibits1083

enhanced standardization and a reduction in irrele-1084

vant terms, for instance, terms such as ”-LRB-” and1085

”-RRB-” have been excluded as they are irrelevant1086

to the document’s subject matter.1087

Figure 10: The prompt template for the MCQ genera-
tions.

Figure 11: The prompt template for the MCQ answer-
ing.
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Original Document: We suggest a new goal and evaluation criterion for word similarity measures .The new criterion
– meaning entailing substitutability – fits the needs of semantic-oriented NLP applications and can be evaluated directly
-LRB-independent of an application -RRB- at a good level of human agreement. Motivated by this semantic criterion we
analyze the empirical quality of distributional word feature vectors and its impact on word similarity results, proposing an
objective measure for evaluating feature vector quality. Finally, a novel feature weighting and selection function is presented ,
which yields superior feature vectors and better word similarity performance.

Ground-Truth Knowledge Graph:

[[”feature weighting and selection function”, ”used for”, ”word similar-
ity”], [”measure”, ”evaluate for”, ”feature vector quality”], [”feature vec-
tors”, ”conjunction”, ”word similarity”], [”evaluation criterion”, ”used for”,
”word similarity measures”], [”meaning-entailing substitutability”, ”used
for”, ”semantic-oriented NLP applications”], [”human agreement”, ”evaluate
for”, ”meaning-entailing substitutability”], [”semantic criterion”, ”evaluate
for”, ”distributional word feature vectors”], [”distributional word feature
vectors”, ”used for”, ”word similarity”], [”feature weighting and selection
function”, ”used for”, ”feature vectors”]]

GPT-4o-mini:

[[”We”, ”suggest”, ”goal”], [”We”, ”suggest”, ”evaluation criterion”], [”We”,
”propose”, ”measure”], [”evaluation criterion”, ”new”, ”goal”], [”evalua-
tion criterion”, ”fits”, ”needs”], [”evaluation criterion”, ”evaluated directly”,
”good level of human agreement”], [”We”, ”analyze”, ”quality”], [”qual-
ity”, ”impact on”, ”word similarity results”], [”measure”, ”evaluating”,
”feature vector quality”], [”feature vector quality”, ”yield”, ”superior fea-
ture vectors”], [”feature vector quality”, ”yield”, ”better word similarity
performance”], [”We”, ”present”, ”feature weighting function”], [”feature
weighting function”, ”yields”, ”superior feature vectors”], [”We”, ”present”,
”selection function”], [”selection function”, ”yields”, ”superior feature vec-
tors”]]

GraphJudge:

[[’evaluation criterion’, ’related to’, ’word similarity measures’], [’evaluation
criterion’, ’assessed by’, ’human agreement’], [’evaluation criterion’, ’related
to’, ’semantic-oriented NLP applications’], [’evaluation criterion’, ’related
to’, ’meaning-entailing substitutability’], [’word similarity measures’, ’qual-
ity assessed by’, ’distributional word feature vectors’], [’distributional word
feature vectors’, ’impact on’, ’word similarity results’], [’distributional word
feature vectors’, ’quality evaluated by’, ’objective measure’], [’feature vec-
tors’, ’generated by’, ’feature weighting and selection function’], [’feature
vectors’, ’enhances’, ’word similarity performance’]]

Denoised Document: We propose a new evaluation criterion for word sim-
ilarity measures, called meaning-entailing substitutability, which is suitable
for semantic-oriented NLP applications. This criterion can be assessed inde-
pendently of any specific application with a high level of human agreement.
We examine the quality of distributional word feature vectors and their impact
on word similarity results, introducing an objective measure for evaluating

the quality of these feature vectors. Additionally, we present a novel feature weighting and selection function that generates
superior feature vectors and enhances word similarity performance.

Table 7: Comparison of Construction Results between our GraphJudge and GPT-4o-mini.
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