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Abstract

For learned image representations, basic autoencoders often produce blurry re-
sults. Reconstruction quality can be improved by incorporating additional penal-
ties such as adversarial (GAN) and perceptual losses. Arguably, these approaches
lack a principled interpretation. Concurrently, in generative settings diffusion has
demonstrated a remarkable ability to create crisp, high quality results and has
solid theoretical underpinnings (from variational inference to direct study as the
Fisher Divergence). Our work combines autoencoder representation learning with
diffusion and is, to our knowledge, the first to demonstrate jointly learning a contin-
uous encoder and decoder under a diffusion-based loss and showing that it can lead
to higher compression and better generation.. We demonstrate that this approach
yields better reconstruction quality as compared to GAN-based autoencoders while
being easier to tune. We also show that the resulting representation is easier to
model with a latent diffusion model as compared to the representation obtained
from a state-of-the-art GAN-based loss. Since our decoder is stochastic, it can
generate details not encoded in the otherwise deterministic latent representation;
we therefore name our approach “Sample what you can’t compress”, or SWYCC
for short.

1 Introduction

Image autoencoders ultimately necessitate a pixel-level loss to measure and minimize distortion. A
common choice is to use mean squared error (MSE). This is a problem for image and video models
because MSE favors low frequencies over high frequencies (Rybkin, 2018). Although generalized
robust loss functions have been developed (Barron, 2019), they are insufficient on their own for
avoiding blurry reconstructions. A popular fix is to augment a pixel-level loss with additional
penalties. Typically, MSE is still used because it is easy to optimize due to its linear gradient.
For example, Rombach et al. (2021) use a combination of MSE, perceptual loss, and adversarial
loss. Esser et al. (2021) noted that an adversarial loss helps them get high-quality images with
realistic textures. Unfortunately GANs remain challenging to train; which was most recently noted
by Kang et al. (2023), when they couldn’t naively scale up their architecture. The diversity of their
outputs is also limited, because modern GAN based decoders are deterministic, and thus lack the
capacity to sample multiple different possibilities.
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Figure 1: Reconstruction distortion (lower
is better) as a function of compression for
SWYCC and GAN based auto-encoders.
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Figure 2: Class conditional generation quality
(lower is better) as a function of compression
for SWYCC and GAN based auto-encoders.

As an alternative, this paper describes a technique for using a diffusion loss to learn an autoencoder.
The diffusion loss is sensible because it is a proper scoring rule with favorable theoretical properties
such as being formally connected to KL divergence (Sohl-Dickstein et al., 2015). It has proven itself
capable of generating crisp results with high perceptual quality as reflected by human evaluation
studies (Hoogeboom et al., 2023b; Karras et al., 2024b).
To demonstrate its simplicity, we take a popular encoder architecture Chang et al. (2022) and
marry it with a U-Net decoder, a popular denoising architecture for diffusion (Hoogeboom et al.,
2023b). With some additional details outlined in section 2, we show that this approach achieves
lower distortion at all compression levels as measured by the CMMD metric (Jayasumana et al.,
2024). Because our decoder is able to sample details at test-time that are not encoded in the latents,
we call our approach “Sample what you can’t compress” or SWYCC for short. This work will show
that,

• SWYCC achieves lower reconstruction distortion at all tested compression levels vs SOTA
GAN-based autoencoders (section 3).
• SWYCC representations enable qualitatively better latent diffusion generation results at

higher compression levels vs SOTA GAN-based autoencoders (section 3.3).
• Splitting the decoder into two parts improves training dynamics (section 3.1 and 3.2).

2 Method

Eliding its various parametrizations for brevity, the standard diffusion loss is characterized by the
Monte Carlo approximation of the following loss,

`(x) def= Eε∼MVN(0,Ih·w·3),t∼Uniform[0,1]

[
wt ‖x−D(αtx+ σtε, t)‖22

]
. (1)

Herein x ∈ Rh×w×3 denotes a natural image and D is a neural network fit using gradient descent and
which serves to denoise the corrupted input xt

def= αtx+σtε at a given noise-level t. Let the corruption
process be the cosine schedule (Hoogeboom et al., 2023a), σ2

t
def= 1− α2

t and αt
def= cos(at+ b(1− t))

where a = arctan(e10) and b = arctan(e−10).
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(a) Groundtruth (b) GAN (c) SWYCC

Figure 3: Comparison of GAN versus SWYCC reconstructions at 8× relative compression level.
You can see that the GAN based autoencoder loses a significant amount of detail in the highlighted
portions, which SWYCC is able to sample effectively.

We extend this definition to the task of autoencoding by simply allowing the denoising function
to take an additional argument, DInitial(E(x)), itself having access to the uncorrupted input x but
only through the bottlenecking function E. The result is,

`AE(x) def= Eε∼MVN(0,Ih·w·3),t∼Uniform[0,1]

[
wt ‖x−DRefine(αtx+ σtε, t,DInitial(E(x)))‖22

]
. (2)

As the notation suggests E is an encoder which, notably, is learned jointly with “diffusion decoder”
DRefine and secondary decoder DInitial : Z → Rh×w×3. The specification of DInitial is largely
a convenience but also merits secondary advantages. By mapping z = E(x) back into x-space,
we can simply concatenate the corrupted input xt and its “pseudo reconstruction,” DInitial(z).
Additionally, we find that directly penalizing DInitial(z), as described below, speeds up training.
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Figure 4: A block diagram of our auto-encoder architecture. Our ”Diffusion Model” is a U-Net
as defined by Hoogeboom et al. (2023b). During inference, the diffusion model is run in a loop to
iteratively sample an image. All of these parameters jointly after being initialized from scratch,
except for the weights of the network used in the perceptual loss.

2.1 Architectural Details

Encoder: We use a fully convolutional encoder in all of our experiments, whose specifics we borrow
from MaskGIT(Chang et al., 2022). The encoder consists of multiple ResNet(He et al., 2016) blocks
stacked on top of each other, with GeLU(Hendrycks & Gimpel, 2017) for its non-linearities and
GroupNorm(Wu & He, 2018) for training stability. The ResNet blocks are interspersed with strided
convolutions with stride 2 which achieves a 2× downsampling by itself. To get the 8× 8 patch size,
we use 4 ResNet blocks with 3 downsampling blocks. The encoder architecture is common for all
of our experiments, and we only change the number of channels at the output layer to achieve the
desired compression ratio.
Decoder: For the decoder in the GAN baseline andDInitial we use an architecture that is the reverse
of the encoder. For up-sampling, we use the depth-to-space operation. Just like the encoder, we
have 4 ResNet blocks interspersed with 3 depth-to-space operations. For DRefine we use a U-Net
as defined by Hoogeboom et al. (2023b). The U-Net has 4 ResNet blocks for downsampling and
corresponding 4 ResNet blocks for upsampling with residual connections between blocks of the same
resolution. After 4 downsampling stages, when resolution is 16 × 16, we use a self-attention block
to give the network additional capacity.

2.2 Reducing distortion using additional distance metrics

We find that additional direct penalization of DInitial(E(x) leads to improved CMMD and FID and
less distortion (see Figure 11). This was achieved by minimizing a composite loss containing terms
with favorable Hessian (eq. (4)) and perceptual characteristics (eq. (5)),

`Total
def= `AE + λp`Perceptual + λm`MSE (3)

where,

`MSE
def= ‖x−DInitial(E(x))‖22 (4)

and,

`Perceptual
def=
∥∥∥fFrozen(x)− fFrozen

(
DInitial(E(x))

)∥∥∥2

2
. (5)

The function fFrozen is an unlearnable standard ResNet, itself trained on ImageNet and used for
both the baseline and SWYCC. We found the best hyper-parameter setting for eq. (3) is λm = 1
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λp λm CMMD ↓
0 0 0.43
0 1 0.32
0.1 0 0.13
0.1 1 0.15

Table 1: Individual impact of each of our aux-
iliary losses. We note that the perceptual loss
has a big impact, and is crucial to being com-
petitive while training autoencoders. See image
samples in Figure 11. The first row λp = λm = 0
is analogous to DInitial having no role to play.
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Figure 5: Effect of CFG scale in DRefine.We use
CFG scale of 0.5 in our experiments.

and λp = 0.1 Setting λp > 0 was particularly important to be competitive at reconstruction with
GAN based methods in Table 1. The visual impact of perceptual loss is shown in Figure 11.
For generating reconstructions (recall that the SWYCC decoder is stochastic) we used classifier-
free guidance during inference (Ho & Salimans, 2021); for the unconditional model the U-Net was
trained with DInitial(E(x)) dropped-out, i.e., randomly zeroed out on 10% of training instances.

3 Experiments

In this section we explore how the GAN-based loss compares to our approach. Without loss of
generality, we define the relative compression ratio of 1 to be a network that maps 8×8 RGB patches
to an 8 dimensional latent vector. Effectively, this means for our encoder E if and x ∈ R256×256×3,
then E(x) ∈ R32×32×C where C = 8. In general, to achieve a relative compression ratio of K we set
C = 8

K . The effect of increasing the compression ratio is plotted in Figure 1. Observe that distortion
degrades much more rapidly for the GAN based auto-encoder as measured by CMMD (Jayasumana
et al., 2024) which Imagen-3 (Imagen-Team-Google et al., 2024) showed better correlates with
human perception.
Not only is our approach better at all compression levels; the gap between the GAN based autoen-
coder and SWYCC widens as we increase the relative compression ratio. Using the much simpler
diffusion formulation under Equation 3, we are able to reconstruct crisp looking images with de-
tailed textures (See Figure 3). Our method has the added benefit that we do not need to tune
any GAN related hyper-parameters, and can scale up effectively using the large body of diffusion
literature (Karras et al. (2022), Karras et al. (2024a)).

3.1 Impact of DInitial

Observing Equation 2 and Figure 4, we note that the output of DInitial is an intermediate tensor that
is not strictly required for the diffusion loss or for generating the output. We show using Table 1
that this piece is crucial for achieving performance comparable to the GAN based autoencoder.
The perceptual loss term in particular has a large impact in reducing distortion. Visual examples
are shown in Figure 11. We found that separating the decoder into 2 parts was necessary. When we
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2 steps 5 steps 10 steps 50 steps 150 steps

Figure 6: Example of how reconstructions look when changing the number of sampling steps for
DRefine. We can see that even with steps ≤ 5, the high level structure of the image is preserved.
When our method is used for interactive generation (for example, with a latent diffusion model), we
can use fewer steps of DRefine to show the user multiple low-quality inputs, and use a high number
of steps for the final generation that the user selects.

applied LPIPS and MSE losses without DInitial, our method was not competitive with GAN based
autoencoders.

3.2 Analysis of sampling in DRefine

In Figure 6 we show the qualitative difference number of sampling steps makes to reconstructions.
We can see that even with just 2 steps the high level structure of the image is present. In Figure 7
we study the impact of number of sampling steps by using the CMMD metric. Figure 9 shows what
sampling in DRefine actually ends up changing. We can see that only regions with high-frequency
components and detailed textures are changed between samples, while regions containing similar
colors over large areas are left untouched.
Figure 5 studies the effect of classifier-free guidance (Ho & Salimans, 2021) as used in DRefine. We
ablate the guidance with a model trained at a relative compression factor of 4 (See Section 3 for
definition) and find that a guidance scale of 0.5 works the best. This is not to be confused with the
guidance scale of the latent diffusion model that may be trained on top of our autoencoder, which
is a completely separate parameter to be tuned independently.

3.3 Modeling latents for diffusion

We use a DiT model (Peebles & Xie, 2023) to model the latent space of our models for the task of
class-conditional image generation. In Figure 2 we compare our latents with those of a GAN based
autoencoder. Our approach leads to 5% lower FID (Heusel et al., 2017) than the GAN baseline
at the best 4× compression ratio. Notably our approach achieves its best result at the highest
compression ratio, where the task of modelling the latent representation is simplest, whereas the
GAN autoencoder is unable to operate effectively in this regime.

3.4 Exploring better perceptual losses

In Table 1 we showed the large impact perceptual loss has on reconstruction quality. This begs the
question; are there better auxiliary losses we can use? We compare the perceptual loss as described
by in VQGAN (Esser et al., 2021; Johnson et al., 2016) and replace it with the DISTS (Ding
et al., 2020). DISTS loss differs from perceptual loss in 2 important ways. a) It uses SSIM (Wang
et al., 2004) instead of mean squared error and b) It uses features are multiple levels instead of
using only the activation’s from the last layer. The results are shown in Figure 10. At lower relative
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Figure 7: Impact of number of sampling
steps on DRefine on CMMD.
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Figure 8: Rate-distortion-perception trade-
off as outlined by Blau & Michaeli (2019).
Despite higher distortion, SWYCC is per-
ceptually better.

Figure 9: Reconstructed images and a heat-
map of variance between 10 samples.
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Figure 10: Effect of using DISTS loss on re-
construction quality.

compression ratios, DISTS loss helps GANs and SWYCC. But at higher relative compression ratios,
GAN based autoencoders perform even worse than the perceptual loss based baseline. We think this
is an avenue for future exploration. We perform all other experiments with perceptual loss (Esser
et al., 2021), since it is more prevalent in literature and it helps GAN based auto-encoders at higher
relative compression ratios.

3.5 Architecture and hyper-parameters

Autoencoder training hyper-parameters We train all of our models on the ImageNet dataset
resized at 256 × 256 resolution. During training, we resize the image such that the shorter side
measures 256 pixels and take a random crop in that image of size 256×256. For measuring reference
statistics on the validation set, we take the largest possible center square crop. All of our models
are trained at a batch size of 256 for 106 steps which roughly equals 200 epochs.
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GAN baseline: We use the popular convolutional encoder-decoder architecture popularized by
MaskGIT (Chang et al., 2022) in our GAN-based baselines. This autoencoder design is used by
many image models, including FSQ (Mentzer et al., 2024) and GIVT (Tschannen et al., 2023), and
was extended to the video domain by MAGVIT-v2 (Yu et al., 2024), VideoPoet (Kondratyuk et al.,
2024), and WALT (Gupta et al., 2023). We take advantage of decoder improvements developed
by MAGVIT-v2 (see Section 3.2 in (Yu et al., 2024)) to improve reconstruction quality. Note that
while the video models enhance the base autoencoder architecture with 3D convolution to integrate
information across time, the discriminator and perceptual loss are still applied on a per-frame basis
and thus are essentially unchanged in our model.
SWYCC: In our experiments we keep the architecture of DInitial identical to the decoder used
in the GAN baseline. For DRefine we use the U-Net architecture as parameterized by Hoogeboom
et al. (2023b). We borrow the U-Net 256 architecture and make the following modifications:

channel multiplier = [1, 2, 4, 8]
num res blocks = [2, 4, 8, 8]
downsampling factor = [1, 2, 2, 2]
attn resolutions = [16]
dropout = 0.0

We train using v-parameterization (Salimans & Ho, 2022), which corresponds to wt = σ−2
t in

equation 1. We use the Adam optimizer to learn our parameters. The learning rate is warmed up
for 104 steps from 0 to a maximum value of 10−4 and cosine decayed to 0. We use gradient clipping
with global norm set to 1.
Latent Diffusion: All of our experiments are done with the DiT-L architecture with 2×2 patching
(Peebles & Xie, 2023) with the addition of SwiGLU (Shazeer, 2020) and 2D RoPE (Heo et al., 2024).
We train for 4×105 steps with a batch size of 256, using a constant learning rate of 10−4 and dropout
the class embedding 10% of the time during training. For inference we use a classifier-free guidance
scale of 0.5 which gave optimal results in Peebles & Xie (2023).

4 Related Work

Autoencoders for 2-stage generation: For discrete representation learning, van den Oord et al.
(2017) showed the usefulness of the 2-stage modeling approach. In this broad category, the first
stage fits an autoencoder to the training data with the goal of learning a compressed representation
useful for reconstructing images. This is followed by a second stage where the encoder is frozen and
a generative model is trained to predict the latent representation based on a conditioning signal.
This approach regained popularity when Ramesh et al. (2021) showed that it can be used for zero-
shot text generation, and is now the dominant approach for image and video generation (Chang
et al., 2022; Yu et al., 2024; Chang et al., 2023; Gupta et al., 2023; Kondratyuk et al., 2024).
Adversarial losses: Esser et al. (2021) extended the autoencoder from van den Oord et al. (2017)
with two important new losses, the perceptual loss and the adversarial loss, taking inspiration
from the works of Johnson et al. (2016) and Isola et al. (2017). The perceptual loss is usually
defined as the L2 loss between a latent representation of the original and reconstructed image.
The latent representation, for example, can be extract from the final layer activations of a ResNet
optimized to classify ImageNet images. The adversarial loss is a patch-based discriminator that
uses a discriminator network to predict at a patch-level whether it is real or fake. This encourages
the decoder to produce realistic looking textures.

8



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2025

Latent Diffusion: Rombach et al. (2021) popularized text-to-image generation using latent
diffusion models. They kept the autoencoder from Esser et al. (2021) intact and simply removed
the quantization layer. This accelerated diffusion model research in the community owing to the
fact that the latent space was much smaller than the pixel space, which allows fast training and
inference compared to diffusion models like Imagen that sample pixels directly (Saharia et al., 2022).
2-stage diffusion autoencoders: Pandey et al. (2022) and Preechakul et al. (2022) both train
decoders with a diffusion loss. The crucial difference is that both these works train their autoencoder
in 2-stages.
Compression and diffusion: Hoogeboom et al. (2023a) showed that diffusion models can be used
for compression. Crucially, compared to our approach they use a frozen autoencoder, and do not
train their autoencoder end-to-end. They also use an objective based on modified flow matching. In
contrast, we did not modify the loss or the sampling algorithm. Pandey et al. (2022) use a similar
approach with a 2-stage autoencoder training process for their autoencoder.
In a similar context, Yang & Mandt (2024) developed an end-to-end optimized compression model
using a diffusion decoder. They show improved perceptual quality compared to earlier GAN-
based compression methods at the expense of higher distortion (pixel-level reconstruction accuracy).
Different from our approach, they use a discrete latent space, which is required for state-of-the-
art compression rates achieved via entropy coding. This limits the reconstruction quality but is
required for a compression model that ultimately seeks to minimize a rate-distortion objective, not
just a reconstruction and sampling quality objective.
Würstchen architecture (Pernias et al., 2024) has shown that training a cascade of diffusion models
improves training efficiency. Crucially Würstchen, does not apply a diffusion loss on pixels, instead
resorting to a GAN loss. Whang et al. (2022) also pointed out that diffusion can fix a lot of pixel
level artifacts, although they do not investigate training autoencoders.
Shi et al. (2022) learn an autoencoder using a diffusion loss for discrete vector quantized encodings.
We differ from them in 2 crucial ways; (i) we learn a continuous representation (ii) We show that
our architecture produces latents that are better for latent diffision by showing that we can achieve
higher compression and better generation performance (Figure 2) .

5 Conclusion

We have described a general autoencoder framework that uses a diffusion based decoder. Compared
to decoders that use GANs, our system is much more easier to tune and has the same theoretical
underpinnings as diffusion models. We showed our method produces sigificantly less distortions
as compared to GAN based autoencoders in Figure 1 and are better behaved as latent spaces for
diffusion in Figure 2. In Section 3.1 and 3.2 we studied the hyper-parameter settings on the 2 major
components of our decoder, DInitial and DRefine.
Possible extensions: The autoencoder technique we describe is fairly general and can be extended
to any other continuous modality like audio, video or 3D-point clouds. In addition, all improvements
to diffusion algorithms like those by Karras et al. (2024a) can be carried over.
Limitations: The main limitation of our method is the increase in inference cost during decoding.
This can be partly mitigated by using fewer steps like in Figure 6. In addition, techniques used to
improve diffusion sampling time like Progressive distillation (Salimans & Ho, 2022) and Instaflow
(Liu et al., 2024) are also prudent. Because of DRefine, our training time compute cost is also higher.
Combining DInitial and DRefine in a clever way to reduce training time compute and memory could
be a promising research direction.
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6 Appendix

6.1 Additional metrics

Method Rel. Compression rFID Inception Score pSNR CMMD rFID(Dino-v2)
SWYCC 1 0.33 222 26.6 0.095 4.13

2 0.62 215 24.1 0.122 9.56
4 1.17 203 22.0 0.167 22.4
8 2.75 175 20.0 0.250 60.1

GAN 1 0.27 222 28.2 0.116 4.52
2 0.54 215 25.7 0.232 11.7
4 0.99 202 23.7 0.395 30.3
8 1.96 176 21.6 0.642 72.9

SD-VAE 2.x (on COCO) 2 4.70 24.5

Table 2: Additional reconstruction metrics on ImageNet, unless otherwise noted. SWYCC is better
than GAN at all perceptual metrics except rFID.

6.2 Parameter counts

Method Component Parameters (Million)
SWYCC Encoder 49.4

DInitial 63.4
DRefine 614.1

GAN Encoder 49.4
Decoder 63.4

Table 3: Parameter counts of network components.
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6.3 Visual examples

(a) No auxiliary losses. (b) Only perceptual auxiliary loss.

Figure 11: Visual impact of perceptual loss.
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