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Abstract

We study the use of amortized optimization to predict optimal transport (OT) maps1

from the input measures, which we call Meta OT. This helps repeatedly solve sim-2

ilar OT problems between different measures by leveraging the knowledge and in-3

formation present from past problems to rapidly predict and solve new problems.4

Otherwise, standard methods ignore the knowledge of the past solutions and sub-5

optimally re-solve each problem from scratch. We instantiate Meta OT models in6

discrete and continuous (Wasserstein-2) settings between images, spherical data,7

and color palettes and use them to improve the computational time of standard OT8

solvers by multiple orders of magnitude.9

1 Introduction10

Optimal transportation [Villani, 2009, Ambrosio, 2003, Santambrogio, 2015, Peyré et al., 2019,11

Merigot and Thibert, 2021] is thriving in domains including economics [Galichon, 2016], rein-12

forcement learning [Dadashi et al., 2021, Fickinger et al., 2021], style transfer [Kolkin et al., 2019],13

generative modeling [Arjovsky et al., 2017, Seguy et al., 2018, Huang et al., 2020, Rout et al., 2021],14

geometry [Solomon et al., 2015, Cohen et al., 2021], domain adaptation [Courty et al., 2017, Redko15

et al., 2019], signal processing [Kolouri et al., 2017], fairness [Jiang et al., 2020], and cell repro-16

gramming [Schiebinger et al., 2019]. A core component in these settings is to couple two measures17

(α, β) supported on domains (X ,Y) by solving a transport optimization problem such as the primal18

Kantorovich problem, which is defined by:19

π?(α, β, c) ∈ arg min
π∈U(α,β)

∫
X×Y

c(x, y)dπ(x, y), (1)

where the optimal coupling π? is a joint distribution over the product space, U(α, β) is the set of20

admissible couplings between α and β, and c : X × Y → R is the ground cost, that represents a21

notion of distance between elements in X and elements in Y .22

Challenges. Unfortunately, solving eq. (1) once is computationally expensive between general mea-23

sures and computationally cheaper alternatives are an active research topic: Entropic optimal trans-24

port [Cuturi, 2013] smooths the transport problem with an entropy penalty, and sliced distances25

[Kolouri et al., 2016, 2018, 2019, Deshpande et al., 2019] solve OT between 1-dimensional projec-26

tions of the measures, where eq. (1) can be solved easily.27

Furthermore, when an optimal transport method is deployed in practice, eq. (1) is not just solved28

a single time, but is repeatedly solved for new scenarios between different input measures (α, β).29

For example, the measures could be representations of images we care about optimally transporting30

between and in deployment we would receive a stream of new images to couple. Repeatedly solving31

optimal transport problems also comes up in the context of comparing seismic signals [Engquist32

and Froese, 2013] and in single-cell perturbations [Bunne et al., 2021, 2022b,a]. Standard optimal33

transport solvers deployed in this setting would re-solve the optimization problems from scratch, but34

this ignores the shared structure and information present between different coupling problems.35
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Overview and outline. We study the use of amortized optimization and machine learning methods36

to rapidly solve multiple optimal transport problems and predict the solution from the input measures37

(α, β). This setting involves learning a meta model to predict the solution to the optimal transport38

problem, which we will refer to as Meta Optimal Transport. We learn Meta OT models to predict39

the solutions to optimal transport problems and significantly improve the computational time and40

number of iterations needed to solve eq. (1) between discrete (sect. 3.1) and continuous (sect. 3.2)41

measures. The paper is organized as follows: sect. 2 recalls the main concepts needed for the rest42

of the paper, in particular the formulations of the entropy regularized and unregularized optimal43

transport problems and the basic notions of amortized optimization; sect. 3 presents the Meta OT44

models and algorithms; and sect. 4 empirically demonstrates the effectiveness of Meta OT.45

Settings that are not Meta OT. Meta OT is not useful in OT settings that do not involve repeatedly46

solving OT problems over a fixed distribution, including 1) standard generative modeling settings,47

such as Arjovsky et al. [2017] that estimate the OT distance between the data and model distri-48

butions, and 2) the out-of-sample setting of Seguy et al. [2018], Perrot et al. [2016] that couple49

measures and then extrapolate the map to larger measures containing the original measures.50

2 Preliminaries and background51

2.1 Dual optimal transport solvers52

We review foundations of optimal transportation, following the notation of Peyré et al. [2019] in53

most places. The discrete setting often favors the entropic regularized version since it can be com-54

puted efficiently and in a parallelized way using the Sinkhorn algorithm. On the other hand, the55

continuous setting is often solved from samples using convex potentials. While the primal Kan-56

torovich formulation in eq. (1) provides an intuitive problem description, optimal transport problems57

are rarely solved directly in this form due to the high-dimensionality of the couplings π and the diffi-58

culty of satisfying the coupling constraints U(α, β). Instead, most computational OT solvers use the59

dual of eq. (1), which we build our Meta OT solvers on top of in discrete and continuous settings.60

2.1.1 Entropic OT between discrete measures with the Sinkhorn algorithm61

Algorithm 1 Sinkhorn(α, β, c, ε, f0 = 0)
for iteration i = 1 to N do

gi ← ε log b− ε log
(
K> exp{fi−1/ε}

)
fi ← ε log a− ε log (K exp{gi/ε})

end for
Compute PN from fN , gN using eq. (6)
return PN ≈ P ?

Let α :=
∑m
i=1 aiδxi and β :=

∑n
i=1 biδyi be62

discrete measures, where δz is a Dirac at point63

z and a ∈ ∆m−1 and b ∈ ∆n−1 are in the64

probability simplex defined by65

∆k−1 := {x ∈ Rk : x ≥ 0 and
∑
i

xi = 1}. (2)

Discrete OT. In the discrete setting, eq. (1) simplifies to the linear program66

P ?(α, β, c) ∈ arg min
P∈U(a,b)

〈C,P 〉 U(a, b) := {P ∈ Rn×m+ : P1m = a, P>1n = b} (3)

where P is a coupling matrix, P ?(α, β) is the optimal coupling, and the cost can be discretized as a67

matrix C ∈ Rm×n with entries Ci,j := c(xi, yj), and 〈C,P 〉 :=
∑
i,j Ci,jPi,j ,68

Entropic OT. The linear program above can be regularized adding the entropy of the coupling to69

smooth the objective as in Cominetti and Martín [1994], Cuturi [2013], resulting in:70

P ?(α, β, c, ε) ∈ arg min
P∈U(a,b)

〈C,P 〉 − εH(P ) (4)

where H(P ) := −
∑
i,j Pi,j(log(Pi,j)− 1) is the discrete entropy of a coupling matrix P .71

Entropic OT dual. As presented in Peyré et al. [2019, Prop. 4.4], the dual of eq. (4) is72

f?, g? ∈ arg max
f∈Rn,g∈Rm

〈f, a〉+ 〈g, b〉 − ε 〈exp{f/ε},K exp{g/ε}〉 , Ki,j := exp{−Ci,j/ε}, (5)

where K ∈ Rm×n is the Gibbs kernel and the dual variables or potentials f ∈ Rn and g ∈ Rm are73

associated, respectively, with the marginal constraints P1m = a and P>1n = b. The optimal duals74

depend on the problem, e.g. f?(α, β, c, ε), but we omit this dependence for notational simplicity.75

2



Recovering the primal solution from the duals. Given optimal duals f?, g? that solve eq. (5) the76

optimal coupling P ? to the primal problem in eq. (4) can be obtained by77

P ?i,j(α, β, c, ε) := exp{f?i /ε}Ki,j exp{g?j /ε} (K is defined in eq. (5)) (6)

The Sinkhorn algorithm. Algorithm 1 summarizes the log-space version, which takes closed-form78

block coordinate ascent updates on eq. (5) obtained from the first-order optimality conditions [Peyré79

et al., 2019, Remark 4.21]. We will use it to fine-tune predictions made by our Meta OT models.80

Computing the error. Standard implementations of the Sinkhorn algorithm, such as Flamary et al.81

[2021], Cuturi et al. [2022], measure the error of a candidate dual solution (f, g) by computing the82

deviation from the marginal constraints, which we will also use in comparing our solution quality:83

err(f, g;α, β, c) := ‖P1m − a‖1 + ‖P>1n − b‖1 (compute P from eq. (6)) (7)

Mapping between the duals. The first-order optimality conditions of eq. (5) also provide an equiv-84

alence between the optimal dual potentials that we will make use of:85

g(f ; b, c) := ε log b− ε log
(
K> exp{f/ε}

)
. (8)

2.1.2 Wasserstein-2 OT between continuous (Euclidean) measures with dual potentials86

Algorithm 2 W2GN(α, β, ϕ0)
for iteration i = 1 to N do

Sample from (α, β) and estimate L(ϕi−1)
Update ϕi with approximation to∇ϕL(ϕi−1)

end for
return TN (·) := ∇xψϕN (·) ≈ T ?(·)

Let α and β be continuous measures in Euclidean87

space X = Y = Rd (with α absolutely contin-88

uous with respect to the Lebesgue measure) and89

the ground cost be the squared Euclidean distance90

c(x, y) := ‖x−y‖22. Then the minimum of eq. (1)91

defines the square of the Wasserstein-2 distance:92

W 2
2 (α, β) := min

π∈U(α,β)

∫
X×Y

‖x− y‖22dπ(x, y) = min
T

∫
X
‖x− T (x)‖22dα(x), (9)

where T is a transport map pushing α to β, i.e. T#α = β with the pushforward operator defined93

by T#α(B) := α(T−1(B)) for any measurable set B.94

Convex dual potentials. The primal form in eq. (9) is difficult to solve, as in the discrete setting, due95

to the difficulty of representing the coupling and satisfying the constraints. Makkuva et al. [2020],96

Taghvaei and Jalali [2019], Korotin et al. [2019, 2021b, 2022] propose to instead solve the dual:97

ψ?( · ;α, β) ∈ arg min
ψ∈convex

∫
X
ψ(x)dα(x) +

∫
Y
ψ(y)dβ(y), (10)

where ψ is a convex function referred to as a convex potential, and ψ(y) := maxx∈X 〈x, y〉−ψ(x) is98

the Legendre-Fenchel transform or convex conjugate of ψ [Fenchel, 1949, Rockafellar, 2015]. The99

potential ψ is often approximated with an input-convex neural network (ICNN) [Amos et al., 2017].100

Recovering the primal solution from the dual. Given an optimal dual ψ? for eq. (10), Brenier101

[1991] remarkably shows that an optimal map T ? for eq. (9) can be obtained with differentiation:102

T ?(x) = ∇xψ?(x). (11)

Wasserstein-2 Generative Networks (W2GNs). Korotin et al. [2019] model ψϕ and ψϕ in eq. (10)103

with two separate ICNNs parameterized by ϕ. The separate model for ψϕ is useful because the104

conjugate operation in eq. (10) becomes computationally expensive. They optimize the loss:105

L(ϕ) := E
x∼α

[ψϕ(x)] + E
y∼β

[
〈∇ψϕ(y), y〉 − ψϕ(∇ψϕ(y))

]
︸ ︷︷ ︸

Cyclic monotone correlations (dual objective)

+γ E
y∼β
‖∇ψϕ ◦ ∇ψϕ(y)− y‖22,︸ ︷︷ ︸
Cycle-consistency regularizer

(12)

where ϕ is a detached copy of the parameters and γ is a hyper-parameter. The first term are the106

cyclic monotone correlations [Chartrand et al., 2009, Taghvaei and Jalali, 2019], that optimize the107

dual objective in eq. (10), and the second term provides cycle consistency [Zhu et al., 2017] to108

estimate the conjugate ψ. Algorithm 2 shows how L is typically optimized using samples from the109

measures, which we use to fine-tune Meta OT predictions.110
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Figure 1: Meta OT uses objective-based amortization for optimal transport. In the general formula-
tion, the parameters θ capture shared structure in the optimal couplings π? between multiple input
measures and costs over some distribution D. In practice, we learn this shared structure over the
dual potentials which map back to the coupling: f? in discrete settings and ψ? in continuous ones.

2.2 Amortized optimization and learning to optimize111

Our paper is an application of amortized optimization methods that predict the solutions of opti-112

mization problems, as surveyed in, e.g., Chen et al. [2021], Amos [2022]. We use the basic setup113

from Amos [2022], which considers unconstrained continuous optimization problems of the form114

z?(φ) ∈ arg min
z

J(z;φ), (13)

where J is the objective, z ∈ Z is the domain, and φ ∈ Φ is some context or parameterization. In115

other words, the context conditions the objective but is not optimized over. Given a distribution over116

contexts P(φ), we learn a model ẑθ parameterized by θ to approximate eq. (13), i.e. ẑθ(φ) ≈ z?(φ).117

J will be differentiable for us, so we optimize the parameters using objective-based learning with118

min
θ

E
φ∼P(φ)

J(ẑθ(φ);φ), (14)

which does not require ground-truth solutions z? and can be optimized with a gradient-based solver.119

While we focus on optimizing eq. (14) because we do not assume easy access to ground-truth solu-120

tions z?(φ), one alternative is regression-based learning if the solutions are easily available:121

min
θ

E
φ∼P(φ)

‖z?(φ)− ẑθ(φ)‖22. (15)

3 Meta Optimal Transport122

Figure 1 illustrates our key contribution of connecting objective-based amortization in eq. (14) to123

optimal transport. We consider solving multiple OT problems and learning shared structure and124

correlations between them. We denote a joint meta-distribution over the input measures and costs125

with D(α, β, c), which we call meta to distinguish it from the measures α, β.126

In general, we could introduce a model that directly predicts the primal solution to eq. (1), i.e.127

πθ(α, β, c) ≈ π?(α, β, c) for (α, β, c) ∼ D. This is difficult for the same reason why most compu-128

tational methods do not operate directly in the primal space: the optimal coupling is often a high-129

dimensional joint distribution with non-trivial marginal constraints. We instead turn to predicting130

the dual variables used by today’s solvers.131

3.1 Meta OT between discrete measures132

We build on standard methods for entropic OT reviewed in sect. 2.1.1 between discrete measures133

α :=
∑m
i=1 aiδxi and β :=

∑n
i=1 biδxi with a ∈ ∆m−1 and b ∈ ∆n−1 coupled using a cost c. In the134

Meta OT setting, the measures and cost are the contexts for amortization and sampled from a meta-135

distribution, i.e. (α, β, c) ∼ D(α, β, c). For example, sects. 4.1 and 4.2 considers meta-distributions136

over the weights of the atoms, i.e. (a, b) ∼ D, where D is a distribution over ∆m−1 ×∆n−1.137
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Algorithm 3 Training Meta OT
Initialize amortization model with θ0
for iteration i do

Sample (α, β, c) ∼ D
Predict duals f̂θ or ϕ̂θ on the sample
Estimate the loss in eq. (17) or eq. (18)
Update θi+1 with a gradient step

end for

Algorithm 4 Fine-tuning with Sinkhorn

Predict duals f̂θ(α, β, c)
return Sinkhorn(α, β, c, ε, f̂θ)

Algorithm 5 Fine-tuning with W2GN
Predict dual ICNN parameters ϕ̂θ(α, β, c)
return W2GN(α, β, c, T, ϕ̂θ)

Amortization objective. We will seek to predict the optimal potential. At optimality, the pair of138

potentials are related to each other via eq. (8), i.e. g(f ;α, β, c) := ε log b − ε log
(
K> exp{f/ε}

)
139

where K ∈ Rm×n is the Gibbs kernel from eq. (5). Hence, it is sufficient to predict one of the140

potentials, e.g. f , and recover the other. We thus re-formulate eq. (5) to just optimize over f with141

f?(α, β, c, ε) ∈ arg min
f∈Rn

J(f ;α, β, c), (16)

where−J(f ;α, β, c) := 〈f, a〉+〈g, b〉−ε 〈exp{f/ε},K exp{g/ε}〉 is the (negated) dual objective.142

Even though most solvers optimize over f and g jointly as in eq. (16), amortizing over these would143

likely need: 1) to have a higher capacity than a model just predicting f , and 2) to learn how f and g144

are connected through eq. (8) while in eq. (16) we explicitly provide this knowledge.145

Amortization model. We predict the solution to eq. (16) with f̂θ(α, β, c) parameterized by θ,146

resulting in a computationally efficient approximation f̂θ ≈ f?. Here we use the notation f̂θ(α, β, c)147

to mean that the model f̂θ depends on representations of the input measures and cost. In our settings,148

we define f̂θ as a fully-connected MLP mapping from the atoms of the measures to the duals.149

Amortization loss. Applying objective-based amortization from eq. (14) to the dual in eq. (16)150

completes our learning setup. Our model should best-optimize the expectation of the dual objective151

min
θ

E
(α,β,c)∼D

J(f̂θ(α, β, c);α, β, c), (17)

which is appealing as it does not require ground-truth solutions f?. Algorithm 3 shows a basic152

training loop for eq. (17) using a gradient-based optimizer such as Adam [Kingma and Ba, 2014].153

Sinkhorn fine-tuning. The dual prediction made by f̂θ with an associated ĝ can easily be input as154

the initialization to a standard Sinkhorn solver as shown in algorithm 4. This allows us to deploy the155

predicted potential with Sinkhorn to obtain the optimal potentials with only a few extra iterations.156

On accelerated solvers. Here we have only considered fine-tuning the Meta OT prediction with157

a log-Sinkhorn solver. Meta OT can also be combined with accelerated variants of entropic OT158

solvers such as Thibault et al. [2017], Altschuler et al. [2017], Alaya et al. [2019], Lin et al. [2019]159

that would otherwise solve every problem from scratch.160

3.2 Meta OT between continuous measures (Wasserstein-2)161

We take an analogous approach to predicting the Wasserstein-2 map between continuous measures162

for Wasserstein-2 as reviewed in sect. 2.1.2. Here the measures α, β are supported in continuous163

space X = Y = Rd and we focus on computing Wasserstein-2 couplings from instances sampled164

from a meta-distribution (α, β) ∼ D(α, β). The cost c is not included inD as it remains fixed to the165

squared Euclidean cost everywhere here.166

One challenge here is that the optimal dual potential ψ?( · ;α, β) in eq. (10) is a convex function and167

not simply a finite-dimensional real vector. The dual potentials in this setting are approximated by,168

e.g., an ICNN. We thus propose a Meta ICNN that predicts the parameters ϕ of an ICNN ψϕ that169

approximates the optimal dual potentials, which can be seen as a hypernetwork [Stanley et al., 2009,170

Ha et al., 2016]. The dual prediction made by ϕ̂θ can easily be input as the initial value to a standard171

W2GN solver as shown in algorithm 5. App. B discusses other modeling choices we considered:172

we tried models based on MAML [Finn et al., 2017] and neural processes [Garnelo et al., 2018b,a].173
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Sinkhorn (converged, ground-truth)

α0 α1
α2

Meta OT (initial prediction)

α0 α1
α2

Figure 2: Interpolations between MNIST test digits using couplings obtained from (left) solving
the problem with Sinkhorn, and (right) Meta OT model’s initial prediction, which is ≈100 times
computationally cheaper and produces a nearly identical coupling.

α

β

z1

z2

z

ϕ̂θ

Parameters

ψϕ̂θ

ICNN

T̂ (·) = ∇xψϕ̂θ (·)
Transport map

ResNetθ

ResNetθ

MLPθ

Figure 3: A Meta ICNN for image-based input measures. A shared ResNet processes the input
measures α and β into latents z that are decoded with an MLP into the parameters ϕ of an ICNN
dual potential ψϕ. The derivative of the ICNN provides the transport map T̂ .

Table 1: Sinkhorn runtime (seconds) to reach a
marginal error of 10−3. Meta OT’s initial predic-
tion takes ≈ 5 · 10−5 seconds.

Initialization MNIST Spherical

Zeros 7.7 · 10−3 ±1.2 · 10−3 1.4 ±1.9 · 10−1

Gaussian 7.7 · 10−3 ±1.4 · 10−3 1.1 ±2.0 · 10−1

Meta OT 3.9 · 10−3 ±1.6 · 10−3 0.44 ±1.5 · 10−1

Table 2: Color transfer runtimes and values.

Iter Runtime (s) Dual Value

Meta OT None 3.5 · 10−3 ±2.7 · 10−4 0.90 ±6.08 · 10−2

+ W2GN 1k 0.93 ±2.27 · 10−2 1.0 ±2.57 · 10−3

2k 1.84 ±3.78 · 10−2 1.0 ±5.30 · 10−3

W2GN 1k 0.90 ±1.62 · 10−2 0.96 ±2.62 · 10−2

2k 1.81 ±3.05 · 10−2 0.99 ±1.14 · 10−2

We report the mean and standard deviation across 10 test instances.

Amortization objective. We build on the W2GN formulation [Korotin et al., 2019] and seek pa-174

rameters ϕ? optimizing the dual ICNN potentials ψϕ and ψϕ with L(ϕ;α, β) from eq. (12). We175

chose W2GN due to the stability, but could also easily use other losses optimizing ICNN potentials.176

Amortization model: the Meta ICNN. We predict the solution to eq. (12) with ϕ̂θ(α, β) param-177

eterized by θ, resulting in a computationally efficient approximation to the optimum ϕ̂θ ≈ ϕ?.178

Figure 3 instantiates a convolutional Meta ICNN model using a ResNet-18 [He et al., 2016] archi-179

tecture for coupling image-based measures. We again emphasize that α, β used with the model here180

are representations of measures, which in our cases are simply images.181

Amortization loss. Applying objective-based amortization from eq. (14) to the W2GN loss in182

eq. (12) completes our learning setup. Our model should best-optimize the expectation of the loss:183

min
θ

E
(α,β)∼D

L(ϕ̂θ(α, β);α, β). (18)

As in the discrete setting, it does not require ground-truth solutions ϕ? and we learn it with Adam.184

4 Experiments185

We demonstrate how Meta OT models improve the convergence of the state-of-the-art solvers in186

settings where solving multiple OT problems naturally arises. We implemented our code in JAX187

[Bradbury et al., 2018] as an extension to the the Optimal Transport Tools (OTT) package [Cuturi188

et al., 2022]. App. C covers further experimental and implementation details, and shows that all of189

our experiments take a few hours to run on our single Quadro GP100 GPU.190
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Figure 4: Meta OT successfully predicts warm-start initializations that significantly improve the
convergence of Sinkhorn iterations on test data. The error is the marginal error defined in eq. (7).

4.1 Discrete OT between MNIST digits191

Images provide a natural setting for Meta OT where the distribution over images provide the meta-192

distribution D over OT problems. Given a pair of images α0 and α1, each grayscale image is193

cast as a discrete measure in 2-dimensional space where the intensities define the probabilities of194

the atoms. The goal is to compute the optimal transport interpolation between the two measures195

as in, e.g., Peyré et al. [2019, §7]. Formally, this means computing the optimal coupling P ? by196

solving the entropic optimal transport problem between α0 and α1 and computing the interpolates197

as αt = (tprojy +(1− t) projx)#P
?, for t ∈ [0, 1], where projx(x, y) := x and projy(x, y) = y.198

We selected ε = 10−2 as app. A shows that it gives interpolations that are not too blurry or sharp.199

Our Meta OT model f̂θ (sect. 3.1) is an MLP that predicts the transport map between pairs of MNIST200

digits. We train on every pair from the standard training dataset. Figure 2 shows that even without201

fine-tuning, Meta OT’s predicted Wasserstein interpolations between the measures are close to the202

ground-truth interpolations obtained from running the Sinkhorn algorithm to convergence. We then203

fine-tune Meta OT’s prediction with Sinkhorn as in algorithm 4. Figure 4 shows that the near-204

optimal predictions can be quickly refined in fewer iterations than running Sinkhorn with the default205

initialization, and table 1 shows the runtime required to reach the default threshold, which uses the206

default marginal error threshold of 10−3. We compare our learned initialization to the standard zero207

initialization, as well as the Gaussian initialization proposed in Thornton and Cuturi [2022], which208

takes a continuous Gaussian approximation of the measures and initializes the potentials to be the209

known coupling between the Gaussians. This Gaussian initialization assumes the squared Euclidean210

cost, which is not the case in our spherical transport problem, but we find it is still helpful over the211

zero initialization.212

4.2 Discrete OT for supply-demand transportation on spherical data213

We next set up a synthetic transport problem between supply and demand locations where the supply214

and demands may change locations or quantities frequently, creating another Meta OT setting to be215

able to rapidly solve the new instances. We specifically consider measures living on the 2-sphere216

defined by S2 := {x ∈ R3 : ‖x‖ = 1}, i.e. X = Y = S2, with the transport cost given by the217

spherical distance c(x, y) = arccos(〈x, y〉). We then randomly sample supply locations uniformly218

from Earth’s landmass and demand locations from Earth’s population density to induce a class of219

transport problems on the sphere obtained from the CC-licensed dataset from Doxsey-Whitfield et al.220

[2015]. Figure 5 shows that the predicted transport maps on test instances are close to the optimal221

maps obtained from Sinkhorn to convergence. Similar to the MNIST setting, fig. 4 and table 1 show222

improved convergence and runtime.223

4.3 Continuous Wasserstein-2 color transfer224

The problem of color transfer between two images consists in mapping the color palette of one image225

into the other one. The images are required to have the same number of channels, for example RGB226

images. The continuous formulation that we use from Korotin et al. [2019], takes i.e. X = Y =227

[0, 1]3 with c being the squared Euclidean distance. We collected ≈200 public domain images from228

WikiArt and trained a Meta ICNN model from sect. 3.2 to predict the color transfer maps between229
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Sinkhorn (converged, ground-truth) Meta OT (initial prediction)

Figure 5: Test set coupling predictions of the spherical transport problem. Meta OT’s initial pre-
diction is ≈37500 times faster than solving Sinkhorn to optimality. Supply locations are shown as
black dots and the blue lines show the spherical transport maps T going to demand locations at the
end. The sphere is visualized with the Mercator projection.

α β T#α T−1
# β

W2GN (converged, ground-truth)

Meta OT (Initial prediction)

Figure 6: Color transfers with a Meta ICNN on test pairs of images. The objective is to optimally
transport the continuous RGB measure of the first image α to the second β, producing an invertible
transport map T . Meta OT’s prediction is ≈1000 times faster than training W2GN from scratch.
The image generating α is Market in Algiers by August Macke (1914) and β is Argenteuil, The
Seine by Claude Monet (1872), obtained from WikiArt.

every pair of them. Figure 6 shows the predictions on test pairs and fig. 7 shows the convergence in230

comparison to the standard W2GN learning. Table 2 reports runtimes and app. E shows additional231

results.232

5 Related work233

Efficiently estimating OT maps. To compute OT maps with fixed cost between pairs of measures234

efficiently, neural OT models [Korotin et al., 2019, Li et al., 2020, Korotin et al., 2021a, Mokrov235

et al., 2021, Korotin et al., 2021b] leverage ICNNs to estimate maps between continuous high-236
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dimensional measures given samples from these, and Litvinenko et al. [2021], Scetbon et al. [2021],237

Forrow et al. [2019], Sommerfeld et al. [2019], Scetbon et al. [2022], Muzellec and Cuturi [2019],238

Bonet et al. [2021] leverage structural assumptions on coupling and cost matrices to reduce the239

computational and memory complexity. In the meta-OT setting, we consider learning to rapidly240

compute OT mappings between new pairs measures. All these works can hence potentially benefit241

from an acceleration effect by leveraging amortization similarly.242
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Figure 7: Convergence on color transfer test
instances using W2GN. Meta ICNNs predicts
warm-start initializations that significantly im-
prove the (normalized) dual objective values.

Embedding measures where OT distances are243

discriminative. Effort has been invested in learn-244

ing encodings/projections of measures through245

a nested optimization problem, which aims to246

find discriminative embeddings of the measures247

to be compared [Genevay et al., 2018, Deshpande248

et al., 2019, Nguyen and Ho, 2022]. While these249

works share an encoder and/or a projection across250

task with the aim of leveraging more discrimina-251

tive alignments (and hence an OT distance with a252

metric different from the Euclidean metric), our253

work differs in the sense that we find good initial-254

izations to solve the OT problem itself with fixed255

cost more efficiently across tasks.256

Optimal transport and amortization. Few pre-257

vious works in the OT literature leverage amor-258

tization. Courty et al. [2018] learn a latent space in which the Wasserstein distance between the259

measure’s embeddings is equivalent to the Euclidean distance. Concurrent work [Nguyen and Ho,260

2022] amortizes the estimation of the optimal projection in the max-sliced objective, which differs261

from our work where we instead amortize the estimation of the optimal coupling directly. Also,262

Lacombe et al. [2021] learns to predict Wasserstein barycenters of pixel images by training a con-263

volutional networks that, given images as input, outputs their barycenters. Our work is hence a264

generalization of this pixel-based work to general measures – both discrete and continuous. A limi-265

tation of Lacombe et al. [2021] is that it does not provide alignments, as the amortization networks266

predicts the barycenter directly rather than individual couplings.267

6 Conclusions, future directions, and limitations268

We have presented foundations for modeling and learning to solve OT problems with Meta OT by269

using amortized optimization to predict optimal transport plans. This works best in applications that270

require solving multiple OT problems with shared structure. We instantiated it to speed up entropic271

regularized optimal transport and unregularized optimal transport with squared cost by multiple272

orders of magnitude. We envision extensions of the work in:273

1. Meta OT models. While we mostly consider models based on hypernetworks, other meta-274

learning paradigms can be connected in. In the discrete setting, we only considered settings275

where the cost remains fixed, but the Meta OT model can also be conditioned on the cost276

by considering the entire cost matrix as an input (which may be too large for most models277

to handle), or considering a lower-dimensional parameterization of the cost that changes278

between the Meta OT problem instances.279

2. OT algorithms. While we instantiated models on top of log-Sinkhorn and W2GN, Meta280

OT could be built on top of other methods.281

3. OT applications that are computationally expensive and repeatedly solved, e.g. in multi-282

marginal and barycentric settings, or for Gromov-Wasserstein distances between metric-283

measure spaces.284

Limitations. While we have illustrated successful applications of Meta OT, it is also important to285

understand the limitations: 1) Meta OT does not make previously intractable problems tractable.286

All of the baseline OT solvers we consider solve our problems within milliseconds or seconds. 2)287

Out-of-distribution generalization. Meta OT may not generate good predictions on instances that288

are not close to the training OT problems from the meta-distribution D over the measures and cost.289

If the model makes a bad prediction, one fallback option is to re-solve the instance from scratch.290
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A Selecting ε for MNIST511
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Figure 8: We selected ε = 10−2 for our MNIST coupling experiments as it results in transport maps
that are not too blurry or sharp.

B Other models for continuous OT512

While developing the hyper-network or Meta ICNN in sect. 3.2 for predicting couplings between513

continuous measures, we considered alternative modeling formulations briefly documented in this514

section. We finalized only the hyper-network model because it is conceptually the most similar to515

predicting the optimal dual variables in the continuous setting and results in rapid predictions.516

B.1 Optimization-based meta-learning (MAML-inspired)517

The model-agnostic meta-learning setup proposed in MAML [Finn et al., 2017] could also be ap-518

plied in the Meta OT setting to learn an adaptable initial parameterization. In the continuous setting,519

one initial version would take a parameterized dual potential model ψϕ(x) and seek to learn an ini-520

tial parameterization ϕ0 so that optimizing a loss such as the W2GN loss L from eq. (12) results in521

a minimal L(ϕK) after adapting the model for K steps. Formally, this would optimize:522

arg min
ϕ0

L(ϕK) where ϕt+1 = ϕt −∇ϕL(ϕt) (19)

Tancik et al. [2021] explores similar learned initializations for coordinate-based neural implicit rep-523

resentations for 2D images, CT scan reconstruction, and 3d shape and scene recovery from 2D524

observations.525

Challenges for Meta OT. The transport maps given by T = ∇ψ can significantly vary depending on526

the input measures α, β. We found it difficult to learn an initialization that can be rapidly adapted,527

and optimizing eq. (19) is more computationally expensive than eq. (18) as it requires unrolling528

through many evaluations of the transport loss L. And, we found that only learning to predict529

the optimal parameters with eq. (18), conditional on the input measures, and then fine-tuning with530

W2GN to be stable.531

Advantages for Meta OT. Exploring MAML-inspired methods could further incorporate the knowl-532

edge that the model’s prediction is going to be fine-tuned into the learning process. One promising533
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direction we did not try could be to integrate some of the ideas from LEO [Rusu et al., 2018] and534

CAVIA [Zintgraf et al., 2019], which propose to learn a latent space for the parameters where the535

initialization is also conditional on the input.536

B.2 Neural process and conditional Monge maps537

The (conditional) neural process models considered in Garnelo et al. [2018b,a] can also be adapted538

for the Meta OT setting, and is similar to the model proposed in Bunne et al. [2022a]. In the539

continuous setting, this would result in a dual potential that is also conditioned on a representation540

of the input measures, e.g. ψϕ(x; z) where z := f emb
ϕ (α, β) is a learned embedding of the input541

measures that is learned with the parameters of ψ. This could be formulated as542

arg min
ϕ

E
(α,β)∼D

L(ϕ, f emb
ϕ (α, β)), (20)

where L modifies the model used in the loss eq. (12) to also be conditioned on the context extracted543

from the measures.544

Challenges for Meta OT. This raises the issue on best-formulating the model to be conditional on545

the context. One way could be to append z to the input point x in the domain. Bunne et al. [2022a]546

proposes to use the Partially Input-Convex Neural Network (PICNN) from [Amos et al., 2017] to547

make the model convex with respect to x and not z.548

Advantages for Meta OT. A large advantage is that the representation z of the measures α, β would549

be significantly lower-dimensional than the parameters ϕ that our Meta OT models are predicting.550

C Additional experimental and implementation details551

We have attached the Jax source code necessary to run and reproduce all of the experiments in our552

paper and will open-source all of it. Here is a basic overview of the files:553

meta_ot Meta OT Python library code

conjugate.py Exact conjugate solver for the continuous setting

data.py

models.py

utils.py

config Hydra configuration for the experiments (containing hyper-parameters)

train_discrete.py Train Meta OT models for discrete OT

train_color_single.py Train a single ICNN with W2GN between 2 images (for debugging)

train_color_meta.py Train a Meta ICNN with W2GN

plot_mnist.py Visualize the MNIST couplings

plot_world_pair.py Visualize the spherical couplings

eval_color.py Evaluate the Meta ICNN in the continuous setting

eval_discrete.py Evaluate the Meta ICNN for the discrete tasks554
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Connecting to the data is one difficulty in running the experiments. The easiest experiment to re-run555

is the MNIST one, which will automatically download the dataset:556

557
1 ./ train_discrete.py # Train the model , outputting to <exp_dir >558

2 ./ eval_discrete.py <exp_dir > # Evaluate the learned models559

3 ./ plot_mnist.py <exp_dir > # Produce further visualizations560561

C.1 Hyper-parameters562

We briefly summarize the hyper-parameters we used for training, which we did not extensively tune.563

In the discrete setting, we use the same hyper-parameters for the MNIST and spherical settings.564

Table 3: Discrete OT hyper-parameters.

Name Value

Batch size 128
Number of training iterations 50000

MLP Hidden Sizes [1024, 1024, 1024]
Adam learning rate 1e-3

Table 4: Continuous OT hyper-parameters.

Name Value

Meta batch size (for α, β) 8
Inner batch size (to estimate L) 1024

Cycle loss weight (γ) 3.
Adam learning rate 1e-3
`2 weight penalty 1e-6

Max grad norm (for clipping) 1.
Number of training iterations 200000

Meta ICNN Encoder ResNet18
Encoder output size (both measures) 256×2

Meta ICNN Decoder Hidden Sizes [512]

565

C.2 Sinkhorn convergence times, varying thresholds566

In the main paper, table 1 reports the runtime of Sinkhorn to reach a convergence threshold of the567

marginal error being below a tolerance of 10−3, which is the default value used in many solvers.568

app. C.2 report the results from sweeping over other thresholds and show that Meta OT’s initializa-569

tion is consistently able to help.570

Table 5: Sinkhorn runtime to reach a thresholded marginal error on MNIST.

Initialization Threshold=10−2 Threshold=10−3 Threshold=10−4 Threshold=10−5

Zeros 4.5 · 10−3 ±1.5 · 10−3 7.7 · 10−3 ±1.2 · 10−3 1.1 · 10−2 ±1.8 · 10−3 1.5 · 10−2 ±2.3 · 10−3

Gaussian 4.1 · 10−3 ±1.2 · 10−3 7.7 · 10−3 ±1.4 · 10−3 1.1 · 10−2 ±1.7 · 10−3 1.4 · 10−2 ±2.4 · 10−3

Meta OT 2.3 · 10−3 ±9.2 · 10−6 3.9 · 10−3 ±1.6 · 10−3 6.7 · 10−3 ±1.4 · 10−3 1.0 · 10−2 ±2.4 · 10−3

Table 6: Sinkhorn runtime to reach a thresholded marginal error on the spherical transport problem.

Initialization Threshold=10−2 Threshold=10−3 Threshold=10−4 Threshold=10−5

Zeros 8.8 · 10−1 ±1.3 · 10−1 1.4 ±1.9 · 10−1 2.1 ±3.6 · 10−1 2.8 ±5.6 · 10−1

Gaussian 5.6 · 10−1 ±9.9 · 10−2 1.1 ±2.0 · 10−1 1.7 ±3.5 · 10−1 2.4 ±5.4 · 10−1

Meta OT 7.8 · 10−2 ±3.4 · 10−2 0.44 ±1.5 · 10−1 0.97 ±3.2 · 10−1 1.7 ±6.8 · 10−1
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C.3 Experimental runtimes and convergence571

App. C.3 shows the convergence during training of Meta OT models in the discrete and continuous572

settings over 10 trials on our single Quadro GP100 GPU. The MNIST models are consistently trained573

to optimality within 2 minutes (!) while the continuous model takes a few hours to train.574

0 10 20 30 40 50

1k Training Iterations

0.0

0.1

0.2

0.3

M
ar

gi
n

al
E

rr
or

MNIST

0 2 4 6 8

Training Time (minutes)

0.0

0.1

0.2

0.3

M
ar

gi
n

al
E

rr
or

MNIST

0 10 20 30 40 50

1k Training Iterations

0.0

0.5

1.0

M
ar

gi
n

al
E

rr
or

Spherical

0 5 10 15

Training Time (minutes)

0.0

0.5

1.0

M
ar

gi
n

al
E

rr
or

Spherical

0 50 100 150 200

1k Training Iterations

−0.95

−0.90

D
u

al

Wasserstein-2

0 50 100 150 200

Training Time (minutes)

−0.95

−0.90

D
u

al

Wasserstein-2

Figure 9: Convergence of Meta OT models during training, reported over iterations and wall-clock
time. We run each experiment for 10 trials with different seeds and report each trial as a line.
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D Out-of-distribution generalization575

App. D tests the ability of Meta OT to predict potentials for out-of-distribution input data. We576

consider the pairwise training and evaluation on the following datasets: 1) MNIST; 2) USPS [Hull,577

1994] (upscaled to have the same size as the MNIST); 3) Google Doodles dataset* with classes Crab,578

Cat and Faces; 4) sparsified random uniform data in [0,1] where sparsity (zeroing values below 0.95)579

is used to mimic the sparse signal in black-and-white images. For each pair, eg, MNIST-USPS, we580

train on one dataset and use the other to predict the potentials. The comparison is done using the581

same metric as before, i.e., the deviation from the marginal constraints defined in eq. (7).582
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Figure 10: Cross-domain experiments.

*https://quickdraw.withgoogle.com/data
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E Additional color transfer results583

We next show additional color transfer results from the experiments in sect. 4.3 on the following584

public domain images from WikiArt:585

• Distant View of the Pyramids by Winston Churchill (1921)586

• Charing Cross Bridge, Overcast Weather by Claude Monet (1900)587

• Houses of Parliament by Claude Monet (1904)588

• October Sundown, Newport by Childe Hassam (1901)589

• Landscape with House at Ceret by Juan Gris (1913)590

• Irises in Monet’s Garden by Claude Monet (1900)591

• Crystal Gradation by Paul Klee (1921)592

• Senecio by Paul Klee (1922)593

• Váza s květinami by Josef Capek (1914)594

• Sower with Setting Sun by Vincent van Gogh (1888)595

• Three Trees in Grey Weather by Claude Monet (1891)596

• Vase with Daisies and Anemones by Vincent van Gogh (1887)597
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https://www.wikiart.org/en/claude-monet/houses-of-parliament
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α β T#α T−1
# β

Figure 11: Meta ICNN (initial prediction). The sources are given in the beginning of app. E.
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α β T#α T−1
# β

Figure 12: Meta ICNN + W2GN fine-tuning. The sources are given in the beginning of app. E.
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α β T#α T−1
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Figure 13: W2GN (final). The sources are given in the beginning of app. E.
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