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ABSTRACT

Dataset distillation aims to distill a smaller training dataset from a larger one so
that a model trained on this smaller set performs similarly to one trained on the
full dataset. Traditional methods are costly and lack sample diversity. Recent ap-
proaches utilizing generative models, particularly diffusion models, show promise
in capturing data distribution, but they often oversample prominent modes, limiting
sample diversity. To address these limitations in this work, we propose a mode-
guided diffusion model. Unlike existing works that fine-tune the diffusion models
for dataset distillation, we propose to use a pre-trained model without the need for
fine-tuning. Our novel approach consists of three stages: Mode Discovery, Mode
Guidance, and Stop Guidance. In the first stage, we discover distinct modes in the
data distribution of a class to build a representative set. In the second stage, we use
a pre-trained diffusion model and guide the diffusion process toward the discov-
ered modes to generate distinct samples, ensuring intra-class diversity. However,
mode-guided sampling can introduce artifacts in the synthetic sample, which affect
the performance. To control the fidelity of the synthetic dataset, we introduce the
stop guidance. We evaluate our method on multiple benchmark datasets, including
ImageNette, ImageIDC, ImageNet-100, and ImageNet-1K; Our method improved
4.4%, 2.9%, 1.6%, and 1.6% over the current state-of-the-art on the respective
datasets. In addition, our method does not require retraining of the diffusion model,
which leads to reduced computational requirements. We also demonstrate that our
approach is effective with general-purpose diffusion models such as Text-to Image
Stable Diffusion, showing promising performance towards eliminating the need
for a pre-trained model in the target dataset. Our source code is available in this
anonymized repository.

1 INTRODUCTION

The rapid advancements in machine learning are marked by a trend towards increasingly large
datasets and models to achieve state-of-the-art performance. However, this trend presents significant
challenges for researchers constrained by limited computation and storage resources. In response, the
research community started to focus on developing techniques to address these limitations. While
model pruning (Liu et al.l|2017; He et al.l|2019; Ding et al., |2019} [Sharma & Forooshl 2022) and
quantization (Xu et al.| 2023} |(Chauhan et al., 2023} |Chen et al.} 2021} |Wu et al.l 2016)) are introduced
to improve the model efficiency, core set selection and dataset distillation (Wang et al.| 2018} |[Liu
et al.;,|2022) have emerged as the prominent techniques to reduce the size of the datasets. Core set
selection (Chen et al.l 2010; (Castro et al., [2018}; [Wellingl 2009; Rebuffi et al., 2017)) based approaches
were initially introduced for building condensed datasets, which involves selecting a few prototypical
examples from the original dataset to build the smaller dataset. However, these approaches are limited
to choosing the samples from the original dataset, which considerably restricts the expressiveness of
the condensed dataset. Dataset distillation removes this restriction.

The task of data set distillation is to distill information from a large training dataset into a smaller
dataset with few synthetic samples such that a model trained on the smaller data set achieves
performance comparable to the model trained on the complete data set. Most of the existing data
set distillation methods (Cazenavette et al.| |2022bja; [Zhao & Bilen| [2023) follow the data matching
framework, where the distilled dataset is updated to mimic the influence of the original dataset on
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Figure 1: Overview of the gradient field (score function) during the denoising process in latent
diffusion for a specific class c. The original data distribution, marked by blue dots, shows denser

regions (orange shadow) in the gradient field. To generate an image X;, noise x7 ~ N(0,1) is
sampled. In (a), a pre-trained diffusion model demonstrates imbalanced mode likelihood, leading to
limited sample diversity and repeated modes. (b) shows MinMax Diffusion, which fine-tunes the
model to enhance diversity by balancing mode likelihoods, but still faces redundancies based on
initial noise conditions. (c), the proposed method introduces mode guidance in the denoising process
(green and red traces), directing samples towards distinct modes (stars). After k steps of guidance, it
transitions to unguided denoising (black trace), achieving high diversity and consistency without the
need for fine-tuning.

model training. These methods aim to minimize the distribution gap between the original and distilled
datasets by considering different aspects, such as model parameters, long-range training trajectories,
or feature distribution. However, these methods are far from optimal, as they need to repeat the
execution of their method to synthesize distilled datasets of different sizes. In addition, they tend
to generate out-of-distribution samples (Su et al.}[2024). To address these challenges, recent works
(Wang et al 2023} [Su et al.| 2024} [Zhang et al.,2023)) propose storing the knowledge of the dataset
into the parameters of a generative model instead of directly condensing it into a smaller synthetic set.
Once trained, the same generative model can generate synthetic datasets of varied sizes.

Among the generative models, diffusion models are known for their impressive
capabilities in image synthesis. These models achieve perceptual quality comparable to GANs while
offering higher distribution coverage, as evidenced by (Dhariwal & Nicholl,[2021b)). However, they
tend to concentrate on denser regions (modes) of the data distribution, resulting in a synthetic dataset
that, while representative, often lacks the full diversity of the original data 2024) (refer to
Figure[Ta). Previous works address this by explicitly retraining the diffusion model
to generate representative and diverse samples. With this training, the samples are more likely to be
generated from different modes of a class (See Figure[Tb). In contrast, we propose a novel approach
that extracts diverse samples from a pre-trained diffusion model already trained on the target dataset,
without the need for further model retraining.

Our approach aims to distill a dataset with representative and diverse samples without re-training the
diffusion model. Our method first estimates the prevalent modes in the data with the Mode Discovery
stage. Then, we ensure diversity by guiding each sample to a different mode with our Mode Guidance.
However, guiding the sample to an estimated mode may compromise the quality of the synthetic
sample. To address this, we introduce Stop Guidance to maintain the quality of the synthetic data

(see Figure[Id).

In summary, the key contributions and results of our work are as follows:

* We propose a novel approach for dataset distillation that leverages a pre-trained diffusion
model to extract a representative dataset without requiring model retraining or fine-tuning.
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* We propose Mode Guidance with Stop Guidance, a novel sampling technique that systemati-
cally samples from different modes of the data distribution while preserving sample quality.
Our approach enables controlled diversity sampling for dataset synthesis by guiding the
denoising process across distinct class regions.

* Our method demonstrates improved or comparable performance to the current state-of-
the-art while eliminating the need for fine-tuning the diffusion model. For instance, our
approach achieves competitive results by even using a text-to-image model like Stable
Diffusion, highlighting its adaptability and effectiveness across various diffusion models
without additional fine-tuning.

2 RELATED WORK

Dataset distillation has received increased interest in recent years due to its applications in continual
learning (Zhao et al.| 2021} [Zhao & Bilen, [2021};2023)), privacy-preserving datasets (Sucholutsky:
& Schonlau, 2021} L1 et al., 2020), neural architecture search (Zhao et al., [2021; |[Zhao & Bilen,
2021)), and model explainability (Loo et al.,|2022)). Prior works have explored the problem of dataset
distillation and show how challenging it is to encapsulate datasets in a limited set of examples.
Initially, this task was approached using non-generative models, then using generative priors, and,
more recently, with generative models. Below, we discuss works belonging to these categories in
detail.

2.1 NON-GENERATIVE DATASET DISTILLATION METHODS

Dataset distillation condenses information from a large dataset into a smaller one with synthetic
images, to enable model training on the smaller dataset with performance comparable to that of the
full dataset. Various methods have emerged to minimize the performance gap between original and
distilled datasets through techniques such as dataset matching, parameter matching, and gradient
matching.

Initially, parameter matching (Zhao et al.l[2021) was proposed, aligning the neural network weights
trained on synthetic data with those from the original dataset. However, this bi-level optimization
approach was time-consuming and unscalable. Gradient matching was later favored due to the high
dimensionality of parameter space, leading to inefficiencies. Further advances included feature
matching, which improves efficiency by eliminating dependence on bi-level optimization (Zhao &
Bilen, |2023)). Additionally, long-range matching techniques were introduced by (Cazenavette et al.|
2022b) through matching training trajectories (MTT), optimizing network parameters after multiple
training iterations to better synthesize relevant features for the training updates.

Recent advancements have introduced generative priors into the optimization process. GAN-IT (Zhao
& Bilen, |2022)) shifted the focus from the pixel space to latent codes of pre-trained GANs, optimizing
these codes rather than working directly in image space. GLaD (Cazenavette et al.,[2023) built on this
by incorporating generative priors with StyleGAN for high-resolution datasets, yielding images that
more closely match the dataset distribution and improve performance. H-GLaD (Zhong et al., 2024)
further enhanced this by focusing on deeper feature layers for hierarchical optimization. Additionally,
LD3M (Moser et al.l|2024) utilized a latent diffusion model to optimize synthetic datasets directly in
the model’s latent space, improving performance by refining latent codes through the denoising and
diffusion processes. Despite their success on small-resolution datasets, these methods struggle with
high-resolution datasets (e.g., 256 x 256, 20 images per class), often being computationally expensive
and less efficient, leading to the emergence of more effective distillation methods from generative
models (Gu et al.,2024; Su et al.,|2024; |Zhang et al., 2023).

2.2  GENERATIVE DATASET DISTILLATION METHODS

While generative priors have been getting attention, recent work (Zhang et al.| 2023; |Gu et al., 2024}
Su et al., [2024) has started focusing on distilling datasets using generative models. Unlike approaches
that use generative priors only to optimize the latent vectors of a generative model, generative dataset
distillation aims to explicitly train a generative model that can synthesize a distilled dataset. Recent
work, (Zhang et al.| [2023) introduced one of the initial approaches using generative models for
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Figure 2: Overview of the proposed method for distilled dataset synthesis using a diffusion model.
Our approach consists of three key stages: Mode Discovery, Mode Guidance, and Stop Guidance. In
the Mode Discovery stage, we estimate the N modes of the original dataset within the generative
space of the latent diffusion model. Given a mode my, and a class ¢, the Mode-Guided Diffusion
process directs the generation toward the specified mode my. This guidance is applied for tg¢ steps
until the Stop Guidance stage, after which unguided diffusion takes over. During sampling, mode
guidance ensures that images from the desired mode my, are generated using the pre-trained diffusion
model. If no guidance is applied, the generation follows the unguided (grey) path, which can lead to
redundancies in the dataset.

dataset distillation. They proposed to use a class-conditional GAN with a learnable codebook for each
image in the class and optimize it with GAN loss to generate realistic-looking examples, intra-class
diversity loss to introduce diversity, inter-class discriminative loss to promote representativeness, and
matching loss to facilitate dataset condensation. Similarly, (Gu et al.| 2024)) brought these ideas to
diffusion models by fine-tuning a pre-trained diffusion model with representative and diversity losses
to improve the performance. Later work (Su et al., 2024) proposed the D*M model, which uses
Text-to-Image Stable diffusion as a generator and proposes a disentangled diffusion that substitutes
random noise for noisy modes as starting noise when sampling distilled samples. However, the
high level of noise in the initial denoising steps often results in outputs that are neither diverse nor
fully representative. Additionally, the model relies on a pre-trained classifier to assign soft labels
during training with the distilled dataset. While previous generative models have primarily focused
on developing new loss functions to improve representativeness and diversity, our work introduces a
training-free approach that achieves both properties without the need for complex losses or additional

training.

3 METHOD

Our approach for obtaining diverse and representative examples for each class involves leveraging a
diffusion model trained on the target dataset. The main idea is to sample from the more likely regions
in the data distribution, called modes, during the reverse process. These modes are regions where the
samples have similar appearances, and they are representative of the class. However, diffusion models
tend to sample from the more likely modes, which creates an issue when there are fewer dominant
modes for a particular class than the number of images per class (IPC) in the dataset. Previous work
(Gu et al.| [2024) requires fine-tuning the diffusion model with additional representative and diversity
losses to balance the likelihood of all modes; this approach requires more training and still has a high
chance of redundancy while sampling.

Our three-stage approach, shown in Figure[2] eliminates the need for fine-tuning while maintaining
mode diversity. In the first stage, known as mode discovery, we estimate a diverse set of modes
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for each class in the dataset. After estimating the modes, the second stage involves controlling the
reverse process using our proposed mode guidance to sample from the estimated mode distribution.
During sampling, the guidance is applied until the stop guidance is triggered, which helps to control
the quality of the synthetic sample.

In the mode discovery stage, the main objective is to identify the N modes of a specific class in the
original dataset distribution. This discovery is performed using the original dataset in the latent space
of the VAE encoder (V). The motivation for this approach is that the generative space captures
the overall content of the image rather than discriminative features, which can be limited to specific
textures in the image. Any clustering algorithm can be used to estimate the modes for a particular
class; in our approach, we use K-Means. Once the modes are identified, our goal is to sample images
from these estimated modes. In the next section, we explain how to guide the denoising process of
diffusion and guarantee generation from the specified modes. The rest of this section is organized as
follows. Next, we cover some preliminaries, followed by Mode Guidance and Stop Guidance.

3.1 PRELIMINARIES

Dataset Distillation: Given a large-scale dataset with the training set 7, = {(X;,:)} Y7, the goal of
dataset distillation is to build a smaller synthetic dataset S = {(Xj, %) }.x5,, where N5 << Nt and

i=1>
X, X; are the original and synthetic images with the corresponding class labels y;, ;. In addition,
the model f trained on the original training set should achieve similar test performance as the model
s trained on the smaller synthetic dataset; i.e. if A is the accuracy of a model on the test set (7;),
then A(67) ~ A(6s). During the evaluation, the size of the distilled dataset Ng, is set based on the

distillation budget, denoted by IPC, the number of images allocated per class.

Our approach builds on the foundations of prior generative models, such as (Gu et al.l 2024; |Su et al.|
2024} Zhang et al., 2023), which address dataset distillation by approximating the dataset distribution
through sampling diverse and representative instances. This line of work can be characterized as
dataset distillation through dataset matching. Where the objective of the distillation is defined as

HEQZNP(D) [l(¢0T (17), y)] - ]EwNP(D) [l(ébes (I)7 y)] || <¢€

Where, P(D) is the real data distribution, ¢g7 and ¢ys are models trained on the original dataset 7~
and the distilled dataset S respectively. Note, that this formulation is similar to the coreset methods,
however, the used of generative models remove the restriction of choosing a sample from the original
dataset, meaning that can approximate the original dataset better.

Diffusion Model: The denoising probabilistic diffusion model (DDPM) is a generative model,
G, that learns a mapping between Gaussian noise and the data distribution through a series of
T denoising steps. G assumes a Markov chain that gradually adds noise to a sample x( in the
data distribution, which is called the forward process. The forward process of G is defined as
q(z¢|zi—1) = N(V/1— Bixs—1,P:1), where S; is the variance schedule for the time step t. In

practice, this is done using the reparametrization trick z; = v/axg + /1 — de;, where ¢, ~ N (0, T).

Image generation is done by the reverse process of G, where ¢y is the noise prediction network,
trained to reverse the Markov chain pg(x¢—1|z:) = N(ug(2:), Xe(x+)), where 6 corresponds to the
parameters of the model and g (), Xg () are the p and ¥ predictions of the denoising models.
1o (x¢) is computed as follows:

(1) = 1 (a:— 1
e t*mt N

where z ~ N (0, 1) and oy is the variance schedule. €y(x¢,t) is the output of the noise prediction
network that is trained to predict the added noise with the simple loss defined as

Ly = ||eg(s,t) — e 2

ea(xt,t)) + 012 e

After training, G can generate samples by sampling from the noise distribution and running the
reverse process. In this work, we use a class-conditioned diffusion model G, where the output of the
noise prediction network conditioned with the class ¢, is denoted as ey(z4, t, ¢).

Latent Diffusion: The latent diffusion model is a variation of the DDPM that applies the forward
and denoising process in the latent space representation of a VAE (V,,,.). The model is trained to
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denoise a noisy latent space representation at each time ¢. After denoising the latent representation,
the VAE decoder (V..) generates the final image. Note that the latent space is smaller and more
semantic than the image space.

Diffusion Guidance: The sampling process of DDPM is equivalent to score-based generative models
by interpreting eg(z,t) = —+/aV,logp(x), where V, logp(x;) is an estimation of the score
function. For the case of class-conditioned generation, by using Bayes’ rule the score function can be
derived as:

Valogp(ai|c) = Vg log p(z) + V log p(cla) 3)

where V, log p(c|x) is the gradient of the class-conditional log-likelihood. It’s important to note
that V, log p(c|x+) represents the drift of the diffusion process towards the distribution of the class c.
In (Dhariwal & Nicholl [2021a)), a classifier is used to estimate the class-conditional log-likelihood
and use it as a guidance signal to direct the diffusion process towards the desired class. Later, (Ho &
Salimans, 2022) suggested using a combination of unconditional generation and conditional diffusion
(eq.[4) to remove the dependency on the classifier and demonstrated improved results and called this
classifier-free guidance. Classifier-free guidance is defined as

€p(xy,t,c) = (1 —w) - eg(my, t,¢) —w - €gay, t) @
where the w is the guidance scale that controls how strong the guidance is applied.

3.2 MODE GUIDANCE

In this section, we describe the method used for image synthesis with mode guidance. Our goal
is to generate high-quality images belonging to a specific class mode. Given a class ¢ and a set of
discovered modes for that class denoted as M, = {m, ..., mypc }, our method computes the mode
guidance score for a particular mode m, using the following equation:

g = (m; — 7o), S

where 2" is the predicted denoised latent feature at timestep ¢ during the reverse process. We apply
this guidance signal at the z; timestep as follows:

GAG(xtat,C) :Eg(l't,t,C)+)\'gt'Ut, (6)

where ) is a scalar that controls the strength of the guidance signal.

To synthesize an image from a particular mode m;, the diffusion model G calculates the mode
guidance score at each iteration of the reverse process using EqJ6] This score represents the direction
from the predicted value to the mode m,;. The guidance signal is then added to the noise function at
the appropriate time step in the diffusion process. By adjusting the strength of the guidance signal,
we can regulate the impact of the mode on the generated image.

3.3 StOP GUIDANCE

The reverse process of diffusion can be divided into three stages: the chaotic stage (first 20%), the
semantic stage (20% to 50%), and the refinement stage (last 50%) (Yu et al., 2023). We hypothesize
that mode guidance is unnecessary during the refinement stage because we believe that the purpose
of mode guidance is to guide the synthetic image towards the mode in the high semantic space. Also,
during our initial experiments, we observed that providing strong guidance to a particular mode m;
often results in a loss of class fidelity and the presence of image artifacts (See Figure @bt s = 0).
Therefore, we introduce the stop guidance to mitigate losing class fidelity and image artifacts. The
stop guidance consists of giving a stop timestep ts¢, the stop guidance involves setting A to zero in
Eq.[6l when ¢t < tg¢ in the reverse process. In the experiment section, we provide an ablation for the
timestep (ts@) when guidance ceases to exist.
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4 EXPERIMENTS

Datasets and evaluation. To assess our approach’s effectiveness, we thoroughly examined the
available benchmarks for distilling high-resolution datasets (256 x 256). The datasets we evaluate
include ImageNet-1K, ImageNet-100, ImageNetIDC, ImageNette, and ImageNet-A to ImageNet-E.
Additionally, we included results from ImageWoof in the supplemental material. We used two
protocols for evaluation: a hard-label protocol and a soft-label protocol.

The hard-label protocol generates a dataset with its corresponding class labels, trains a network from
scratch, and evaluates the network on the original test set. This process is repeated three times for
target architectures, and the accuracy mean and standard deviation are reported. Random resize-crop
and CutMix are applied as augmentation techniques during the target network’s training. For more
detailed technical information about the protocol, please refer to (Gu et al., 2024). Similar to the
existing literature, we evaluate our model in various IPCs ranging from 10 to 100. This protocol was
used to evaluate ImageNet-100, ImageNette, and ImageNetIDC datasets.

In soft-label protocol, region-based soft-labels are generated with a pre-trained network as proposed
by (Sun et al.|[2024)). The region-based soft-labels y; ,,, are generated as follows: y; , = ¢7(Zim),
where ¢ is the pretrained model and z; ,,, is the m-th crop of the -th image. When training a model
¢s on the distilled dataset the objective lossis £ = — 3. >~ yjm 10g ¢s(x;,m). For ImageNet-1k
evaluation, we follow this protocol. Similarly to (Sun et al., 2024} |Gu et al.| |2024), we used ResNet-18
as a teacher and student network architecture for this setup.

Baselines. We are comparing two baselines: 1) The pre-trained DiT XL/2, which represents
diffusion models without mode guidance. 2) MinMax diffusion with DiT XL/2, which represents
a scenario where the diffusion model is fine-tuned to encourage diversity and representativeness.
For the ImageNette and IDC datasets, we used a class-conditioned Latent Diffusion Model (LDM)
(Rombach et al.,[2022) trained on ImageNet- 1k to compare the U-Net architecture versus Transformer
architecture in the diffusion model. In our experiments, both DiT and LDM use the DDPM sampler.
Additional results with the DDIM sampler are provided in the supplemental material. To compare
with D* M (Su et al., 2024) in our hard label protocol, we applied a disentangled diffusion stage from
D*M without including the soft labels by the Training Time Matching.

General-purpose Diffusion Model. Our method is adaptable to various diffusion models, with
optimal performance observed when the model is pre-trained on the target dataset. To assess the
generalizability of our approach, we tested it on a general-purpose diffusion model, specifically a text-
to-image diffusion model. This evaluation poses challenges due to the potential mismatch between
the model’s training data and the target dataset. For this setup, the baseline was the text-to-image
Stable Diffusion model without mode guidance, allowing us to demonstrate the impact of integrating
mode guidance on the generated dataset. For sampling, we use the class names as a text prompt.

Implementation details. Our pre-trained model G is DiT-XL/2 trained on ImageNet, and the image
size is 256 x 256. We use the sampling strategy described in (Peebles & Xiel, [2023)), which uses 50
sampling steps using classifier-free guidance with a guidance scale of 4.0. For Mode Guidance, we
set A to 0.1, and in our experiments, we used stop guidance tgg = 25. We use k—means to perform
mode discovery; we set k = I PC. We used a single NVIDIA RTX A5000 GPU with 24GB VRAM
to run our experiments.

4.1 COMPARISON WITH STATE-OF-THE-ART METHODS

In this study, we compare our method with current state-of-the-art (SOTA) techniques on various
image datasets and architectures. Our method significantly outperforms previous approaches across
various benchmark datasets and target architectures.

ImageNette and ImageIDC. In the ImageNette dataset, our method with DiT achieved performance
gains of 4.4%, 4.4%, and 2.9% in IPC 10, 20, and 50, respectively, outperforming the previous SOTA
methods (See Table . Similarly, in the ImageIDC dataset, our method demonstrated improvements
of 2.8%, 2.9%, and 2.5% in IPC 10, 20, and 50, respectively, compared to the previous SOTA.
TableE] shows that our method consistently improves on three diffusion models: DiT, LDM, and
Stable Diffusion. Notably, in the general purpose (Text-to-Image) evaluation, Stable Diffusion
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| Nette | IDC

IPC | 10 20 50 | 10 20 50

Random 542416 63540.5 76.141.1 48.110.8 52540.9 68.140.7
DM (Zhao & Bilen,|2023) 60.84.0.6 66.541.1 76.240.4 52840.5 58540.4 69.140.8
MinMaxDiftf (Gu et al.|[2024) 62.040.2 66.84.0.4 76.640.2 53.140.2 59.040.4 69.640.2
LDM (Rombach et al.}|2022) 603436 620426 71.04£1.4 50.841.2 5514920 63.84.0.4
LDM+ Disentangled Diffusion (D*M (Suetal|024) | 59.100.7 64310.5 702410 | 523403 555110 627i0.s
LDM+ MGD? (Ours) 61944 1 653413 74240.9 53240.2 583417 672413
DiT (Peebles & Xie|[2023) 59.140.7 64841 .2 73340.9 54140.4 58940.2 643406
DiT+ Disentangled Diffusion (DM (Su et al}[2024)) 604154 655110 738117 | Sllioa 580114  64lios
DiT + MGD? (Ours) 66445 4 712405 795413 5594921 61910 9 721408

General Purpose Diffusion

Stable Diffusion (Text-to-Image) (Rombach et al.}2022) 46445 g 546420 60.64-2 4 405411 4394921 52.141.2
Stable Diffusion (Text-to-Image) + MGD® (Ours) 573122 633156 74441 4 48541 0.8 51.64 1.3 60.243 1

Table 1: Performance comparison with pre-trained diffusion models and state-of-the-art methods on
ImageNet subsets. The results are obtained on ResNet-10 with average pooling. The best results are
marked as bold. Accuracy is the evaluation metric presented here.

underperforms all the methods; however, when combined with our method, the performance gap is
significantly reduced.

10 (0.8%) | 20 (1.6%)

ConvNet-6 ResNetAP-10 ResNet-18 | ConvNet-6 ResNetAP-10 ResNet-18

I

I
Random 17.040.3 19140.4 17540.5 24840.2 26.740.5 25540.3
Herding (WellingJ[2009) 17240.3 19840.3 16.140.2 24340.4 27.640.1 24740.1
IDC-1 (Kim et al.] 2022 243105 25740.1 251402 | 28840.3 29940.2 302402
MinMaxDiff (Gu et al., 2024: 22.3i0_5 24.8:‘:0‘2 22.5:‘:0‘3 29.3:‘:0‘4 32.3:‘:0‘1 31.2:|:0'1
MGD3 (Olll's) 23.4i0_9 25.8:‘:0.5 23.6:‘:0‘4 30.6:‘:0‘4 33.9:|:1.1 32.6i0'4
Full | 799+0.4 80310.2 81840.7 | 79940.4 8034+0.2 81.8410.7

Table 2: Performance comparison on ImageNet-100. The best results are marked as bold.

ImageNet-100 and ImageNet-1K. Table [2] shows comparison to SOTA in ImageNet-100 in IPC
10 and 20 in various target architectures. Our method surpasses the previous SOTA by 1.3%, 1.6%,
and 1.4% in IPC 20 for various target architectures. It also outperformed the MinMax diffusion
approach in IPC 10 and achieved the best performance with the ResNetAP-10 target architecture
while delivering the second-best results for ConvNet-6 and ResNet-18 architectures. It is important to
note that our method is substantially more computationally efficient compared to IDC and MinMax
(see Computational Cost below). We also compare our method with SOTA in ImageNet-1K on the
soft-label protocol on IPC 10 and 50 in Table ] Our method achieved SOTA outperforming previous
SOTA by 1.3% and 1.6%. In the case of using a general-purpose diffusion in Imagenet-1k, our
method shows an improvement of 3.4% and 2.3% in IPC 10 and IPC 50 over Stable Diffusion.

TestModel | Mode Disc. ~ Mode Guid. Stop Guid. | Acc. Method ‘ IPC 10 IPC 50
ConvNet-6 53241.4 SRe?L (Yin et al}2023) 213406 468402
RENEAP{;O 4 - - g;é +£1.3 RDED (Sun et al} 2024) 420401 565401
esNet- ~40.6 DiT (Peebles & Xiel[2023) | 39.640.4 52.9+0.6
ConvNet-6 57.541.3 MinMax (Gu et al.[[2024) 4434105 58.610.3
ResNetAP-10 v v - 638116 MGD? (Ours) 45.610.1 602401
ResNet-18 62.042 2
General Purpose |
ConvNet-6 59642 2
ResNetAP-10 v v v 66415 4 D*M (Su et al} 2024) 27.9 552
ResNet-18 644419 SD (Rombach et al}[2022) | 38.8+0.2  56.240.1

SD + MGD® (Ours) 422404 5854102

Table 3: Ablation study on the component of our
proposed method. The results are on the ImageNette  Table 4: Overall accuracy comparison. Our
dataset with IPC 10. Each component contributes to  method outperforms the current state-of-the-
the overall performance. art on ImageNet-1k.

Comparison versus Generative Prior Methods. We compared our method with GLaD, H-GLaD,
and LM3D on their cross-architecture setup, where AlexNet, VGG11, ResNetl18, and ViT were
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used for performance evaluation. The evaluation was done by running the evaluation five times per
architecture and reporting the mean performance across all the architectures. We evaluated our model
in 5 subsets: A, B, C, D, and E of ImageNet. Our method was trained using the hard-label protocol.
Table [5] shows that our method outperformed previous methods in this setup. Also, it is worth noting
that these methods are challenging to scale to large datasets such as Imagenet-1K or higher IPC (>50)
due to higher time and space complexities.

Computational Cost: Our method achieves state-of-the-art performance on all datasets, except
ImageNet-100, where the best-performing method, IDC-1 (Kim et al.| 2022)), has slightly better
results than ours but with much higher computational cost. For example, MinMax (Gu et al., 2024)
took 10 hours to produce a distilled dataset for ImageNet-100 with IPC-10, while IDC-1 (Kim et al.|
2022) took over 100 hours for the same. The optimization strategy proposed in IDC-1 (Kim et al.,
2022)) can not scale up to the ImageNet-1K, and MinMax diffusion requires expensive fine-tuning of
the diffusion model, especially for larger datasets like ImageNet-1k. In contrast, we used pre-trained
diffusion models to create a distilled dataset with no additional computational cost for fine-tuning
and minimal overhead for mode discovery. For comparison, our method takes 0.42 hours to generate
a synthetic dataset for ImageNet-100 with IPC-10. This highlights the computational efficiency of
our model compared to previous approaches.

e e Ours ® ° Distil Method ImNet-A ImNet-B ImNet-C ImNet-D ImNet-E All
N Optimal Alg
0s{ & DIT ° o .
= MinMax ° ° Pixel 23407 | 451483 | 400476 | 361404 | 38lioa | 423135
Zoo . o, DC GLaD 30114 | 500106 | 489411 | 389110 | 384407 | 459110
5 a A H-GLaD 541412 520411 49.540.8 398+0.7 | 40140.7 | 47.1t0.9
Zoe . LM3D 552410 | 518414 | 499413 | 3954110 | 390413 | 471410
2 °
2] g N a - m Pixel 44405 | 26404 | 06105 | 475407 | 354404 | 36040.5
a 4 m DM GLaD 52841.0 | Sl3+0.6 | 497+0.4 | 364404 | 386407 | 458406
oof @ a H-GLaD 551405 | 42405 | 508104 | 376106 | 399+t0.7 | 475105
Y o o o6 Y o LM3D 57.041.3 523411 4824 4.9 395415 394418 473421

Representativeness

MGD? (Ours) | 634405 | 663411 | 586112 | 468105 | S5Llyiio | 572410

Figure 3: Representative score  Table 5: Comparison of our method with Generative Prior meth-

versus Diversity score for each  ods on ImageNet subsets A to E with IPC-10.
class on Nette for IPC 10 versus

various models.

4.2 ABLATION STUDY

When should guidance stop? To determine when to stop the guidance, we assessed mode guidance
with tgg ranging from 50 to O in increments of 5 steps. A stop guidance of tgg = 50 means no
guidance, while ¢t = 0 means full guidance. Figure [da]shows that the optimal range to stop the
guidance is between ts¢ = 30 and tg¢ = 10, with the peak at ts¢ = 20. Additionally, Figure [4b|
illustrates that the guidance introduces more variability in the generation, with a more diverse set of
backgrounds and poses. However, when the mode guidance is extended (e.g. tsg = 0), it does not
guarantee class consistency, as demonstrated in Figure Ab]

Effect of each component. To assess the impact of each proposed component, we incrementally
evaluated the following: 1) Mode Discovery, 2) Mode Guidance, and 3) Stop Guidance. Mode
Discovery involves performing K -means per class on the original dataset and selecting the closest
sample to the k-means centroid. We conducted the evaluation on the ImageNette dataset with IPC
10, and reported the accuracy of ConvNet-6, ResNet10 with average pooling, and ResNet18. Table
[3| demonstrates that using diffusion with mode guidance enhances mode discovery and that stop
guidance is crucial for achieving improved performance.

Visuzalizing t-SNE. To analyze the distilled dataset’s coverage, we visualize a t-SNE plot of the
distilled dataset from the DiT, MinMax Diffusion, and our method. Figure E] illustrates that the DiT
distilled dataset is mostly contained in one region of the original dataset distribution, while MinMax
Diffusion extends to a broader area of the data distribution. However, the distilled dataset from our
method covers a broader area of the data distribution than both methods.

Representativeness versus Diversity. While t-SNE provides a qualitative visualization of diversity,
it does not present the complete picture. We are also interested in representativeness. With this in
mind, our goal is to empirically measure diversity and representativeness in the t-SNE space described
above. To measure diversity, we calculate the pairwise distance of all samples within a class for the
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=1 5td Dev

Validation Accuracy (%)

Figure 4: Ablation of the effect of ¢, where tsg = 0 denotes full guidance and s = 50 denotes
no guidance. (a) Shows validation accuracy versus tgc on ImageNette dataset. Best performance is
achieved when ¢ g¢ ranges between 20 and 30. (b) Shows generated images for the ‘English Springer’
class with full guidance (¢tsc = 0), with early-stop guidance tgc = 25 and no guidance (¢t = 50).
With early-stop guidance, the generated samples have more diversity w.r.t to the pose and background.

-30 -20 -10 0 10

Figure 5: T-SNE plot showing the original samples (®) and the synthetic samples generated by differ-
ent diffusion-based methods for two classes (English springer and cassette player) from ImageNet-1k.
This visualization shows that DiT (Peebles & Xie, [2023)) has limited diversity, Minmax (Gu et al.}
diffusion shows diversity but lacks full coverage, while our approach demonstrates mode
diversity, achieving higher coverage.

distilled dataset and report the minimum distance per sample. To measure representativeness, we aim
to assess how close a condensed sample is to the closest mode in the original dataset. To do this, we
calculate the mean distance of the closest 50 examples in the original dataset. Note that greater mean
distance means least representative and less mean distance means more representative.

We compared the diversity and representativeness of each class for DiT, MinMax diffusion, and
our method as shown in Figure [3] Figure [3|presents normalized scores. We expressed high repre-
sentativeness as a high value by visualizing a 1 — representativeness to aid visualization. Our
experiment indicates that DiT examples show partial representative and partial diversity. On the other
hand, MinMax produces more diverse examples than DiT, although some classes lack diversity. Our
method demonstrates that our samples are both diverse and representative. Furthermore, we provide
additional results about representativeness and diversity in the supplemental material.

5 CONCLUSION

Dataset distillation is an important task of condensing information from large training sets. Despite
several efforts, the distilled datasets have limited representativeness and diversity in their synthetic
samples. Our proposed method using latent diffusion with mode guidance overcame this limitation
and demonstrated superior performance for the dataset distillation task across various benchmarks and
setups. Specifically, our approach outperformed previous methods without the need for fine-tuning,
as evidenced by our results on ImageNette, ImageIDC, ImageNet-100, and ImageNet-1K. We also
analyzed and discussed the importance of different components of our method and showed their
utility through rigorous ablation studies. We’ve shown that our approach can be used with general
diffusion, like Text-to-Image Stable Diffusion, even when the training data doesn’t overlap with the
target dataset. In the future, we plan to extend our method to different applications where diverse
representative samples are needed, such as continual learning.

10
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A CLASS WISE DIVERSITY AND REPRESENTATIVENESS

Figure [6] shows the diversity and representativeness of each distilled sample for ten classes in the
ImageNet-1k dataset for DiT, MinMax, and ours. This Figure shows that our method is consistent
having higher representativeness across all the classes in comparison with the previous methods.
Overall, our method maintains high diversity across most of the samples within a class. We observe
that both MinMax and DiT consistently have a few samples with very low diversity.
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Figure 6: Representativeness versus Diversity by class for the distilled dataset from diffusion-based
methods on 10 IPC of ImageNet-1k. Each point represents an image of the distilled dataset. DiT shows
high representativeness but lacks diversity; MinMax shows diversity but lacks representativeness;
Ours shows both diversity and representativeness.

B EFFECT OF STOP GUIDANCE IN DIVERSITY AND REPRESENTATIVENESS

In order to understand how the stop guidance affects the diversity and representation of the distilled
dataset, we performed an evaluation of these metrics on the ImageNette dataset for IPC 10 for various
tsc ranging from 50 to 0 our results are displayed on Figure[7} Our results show that when mode
guidance is applied for any evaluated stop guidance ¢g¢, our method increases diversity. Our data
shows that while stopping the mode guidance very early in the reverse process started from tgg = 45
to tsg = 35 mode guidance increases diversity. To our surprise, when the stop guidance is delayed
toward the end of the reverse process from tsg = 30 to tsg = 0, the diversity starts to saturate, but
the mode guidance increases the representativeness of the distilled dataset.
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Figure 7: Representativeness versus Diversity versus ¢ga. Each point represents a distilled dataset.
Diversity and representativeness are obtained by computing the mean across all the samples in the
distilled dataset. Stopping the mode guidance early in the reverse process (tsg = 45 to tgg = 35)
promotes diversity. While prolonging the mode guidance between ts¢ = 35 and ts¢ = 0 increases
representativeness.
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C EFFECT OF MODE DISCOVERY ALGORITHM

To investigate the impact of the mode discovery algorithm, we assessed the following methods:
random selection from the original dataset, k-means centroids, closest sample to k-means centroid,
and DBSCAN. The evaluation is performed in ImageNette with IPC 10. For DBSCAN modes, we
computed the mean of a cluster. We applied mode guidance with ¢ts¢ = 25 with estimated modes for
each method. The results are presented in Table[6] showing that k-means centroids provided the best
performance.

Mode Discovery method | Accuracy

Random 59-6i1.8
DBSCAN 613119
k-Means (closest sample) | 64.61¢ .4
k-Means (centroid) 66.445 4

Table 6: Mode discovery algorithm versus Accuracy on ImageNette with IPC-10.

Table 7: Performance comparison with pre-trained diffusion models and other state-of-the-art methods
on ImageWoof. All the results are reproduced by us on the 256 x256 resolution. The missing results
are due to out-of-memory. The best results are marked as bold. Higher is better.Results shown for
the previous works are from|Gu et al.| (2024).

IPC (Ratio) Test Model Random Herding DIiT DM IDC-1 GLaD MinMaxDiff | MGD? (Ours) Full
‘Welling [(2009] [Peebles & Xie|(2023] [Zhao & Bilen|(2023] |Kim et al. (2022] |Cazenavette et al. £2023] |Gu et al. (2024]

ConvNet-6 243114 26.7+0.5 342411 269112 333411 33.8+0.9 37.0410 34.7341. 86.4+0.2
10 (0.8%) ResNetAP-10 | 294105 32.0+0.3 34705 303112 39.1+05 329+0.9 392413 404519 87.5+0.5
ResNet-18 27.7+0.9 302412 347404 3344107 373402 31.7+0.8 37.6+0.0 385125 8934112
ConvNet-6 29.1+0.7 29.540.3 36.1x0.8 299110 355408 - 37.6+0.2 39.0+3.46 86.4+0.2
20 (1.6%) ResNetAP-10 | 32.74+0.4 349401 4l.1+08 35206 434103 - 458405 43.641.6 87.5+0.5
ResNet-18 29.710.5 322406 40.510.5 298417 38.6+0.2 - 425,06 419421 893112
ConvNet-6 413106 40.310.7 46.5+0.8 444510 439412 - 539406 545116 86.4+0.2
50 (3.8%) ResNetAP-10 | 472413 49.140.7 49.310.2 47110 48.311.0 - 56.3+1.0 56519 87.5+0.5
ResNet-18 479418 483412 50.1+0.5 46.210.6 48.310.8 - 57.1+0.6 583114 893412
ConvNet-6 463106 46.210.6 501512 475408 48.9+0.7 - 55.7+0.0 551425 86.4+0.2
70 (5.4%) ResNetAP-10 | 50.8+0.6 534414 543109 51.7+0.8 528418 - 58.3+0.2 60.215 4 87.5+0.5
ResNet-18 521410 49.710.8 51.5+1.0 51908 51.ly17 - 58.8+0.7 597127 893412
ConvNet-6 522404 544410 534103 55.0+1.3 532409 - 61.110.7 60.1£1.2 86.4+0.2
100 (7.7%) ResNetAP-10 | 59.4.+1.0 61.710.9 58.310.8 56.410.8 56.1+0.9 - 64.510.2 66.5:1.0 87.5+0.5
ResNet-18 615413 59.340.7 589413 60.2+1.0 583412 - 65.7+0.4 68.8.0.7 893412

D EVALUATION ON IMAGEWOOF

ImageWoof. We compared our method with SOTA in ImageWoof on IPC 10, 20, 50, 70, and 100 on
various target architectures, as shown in Table[/] It is worth noticing that this dataset is a fine-grained
dataset where all classes belong to dog breeds. Due to its granularity of features, we trained DiT
XL/2 on the ImageWoof dataset with just the simple loss mentioned in Eq. [2] following the same
training epochs as (Gu et al.| 2024). Our method outperformed the previous SOTA across various
IPC values for different target architectures. Notably, our method demonstrated superior performance
in all IPC values for the ResNet-18 architecture, achieved SOTA in IPC 10, 50, 70, and 100 with the
ResNetAP-10 architecture, and delivered the best performance in IPC 20 and 50 with the ConvNet-6
architecture.

E EFFECT OF MODE GUIDANCE SCALE \

To study how the mode guidance scale \ affects performance, we evaluated the various values for A
on ImageNette with IPC 10 with ResNetAP-10. Our results showed that when the mode guidance is
too high, it’s catastrophic for the distilled data, dropping the performance significantly; however, the
best parameter was achieved by A = 0.1.

F MODE GUIDANCE WITH DDIM

Our approach, similar to classifier guidance (Nichol & Dhariwall,[2021)), can be incorporated guidance
into DDIM using algorithm [I} In Table [§] we compare the effect of our approach in DDPM and
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Figure 8: Effect of guidance scale on performance.

DDIM across LDM and DiT diffusion architectures. Our results demonstrate the effectiveness of
our method with denoising samplers in both architectures, showcasing its flexibility with respect to
diffusion architecture and sampler choice. This highlights the significant impact of our approach in
enhancing the performance while being adaptable with different denoising diffusion models.

Method | DDPM DDIM

LDM

603436 604431
LDM + MGD? (Ours)

61944 1 623411

DiT 58.842.1 61440 4
DiT + MGD? (Ours) 664454  66640.6

Table 8: Comparison of performance between different diffusion models (LDM, DiT) with and
without our approach, evaluated using DDPM and DDIM sampling methods.

Algorithm 1 Mode Guidance with DDIM sampling, given a diffusion model €4 (), an estimated
mode my, and mode guidance scale A.

Input: estimated mode m; and mode guidance scale A
x7 < sample from N (0, 1)
for all ¢t from 7" to 1 do

gt = (m; — &p)

€<—€9(l’t>—\/1—6¢t'>\'gt

Ti_1 < JOy_1 (%) + V1 —0_1€
end for
return x

G DIVERSITY CLASS-WISE DIVERSITY SCORE

We calculated the diversity score for each class by averaging the diversity score across all the samples.
Table E] shows the diversity score for each class for DiT, MinMax, and Mode Guidance. Our method
consistently generates a more diverse set for each class on ImageNette than the other methods.

H HARD-LABEL VERSUS SOFT-LABEL PROTOCOLS

We conducted further analysis on ImageNet-100, where we tested our approach from IPC-10 up to
IPC-100. As illustrated in Table[I0] our performance steadily improved, reaching 57.8.+( o with the
hard-label protocol. Additionally, we compared the performance of ImageNet-100 using soft-label

training on IPC-10, 20, 50, and 100. The results underscore a substantial performance boost when
employing soft-labels.
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class DiT MinMax Ours
tench 0.35 0.18  0.82
English springer  0.65 0.33  0.62
cassette player 0.55 0.52 1.00
chain saw 0.00 0.37 0.55
church 0.54 041 0.77
French horn 0.21 0.13  0.54
garbage truck 0.44 0.38 0.76
gas pump 0.50 0.24  0.67
golf ball 0.20 0.33  0.78
parachute 0.08 048 0.79
Average 0.35 0.34  0.73

Table 9: Results: Comparison of per-class diversity scores on ImageNette with IPC-10

Method | Labels | IPC10 IPC20 IPC50  IPC 100

Hard-Label | 23.610.4 32.6104 51.8402 57.8402
Soft-label 34.0+1.0 50.2+40.7 69.2i0.4 75.8+40.3

MGD? (Ours) ‘

Table 10: Evaluation of training with hard-labels versus soft labels in ImageNet-100 training with
ResNet18.

I VISUALIZATION OF DENOISING TRAJECTORIES WITH MODE GUIDANCE FOR
DIFFERENT tg¢

See Figure[J]

J  EVALUATION TECHNICAL DETAILS

For the hard-label protocol, we followed the evaluation method described in (Gu et al.,[2024). We
trained our model on a synthetic dataset for 1500 epochs for IPC values of 20, 50, and 100, and
extended the training to 2000 epochs for an IPC value of 10. We used Stochastic Gradient Descent
(SGD) as the optimizer, setting the learning rate at 0.01. We used a learning rate decay scheduler at the
2/3 and 5/6 points of the training process, with the decay factor (gamma) set to 0.2. Cross-entropy
was used as the Loss objective.

For the soft-label protocol, we followed the evaluation used by (Gu et al.| 2024;|Sun et al., 2024) for
ImageNet- 1k evaluation. We evaluate the model by training a network for 300 epochs with Resnet-18
architecture as both teacher and student. We used the AdamW optimizer, with a learning rate set at
0.001, a weight decay of 0.01, and the parameters 31 = 0.9 and 35 = 0.999.
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Stop Guidance

Denoising Timestep

Figure 9: Generated images through the reverse process for different values of T'sq.
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