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Abstract

Vector autoregressive (VAR) models are widely used for causal discovery and forecasting in mul-
tivariate time series analysis. In the high-dimensional setting, which is increasingly common in
fields such as neuroscience and econometrics, model parameters are inferred by L-regularized
maximum likelihood (RML). A well-known feature of RML inference is that in general the technique
produces a trade-off between sparsity and bias that depends on the choice of the regularization
hyperparameter. In the context of multivariate time series analysis, sparse estimates are favorable
for causal discovery and low-bias estimates are favorable for forecasting. However, owing to a
paucity of research on hyperparameter selection methods, practitioners must rely on ad-hoc methods
such as cross-validation (or manual tuning). The particular balance that such approaches achieve
between the two goals — causal discovery and forecasting — is poorly understood. Our paper
investigates this behavior and proposes a method (Uol-VAR) that achieves a better balance between
sparsity and bias when the underlying causal influences are in fact sparse. We demonstrate through
simulation that RML with a hyperparameter selected by cross-validation tends to overfit, producing
relatively dense estimates. We further demonstrate that Uol-VAR much more effectively approxi-
mates the correct sparsity pattern with only a minor compromise in model fit, particularly so for
larger data dimensions, and that the estimates produced by Uol-VAR exhibit less bias. We conclude
that our method achieves improved performance especially well-suited to applications involving
simultaneous causal discovery and forecasting in high-dimensional settings.

Keywords: multivariate time series, vector autoregressive models, high dimensional data, sparsity,
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1. Introduction

Multivariate time series data are now ubiquitous across scientific fields and increasingly high-
dimensional. In neuroscience, for instance, intra-cortical electrophysiology produces simultaneous
recordings of neural activity as measured by large arrays of hundreds to thousands of electrodes at
sampling rates exceeding 24kHz (Buzsaki et al. (2012)). Data with analogous structure is generated
in neuroscience from electroencephalography (EEG) (Astolfi et al. (2007)), and various other sources
(Brown et al. (2004); Pillow et al. (2008); Bassett et al. (2011)). In econometrics and fincance,
multivariate time series data is used for forecasting, macroeconomic studies, and structural analysis
(Sims (1980); Fackler and Krieger (1986); Forni et al. (2005); Stock and Watson (2002); Tsay (2005)).
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Similar data are arising on increasing scales in environmental science and geosciences (Karpatne
et al. (2018); Triacca et al. (2013)), epidemiology (Cunniffe et al. (2015)), and sociology (McFarland
et al. (2016)). Such growing data dimensionalities and length of recordings present opportunities for
scientific discovery alongside methodological and computational challenges for data analysis.

Vector autoregressive (VAR) models provide a flexible framework for forecasting, structural
analysis (finding a unique process parametrization under constraints on the error term), impulse
response analysis (describing the propagation of a ‘shock’ or erratic event throughout the system), and
estimation of various types of causality (Liitkepohl (2005)). Furthermore, VAR model parameters are
conceptually straightforward to estimate, although computationally scaling to large systems remains
a challenge.

In particular, large datasets require high-dimensional process models. In this context, parameters
are estimated with sparsity-inducing constraints, which has motivated research on sparse estimation of
high-dimensional vector autoregressive model parameters (Song and Bickel (2011); Fan et al. (2011);
Han et al. (2015); Qiu et al. (2016); Basu and Michailidis (2015); Hall et al. (2016)). Interesting
sparsity constraints also arise in related literature on joint estimation of multiple Gaussian graphical
models (Guo et al. (2011); Danaher et al. (2014)).

Sparse estimation methods for time series models typically rely on L;-regularized maximum
likelihood estimation. However, it is known that this technique can result in overfitting — specifically
overly-dense estimates — and excessive bias (Bithlmann and van de Geer (2011); Meinshausen and
Biihlmann (2010)) in high-dimensional regression and precision matrix estimation, and it is likely
that these problems persist in the time series context. Nonetheless, few alternatives to RML are
available to date in multivariate time series analysis for high-dimensional data.

This paper offers a two-fold contribution to the above-cited work: (i) we propose an inference
procedure (Uol-VAR) that improves on Li-regularized maximum likelihood estimation (RML)
of high-dimensional vector autoregressive models by leveraging the Union of Intersections (Uol)
statistical machine learning framework (Bouchard et al. (2017)); and (ii) we provide simulation-
and application-based support for the algorithm. Together, these results indicate that Uol-VAR will
enhance inference in VAR models across application domains.

2. Background

This section begins with a brief introduction to estimation of VAR(D) processes (we defer to
Liitkepohl (2005) for a thorough review of the subject and closely follow the notation therein)
and continues with a description of the Union of Intersections framework, summarizing key ideas
elaborated in more detail in Bouchard et al. (2017).

2.1. Vector autoregressive models

Formally, the stochastic process { X; : Q — R}, is a vector autoregressive process of order D
(VAR(D)) if for all t € Z

D Eﬁt =0
Xt =v+ Z AdXt—d + €, }Eeteg =X (l)
d=1 Eeiel, =0, Vt#s
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where 3 € RM*M g positive definite and A1, ..., Ap satisfy det <I - ZdD:1 Adzd) # 0 for all

|z| < 1. The latter condition ensures that the process is well-defined, stationary and stable.
Given an observed time series of length 7', denoted {x; € RM }fzo, a VAR(D) model for the data
can be expressed in the form of a multivariate multiple regression Y = U B + E where the response

is denoted by Y = (27 x7_1 --- xp)’ and comprises the observations beginning from time D, the
error terms are denoted by E = (e7 ep—1 --- € D)T, and the linear predictor U B on the right-hand
side denotes C o o -
1 | l'%_ 11 | l'T_D 14 .
1 : T2 : : TT_p-1 A
| : | | :
| T | | T T
Lizp g 0 Ap

The classical estimation technique is to estimate B with ordinary least squares (OLS) by B =
(U'U)"'U'Y, and then estimate X by 3 = = (Y — UB)(Y — UB)'. The equivalence of this
procedure with maximum likelihood estimation assuming ¢; are Gaussian is well-established.

When M is large and Aq,..., Ap are sparse, B is instead estimated using Li-regularized
maximum likelihood (RML) by

N

B =arg mEi{n{—E(B; X)+ A\P(B)} (2)

where £(B; X) denotes the log-likelihood of B given data X = (7 - --27) € RM*T and P(B) =
|vecB||1 is the sparsity-inducing regularization term applied to the vectorized parameter matrix B.!

2.2. Union of Intersections algorithmic framework

The Union of Intersections (Uol) is a statistical machine learning framework that separates sparse pa-
rameter selection (an ‘intersection step’) from parameter estimation (a ‘union’ step). The advantages
of this approach are established for several sparse learning techniques, including regression, classifi-
cation, and matrix decomposition (Bouchard et al. (2017); Ubaru et al. (2017)). The intersection step
first infers several candidate parameter support sets (sets of nonzero parameter locations). This is
accomplished through inferring support sets for a range of sparsity-inducing regularization strengths
on bootstrap samples, and applying intersection operations across the bootstrap samples. In the union
step, estimates are calculated without regularization for each candidate support on bootstrap samples,
and predictive quality is evaluated on separate samples. Finally, the estimates that optimize predictive
quality are averaged (a union operation with respect to the selected candidate supports) to produce
the final output.

3. Methods

Our method extends the Uol algorithmic framework to estimate sparse VAR(D) models. The resulting
estimation algorithm separates the estimation procedure into an intersection step utilizing RML for
sparse parameter selection and a union step utilizing OLS for parameter estimation. The intersection

1. Due to the equivalence between maximum likelihood and ordinary least squares, ||Y" — UB||% can be substituted
for —¢(B; X) in Equation (2) and LASSO regression on the vectorized problem (obtained by column-stacking the
response Y') can be used to find the solution with fast, numerically stable, and widely available algorithms (Friedman
et al. (2007, 2010)).
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step estimates a collection of candidate support sets for the transition matrices A1,..., Ap for
a VAR(D) model, and the union step produces the final estimates A1, ..., Ap by combining the
supports that optimize forecasting quality. These steps are given in detail separately as Algorithms 1
and 2.

Algorithm 1 Intersection step
Input:
data {z; € RM}T
regularization path A € RX
number of bootstrap samples B
thresholding parameter s
for b = 1to By do
draw bootstrap sample {z}}I_,
for k =1to K do
B}, + argming {=UB; xp,...27) + \eP(B)}
Sng — {(Z,j) : bij 79 0}
end for
end for
Si {6+ L2 () € Son} = 5By |
Output: Support sets Sq, ..., Sk

In the intersection step (Algorithm 1), supports of RML estimates are computed for a fixed
regularization path A on B; bootstrap samples. These support sets are aggregated across bootstrap
samples separately for each Ay by a thresholded intersection operation. In other words, this procedure
selects consistently recurring RML support sets under resampling of the data B; times, with a
specifiable recurrence threshold s. The outputs of the procedure form the inputs to the union step
(Algorithm 2).

The union step (Algorithm 2) begins by repeating the following procedure By times. Training
and test bootstrap samples are drawn, and OLS estimates are computed for each candidate support
set from the intersection step on the training bootstrap sample. The estimates that minimize a
user-defined loss function f on the test set are stored. Each iteration of the procedure is repeated with
new boostrap samples, producing By parameter estimates. Finally, an average over the 100 x ¢%
most sparse estimates produces the output. This portion of the algorithm averages OLS estimates
selected by bootstrapped cross-validation under resampling of the data Bs times.

Given the intensive use of resampling methods, bootstrap procedures suitable for time series are
required to implement this method. One of the most common bootstrap procedures for time series
is the moving block bootstrap (Kunsch et al. (1989); Liu and Singh (1992)), in which the original
time series is divided into overlapping blocks and the blocks are randomly sampled with replacement
to construct a resampling of the original time series. The choice of appropriate block lengths is
dependent on the statistical problem (Bithlmann and Kiinsch (1999); Kreiss and Lahiri (2012)). We
chose to draw bootstrap samples of the same length as the original time series, though for large
datasets it may be desirable to draw smaller bootstrap samples for computational speed in estimation.

The hyperparameters B;, Bo, s, and g control the sparsity of the estimates at each stage of the
algorithm. Increasing By produces greater sparsity among candidate supports, decreasing s creates
less sparsity, and doing both simultaneously helps to stabilize the candidate supports against erratic
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Algorithm 2 Union step
Input:
data {z; € RM}T
candidate support sets 51, . .., Sk (from intersection step)
number of bootstrap samples Bo
loss function f
threshold parameter ¢
for b = 1to By do
draw bootstrap samples {z; (1)}th0, T (2)}f:0
for k =1to K do
B+« {B e RPHXM : 10p,. £ 0} = 1{(i, ) € Sk}}

By < arg minpep {—5(3 ; 953(1)’ i "x;(l))}
end for B
B®) « Bj:J = argming{fi}
end for X pL
B« @1\ 2 beq Bi(b), where Q) = {b: 2%1 Hg <@} <gBotand gy, =3, ; ﬂ{bgj) 7 0
Output: estimate B

bootstrap samples. Similarly, increasing By generally increases density and decreasing ¢ counteracts
this effect, and doing both stabilizes the output of the union step. The ability to tune the algorithm
using s, q can be especially helpful when computational resources are limited.

4. Results

We assessed the performance of Uol-VAR on synthetic and real data relative to RML. This section
presents the results of our simulation study followed by the results of our data application.

4.1. Simulation study

We conducted a simulation study utilizing synthetic datasets conforming to each combination of
process dimensions M = 5, 10, 20, 40, 80 and time series lengths 7' = 50, 100, 200. We chose to
study performance in the context of estimating VAR(1) processes, since any VAR(D) process can
be expressed as a (higher-dimensional) VAR(1) process.” The study examined selection accuracy,
model fit, and estimation bias for each method.

For each simulation setting (combination of M, T"), V AR(1) process parameters were generated
as follows: M nonzero transition matrix parameters were drawn from a frequency distribution
increasing exponenially away from zero in either direction; v = 0; and ¥ = 0.51. Thus, the
parameters exhibit 1 — 1/M % sparsity. Nonzero parameter positions were randomly allocated
to transition matrix positions. Then 50 realizations of each process were simulated, and model
estimation was conducted using RML and Uol-VAR. Both methods utilized the same regularization

2. For details, see Liitkepohl (2005). Estimating a VAR(D) model for M-dimensional data can be accomplished by
estimating a VAR(1) model for DM-dimensional data after reshaping the original data appropriately. Therefore,
estimation of high-order processes is a matter of computational scale.
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Figure 1: Selection, estimation, and forecasting behavior (rows) observed in the simulation study
for different dimensions (columns). Top row, selection accuracy 1 — % in terms
of false positives (FP) and false negatives (FN); middle row, estimation error com-

puted on the estimated support }_; . & [|ai; — ai; ||2; bottom row, one-step forecast error

ﬁ Yol X1 — X1 |2. Each panel displays the corresponding metric against time
series length T" on the horizontal axis for Uol and RML.

path A. For RML, the regularization strength that minimized the average of one-step and four-step
forecasting errors over five-fold cross-validation was used for the final estimate. We used the same
average of forecast errors for the loss function f in our algorithm, along with hyperparameters
B; =10, B =50, s = 1, and ¢ = 0.3. These values of hyperparameters were chosen manually
and tend to perform well across a wide range of settings.

Figure 1 summarizes the results of the simulation study. Selection accuracy is a scaled combina-
tion of false positives F'P, the number of positions in the parameter estimates that are in fact zero but
estimated as nonzero, and false negatives F'/V, the number of positions that are in fact nonzero but
estimated as zero. Across all settings, RML exhibits low accuracy and Uol-VAR exhibits improved
accuracy; these behaviors are driven predominantly by false positive rates (not depicted in the figure).
The main limitation of Uol-VAR is an increased false negative rate relative to RML when less data
are available (shorter 7" settings). However, this problem diminishes rapidly as T increases, and as a
result, for larger M, the selection performance of our method improves much faster than RML as T’
increases. Furthermore, as depicted in the second row of the figure, Uol-VAR achieves dramatically
lower estimation errors in large-M settings. Finally, it appears that these improvements come at the
cost of a slight decrease in fit; the third row shows forecasting errors on the data to which the models
were fit.
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Figure 2: Network visualizations of VAR(1) model parameter estimates for S&P 500 data using
RML (left) and our algorithm (right). Node and label size are proportional to degree
centrality.

4.2. Data analysis

To illustrate an application and further compare each method in the context of a data analysis,
a VAR(1) model was used to identify putative causal connections between weekly closes of 50
randomly chosen publicly traded companies listed on the S&P 500 index in 2013-2014. This dataset
was chosen due to the absence of benchmark datasets with known ground truth for large multivariate
time series; the years 2013-2014 saw a steadily climbing index with no major disturbances. To obtain
an approximately stationary process, first-order differences were calculated from the raw series; then,
VAR(1) model parameters were estimated from these differences using our method and RML.

The resulting estimates are visualized in Figure 2 as directed graphs comprising nodes repre-
senting each vector component and edges indicating the set of nonzero parameters®. Uol-VAR
identified just 44 edges that describe the dependence of Google’s share price on other companies.
By comparison, RML identifies 146 edges in which the same pattern Uol-VAR detected is present
but obscured by other edges. One-step forecast RMSE averaged over all companies on the same
data for the RML method is 8.3993; for our method, 8.4525 (an increase of 0.6% relative to RML).
However, the scale of share prices varies widely among the companies; the median per-company
forecast RMSE is 4.7807 using RML, and 4.3329 using UoI-VAR (a decrease of 9% relative to RML).
We conclude that our method finds more interpretable estimates (sparser graph) while maintaining
comparable fit.

5. Discussion

This paper proposes a novel method (Uol-VAR) for low-bias and sparse estimation of VAR models,
presents simulations that show its advantages, and exemplifies its application in data analysis. The
method is flexible, and the hyperparameters allow the analyst to control tolerances for false positives
and false negatives without explicitly specifying any a priori assumptions about sparsity structure.
Promising extensions of this work currently in progress include: (i) development of analogous

3. Thatis, G = (V,E) where V ={1,... , M}and E = {(i,j) € V x V : Aj; # 0}
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methods for estimation of other stochastic processes such as multivariate point processes; (ii) a full
theoretical analysis of the algorithm; and (iii) application of the method to scientific datasets.
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