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ABSTRACT

Existing 3D occupancy networks demand significant hardware resources, hinder-
ing the deployment of edge devices. Binarized Neural Networks (BNNs) offer a
potential solution by substantially reducing computational and memory require-
ments. However, their performances decrease notably compared to full-precision
networks. In addition, it is challenging to enhance the performance of the bi-
narized model by increasing the number of binarized convolutional layers, which
limits its practicability for 3D occupancy prediction. This paper presents two orig-
inal insights into binarized convolution, substantiated with theoretical proofs: (a)
1× 1 binarized convolution introduces minimal binarization errors as the network
deepens, and (b) binarized convolution is inferior to full-precision convolution in
capturing cross-channel feature importance. Building on the above insights, we
propose a novel binarized deep convolution (BDC) unit that significantly enhances
performance, even when the number of binarized convolutional layers increases.
Specifically, in the BDC unit, additional binarized convolutional kernels are con-
strained to 1×1 to minimize the effects of binarization errors. Further, we propose
a per-channel refinement branch to reweight the output via first-order approxi-
mation. Then, we partition the 3D occupancy networks into four convolutional
modules, using the proposed BDC unit to binarize them. The proposed BDC unit
minimizes binarization errors and improves perceptual capability while signifi-
cantly boosting computational efficiency, meeting the stringent requirements for
accuracy and speed in occupancy prediction. Extensive quantitative and quali-
tative experiments validate that the proposed BDC unit supports state-of-the-art
precision in occupancy prediction and object detection tasks with substantially re-
duced parameters and operations. Code is provided in the supplementary material
and will be open-sourced upon review.

1 INTRODUCTION

Recent advancements in 3D occupancy prediction tasks have significantly impacted the fields of
robotics (DeSouza & Kak, 2002; Ye et al., 2024; Lin et al., 2024) and autonomous driving (Shi et al.,
2023; Yan et al., 2024; Zhang et al., 2024; Wang et al., 2024), emphasizing the importance of accu-
rate perception and prediction of voxel occupancy and semantic label within 3D scenes. However,
occupancy prediction requires predicting dense voxels, which leads to substantial computational ex-
penses (Cao & de Charette, 2022; Wang et al., 2023; Liu et al., 2024). Moreover, the formidable per-
formance of occupancy prediction models relies on increasing model size (Li et al., 2023b). These
factors collectively hinder the deployment of high-performance occupancy prediction networks on
edge devices. For instance, Convolutional Neural Networks (CNN) (He et al., 2016; Krizhevsky
et al., 2017; Ronneberger et al., 2015; Lin et al., 2017) possess hardware-friendly and easily de-
ployable characteristics. Moreover, CNN-based occupancy prediction networks (Huang et al., 2021;
Huang & Huang, 2022) exhibit outstanding performance, making them the primary choice for de-
ployment on edge devices. However, high-performance CNN-based occupancy networks (Cao &
de Charette, 2022; Li et al., 2023b) often involve complex computations and numerous parameters.
Therefore, it is necessary to introduce model compression techniques (Deng et al., 2020) to reduce
the computational complexity and parameter count of CNN-based occupancy networks.

Research on neural network compression and acceleration encompasses four fundamental methods:
quantization (Gholami et al., 2022), pruning (Liang et al., 2021), knowledge distillation (Gou et al.,
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Figure 1: Comparison between our BDC and state-of-the-art BNNs in the 3D occupancy pre-
diction and 3D object detection tasks. For the 3D occupancy prediction task, Base means bina-
rizing the BEV encoder and occupancy head, Tiny means further binarizing the image neck based
on Base. For the 3D object detection task, all binarized models are in Tiny.

2021), and lightweight network design (Zhou et al., 2020). Among these methods, Binarized Neural
Networks (BNN), which fall under the quantization category, quantize the weights and activations
of CNN to only 1 bit, leading to significant reductions in memory and computational costs. By
quantizing both weights and activations to 1 bit, BNN (Hubara et al., 2016) can achieve a memory
compression ratio of 32× and a computational reduction of 64× when implemented on Central Pro-
cessing Units (CPU). Furthermore, compared to full-precision models, BNN (Hubara et al., 2016)
only requires logical operations such as XNOR and bit counting, making them more easily deploy-
able on edge devices.

Recent studies, such as BBCU (Xia et al., 2022) and BiSRNet (Cai et al., 2024), have demonstrated
the capability of binarizing complex models with promising performance in tasks such as image
super-resolution (Yang et al., 2019) and denoising (Tian et al., 2020). We try replacing each full-
precision convolutional unit in the occupancy network with the binarized convolutional units pro-
posed by these binarization algorithms. Such a binarized model could achieve a respectable level of
accuracy but still a notable performance gap compared to the full-precision model. In full-precision
models, it’s common sense that increasing convolutional layers can lead to performance improve-
ments. However, the binarized model did not exhibit a trend of performance improvement as the
number of binarized convolutional layers increased. Instead, there is a tendency for performance
to decline, making it challenging for binarized models to improve performance by increasing the
number of convolutional layers (Xia et al., 2022). Insufficient performance of binarized occupancy
networks inevitably will have adverse effects on the perception of 3D space, thereby restricting the
deployment of binarized models in autonomous vehicles.

Therefore, addressing the issues of decreasing accuracy with increasing binarized convolutional lay-
ers and limited perceptual capability is crucial for bridging the performance gap between binarized
and full-precision models. To tackle these challenges, we propose a novel BNN-based method,
namely Binarized Deep Convolution Occupancy (BDC-Occ) network for efficient and practical oc-
cupancy prediction, marking the first study of binarized 3D occupancy networks. Our novel insights
stem from two intrinsic properties of binarized convolution: (a) 1 × 1 binarized convolution intro-
duces minimal binarization errors as the network deepens, and (b) binarized convolution is inferior
to full-precision convolution in capturing cross-channel feature importance. Drawing on these in-
sights, we limit additional binarized convolutional kernels to 1× 1 to reduce the impact of binariza-
tion errors as the network depth increases. Secondly, we introduce a per-channel refinement branch
that leverages newly added convolutional layers to narrow the gap with the output of full-precision
convolution through first-order approximation. Integrating the two proposed techniques, we de-
velop the Binarized Deep Convolution (BDC) unit, which remarkably enhances binarized model
performance, despite the deepening of the binarized convolutional layers. We decompose the 3D
occupancy network into four fundamental modules and customize binarization using the BDC unit
for each module.
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The innovations and contributions of this paper are summarized as follows:
(i) Based on the original insights reinforced with theoretical proofs, we propose Binarized Deep
Convolution (BDC) unit, further introduce a novel BNN-based occupancy network named BDC-
Occ. To our knowledge, this is the first paper to study the binarized occupancy network.
(ii) In the BDC unit, additional binarized convolutional kernels are constrained to 1× 1 to minimize
the effects of binarization errors as the network depth increases. Subsequently, we propose a per-
channel refinement branch to reweight the output via first-order approximation, thereby mitigating
the limitations of binarized convolutional layers in assigning importance to features across channels.
The 3D occupancy network is further decomposed into four fundamental modules, allowing for a
customized design using the BDC unit.
(iii) The proposed BDC unit reduces binarization errors and enhances perceptual capability while
considerably increasing computational efficiency, thus meeting the demanding requirements for ac-
curacy and speed in occupancy prediction. Extensive experiments on the Occ3D-nuScenes dataset
demonstrate that our method achieves state-of-the-art (SOTA) mIOU, closely approaching that of
full-precision models while utilizing only 52.26% of the operations and 59.97% of the parameters,
and achieving a 21.06% improvement in FPS.

2 RELATED WORK

2.1 3D OCCUPANCY PREDICTION

The 3D occupancy prediction task comprises two sub-tasks: predicting the geometric occupancy
status for each voxel in 3D space and assigning corresponding semantic labels. We can catego-
rize mainstream 3D occupancy networks into two architectures: CNN architecture based on the
LSS (Philion & Fidler, 2020; Gan et al., 2023; Cao & de Charette, 2022; Yu et al., 2023; Mei
et al., 2023; Ming et al., 2024; Hou et al., 2024) method and Transformer architecture based on the
BEVFormer (Li et al., 2022; 2023a; Huang et al., 2023; Wei et al., 2023; Jiang et al., 2023; Wang
et al., 2023; Liu et al., 2023) method. Due to the deployment advantages of CNN models, this
paper focuses on CNN-based 3D occupancy networks. MonoScene (Cao & de Charette, 2022) is
a pioneering work that utilizes a CNN framework to extract 2D features, which it then transforms
into 3D representations. BEVDet-Occ (Huang & Huang, 2022) utilizes the LSS method to con-
vert image features into BEV (Bird’s Eye View) features and employs BEV pooling techniques to
accelerate model inference. FlashOcc (Yu et al., 2023) replaces 3D convolutions in BEVDet-Occ
with 2D convolutions and occupancy logits derived from 3D convolutions with channel-to-height
transformations of BEV-level features obtained through 2D convolutions. SGN (Mei et al., 2023)
adopts a dense-sparse-dense design and proposes hybrid guidance and efficient voxel aggregation
to enhance intra-class feature separation and accelerate the convergence of semantic diffusion. In-
verseMatrixVT3D (Ming et al., 2024) introduces a new method based on projection matrices to
construct local 3D feature volumes and global BEV features. Despite achieving impressive results,
these CNN-based methods rely on powerful hardware with substantial computational and memory
resources, which are impractical for edge devices. How to develop 3D occupancy prediction net-
works for resource-constrained devices remains underexplored. Our goal is to address this research
gap.

2.2 BINARIZED NEURAL NETWORK

BNN (Hubara et al., 2016; Xia et al., 2022; Cai et al., 2024; Li et al., 2023c; Qin et al., 2024;
Liu et al., 2020; 2018; Rastegari et al., 2016; Chen et al., 2021; Qin et al., 2020) represents the
most extreme form of model quantization, quantizing weights and activations to just 1 bit. Due
to its significant effectiveness in memory and computational compression, BNN (Hubara et al.,
2016) finds wide application in both high-level vision and low-level vision. For instance, Xia et
al. (Xia et al., 2022) designed a binarized convolutional unit, BBCU, for tasks such as image super-
resolution, denoising, and reducing artifacts from JPEG compression. Cai et al. (Cai et al., 2024)
devised a binarized convolutional unit, BiSR-Conv, capable of adjusting the density and distribution
of representations for hyperspectral image (HSI) recovery. However, the potential of BNN in 3D
occupancy tasks remains unexplored. Hence, this paper explores binarized 3D occupancy networks,
aiming to maintain high performance while minimizing computational and parameter overhead.
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Figure 2: CNN-based 3D Occupancy Network

3 METHOD

3.1 BASE MODEL

The full-precision models to be binarized should be lightweight and easy to deploy on edge devices.
However, prior 3D occupancy network models based on CNNs (He et al., 2016) or Transform-
ers (Dosovitskiy et al., 2020; Liu et al., 2021) have high computational complexity or large model
sizes. Some of these works utilize complex operations such as deformable attention, which are chal-
lenging to binarize and deploy on edge devices. Therefore, we redesign a simple, lightweight, and
deployable baseline model without using complex computational operations.

BEVDet-Occ (Huang et al., 2021) and FlashOcc (Yu et al., 2023) demonstrate outstanding perfor-
mance in 3D occupancy prediction tasks using only lightweight CNN architectures. Inspired by
these works, we adopt the network structure shown in Figure 2 as our full-precision baseline model.
It consists of an image encoder E2D, a view transformer module T , a BEV encoder EBEV , and an
occupancy head H. The occupancy prediction network is composed of these modules concatenated
sequentially. Assuming the input images are I ∈ RNview×3×H×W , the occupancy prediction output
O ∈ RX×Y×Z can be formulated as

O = H(EBEV (T (E2D(I)))) (1)

where H and W represent the height and width of the input images, and X , Y , and Z denote the
length, width, and height of the 3D space, respectively, Nview represents the number of multi-view
cameras. Please refer to the supplementary materials for a more detailed description of the base
model.

3.2 BINARIZED DEEP CONVOLUTION

Due to its outstanding performance and lightweight architecture, FlashOcc (Yu et al., 2023) serves
as the full-precision baseline model for the binarized model. Its performance reaches 37.84 mIoU,
which sets the upper performance bound for the binarized models.

Empirical evidence in full-precision models has shown that increasing network depth improves per-
formance. Due to the characteristics of binary networks, it is possible to maintain significantly low
computational and memory usage even when increasing the model depth. However, in previous re-
search, Xia et al. (Xia et al., 2022) observed that increasing the number of binarized convolutional
layers within the binarized convolutional unit leads to a significant decrease in binarized model
performance, the performance degradation issue with the increase in binarized convolutional layer
depth within each unit restricts the further application of the binarized model. To address this is-
sue, we propose the Binarized Deep Convolution (BDC) unit, which aims to enhance the binarized
model performance by deepening the layers of the binarized convolution unit rather than reducing
performance.

Cai et al. (Cai et al., 2024) proposed the binarized convolution unit BiSR-Conv, which can adjust the
density and enable effective binarization of convolutional layers. We utilize BiSR-Conv to binarize
FlashOcc (Yu et al., 2023), forming our initial version of BDC-V0, with its structure shown in
Figure 3 (a). Please refer to the supplementary materials for a more detailed description of the
BDC-V0. The model achieves a performance of 34.51 mIoU.

Theorem 1 (proven in the supplementary material). In the process of backpropagation, we denote
the expected value of the element-wise absolute gradient error of the parameters w in the l-th bina-
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rized convolutional layer as E[∆ ∂L

∂w
(l)
mn

]. The specific expression is as follows.

E[∆
∂L

∂w
(l)
mn

] ≤ 0.5354 · (
∑
i

∑
j

k//2∑
m′=−(k//2)

k//2∑
n′=−(k//2)

E[|
∂σ(y

(l)
(i+m′)(j+n′))

∂y
(l)
ij

· w(l+1)
m′n′ · ∂L

∂y
(l+1)
ij

|])

(2)

where k is the binarized convolution kernel size,
∂σ(y

(l)

(i+m′)(j+n′))

∂y
(l)
ij

is the derivative of the activation

function σ(·), w(l+1)
m′n′ represents the weights of the binarized convolutional kernel in the next layer,

and ∂L

∂y
(l+1)
ij

is the element-wise gradient in the next layer.

Based on Theorem 1, using a 3 × 3 convolutional kernel for binarized convolution leads to more
binarization errors than a 1× 1 kernel. Additionally, the model necessitates the presence of the first
3×3 binarized convolutional layer to maintain its capability for extracting local features. Therefore,
building upon the binarized convolution unit BDC-V0, we introduce a 1×1 binarized convolutional
layer after the 3 × 3 binarized convolution and before the residual connection, proposing BDC-
V1 as shown in Figure 3(b). By deepening the binarized convolution unit, BDC-V1 enhances its
feature extraction capability while effectively balancing the trade-off introduced by binarization
errors, achieving a performance of 36.29 mIoU.

We seek to improve model performance by increasing the model’s parameter count. Consequently,
we added several 1×1 binary convolution layers to BDC-V1, resulting in the new model designated
as BDC-V2. The structure of BDC-V2 is shown in Figure 3(c). We define the added multi-layer
binarized convolution as MulBiconvN , comprising N RPReLU activations and 1 × 1 binarized
convolutional layers, which can be expressed as

MulBiconvN (·) = RepeatN (Biconv1 × 1(RPReLU(·))) (3)

where RepeatN (f) denotes repeating N times operation f .

When N = 1, the performance drops to 35.88 mIoU; N = 2, it drops further to 35.43 mIoU. We
observe a decreasing trend in network performance as the number of 1× 1 binarized convolutional
layers increases. It occurs as the accumulated binarization errors increase with the addition of more
binarized convolutional layers within the unit. The negative impact of binarization errors on the
performance of binary models surpasses the positive effects of increased parameters, resulting in a
decline in model performance.

3.3 PER-CHANNEL REFINEMENT BRANCH

Theorem 2 (proven in the supplementary material). Compared to full-precision convolutional lay-
ers, binarized convolutional layers exhibit disadvantages in capturing the scale variations across
multiple channels of the feature maps. The specific expression is as follows.

sup
X,ϕc1

,ϕc2

|Sŷc1 − Sŷc2 | < sup
X,ϕc1 ,ϕc2

|Syc1 − Syc2 | (4)

Let X ∈ RC×H×W represent the input feature maps, and let ϕc denote the full-precision convo-
lution kernel of the c-th channel, which satisfies avg(|ϕc|) < max(|ϕc|). The term S· refers to the
scale of the feature map, defined as the normalized ℓ1-norm. Furthermore, y and ŷ represent the
output feature map for a specific channel obtained from ϕc and its binarized version, respectively.

In BNNs, all weights in each convolutional kernel share a unified scaling factor, with only the polar-
ity varying. The cross-channel amplitude-frequency perception capability of full-precision convolu-
tion kernels degrades to a mere frequency response in binarized convolution. Based on Theorem 2,
this characteristic of binary convolution hinders its ability to effectively integrate the attention of the
input feature map across channels, leading to a suboptimal representation of inter-channel impor-
tance in the output feature maps. However, constructing robust inter-channel importance is essential
for classification tasks (Hu et al., 2018) and is equally critical for occupancy prediction tasks, which
focus on the classification of 3D samples.

Based on the above considerations, we propose the per-channel refinement branch, which forms
the foundation of BDC-V3. The structure of the per-channel refinement branch is illustrated in
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Figure 3: The illustration of the improvement process of our BDC.

Figure 3(d). First, the output of the first 1 × 1 binarized convolution, X1, served as the input for
the per-channel refinement branch. The first-order and zero-order coefficients, designed to recover
channel-wise scaling properties, are obtained through a dual-path structure comprising global aver-
age pooling (AvgPool), multi-layer binarized convolution (MulBiconv), and activation functions of
Sigmoid and Tanh for each respective path. The branch output Y1 is formally expressed as

Y1 = Sigmoid(MulBiconvAN (AvgPool(X1)))⊙ X1 + Tanh(MulBiconvBN (AvgPool(X1))) (5)

where ⊙ denotes element-wise multiplication. Through the proposed per-channel refinement
branch, the newly introduced binarized convolutional layers reconstruct and enhance the cross-
channel importance of the feature maps, enabling BDC-V3 to emulate the cross-channel feature
extraction capability of full-precision convolution at first-order level. Additionally, from the per-
spective of Theorem 1, modeling the channel importance of feature maps through a first-order ap-
proximation enables the binarized model to focus more on channels less affected by binarization
errors, thereby enhancing its perceptual capability.

When N = 2, the performance increased to 37.39 mIoU, approaching the upper bound of 37.84
mIoU offered by the full-precision baseline model. We chose BDC-V3 with N = 2 as the final
binarized convolutional unit, named BDC.

3.4 BINARIZED CONVOLUTION MODULE

Cai et al. (Cai et al., 2024) demonstrated the necessity of maintaining consistency in input and
output dimensions for binarized convolutional layers to ensure the propagation of full-precision
residual information. Consequently, specialized design considerations are necessary for each bina-
rized convolution module. We can decompose the CNN-based occupancy network into four types
of convolution modules:

(1) Basic convolution module: Input X ∈ RC×H×W , output Y ∈ RC×H×W ;

(2) Down-sampling convolution module: Input X ∈ RC×H×W , output Y ∈ R2C×H
2 ×W

2 ;

(3) Up-sampling convolution module: Input X ∈ RC×H×W , output Y ∈ RC×2H×2W ;

(4) Channel reduction convolution module: Input X ∈ RC×H×W , output Y ∈ RC
2 ×H×W ;

We adopt a binarized design approach for these four convolution modules, leveraging methodologies
from previous works (Liu et al., 2020; Xia et al., 2022; Cai et al., 2024), as illustrated in Figure 4.
Figure 4 (a) illustrates the basic convolutional module, preserving both the size and the number
of channels in the input feature map. Figure 4 (b) depicts the downsample convolution module,

6
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Figure 4: The illustration of binarized convolution module based on BDC.

reducing the size of the input feature map by half and doubling the number of channels. Figure 4
(c) showcases the upsample convolution module, doubling the size of the input feature map while
preserving the number of channels. Finally, Figure 4 (d) presents the channel reduction convolution
module, maintaining the size of the input feature map while halving the number of channels.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets. We use the Occ3D-nuScenes dataset (Tian et al., 2023), which comprises 28,130 samples
for training and 6,019 samples for validation.

Evaluation Metrics. We evaluate the Occ3D-nuScenes’ validation set using the mean Intersection
over Union (mIoU) metric. Similar to (Hubara et al., 2016), we compute the operations per second of
BNN (OPsb) as OPsb = OPsf/64 to measure the computational complexity, where OPsf represents
FLOPS. To calculate the parameters of BNN, use the formula Parmsb = Parmsf/32, where the
superscript b and f refer to the binarized and full-precision models, respectively. To compute the
total operations and parameters, we sum OPs as OPsb + OPsf and Params as Paramsb + Paramsf .

Implementation Details. For 3D occupancy prediction tasks, we employ FlashOcc (Yu et al., 2023)
as the baseline network. We utilized ResNet50 (He et al., 2016) as the image backbone, with an input
size of 256× 704. Default learning rate 1× 10−4, AdamW (Loshchilov & Hutter, 2017) optimizer,
and weight decay of 1×10−2 were utilized. The training lasted approximately 29 hours, utilizing 24
epochs on two NVIDIA 3090 GPUs, with a batch size of 2 per GPU. Data augmentation strategies
for the Occ3D-nuScenes dataset remained consistent with those of FlashOcc (Yu et al., 2023). Pre-
vious works, such as FlashOcc and BEVDet-Occ (Huang & Huang, 2022), have demonstrated the
effectiveness of camera visibility masks during training. Therefore, we also employ camera visibil-
ity masks to enhance performance. Following the settings of FlashOcc, we employ the pre-trained
model from BEVDet (Huang et al., 2021) for 3D object detection tasks as our pre-training model.

4.2 MAIN RESULTS

To ensure performance, we refrain from binarizing the image backbone in the image encoder.
This component contains pre-trained weights from image classification tasks, effectively facilitating
model convergence and incorporating prior semantic information from images. We binarize the BEV
encoder and occupancy head as the base version (-B) for all binarized models. We further binarize
the image neck in the image encoder to obtain the tiny version (-T) based on the base version.

Table 1 presents the evaluation results of our method BDC on the validation set of Occ3D-nuScenes.
To validate the effectiveness of our proposed method BDC, we compare it with other state-of-the-art
binarized models, including ReActNet (Liu et al., 2020), PokeBNN (Zhang et al., 2022), AdaBin (Tu
et al., 2022), BBCU (Xia et al., 2022), BiMatting (Li et al., 2023c), and BiSRNet (Cai et al., 2024).
We also compare it with full-precision occupancy prediction networks based on CNN architectures,
including BEVDet-Occ (Huang et al., 2021) and FlashOcc (Yu et al., 2023), where FlashOcc serves
as the baseline network for all binarized models and represents the theoretical upper limit of bina-
rized model performance.
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Table 1: Occupancy Prediction performance (mIoU↑) on the Occ3D-nuScenes datasets. Best
and second best performance among BNNs are in red and blue colors, respectively.
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CNN-based (32 bit)
BEVDet-Occ 29.02 241.76 8.22 44.21 10.34 42.08 49.63 23.37 17.41 21.49 19.70 31.33 37.09 80.13 37.37 50.41 54.29 45.56 39.59 36.01
FlashOcc 44.74 248.57 9.08 46.32 17.71 42.70 50.64 23.72 20.13 22.34 24.09 30.26 37.39 81.68 40.13 52.34 56.46 47.69 40.60 37.84

BNN-based (1 bit)
ReaActNet-T 26.80 129.74 7.55 38.87 16.64 35.78 44.27 20.34 15.53 16.16 18.70 24.42 33.59 73.64 29.05 39.80 41.27 39.31 34.00 31.29
ReaActNet-B 28.17 133.89 8.62 40.92 15.94 37.45 47.23 18.57 17.47 18.91 21.52 23.14 33.13 77.20 34.58 45.48 48.31 42.95 35.06 33.32

PokeBNN-T 26.81 129.84 6.64 42.26 21.80 36.29 47.78 22.08 21.33 20.90 21.69 26.09 34.92 78.82 37.75 46.79 49.50 44.40 38.64 35.16

AdaBin-T 26.78 129.78 8.21 40.59 17.12 37.02 46.92 21.18 18.67 19.40 19.79 24.56 34.47 76.62 19.77 44.75 48.22 43.87 37.57 32.87

BBCU-T 26.79 129.69 6.24 38.16 14.33 31.95 43.18 20.57 16.50 17.39 13.45 22.26 32.51 75.69 32.97 42.46 48.50 41.68 35.75 31.39
BBCU-B 28.16 133.84 7.61 41.14 13.64 35.54 46.55 20.86 17.44 19.87 17.58 24.24 33.94 76.19 34.05 44.61 48.08 42.67 35.28 32.27

BiMatting-T 26.82 129.95 5.96 38.17 15.27 35.85 44.11 19.35 14.38 18.98 15.84 23.22 31.16 73.97 30.51 35.42 40.90 41.65 35.05 30.58
BiMatting-B 28.17 134.05 6.80 38.65 17.99 33.02 43.80 19.91 18.29 18.67 19.82 21.83 32.09 72.99 32.44 41.23 43.64 36.24 35.07 31.32

BiSRNet-T 26.79 129.70 8.38 41.06 16.76 33.94 46.11 18.96 19.10 17.90 16.94 23.70 35.14 76.86 35.68 46.77 50.39 41.41 34.78 33.17
BiSRNet-B 28.16 133.85 9.27 41.94 19.53 37.33 47.48 20.83 19.17 20.08 20.21 25.36 33.99 77.42 35.78 47.35 50.58 43.24 37.20 34.51

BDC-T (Ours) 26.83 129.90 10.16 44.38 18.53 41.40 49.87 23.12 20.94 22.33 23.29 29.93 36.19 81.14 39.37 51.43 55.25 47.37 40.87 37.39
BDC-B (Ours) 28.22 134.50 9.57 44.80 20.45 40.21 49.96 23.72 21.48 22.58 24.47 27.40 36.48 80.22 38.34 50.12 54.74 47.19 40.04 37.16

Table 2: 3D Object Detection performance (mAP↑, NDS↑) on the nuScenes val set. Best
performance among BNNs are in bold.

Methods Params(M) OPs(G) mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
CNN-based (32 bit)
BEVDet 44.25 148.77 0.3836 0.4995 0.5815 0.2790 0.4750 0.3807 0.2067

BNN-based (1 bit)
ReactNet-T 26.53 101.30 0.3222 0.4358 0.6609 0.3057 0.6298 0.4468 0.2100
BBCU-T 26.51 101.24 0.3166 0.4046 0.6697 0.3137 0.7822 0.5461 0.2255
BiMatting-T 26.55 101.41 0.3356 0.4428 0.6358 0.2968 0.6527 0.4485 0.2159
BiSRNet-T 26.52 101.25 0.3431 0.4519 0.6633 0.2940 0.5777 0.4550 0.2061
BDC-T 26.56 101.36 0.3648 0.4742 0.6291 0.2822 0.5250 0.4460 0.1994

Table 3: Computational efficiency. FPS and Run
time (ms) for 32-bit and 1-bit of FlashOcc and
BDC-T

Methods 32 bit 1 bit total time FPS
FlashOcc 160.77 0 160.77 6.22
BDC-T 130.93 1.88 132.81 7.53

Table 1 presents performance metrics (mIoU),
parameter counts, and the number of operations
for different methods. Compared to other bina-
rized methods, our BDC-T and BDC-B achieve
the best or second-best results across almost all
binarized models. Specifically, BDC signifi-
cantly improves performance without increas-
ing parameter count or computational complex-
ity. Compared to the previous SOTA method, BiSRNet-B, our BDC-T demonstrates superior per-
formance in mIoU, exceeding it by 2.88 mIoU (+8.35%) while saving 2.95% of operations and
4.72% of parameters. Moreover, BDC-T achieves competitive results compared to the full-precision
model FlashOcc, using only 52.26% of operations and 59.97% of parameters, with a minimal per-
formance loss of -0.45 mIoU (-1.19%) due to binarization errors. Both BBCU and BiSRNet exhibit
performance degradation issues when binarizing additional modules. Compared to BDC-B, BDC-
T performs slightly better when binarizing image neck modules. It demonstrates the robustness of
BDC to the binarized modules. In Table 3, we compare the wall-clock time computational efficiency,
showing that our model achieves a 21.06% improvement in FPS.

To validate the generalizability of the proposed BDC, we also conduct experiments on 3D object de-
tection tasks using the nuScenes (Caesar et al., 2020) dataset. Table 2 presents performance metrics
for the 3D object detection task in nuScenes, where our approach, BDC, continues to demonstrate
superior performance in both mAP and NDS.
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Table 4: Break-down ablation. Figure 3 illus-
trates the structure of various versions of the
BDC.

Methods mIoU OPs (G) Params (M)

BDC-V0 34.51 133.85 28.16
BDC-V1 36.29 133.93 28.17
BDC-V2 35.43 134.10 28.19
BDC-V3 37.16 134.50 28.22

Table 5: Kernel size ablation. A → B repre-
sents the concatenation structure of A× A bina-
rized convolution followed by B × B binarized
convolution.

Kernel mIoU OPs (G) Params (M)

3 → 1 36.29 133.93 28.17
3 → 3 33.01 133.93 28.17
1 → 1 35.32 133.93 28.17
3 → 3 → 1 33.37 134.02 28.18

4.3 ABLATION STUDY

In all ablation studies, the binarization settings are configured as the base version (-B) for all models
as described in Table 1.

35.25

35.5

35.75

36

36.25

36.5

36.75

37

37.25

0 1 2 3 4
Number of Convolutional Layers

BDC-V2(Without Per-Channel Refinement Branch)

BDC-V3(With Per-Channel Refinement Branch)

Figure 5: Ablation study of multi-layer binarized
convolution (MulBiconv)

Multi-layer Binarized Convolution (MulBi-
conv) Ablation. To explore the impact of
the number of binarized convolutional layers
in MulBiconv on the model’s performance, we
binarize FlashOcc using both BDC-V2 and
BDC-V3 while varying the number of bina-
rized convolutional layers in MulBiconv (N =
0, 1, 2, 3, 4).

The results are illustrated in Figure 5. When
N = 0, the structure of BDC-V2 is identi-
cal to that of BDC-V1. BDC-V3 contains no
learnable parameters with the per-channel re-
finement branch. As N increases, we observe a
gradual decline followed by fluctuations in the
performance of BDC-V2. In contrast, BDC-V3
initially shows performance improvement, fol-
lowed by decreases as N increases. When MulBiconv selects N = 2, BDC-V3 achieves the best
performance, reaching 37.16 mIoU. The optimal trade-off occurs when the performance gain from
reducing model parameters outweighs the performance degradation caused by binarization errors.

Break-down Ablation. We binarize FlashOcc using four variants of BDC, where BDC-v0 is equiv-
alent to the binarized method BiSRNet. Additionally, BDC-V2 and BDC-V3 utilize the multi-layer
binarized convolution (MulBiconv), and we set N = 2.

The results are presented in Table 4, from which we can draw the following conclusions: (1) Com-
pared to BDC-V0, BDC-V1 achieves a significant gain of 1.78 mIoU (+5.16%) by adding only one
1× 1 binarized convolution layer. Extra binarized convolution layers result in negligible changes to
full model parameters and computational complexity. (2) By adding MulBiconv to each binarized
convolution unit in BDC-V1 (i.e., BDC-V2), we observe a substantial decrease in performance,
along with slight increases in parameters and computational complexity. (3) Compared to BDC-V2,
BDC-V3 exhibits a significant performance improvement of 1.73 mIoU. Additionally, BDC-V3
gains an extra 0.87 mIoU over BDC-V1. Placing additional binarized convolutional layers within
the per-channel refinement branch effectively enhances model performance.

Kernel Size Ablation. To validate whether 3 × 3 binarized convolutions incur more binarization
errors than 1 × 1 ones, potentially leading to performance degradation, we apply BDC-V1 and
BDC-V2 (N = 1) to FlashOcc. We present the results in Table 5. For BDC-V1, replacing the 1× 1
binarized convolution with consecutive 3×3 binarized convolutions led to a decrease in performance
from 36.29 mIoU to 33.01 mIoU.

Additionally, we validate the necessity of using a 3×3 binarized convolution as the first convolution
layer. If replaced with a 1× 1 binarized convolution, the receptive field of the binarized convolution
unit becomes limited, preventing the establishment of connections with neighboring pixel features,
resulting in a decrease in performance from 36.29 mIoU to 35.32 mIoU. Experiments conducted on
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Multi-View Inputs GT BiSRNet BDC (Ours)

Others Barrier Bicycle Bus Car C. V. Motor. Ped. T. C. Trailer Truck D. S. O. F. Sidewalk Terrain Manmade Veg.

Figure 6: Visualization rensults on Occ3D-nuScenes validation set

BDC-V2 (N = 1) also support the conclusion that consecutive 3× 3 binarized convolutions lead to
binarization errors and affect binarized model performance.

4.4 VISUALIZATION

We also present some qualitative results on the Occ3D-nuScenes’ validation set. As illustrated in
Figure 6, BDC exhibits comprehensive predictions about the bus in the first and last rows. In the
second row, BDC successfully identifies all pedestrians, whereas BiSRNet overlooks some pedes-
trians in the scene. Moreover, in the third row, BDC provides accurate predictions about curbs,
whereas BiSRNet misclassifies them as drivable surfaces, potentially posing safety concerns. Ad-
ditionally, in the fourth row, BDC accurately reconstructs traffic lights in the scene, showcasing its
robust capability in scene perception.

5 CONCLUSION

This paper introduces a binarized deep convolution (BDC) unit for 3D occupancy networks, ad-
dressing the performance degradation caused by increasing the number of binarized convolutional
layers. Our original theoretical analysis shows that 1 × 1 binarized convolution introduces mini-
mal binarization errors, and binarized convolution is less effective than full-precision convolution in
capturing cross-channel feature importance. Consequently, we restrict additional binarized convo-
lution kernels to 1 × 1 in the BDC unit. Furthermore, we propose a per-channel refinement branch
to overcome the limitations of binarized convolutional layers in assigning feature importance across
channels. Extensive experiments validate that our method surpasses existing SOTA binarized convo-
lution networks and closely approaches the performance of full-precision models while using only
52.26% of the operations and 59.97% of the parameters and achieving a 21.06% improvement in
FPS.

Limitation. We have not tested our method for performance in Transformer architectures, which
may limit its broader application.
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A APPENDIX

A.1 MORE DETAILS ABOUT BASE MODEL

Base model consists of an image encoder E2D, a view transformer module T , a BEV encoder EBEV ,
and an occupancy head H. The occupancy prediction network is composed of these modules con-
catenated sequentially. Assuming the input images are I ∈ RNview×3×H×W , the occupancy predic-
tion output O ∈ RX×Y×Z can be formulated as

O = H(EBEV (T (E2D(I)))) (6)

where H and W represent the height and width of the input images, and X , Y , and Z denote the
length, width, and height of the 3D space, respectively, Nview represents the number of multi-view
cameras.

First, Multi-view images are sent to the image encoder E2D to obtain 2D features
f2D ∈ RNview×C2D×H2D×W2D and depth prediction fdepth ∈ RNview×Ndepth×H2D×W2D , where
C2D, H2D,W2D denote the number of channels, height and width of 2D features, respectively.
Ndepth represents the number of depth bins in the depth prediction.

Subsequently, the image features f2D and depth prediction fdepth are passed through the visual trans-
formation module T , which transforms them into primary BEV features fT ∈ RCBEV ×HBEV ×WBEV

using camera intrinsic and extrinsic projection matrices. Here, CBEV represents the number of
channels of BEV features, while HBEV and WBEV represent the length and width of the BEV
space, respectively. Since the voxel distribution obtained from the depth map through projec-
tion matrices is sparse, the representation capability of primary BEV features may be insuffi-
cient. To this end, fT is passed through the BEV encoder EBEV 3D to obtain fine BEV features
fBEV ∈ RCBEV ×HBEV ×WBEV for further refinement.

Finally, the semantic prediction output logits Ologits ∈ RNclass×X×Y×Z come from the BEV fea-
tures fBEV processed through the occupancy prediction head H, where Nclass is the number of
semantic classes in the dataset. By taking the index corresponding to the maximum value of the
logits, we can obtain the final occupancy prediction output O.

A.2 MORE DETAILS ABOUT BDC-V0

We define BDC-V0 following the method proposed in BiSRNet Cai et al. (2024). Both full-precision
image features and Bird’s Eye View (BEV) features, represented as Xf ∈ RC×H×W , serve as input
for the full-precision activations.
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Figure 7: The schematic diagram of binarized convolution Rastegari et al. (2016).

In 3D occupancy networks, features transform from dense 2D space to sparse 3D space and then
back to dense 3D space, causing significant differences in feature distribution. Each module has
distinct densities and distributions.

To address the problem of significant differences in feature distribution, we follow the approach of
BiSRNet, employing channel-wise feature redistribution:

Xr = k · Xf + b (7)

Here, Xr ∈ RC×H×W represents the activations after channel-wise feature redistribution, and k, b ∈
RC are learnable parameters. k represents the learnable density of redistribution, while b represents
the learnable bias of redistribution.

Next, Xr is passed through the Sign function to binarize it, yielding 1-bit binarized activations
Xb ∈ RC×H×W , as follows:

xb = Sign(xr) =

{
+1, if xr > 0

−1, if xr ≤ 0
(8)

where xr ∈ Xr, xb ∈ Xb.

Since the Sign function is not differentiable, approximation functions are required to ensure success-
ful backpropagation. Common approximation functions include piecewise linear function Clip(·),
piecewise quadratic function Quad(·), and hyperbolic tangent function Tanh(·). We use the hyper-
bolic tangent function as the approximation function, defined as:

xb = Tanh(αxr) =
eαxr − e−αxr

eαxr + e−αxr
(9)

The Tanh function ensures gradients exist even when weights and activations exceed 1, allowing
parameter updates downstream during backpropagation.

In the binarized convolutional layer, the 32-bit precision weights Wf are binarized into 1-bit bina-
rized weights Wb according to the following formula:

wb = Ewf∈Wf
(|wf |) · Sign(wf ) (10)

Here, Ewf∈Wf
(|wf |) represents the average absolute value of the full-precision weights, which

serves as a scaling factor to reduce the discrepancy between the binarized weights Wb and the full-
precision weights Wf . Multiplying this value by Sign(wf ) = ±1 yields element-wise binarized
weights wb.

Subsequently, the binarized activation Xb is convolved with the binarized weights Wb. Binarized
convolution can be accomplished purely through logical operations. The schematic diagram of
binarized convolution Rastegari et al. (2016) is illustrated in Figure 7, and the expression is as
follows:

Yb = Biconv(Xb,Wb) = BitCount(XNOR(Xb,Wb)) (11)
Here, Yb is the output of binarized convolution, Biconv denotes the binarized convolution layer, and
BitCount and XNOR represent the bit count and logical XOR operations, respectively. In BDC-V0,
the convolutional kernel size is 3× 3.
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𝑁 Biconv1x1+RPReLU

Biconv1×1
+RPReLU

Biconv1×1
+RPReLU

……
Biconv1×1
+RPReLU

MulBiconv𝑁

Figure 8: The struct of MulBiconv

For the activation function, we utilize RPReLU, whose expression is defined as follows:

RPReLU(yi) =

{
yi − γi + ζi, if yi > γi
βi · (yi − γi) + ζi, if yi ≤ γi

(12)

Here, yi ∈ R represents the i-th element value of Yb, and βi, γi, and ζi are learnable parameters for
the i-th channel.

A.3 MORE DETAILS ABOUT MULTIBICONV

The structure of MulBiconv, illustrated in Figure 8, is composed of multiple 1×1 binary convolution
layers and RPReLU.

A.4 PROOF OF THEOREM 1

Theorem 1. In the process of backpropagation, we denote the expected value of the element-wise
absolute gradient error of the parameters w in the l-th binarized convolutional layer as E[∆ ∂L

∂w
(l)
mn

].
The specific expression is as follows:

E[∆
∂L

∂w
(l)
mn

] ≈ 0.5354 · (
∑
i

∑
j

k//2∑
m′=−(k//2)

k//2∑
n′=−(k//2)

E[|
∂σ(y

(l)
(i+m′)(j+n′))

∂y
(l)
ij

· w(l+1)
m′n′ · ∂L

∂y
(l+1)
ij

|])

(13)

where k is the binarized convolution kernel size,
∂σ(y

(l)

(i+m′)(j+n′))

∂y
(l)
ij

is the derivative of the activation

function σ(·), w(l+1)
m′n′ represents the weights of the binarized convolutional kernel in the next layer,

and ∂L

∂y
(l+1)
ij

is the element-wise gradient in the next layer.

Proof. We assume the element of the input of a binarized convolutional layer as xij , with a bina-
rization error denoted as ϵij , the full-precision input before binarization as x̂ij , and the output of the
binarized convolutional layer as yij . Thus, we have:

xij = x̂ij + ϵij (14)

Since the full-precision input x̂ij at the current layer is the output from the batch normalization layer
in the previous layer, we can assume that the full-precision input x̂ij follows a Gaussian distribution
N (0, 1). Based on Equations equation 8 and equation 14, we can then derive the distribution of ϵij
as follows:

|ϵij | = |x̂ij − xij | = |x̂ij − Sign(x̂ij)| =
{
|x̂ij − 1|, if x̂ij > 0

|x̂ij + 1|, if x̂ij ≤ 0
(15)

Assuming the convolution kernel size k is odd, for a k × k convolutional layer, the kernel weight
wmn, and the kernel bias is bmn. The forward propagation equation is given by:

yij =

k//2∑
m=−(k//2)

k//2∑
n=−(k//2)

(x(i+m)(j+n) · wmn + bmn) (16)
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Assuming that during backpropagation, the gradient at current layer l is given by ∂L

∂y
(l)
ij

, we can use

the chain rule to derive the gradient for a k × k convolutional layer as follows:

∂L

∂w
(l)
mn

=
∑
i

∑
j

x
(l)
(i+m)(j+n)

∂L

∂y
(l)
ij

=
∑
i

∑
j

(x̂
(l)
(i+m)(j+n) + ϵ

(l)
(i+m)(j+n)) ·

∂L

∂y
(l)
ij

(17)

Given that the output of the current layer y
(l)
ij becomes the input of the next layer after passing

through the activation function σ(·). Based on Equation equation 16, we can derive:

y
(l+1)
ij =

k//2∑
m′=−(k//2)

k//2∑
n′=−(k//2)

σ(y
(l)
(i+m′)(j+n′)) · w

(l+1)
m′n′ + b

(l+1)
m′n′ (18)

We can obtain the gradient relationship between ∂L

∂y
(l)
ij

and ∂L

∂y
(l+1)
ij

:

∂L

∂y
(l)
ij

=

k//2∑
m′=−(k//2)

k//2∑
n′=−(k//2)

∂σ(y
(l)
(i+m′)(j+n′))

∂y
(l)
ij

· w(l+1)
m′n′ · ∂L

∂y
(l+1)
ij

(19)

By substituting Equation equation 19 into Equation equation 17, we can obtain:

∂L

∂w
(l)
mn

=
∑
i

∑
j

∑
m′

∑
n′

(x̂
(l)
(i+m)(j+n) + ϵ

(l)
(i+m)(j+n)) ·

∂σ(y
(l)
(i+m′)(j+n′))

∂y
(l)
ij

· w(l+1)
m′n′ · ∂L

∂y
(l+1)
ij

(20)
We can derive the additional gradient error ∆ ∂L

∂w
(l)
mn

induced by the binarization error ϵ as follows:

∆
∂L

∂w
(l)
mn

:= | ∂L

∂w
(l)
mn

− ∂L

∂w
(l)
mn

|ϵ=0|

= |
∑
i

∑
j

∑
m′

∑
n′

ϵ
(l)
(i+m)(j+n) ·

∂σ(y
(l)
(i+m′)(j+n′))

∂y
(l)
ij

· w(l+1)
m′n′ · ∂L

∂y
(l+1)
ij

|

≤
∑
i

∑
j

∑
m′

∑
n′

|ϵ(l)(i+m)(j+n) ·
∂σ(y

(l)
(i+m′)(j+n′))

∂y
(l)
ij

· w(l+1)
m′n′ · ∂L

∂y
(l+1)
ij

|

(21)

By utilizing Equation equation 15, we can calculate the expected value of the absolute binarization
error, denoted as E[|ϵij |]:

E[|ϵij |] =
∫ ∞

0

|x̂ij − 1| 1√
2π

e−
x̂2
ij
2 dx̂ij +

∫ 0

−∞
|x̂ij + 1| 1√

2π
e−

x̂2
ij
2 dx̂ij

= 2(

∫ 1

0

1− x̂ij√
2π

e−
x̂2
ij
2 dx̂ij −

∫ ∞

1

1− x̂ij√
2π

e−
x̂2
ij
2 dx̂ij)

(22)

The Gaussian error function, often abbreviated as ”erf(x)” is defined as follows:

erf(x) =
2√
π

∫ x

0

e−t2 dt (23)

Based on the definition of the Gaussian error function and the use of the substitution rule, we can
compute the integral as follows:∫ x

0

e−
u2

2 du
u=

√
2t

======
√
2

∫ x√
2

0

e−t2 dt

=

√
π√
2

2√
π

∫ x√
2

0

e−t2 dt

=

√
π√
2
erf(

x√
2
)

(24)
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We can continue the computation of the integral further.∫ b

a

1− x√
2π

e−
x2

2 dx =

∫ b

a

1√
2π

e−
x2

2 dx−
∫ b

a

x√
2π

e−
x2

2 dx

=
1√
2π

(

∫ b

0

e−
x2

2 dx−
∫ a

0

e−
x2

2 dx− e−
a2

2 + e−
b2

2 )

=
1√
2π

[(

√
π√
2
erf(

b√
2
)−

√
π√
2
erf(

a√
2
)− e−

a2

2 + e−
b2

2 ]

(25)

Equation equation 22 can be written as follows:

E[|ϵij |] =
2√
2π

{[
√
π√
2
erf(

1√
2
)−

√
π√
2
erf(

0√
2
)− e−

0
2 + e−

1
2 ]

− [(

√
π√
2
erf(

∞√
2
)−

√
π√
2
erf(

1√
2
)− e−

1
2 + e−

∞
2 ]}

erf(0)=0,erf(∞)=1
=============== 2[erf(

1√
2
)− 1

2
− 1√

2π
+

2√
2πe

] ≈ 0.5354

(26)

Therefore, based on Equations equation 21, the expected value of the additional gradient error
E[∆ ∂L

∂w
(l)
mn

] can be expressed as follows:

E[∆
∂L

∂w
(l)
mn

] ≤
∑
i

∑
j

∑
m′

∑
n′

E[|ϵ(l)(i+m)(j+n) ·
∂σ(y

(l)
(i+m′)(j+n′))

∂y
(l)
ij

· w(l+1)
m′n′ · ∂L

∂y
(l+1)
ij

|] (27)

Based on Equation equation 15, since the binarization error ϵ(l)ij depends solely on the input x(l)
ij and

is independent of any other variables, ϵ(l)ij and other random variables in Equation equation 27 are
mutually independent. Therefore, it follows that:

E[∆
∂L

∂w
(l)
mn

] ≤
∑
i

∑
j

∑
m′

∑
n′

E[|ϵ(l)(i+m)(j+n)|] · E[|
∂σ(y

(l)
(i+m′)(j+n′))

∂y
(l)
ij

· w(l+1)
m′n′ · ∂L

∂y
(l+1)
ij

|]

≈ 0.5354 · (
∑
i

∑
j

k//2∑
m′=−(k//2)

k//2∑
n′=−(k//2)

E[|
∂σ(y

(l)
(i+m′)(j+n′))

∂y
(l)
ij

· w(l+1)
m′n′ · ∂L

∂y
(l+1)
ij

|])

(28)
From the above equations, it is evident that as the size k of the convolutional kernel in the subsequent
layer increases, the element-wise gradient error introduced during the binarization process also in-
creases. Consequently, in binarized convolutional units, the smaller the size of the convolutional
kernel k, the smaller the binarization error introduced into the binarized model.

Therefore, we use 1× 1 binarized convolution as the new binarized convolution.

A.5 PROOF OF THEOREM 2

Theorem 2. Compared to full-precision convolutional layers, binarized convolutional layers exhibit
disadvantages in capturing the scale variations across multiple channels of the feature maps. The
specific expression is as follows.

sup
X,ϕc1

,ϕc2

|Sŷc1 − Sŷc2 | < sup
X,ϕc1

,ϕc2

|Syc1 − Syc2 | (29)

Let X ∈ RC×H×W represent the input feature maps, and let ϕc denote the full-precision convo-
lution kernel of the c-th channel, which satisfies avg(|ϕc|) < max(|ϕc|). The term S· refers to the
scale of the feature map, defined as the normalized ℓ1-norm. Furthermore, y and ŷ represent the
output feature map for a specific channel obtained from ϕc and its binarized version, respectively.

Proof. We define the input feature maps as X = [x1, x2, . . . , xC ],X ∈ RC×H×W , and the output
feature maps of the full-precision convolution as Y = [y1, y2, . . . , yC ],Y ∈ RC×H×W , where we
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assume the number of channels remains unchanged. For the scale Syc of the c-th channel in the
output feature map, we have:

yc,i,j =

C∑
q=1

k//2∑
m′=−k//2

k//2∑
n′=−k//2

(xq,i+m′,j+n′
ϕq,m′,n′
c + bq,m′,n′

c )

Syc = avgi,j(|yc,i,j |) =
1

HW

∑
i

∑
j

|yc,i,j |
(30)

where ϕc and bc are the weight and bias of the c-th kernel, respectively. Consider Syc1 and Syc2 ,
and if Syc2 < Syc1 , we have:

Syc1−Syc2 =
1

HW

∑
i

∑
j

|yc1,i,j |− 1

HW

∑
i

∑
j

|yc2,i,j | ≤ 1

HW

∑
i

∑
j

|yc1,i,j−yc2,i,j | (31)

Let the bias b be 0, for full-precision convolution:

|yc1,i,j − yc2,i,j | = |
C∑

q=1

k//2∑
m′=−k//2

k//2∑
n′=−k//2

(xq,i+m′,j+n′
(ϕq,m′,n′

c1 − ϕq,m′,n′
c2 )|

≤ Ck2 ·max(|xq,i+m′,j+n′
|) ·max(|ϕq,m′,n′

c1 − ϕq,m′,n′
c2 |)

≤ Ck2 ·max(|xq,i+m′,j+n′
|) · (max(|ϕq,m′,n′

c1 |) +max(|ϕq,m′,n′
c2 |))

(32)

For binary convolution, we have:

|ŷc1,i,j − ŷc,i,j | = |
C∑

q=1

k//2∑
m′=−k//2

k//2∑
n′=−k//2

(xq,i+m′,j+n′
(avg(ϕc1)w

q,m′,n′
c1 − avg(ϕc2)w

q,m′,n′
c2 )|

≤ Ck2 ·max(|xq,i+m′,j+n′
|) ·max(|avg(ϕc1)w

q,m′,n′
c1 − avg(ϕc2)w

q,m′,n′
c2 |)

≤ Ck2 ·max(|xq,i+m′,j+n′
|) · (|avg(ϕc1)|+ |avg(ϕc2)|)

(33)
Here, wq,m′,n′

i = sign(ϕq,m′,n′
i ), thus it can be proven that the supremum of |yc1,i,j − yc2,i,j | is

greater than |ŷc1,i,j − ŷc2,i,j |. According to equation 31, the supremum of SY c1 − SY c2 is greater
than or equal to Sŷc1 − Sŷc2 . It indicates that binary convolution reduces the scale differences
between different feature channels, which implies a decline in attention across feature channels.

A.6 MORE DETAILS ABOUT EXPERIMENTS

A.6.1 RESULT OF DIFFERENT BACKBONE OF BDC

We applied BDC to RenderOcc, with the results shown in Table 6. The performance of our binary
model, BDC-RenderOcc, is nearly equivalent to that of the full-precision RenderOcc.

Table 6: Comparison of the occupancy prediction performance of RenderOcc and BDC-
RenderOcc.
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CNN-based (32 bit)
RenderOcc 11.23 46.09 23.56 41.36 49.75 25.75 21.93 23.23 25.25 32.51 37.06 81.35 40.83 52.19 55.81 45.66 40.19 38.46

BNN-based (1 bit)
BDC-RenderOcc 11.02 44.25 22.98 40.58 49.92 22.86 22.46 23.71 24.62 31.4 36.63 81.63 40.59 52.58 56.12 46.04 40.09 38.09

A.6.2 RESULT OF DIFFERENT VERSION OF BDC

We tested the performance metrics of different versions of BDC on the Occ3d-nuScenes validation
set. Table 7 presents the results. The configurations of BDC-B and BDC-T follow the settings
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Table 7: Comparison of the occupancy prediction performance across different versions of
BDC. BDC-S binarizes all modules in the 3D occupancy network except for the view transformer.
These modules include an image encoder, BEV encoder, and occupancy head. † stands for not using
pre-trained weights from an image backbone.
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CNN-based (32 bit)
FlashOcc 44.74 248.57 9.08 46.32 17.71 42.70 50.64 23.72 20.13 22.34 24.09 30.26 37.39 81.68 40.13 52.34 56.46 47.69 40.60 37.84
FlashOcc† 44.74 248.57 6.10 35.78 0.50 26.97 42.39 11.16 7.13 10.99 10.68 20.95 24.35 80.60 40.02 50.44 55.11 44.67 38.85 29.81

BNN-based (1 bit)
BDC-T 26.83 129.90 10.16 44.38 18.53 41.40 49.87 23.12 20.94 22.33 23.29 29.93 36.19 81.14 39.37 51.43 55.25 47.37 40.87 37.39
BDC-B 28.22 134.50 9.57 44.80 20.45 40.21 49.96 23.72 21.48 22.58 24.47 27.40 36.48 80.22 38.34 50.12 54.74 47.19 40.04 37.16
BDC-S 3.51 45.30 3.13 24.25 6.02 22.21 36.23 7.29 5.78 14.11 14.04 4.86 22.99 68.21 14.29 33.52 36.76 33.20 30.63 22.21

outlined in Table 1. We binarized all modules in the 3D occupancy network except for the view
transformer, referring to this as the small version (-S). These modules include the image encoder,
the BEV encoder, and the occupancy head.

Compared to BDC-T, BDC-S additionally binarizes the image backbone in the image encoder. The
image backbone contains substantial pre-trained knowledge, and binarizing it hinders leveraging this
pre-trained knowledge, which leads to a significant performance drop compared to BDC-T. Com-
pared to FlashOcc†, which does not use pre-trained weights in the image backbone, the binarized
version shows a significant performance decline.

Therefore, we recommend against binarizing the image backbone.

A.6.3 PERFORMANCE OF BINARIZED MODULE OF 3D OCCUPANCY NETWORK

We binarized different modules in the occupancy network. The following table reports the mIoU of
binarizing different modules.

Table 8: Model Performance Metrics

Only Image
Neck

Only BEV
Backbone

Only BEV
Neck

Only Occupancy
Head BDC-T FlashOcc

mIoU 37.91 (+0.07 ↑) 31.62 (-6.22 ↓) 37.59 (-0.25 ↓) 31.46 (-6.38 ↓) 37.39 (-0.45 ↓) 37.84

According to Table 8, we can find: (1) The binarization of the BEV backbone and the occupancy
head significantly impacts performance. (2) During joint training, the binarization errors of the
entire network can be considered and optimized as a whole.

A.6.4 OPERATIONS AND PARAMETERS OF BINARIZED MODULE OF 3D OCCUPANCY
NETWORK

In Table 9, we investigate the changes in computation (OPs) and parameters (Params) across dif-
ferent modules of the 3D occupancy network before and after binarization. The image encoder
consists of the image backbone and image neck, while the BEV encoder includes the BEV back-
bone and BEV neck. (x%) indicates that x% of the full-precision operations/parameters have been
binarized.

We do not binarize the view transformer because its 32-bit full-precision parameters and computa-
tion are already sufficient. Additionally, the view transformer relies on full-precision computation
to precisely map 2D image features to 3D BEV features.
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Table 9: The proportion of 32-bit OPs and Params versus 1-bit OPs and Params in each module
of BDC-T. (%) denotes the proportion of 32-bit and 1-bit operations within each module.

Model Bit Image
Backbone

Image
Neck

View
Transformer

BEV
Backbone

BEV
Neck

Occupancy
Head Total

OPs(G)

FlashOcc 32-bit 88.785 1.377 0.165 17.724 102.989 34.755 248.572

BDC-T
32-bit 88.785 0 0.165 0 29.491

(28.64%)
11.141

(32.06%)
129.582
(52.13%)

1-bit 0 0.034 0 0.046 0.474
(71.36%)

0.031
(67.94%)

0.585
(47.87%)

Params(M)

FlashOcc 32-bit 23.508 4.155 0.039 12.394 6.556 0.869 44.744

BDC-T
32-bit 23.508 0 0.039 0 2.949

(44.98%)
0.279

(32.11%)
26.775

(59.84%)

1-bit 0 0.022 0 0.020 0.012
(55.02%)

0.001
(67.89%)

0.055
(40.16%)

Figure 9: FlashOcc mIoU-bit curve and BDC performance

A.6.5 MIOU-BIT CURVE VISUALIZATION

We used FlashOcc without temporal information as the baseline and applied the BDC-T method for
binarization on this baseline. We then plotted the performance of FlashOcc models at different bit
levels and compared it with the performance of BDC-T.

As shown in Figure 9, the performance of our BDC-T is comparable to that of the full-precision
model and superior to the performance of FlashOcc at both 16-bit and 8-bit levels.

A.6.6 MORE VISUALIZATION

In this section, we provide additional occupancy prediction results of BiSRNet Cai et al. (2024)
and our BDC applied to Flashocc in Fig 10. Compared to BiSRNet, BDC offers superior scene
reconstruction capability and more accurate label prediction.

A.7 BROADER IMPACTS

3D occupancy prediction stands as a core task in autonomous driving perception. Leveraging occu-
pancy grids effectively address real-world challenges such as long-tail datasets and target truncation,
which 3D object detection algorithms may struggle to resolve. Our approach, BDC-Occ, demon-
strates superior efficiency and accuracy in predicting the occupancy status of voxels in 3D space
compared to all existing state-of-the-art methods based on Binarized Neural Networks (BNNs),
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Multi-View Inputs GT BiSRNet BDC (Ours)

Others Barrier Bicycle Bus Car C. V. Motor. Ped. T. C. Trailer Truck D. S. O. F. Sidewalk Terrain Manmade Veg.

Figure 10: More Visualization rensults on Occ3D-nuScenes validation set

holding significant value for practical applications. Thus far, 3D occupancy prediction technology
has not yielded any adverse societal impacts. Our proposed BDC-Occ likewise does not introduce
any foreseeable negative social consequences.
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