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ABSTRACT

Transforming casually captured, monocular videos into fully immersive dynamic
experiences is a highly ill-posed task, and comes with significant challenges, e.g.,
reconstructing unseen regions, and dealing with the ambiguity in monocular depth
estimation. In this work, we introduce BulletGen, an approach that takes advantage
of generative models to correct errors and complete missing information in a
Gaussian-based dynamic scene representation. This is done by aligning the output
of a diffusion-based video generation model with the 4D reconstruction at a single
frozen “bullet-time” stamp. The generated frames are then used to supervise the
optimization of the 4D Gaussian model. Our method seamlessly blends generative
content with both static and dynamic scene components, achieving state-of-the-art
results on both novel-view synthesis, and 2D/3D tracking tasks.

1 INTRODUCTION

The task of 3D reconstruction from color images is fundamental to computer vision, with a variety of
solutions being proposed over the years (Kerbl et al., 2023} [Mildenhall et al., 2020} [Schonberger &
Frahm), |2016} Schonberger et al.,2016). While impressive strides have been made towards improving
both the completeness and accuracy of results, most methods and datasets focus exclusively on static
scenes. However, the real world is dynamic, and the ability to reconstruct dynamic content opens up
many new opportunities in immersive media generation and robotics.

The reconstruction of dynamic scenes presents a very challenging 4D problem, as it requires reasoning
about both geometry and motion of the scene. This is exacerbated by the fact that traditional 4D
reconstruction methods require capturing multi-view images of dynamic scenes with expensive camera
rigs (Orts-Escolano et al.l 2016} Joo et al., |[2015)), resulting in limited amount of useful datasets
for algorithm development and evaluation. Therefore, building on developments in novel 3D scene
representations (Kerbl et al.| [2023; Mildenhall et al., 2020), the attention of the research community
in recent years has focused on 4D reconstruction from single-view monocular videos (Luiten et al.|
2024; |Park et al.l[2021a; Wu et al.| [2024a). But, as a monocular video only observes the scene from a
single viewpoint at any given timestep, the problem of 4D reconstruction in this context is heavily
under-constrained. As a consequence, existing methods can only find locally optimal solutions, and
fail when synthesizing novel views substantially deviating from the training set views (Fig. [I)).

Motivated by breakthroughs in learning priors from large-scale data, many recent methods have
sought to mitigate the local minima problem by leveraging generative models — particularly diffusion-
based methods (Ren et al., [2025; [Sun et al., [2024; |Van Hoorick et al., [2024) — to constrain the
output to lie in the distribution of natural images. However, in the majority of cases, these methods
only predict 2D projections of a dynamic scene, and therefore fail to take advantage of the efficient
rendering and global consistency advantages provided by 3D scene representations that are optimized
per-scene, such as Neural Radiance Fields (NeRFs) (Mildenhall et al., [2020) and 3D Gaussian
Splatting (3DGS) (Kerbl et al.,[2023). In this paper, we propose a method to incorporate these 2D
projections into a consistent and plausible 4D reconstruction.

Our method, termed BulletGen, uses a video diffusion model to generate novel views for selected
frozen time stamps — so-called bullet times (Liang et al.|2024; Wang et al.,2021)). The diffusion model
is conditioned on a rendered frame along with natural language image captions from the input video.
The generated views are then used to iteratively supervise a global 3D representation. This latter step
is achieved by accurately tracking and aligning the generated views to the input coordinate frame, and
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Figure 1: Extreme novel view synthesis of a 4D scene with generative model guidance in frozen-
time instances (bullet times). The input is only a monocular video on the left. We compare to the
Shape-of-Motion (SoM) (Wang et al.} [2024b)) method on the cat and dog sequences from the iPhone

dataset 2022) and the skating sequence from Nvidia dataset (Yoon et al/,[2020).

by using a novel reconstruction loss based on photometric, perceptual, semantic, and depth errors. By
repeating this process for different time stamps, the initially inconsistent 2D projections are robustly
incorporated into a consistent dynamic 3D reconstruction. This is similar to other vision tasks (multi-
view stereo, SLAM, bundle adjustment) that also successfully integrate independent predictions
through principled optimization. We use 3D Gaussians as the underlying scene representation, but
our method is general and could work with any differentiable 3D representation.

In summary, we make the following contributions:

* We propose a method for dynamic 3D scene reconstruction from monocular RGB videos by
augmenting the training views using a generative video diffusion model at selected bullet times.
Our bullet-time static diffusion strategy uniquely leverages abundant static training data, making it
more practical than methods requiring dynamic video training. Our method provides a scalable
solution for monocular 4D reconstruction, avoiding the computational burden of training dynamic
diffusion models while achieving comparable or better results.

* We compare our method against prior work, and show that BulletGen achieves state-of-the-art
results on several benchmark datasets for novel view synthesis quality, and 2D/3D tracking accuracy.

* The reconstructed dynamic scene also contains new synthesized parts of the scene that seamlessly
and plausibly blend in the original scene for both the static (e.g. new pillows for car and generated
walls for skating in Fig.[T)) and the dynamic parts (e.g. backside of the cat, the full head of the dog).

2 RELATED WORK

The problem of 3D reconstruction and novel-view synthesis has a long history in the fields of
computer vision and graphics. Early approaches used dense multi-view images (Davis et al., 2012
Kim et al, 2013 [Wilburn et al.,[2005) to capture a spatio-angular light fields (Gortler et al.,[2023;

evoy & Hanrahanl| 2023)), which could be re-parameterized to generate novel views via quadrilinear
interpolation. However, the number of views required by sampling theory to enable such interpolation
has been shown to be exorbitantly high (Chai et al 2000). As a result, novel view synthesis
remained a niche task requiring expensive camera rigs, specialized sensors, or time-consuming
capture setups (Davis et all, 2012} [Georgiev et al.| [2006; [Ng et all, 2003} [Wilburn et al.} [2003).
[Mildenhall et al.|(2019) and Zhou et al.|(2018) were among the first to seek to overcome the sampling
limits using learned data priors encoded as the weights of a convolutional neural network. Subsequent
work built on this work by exploiting the ever-increasing capabilities of deep neural networks to not
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only lower the sampling requirements for view synthesis, even down to a single image (Chen et al.|
2024 [Han et al.| 2022} [Khan et al.| 2023; Liu et al.| 2023azb; [Long et al., [2024; [Tucker & Snavely,
2020; |Zhang et al., 2024b)), but also proposed new representations that could be optimized per scene
to achieve exceptionally high quality and improved spatio-temporal consistency by exploiting scene-
specific correlations across views (Luiten et al., 2024} |Li et al.| [2024a; Kirillov et al., [2023}; [Liang
et al., 2025a). These two research directions naturally converge on the task of 4D reconstruction
from monocular videos. However, in this context, past work that has used per-scene optimization to
track and correlate points across frames has often failed to take advantage of the strong data priors of
pre-trained models specifically for view synthesis.

Per-scene monocular reconstruction. Following the seminal work of Mildenhall et al.|(2020) on
static reconstruction by optimizing a scene-specific 3D representation by Neural Radiance Fields
(NeRFs), many works have adopted a similar strategy to exploit more global context for the problem
of 4D reconstruction from a monocular video (Cao & Johnson| [2023}; |[Fridovich-Keil et al., |[2023;
Li et al.l 2021} [Park et al., |2021afc; [Pumarola et al., 2021} |Shao et al., 2023; |Stearns et al., |[2024;
Yang et al.,[2023b). The underlying representation often models the scene as an implicit field (Xie
et al.2022) parameterized by time, which is optimized using the input frames as supervision. The
use of a single globally consistent representation, which also implicitly encodes a local smoothness
prior, allows per-scene optimization to achieve impressive reconstruction results without leveraging
any learned data priors (Zhang et al.,|2020). However, as the optimization process can be poorly
regularized and time-consuming, several methods have proposed using a monocular depth prior to
guide the optimization process (Deng et al.||2022; |LIU et al., 2025} Roessle et al., [2022). Furthermore,
the introduction of 3D Gaussian splats (Kerbl et al.,[2023) in recent years has led to methods that
reconstruct either scene geometry (Liang et al., [2025b; Wu et al., 20244} |Yang et al.| [2023bj; |LIU
et al.}2025; Das et al., [2023), or both geometry and motion (Li et al., 2024a; [Lin et al., 2024; [Luiten
et al., [2024; [Yang et al.| [2024b; [Kratimenos et al., |2024; |Duan et al.| 2024), explicitly. Thus, a recent
class of methods has additionally used 2D motion trajectories from pre-trained models to initialize
and supervise the optimization of a scene-specific global representation (Liang et al.l|[2025a; Lei et al.|
2024; [Wang et al.| 2024b). However, these methods use learned priors primarily to regularize the
optimization and to reason about the visible parts of the scene. As such, while they generate more
stable reconstructions in these visible regions, they perform no better than previous methods on view
extrapolation tasks.

Generative 4D reconstruction. Given the extremely high number of images required to meet the
Nyquist sampling rate for view interpolation from multi-view images (Chai et al.,|2000; Mildenhall
et al.}[2019), and the fundamentally under-constrained nature of the view extrapolation problem, many
works have explored the use of learned data priors to circumvent these theoretical limitations (Chen
et al., [2024; Yinghao et al., 2024} [Zhang et al., 2024b; Zhou et al., 2018)). In the extreme case, these
methods aim for view synthesis from a single RGB image. The most effective prior for this task, in
terms of output quality, turns out to be a learned conditional probability distribution over the space
of natural images. This is represented as a deep neural network that generates samples from the
underlying distribution (Cao et al.|2024;|Goodfellow et al.,|2014; Xiong et al.,|2024)). Among this
class of “generative” methods, Denoising Diffusion Probabilistic Models (DDPM) (Ho et al.,|2020)
have become especially popular due to their stability, mode coverage, quality, and flexibility (Croitoru
et al.,|2023). Consequently, a number of recent works have used diffusion to set the bar of quality
on 3D reconstruction and view synthesis from single or sparse images (Yu et al., 2024;|Gao* et al.|
2024; Liu et al., 2024} [Wu et al., 2023; |Wang et al.,|2024a). Subsequent work has extended the basic
approach to 4D reconstruction from single images (Sun et al., 2024; Xul et al.| [2024; [Zhao et al.;
2025)), sparse image sets (Chou et al., [2025} |Zhao et al.| 2025), and from monocular videos (Ren
et al., 2025} Van Hoorick et al.;, 2024} [Zhang et al.l|2024a). These methods rely on sampling all
output frames from the generative model. Consequently, they do not provide accurate control over
the camera movement and lack explicit spatio-temporal consistency constraints. In addition, the high
memory requirements of video diffusion models limit these methods to short video sequences.

Concurrent work. CAT4D (Wu et al.,[2024b)) and Vivid4D (Huang et al.| 2025) are concurrent works
that show the use of generative models to improve per-scene optimized monocular reconstructions.
Both works proceed by first generating multi-view video from a monocular sequence, which is used to
supervise the optimization of a dynamic scene representation based on 3DGS. As such, the generation
and optimization process is strongly decoupled. Our method uses an iterative approach, in which the
generation steps alternate with the training of a Gaussian-based global 4D representation.
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Figure 2: BulletGen architecture. Starting from a monocular RGB video, we reconstruct the
dynamic scene with Shape-of-Motion, given data-driven priors (motion masks, depths, long-term
2D tracks). Then, we generate novel views at selected frozen time stamps (bullet times) using a
conditioned generative model. These generated views are localized and mapped to the current scene
using an optimization based on photometric, perceptual, semantic, and depth errors. The final 4D
reconstruction augments the scene and allows for higher quality extreme novel view synthesis.

3 METHOD

Given N frames of a monocular video sequence {I;}¥ ; as input, our method acquires an initial
4D reconstruction of the scene as dynamic Gaussian splats. It then uses diffusion-based generative
augmentation to obtain new observations for under-constrained regions, as well as synthesizing
unseen parts of the scene. Using the original frames along with the generated views as supervision,
the initial reconstruction is robustly optimized to obtain a photorealistic and globally consistent
dynamic scene representation that allows for rendering of novel views at arbitrary time stamps and
camera positions. Fig. [2] provides an overview of our pipeline.

3.1 INITIAL DYNAMIC GAUSSIAN SPLATTING RECONSTRUCTION

To bootstrap the initial reconstruction, we build on top of several state-of-the-art methods. We choose
dynamic Gaussian Splatting as a scene representation, which is an extension to the original 3D
Gaussian Splatting (3DGS) method. In particular, we use Shape-of-Motion, which relies on a range
of scene priors extracted using methods like Track-Anything (Kirillov et al., 2023} [Yang et al.,[2023a)
to extract masks for the moving objects, Depth Anything (Yang et al., to estimate relative
monocular depth maps, UniDepth (Piccinelli et al.} 2024} 2025) for metric depth alignment, and
TAPIR (Doersch et al, 2023} [2024)) for obtaining long-range 2D tracks of moving objects.

Each 3D Gaussian is represented by RGB color ¢ € [0, 1]3, its center position p(t) € R?, rotation
r(t) € R* (quaternion), scale s € R® and opacity o € [0, 1]. For static Gaussians, (t) and 7(t) are
constant for all time stamps. For dynamic Gaussians, they are defined as a time-dependent weighted
combination of a global set of motion bases that are learned during optimization (usually a low
number, e.g., 20). Standard 3DGS can be used to render the dynamic Gaussians
for a given time stamp ¢. Given the required camera pose, all Gaussians are sorted by distance from
the camera center and then rendered by alpha-composing the splatted 2D projections, which are
affine approximations of the exact 3D projection. Given the complexity and ill-posedness of the task
due to limited observations, we do not model view-dependent illumination changes with spherical
harmonics. In the initial bootstrapping phase, we run Shape-of-Motion for 1000 optimization epochs
to obtain a dynamic scene reconstruction without any generative component (Fig. [2).

3.2 GENERATIVE AUGMENTATION

After initial scene reconstruction, we generate a set {G% }2_| of novel views of the scene at selected
times ¢, and select a conditioning view and target motion (explained below). We generate novel
views of the dynamic scene at bullet time ¢, assuming that the scene is frozen in time. We use an
internal controllable image-to-video diffusion model that is trained to create novel views of the static
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scene given a single image and a text prompt, which is generated by Llama3 (Grattafiori et al.| [2024).
This model follows state-of-the-art models in the field and is trained on standard static datasets. The
conditioning prompt is a highly descriptive image captioning from the input video, which serves
as an anchor to be consistent with the input. The used generative model also controls the motion
by training different models for target motions, such as left and up directions. Then, the generated
images {G?% }X_, are localized in the scene and used to update the scene with new observations.

Camera tracking. We estimate initial relative camera poses between frames of the same bullet time
using the recently introduced VGGT model (Wang et al.l [2025). Since VGGT-predicted depth is
inaccurate, we estimate state-of-the-art monocular depth from MoGe (Wang et al., 2024c) and align
it to VGGT depth. As MoGe/VGGT depths are not metric, we estimate a single scaling factor to
align them to the current 4D reconstruction by minimizing the depth and RGB reprojection error
in the covisible regions, producing final depth estimates { Dy} . At this stage, the camera poses
of generated views are roughly aligned to the current scene reconstruction, but the alignment is not
yet pixel-perfect, which is crucial for the following scene augmentation. To achieve pixel-perfect
alignment, we leverage the Gaussian Splatting SLAM method SplaTAM (Keetha et al., 2024) for
accurate camera tracking. Camera intrinsics for the generated cameras are assumed to be equal
to the estimated intrinsics of the original monocular video. Extrinsics E;, € R*** for generated
Views G’,i are initialized to the scale-aligned VGGT estimates. Then, the scene is rendered using the
rendering function R(Ey) producing RGB images R (Ey) and depth images R p(Ey). Additionally,
we render silhouettes R s(E) by accumulating Gaussian densities along the ray, which are used to
define visibility masks as V;, = Rg(Eg) > 0.99.

Robust loss and optimization. The minimized loss function consists of four terms representing
the photometric, perceptual, semantic, and depth errors. The photometric loss is the L1 loss in the
RGB space, the perceptual loss is the LPIPS loss (Zhang et al.l 2018]) based on AlexNet (Krizhevsky:
et al., | 2012) features, and the semantic loss is the cosine similarity between CLIP scores (Radford
et al., 2021)) of the renderings R;(Ey) and the generated images G.. Finally, the depth loss is the
L1 distance between depth renderings and the aligned depth maps. Since the generated images are
usually not perfectly 3D consistent in the pixel space, we put the highest weight on the semantic and
perceptual losses and keep the photometric loss only as a low-level learning signal. The final loss
function is the weighted sum:

LU{EVE) = ialLl (G Ri(ER) Vi) + L PIPS (G, R (B | Vi) "
k=1

+a3CLIP(Gk,RI(Ek)’Vk) n a4L1(Dk,RD(Ek)’Vk) :

where we compute the loss only over the visible area V;,. We optimize camera poses {E;} by
minimizing the loss for 100 epochs, starting from the initialization described above. All other
parameters, including the scene representation, are fixed. Once the camera poses are optimized,
producing {E; }, it mostly leads to sufficiently accurate, pixel-wise alignment. To remove bad
estimates, we keep only the first K’ generated views up until the first generative view whose loss
L equation [I)is above a threshold ~, which is set in a conservative way so only well-aligned views are
retained. After this step, we have K’ < K generated views { G}, their depths { Dy}, and optimized
camera poses {EJ. }.

Densification. After obtaining well-aligned generative views, we now proceed to updating the
scene. First, we perform Gaussian densification based on the densification mask proposed in
SplaTAM (Keetha et al.| |2024):

My = (RS(E;;) < 0.5) + (Dk < RD(E;;)) (Ll(Dk,RD(E,j)) < )\MDE) , @)

where we densify areas with insufficient density or where new geometry is in front of the current
geometry, unless it is due to noise as measured by A = 50 times the median depth error (Keetha et al.|
2024). This way, we initialize a new Gaussian at every pixel in the densification mask based on its
color and depth. For the newly densified Gaussians, we decide if they are static or dynamic based on
the nearest neighboring Gaussian’s static/dynamic label, where the dynamic Gaussians’ locations
are moved to the currently generated bullet time stamp. The weights for the motion bases of new
dynamic Gaussians are initialized to the nearest neighbor.
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Figure 3: Extreme novel view synthesis across space and time. The generation for training was
performed ng = 7 times for ng = 5 bullet-time stamps, i.e. 1, 45, 90, 135, 180 for a sequence with
180 frames. The renderings shown here are at time stamps and viewpoints that were not generated
using a generative model, which shows that using only several bullet-time reconstructions is enough
to reconstruct a dynamic scene. Temporal slices for all 180 time stamps are shown in Fig. El

Scene update. To update the reconstructed scene, we optimize a weighted joint loss, which is a sum
of the proposed tracking loss £ equation[Tjon the generated views, including all previous generated
views over all bullet time stamps, and the SoM loss function to always keep the scene consistent with
the original video. Since the scene is already densified, we do not need the visibility masks V}, in this
stage and, thus, the loss is computed over the entire generated image, as compared to the loss used
for camera tracking. We optimize this joint loss function for 100 epochs by optimizing parameters of
all Gaussians and the motion bases. After this, we repeat it all with new generated views (Fig. [2).

Time selection. One of the hyperparameters of our method is the number ng of sampled bullet-time
stamps. We sample them uniformly between the first and last time stamps, i.e. t = 1 and t = IN. For
robust estimation, we start with the middle frame bullet-time stamp, e.g. N/2. Then, we proceed
with the furthest time stamps. For example, when N = 100 and ng = 5, the sampled time stamps
are {1, 25,50, 75,100}, but in the order {50, 1,100, 25, 75}. Also note that the bullet-time stamp
selection can be progressive and proceed auto-regressively, and in our example, can continue with
additional time stamps {12, 37,62, 87} for ng = 9.

View selection. The used generative model currently supports only static scenes and comes with
two operating modes for generating left- and upward trajectories. By flipping the image horizontally,
applying the leftward model, and flipping back, we can also generate rightward trajectories. Note
that we do not apply the same principle to the upward direction, because the model only works well
with upright imagery. Thus, we select between three modes for the view selection, i.e. left, right,
up. Once bullet time is selected, we proceed with ng generations for the selected time. We tested
three modes. First, for ng = 3, we select {up, left, right} in this order. For ng = 5, we select {up,
left, right, left, right}, and for ng = 7, the used sequence is {up, left, up, right, up, left, right}. The
view selection for generative model conditioning for each chosen direction is as follows. For leftward
motion, we choose the left-most image (either the original one or the generated one), where the angle
is measured from the middle of the original camera poses and viewing at the middle of the dynamic
scene. Similarly, for rightward motion, we choose the right-most image. In all cases, only images at
the currently selected bullet-time stamp are considered, either generated or the original one (there
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Figure 4: Qualitative evaluation on several benchmark datasets. The input is a monocular video
as shown in the training view column. Both benchmark datasets (Nvidia and DyCheck iPhone)
have several additional testing cameras. We compare novel view synthesis to Shape-of-Motion and
zoom-in to highlight the differences. Our method is able to provide more accurate and sharper
reconstructions, both in static and dynamic parts of the scene.

is only one original image for every time stamp). For upward motion, we choose the last generated
image at this bullet time (or the original one if this is the first generation).

Implementation details. All optimizations are performed using the ADAM optimizer (Kingma &
2017). The batch size for the generative views and the original video frames is set to 8 (thus, we
have two concatenated batches of 8 in every iteration). The hyperparameters in equation[I|have been
empirically determined and fixed to a; = 0.02, aiy = 0.1, ag = 0.1, oy = 0.5 for all experiments.
The threshold for generative views is set to v = 0.4. For the SoM loss function on the original video,
we use their default weights. The total number of generated views per generation is fixed at K = 50.
The number of generations used is ng = 7, while the number of selected bullet times is ng = 9,
unless specified otherwise. The average optimization time on a sequence from the iPhone dataset with
full resolution takes around 3 hours (including initial SoM optimization of 1.5 hours) on an Nvidia
A100 80GB GPU. All main experiments required around 1 week of A100 GPU time, and preliminary
non-included experiments required an additional month of GPU time. For evaluation on custom data,
we use MegaSaM [2024D) to estimate camera poses. For evaluation on benchmark datasets,
we used provided poses computed from COLMAP (Schonberger & Frahml, 2016 [Schonberger et all,
for fair comparison to other methods.

4 EXPERIMENTS

We evaluate on the DyCheck iPhone 2022) and Nvidia dynamic (Yoon et al [2020)

datasets, which are commonly used datasets for novel view synthesis evaluation in dynamic scenes.

View synthesis metrics. We evaluate the standard PSNR, SSIM, and LPIPS scores between the
ground truth and the rendered novel views. On the iPhone dataset, we measure those metrics on the
covisible regions for fair comparison to other methods. As mentioned by [Liang et al.|(20254), these
scores are not robust enough on the current datasets due to camera misalignment, color differences
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3D Tracking 2D Tracking
Method EPE| &H5 1 &51 At <641 OA?T
HyperNeRF 0.182 28.4 45.8 10.1 19.3 52.0
DynIBaR 0.252 114 24.6 5.4 8.7 37.7
Deformable-3D-GS 0.151 334 553 14.0 20.9 63.9
CoTracker + DepthAnything 0.202 343 57.9 24.1 33.9 73.0
TAPIR + DepthAnything 0.114 38.1 63.2 27.8 41.5 67.4
Shape-of-Motion 0.082 43.0 73.3 344 47.0 86.6
Ours 0.071 51.6 77.6 36.6 49.5 874

Table 1: Evaluation on the iPhone dataset, 3D and 2D tracking. Our method outperforms all
state-of-the-art methods in terms of 2D and 3D tracking accuracy as measured by various metrics.

Method PSNRT SSIMT LPIPS| CLIP-It Method PSNRT SSIMT LPIPS|
T-NeRF 1560 055 0.55 0.86 4D-GS 14.01 039 0.59
HyperNeRF 1599 059 0.1 0.87 CoCoCo 1499 047 053
Deform.-3DGS 11.92 0.49 0.66 0.79 StereoCrafter 14.85 0.49 0.57
SoM 16.72 063 045 0.86 ViewCrafter 1494 049 0.58
HiMoR - - 0.46 0.89 SoM 1456 046 0.53
CAT4D (mocodey 17.39 0.61 0.34 - Vivid4D mocode)y 1520 0.50  0.49
Ours 16.78 0.64 0.39 0.90 Ours 16.38 0.51 045

Table 2: Evaluation on the iPhone dataset, novel Table 3: Evaluation on the iPhone dataset,
view synthesis. The proposed method achieves state-of- subset chosen by Vivid4d. Our method out-
the-art performance in terms of novel view synthesis. performs all other methods.

between the training and test cameras, as well as the nature of the task. Thus, we also report
CLIP-I (Radford et al.}2021) scores, which we see as more representative in this ill-posed task.

Tracking metrics. The iPhone dataset contains long-range 3D point tracking annotations. Thus,
we also measure 3D end-point-error (EPE) at every timestep and the percentage of points that are
within a certain radius of the ground truth 3D point (denoted by 67, where 7 is either 5cm or 10cm).
By projecting those 3D tracking annotations, we obtain 2D tracking annotations and report Average
Jaccard (AJ) metric, average position accuracy (< dqv4) and Occlusion Accuracy (OA) metric.

Baselines. We compare to a range of methods that are specifically designed for dynamic scene
reconstruction. Methods based on Neural Radiance Fields (NeRF) (Mildenhall et al.| 2020) and its
variants are T-NeRF (Li et al., |2023a), HyperNeRF (Park et al., 2021b), and DynIBaR (L1 et al.,
2023b). More recently, methods based on Gaussian Splatting were proposed, such as Deformable-
3DGS (Yang et al.| 2023b), 4D-GS (Wu et al.| [2024a), Shape-of-Motion (Wang et al.,|2024b)), and
HiMoR (Liang et al., [2025a)). We also compare to methods based on generative diffusion models,
such as CoCoCo (Zi et al., 2024), StereoCrafter (Zhao et al., 2024}, ViewCrafter (Yu et al.,[2024),
CAT4D (Wu et al., 2024b), and Vivid4D (Huang et al.| 2025). Many of these methods are concurrent
with our work and do not provide code, e.g. CAT4D and Vivid4D. Nevertheless, we strive to provide
insightful comparisons by evaluating on the reported datasets chosen by these methods. For 2D and
3D tracking scores, we additionally compare to CoTracker (Karaev et al.|[2024)) and TAPIR (Doersch
et al.| 2023)), which are lifted to 3D by DepthAnything (Yang et al.| | 2024a).

The iPhone dataset. The iPhone dataset contains 12 sequences with a moving training camera
captured with hand-held iPhone device, two static test cameras (for 5 sequences), and 3D tracking
annotations. As shown in Table |1} our method outperforms all other state-of-the-art methods on
all metrics in terms of 2D and 3D tracking scores. This is achieved by providing more constraints
for scene geometry, which allows for better 3D triangulation during scene reconstruction. We also
achieve state-of-the-art scores in terms of novel view synthesis (Table2). We also add results reported
in CAT4D (no code), which achieves slightly better PSNR and LPIPS scores, whereas our method
obtains better SSIM results. However, we want to stress that the table remains incomplete in terms of
CLIP-I score due to a lack of publicly accessible code and missing information about the training



Under review as a conference paper at ICLR 2026

Figure 5: Temporal plane slices of extreme camera views. Visualizing the highlighted rows across
time in ot space shows that our method suffers from fewer temporal artifacts than Shape-of-Motion
(SoM) caused by floating Gaussians and exploding geometry. Our rendered view is shown on the left.

procedure and its overall training scale. To compare to Vivid4D, we choose their challenging subset
of the iPhone dataset. Our method again outperforms other methods (Table [3). This highlights that
our method is more effective in those challenging cases (as compared to the full dataset).

The Nvidia dataset. The Nvidia dataset con-
tains 9 dynamic scenes captured by 12 synchro- PSNRT  SSIMT  LPIPS|  CLIP-I
nized static cameras. We use camera 1 as in- SoM 15.26 0.454 0.388 0.87
put, and cameras 2 and 3 as output for evalua- Qurs 17.02 0.462 0.386 0.87
tion. This dataset contains testing views close
to the training views, therefore the CLIP-I and Table 4: Evaluation on the Nvidia dataset. Our
LPIPS metrics do not show significant improve- method improves the Shape-of-Motion (SoM) re-
ment, but in terms of PSNR, our improvement ~construction on all metrics.

w.r.t. Shape-of-Motion is significant (Table ). Method PSNRT SSIMT LPIPS| CLIP-IT

Ablation study. The main hyperparameters SoM 1672 0.63 045  0.86
of our method are the .number of generations 1681 063 040 089
ng per selected bullet-time stamp, and the total 1680 0.63 040 089
number of those time stamps n,g. Table 5] shows 1678 0.64 039  0.90
that increasing ng per time stamp slightly im-

proves most metrics, but is not significant given %ggg 825 832 822
that the test cameras are not far from the train- : ’ : :

. . .. 16.78 0.64 0.39 0.90
ing ones. A high value for n¢ is important for

extreme novel view point synthesis. However, Typle 5: Ablation study (iPhone dataset). The
the number of selected bullet time stamps 7.5 i number of generations n¢; per time stamp slightly
vital even in the standard setting, and a higher jmproves most metrics, and the number of selected
number of time stamps improves all metrics. bullet-time stamps n.g improves all metrics.
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Qualitative results. Qualitative results for the iPhone dataset are provided in Fig. El (cat, dog) and
Fig. 3 (spin, paper-windmill), and for the Nvidia dataset in Fig. [T| (skating) and Fig. [ (balloon2).
As can be seen in Fig.[d] the testing views in the benchmark datasets are close to the training views.
However, our method allows for much more extreme novel view synthesis, going beyond what is
possible by other methods. Unfortunately, there is no dataset with such extreme view point testing
cameras, which can be seen as a limitation in this emerging field. Fig. [3]shows qualitative examples
of extreme novel views. BulletGen significantly improves rendering quality in such cases. Temporal
slices in the x direction are shown in Fig. [5| which highlights that our method produces smooth and
consistent rendering results over time, especially when compared to SoM.

Limitations. BulletGen assumes that the initial Shape-of-Motion optimization performs reasonably
well, at least from the viewpoints of the original video, which in turn depends on how well all
monocular priors were estimated.

5 CONCLUSION

We introduced a method for dynamic 3D reconstruction from a monocular video, effectively address-
ing extreme novel view synthesis challenges with drastic improvements over the state of the art. By
integrating static bullet-time video generation with dynamic 3D Gaussian splatting our approach
enhances both 2D and 3D tracking accuracy, and novel view synthesis. Our method seamlessly incor-
porates new scene elements, improving rendering quality. Our results on standard benchmark datasets
confirm the efficacy of this approach for dynamic scene reconstruction in complex environments.
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