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ABSTRACT

The integration of prompt tuning with multimodal learning has shown significant
generalization abilities for various downstream tasks. Despite advancements, exist-
ing methods heavily depend on massive modality-specific labeled data (e.g., video,
audio, and image), or are customized for a single modality. In this study, we present
Text as Any-Modality by Consistent Prompt Tuning (TaAM-CPT), a scalable ap-
proach for constructing a general representation model toward unlimited modalities
using solely text data. TaAM-CPT comprises modality prompt pools, text construc-
tion, and modality-aligned text encoders from pre-trained models, which allows
for extending new modalities by adding prompt pools and modality-aligned text
encoders. To harmonize the learning across different modalities, TaAM-CPT de-
signs intra- and inter-modal learning objectives, which can capture category details
within modalities while maintaining semantic consistency across different modali-
ties. Benefiting from its scalable architecture and pre-trained models, TaAM-CPT
can be seamlessly extended to accommodate unlimited modalities. Remarkably,
without any modality-specific labeled data, TaAM-CPT achieves leading results
on diverse datasets spanning various modalities, including video classification
(Kinetic-400/600/700), image classification (MSCOCO, VOC2007, NUSWIDE,
VOC2012, Objects365), and audio classification (ESC50, US8K). The code is avail-
able at https://anonymous.4open.science/r/TaAM-CPT-0EA6.

1 INTRODUCTION

As unified architectures (Vaswani et al., 2017; Dosovitskiy et al., 2021; Arnab et al., 2021; Gong
et al., 2021) and multimodal pre-training models (Devlin et al., 2019; Radford et al., 2021; Tong
et al., 2022) progress, recent works have exhibited impressive representation abilities in multimodal
learning (Li et al., 2023b; Zhang et al., 2023a; Zhu et al., 2024; Yeh et al., 2023; Wu et al., 2023b).
In scenarios restricted by either labeled data or computational resources, owing to the aligned pre-
trained models (Radford et al., 2021; Wang et al., 2024b; Wu et al., 2023b), prompt tuning (Zhu et al.,
2023a; Yao et al., 2023; Wu et al., 2023a) showcases robust generalization capabilities across various
downstream tasks by adjusting a negligible number of parameters, such as video classificatiot (Li
et al., 2023a; Wasim et al., 2023), image classification (Zhou et al., 2022b; Hu et al., 2023; Guo et al.,
2023), and audio classification (Duan et al., 2024; Chang et al., 2023).

Despite prompt tuning emerging as a novel paradigm for adjusting large-scale pre-trained mod-
els (Radford et al., 2021; Dosovitskiy et al., 2021; Wu et al., 2023b), current techniques still rely
heavily on massive modality-specific labeled data (e.g. video, audio, and image). For instance, as
illustrated in Figure 1 (a) and Figure 1 (e), image supervised methods (Zhou et al., 2022b;a; Sun
et al., 2022; Hu et al., 2023) design text prompt that is combined with the textual labels to align with
labeled image data for image classification tasks. Likewise, for video and audio classification tasks,
previous methods (Ju et al., 2022; Li et al., 2023a; Liu et al., 2024; Kushwaha & Fuentes, 2023)
primarily focus on adapting pre-trained multimodal models to video and audio understanding tasks
supervised with labeled video and audio data. However, sufficient modality-specific labeled data
necessitates considerable manual effort, which, in the face of labeled data limits, can impede the
development of robust object classification networks. In the absence of labeled data altogether, these
techniques may even fail outright.
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Figure 1: Different prompt tuning paradigms by frozen pre-trained encoders. (a)(b). Supervised
methods with labeled and text data. (c). TaAM-CPT. Prompt tuning toward unlimited modalities
without prompt encoding processes. (d). Testing of TaAM-CPT. (e). Testing of previous works.

To address the above issue, some studies advocate using the well-aligned embedding space, achieved
by contrastive learning (e.g.,CLIP (Cherti et al., 2023)) for prompt tuning. For example, TAI-
DPT (Guo et al., 2023), as a pioneering work depicted in Figure 1 (b) and Figure 1 (e), proposes
to enable labeled text data (e.g., coco-caption (Lin et al., 2014)) instead of labeled image data for
training text prompt, while testing with images and learned text prompt. Similarly, PT-Text (Li
et al., 2024) pioneers the approach of audio-free prompt tuning by pre-trained audio-language
model (Wu et al., 2023b), where the prompt is learned from text rather than audio for zero-shot audio
classification. To further reduce the cost of obtaining labeled text data, PVP (Wu et al., 2024) and
TAI-Adapter (Zhu et al., 2023b) recommend using synthetic text data, generated by large language
models (LLMs) (Touvron et al., 2023a), as a substitute for labeled text data. However, these strategies
require the design of sophisticated text prompt, visual prompt, or adapter frameworks, as well as the
deployment of a text encoder to encode the prompts. Additionally, these approaches focus solely on a
single modality (e.g., video classification, image classification, or audio classification), and for more
modalities, multiple independent models need to be trained additionally.

In this paper, we explore a universal representation model capable of scaling to unlimited modalities
without any modality-specific labeled data. This necessitates the following conditions: 1) The model
exclusively relies on easy-collected text data for training, eliminating the need for any labeled data. 2)
The model architecture needs to be flexible enough to accommodate new categories or modalities and
simplify the design of prompt, thereby reducing the complexity of prompt encoding. 3) The model
must ensure learning across different modalities does not mutually affect each other, and appropriate
training objectives should be designed to enhance the representational capabilities of all modalities.

Motivated by these factors, as shown in Figure 1 (c) and Figure 1 (d), we propose Text as Any-
Modality for Consistent Prompt Tuning (TaAM-CPT), a general representation model toward
unlimited modalities solely using text data generated by LLMs. Unlike TAI-DPT (Guo et al.,
2023) and PVP (Wu et al., 2024), which require intricate, multi-grained text prompt designs, our
method simplifies the design by characterizing any modality category as a randomly initialized
vector. Leveraging the instruction following ability of LLMs (Touvron et al., 2023a), we can
comfortably obtain text training data for any category. By directly optimizing the vectors within the
aligned space of pre-trained models (Radford et al., 2021; Wu et al., 2023b; Wang et al., 2024b), we
eliminate intermediate encoding processes. Since the initialization way for each category is identical,
TaAM-CPT ensures the flexible addition of any category from any modality without retraining the
already learned class-specific prompt. Moreover, we design uni-directional contrastive loss, which
uses modalities with stronger representational abilities to guide the learning of those weaker ones.
Surprisingly, not only does it enhance the representational abilities of weaker modalities but also
further improves the representational abilities of stronger modalities.

We conduct extensive experiments across multiple modalities, including video, audio, and image
classification tasks. Without any labeled data, TaAM-CPT achieves superior performance to pre-
trained models and recent SOTAs (Guo et al., 2023; Li et al., 2024; Wu et al., 2024). Notably, in image
classification, TaAM-CPT outperforms CLIP (Cherti et al., 2023) by 12.5% on MSCOCO (Lin et al.,
2014), 8.0~12.0% on Object365 (Shao et al., 2019) and NUSWIDE (Chua et al., 2009). For video
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recognition, the top-1 accuracy on K400/K600/K700 (Carreira & Zisserman, 2017; Carreira et al.,
2018; 2019) is 1.0~3.0% higher than ViCLIP (Wang et al., 2024b). In audio classification, TaAM-
CPT also outperforms the pre-trained model CLAP (Wu et al., 2023b) on ESC50 (Piczak, 2015) and
US8K (Salamon et al., 2014). Moreover, our model can be easily integrated with other models that
require labeled data for training, thereby further enhancing their classification performance.

2 RELATED WORK

Video, Image, and Audio Classification. Video classification involves identifying actions in the
video. Early works (Wang et al., 2016b; Tran et al., 2018; Feichtenhofer, 2020) focus on designing
two-stream networks and 3D CNNs for action recognition. Building on the success of transformers in
the image, recent works (Yan et al., 2022b; Xue et al., 2022; Yu et al., 2022; Wang et al., 2022; Li et al.,
2023d) explores effective objectives for adapting pre-trained image models to video understanding.
To handle the problem of local video redundancy, UniFormerV2 (Li et al., 2022) introduces local and
global relation aggregators to learn discriminative representations.

Image classification aims to recognize all the categories in an image. To explore the correlations
among labels, some works propose to incorporate semantic dependencies via object proposals (Wang
et al., 2016a; Liu et al., 2018), semantic graph (Zhang et al., 2023b; Zhu et al., 2023c), and transformer-
based architecture (Bhatti et al., 2023; Scheibenreif et al., 2023). When labeled data is limited,
another line of works (Liu et al., 2022b; Simon et al., 2022; Liu et al., 2023b) attempts to solve more
challenging scenarios, including zero-shot, few-shot, and partial-label tasks. DualCoOp (Sun et al.,
2022) and DualCoOp++ (Hu et al., 2023) learn multiple prompts for each class, resulting in improved
performance for both zero-shot and partial-label image classification.

Audio classification involves tagging audio signals into different categories. Traditional works (Henaff
et al., 2011; Nanni et al., 2017) mainly rely on machine learning technology and manual feature
extraction. In recent years, driven by advancements in deep learning, some works (Xu et al., 2023;
Sarkar & Etemad, 2023) have begun to explore the application of neural networks. Additionally,
some efforts (Liu et al., 2023a; Garg et al., 2024) attempt to apply the transformer to the audio
classification, thereby capturing the long-term dependencies.

Prompt Tuning in Multimodal Learning. Prompt tuning (Zhou et al., 2022b; Li et al., 2023a; Duan
et al., 2024; Wang et al., 2024a) has emerged for rapidly adapting to downstream tasks by adjusting
a minimal number of parameters. For instance, some works (Zhou et al., 2022b; Nie et al., 2023)
introduce learnable context vectors to align with images via frozen CLIP encoders. When labeled
data is limited, TAI-DPT (Guo et al., 2023) and PT-Text (Li et al., 2024) introduced multi-grained
text prompts, surpassing pre-trained multimodal models in image and audio classification tasks solely
training text data. PVP (Wu et al., 2024) further enhances image classification performance by
co-learning pseudo-visual prompt and text prompt.

Different from the above prompt learning methods, which require a massive of labeled data, complex
prompt design, and are limited to single modality design. Our work eliminates the prompt encoder,
scales to unlimited modalities, initializes any categories of any modality with an identical vector, and
only uses text data generated by LLMs for prompt learning.

3 METHODS

The overview architecture of our proposed TaAM-CPT is illustrated in Figure 2. As shown, TaAM-
CPT is designed as a general representation model toward unlimited modalities using only text data
for prompt learning, which mainly consists of three parts: a) LLMs-assisted data construction, b)
Prompt initializing and modality text encoding, and c) Intra- and inter-modal learning.

3.1 LLMS-ASSISTED DATA CONSTRUCTION

We present the process of producing appropriate text training data for given modality class labels.
Unlike noun filters used in TAI-DPT (Guo et al., 2023) and PVP (Wu et al., 2024), we construct
prompt templates to instruct LLMs to generate text sentences that contain the given labels, as shown
in Figure 2. For any given labels, we design the following query template:

TEMPLATE: Making several English sentences to describe a { Modality }. Requirements: Generate
5 English sentences! Each sentence should be less than 25 words and includes: { Labels },
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Figure 2: TaAM-CPT overview. We represent any category as a class-specific prompt and use LLMs
to generate text data. Intra-modal learning aims to learn each prompt pool by pre-trained models.
Inter-modal learning utilizes stronger modalities to guide those weaker ones.

where { Modality } is populated with "video", "audio", "image", etc, and { Labels } indicates
modality-specific labels, with a maximum of 2 for video modality, 3 for image and audio modalities.
In this way, there are two advantages: the first is to avoid the diversity (e.g., singular and plural)
caused by noun filtering, and the second is to avoid the noun filtering to process the phrases describing
for video and audio. Therefore, by generating text sentences containing these labels through LLMs,
the corresponding ground truth for each sentence is from the { Labels } in the template. More details
of prompt templates and text data generated by LLMs are provided in the appendix.

3.2 PROMPT INITIALIZING AND MODALITY TEXT ENCODING

Prompt Initializing. We take video(V), audio(A), and image(I) modalities as examples to introduce
our TaAM-CPT and demonstrate its potential for extension toward unlimited modalities. For each
modality, we maintain a modality-specific prompt pool, defined as follows:

Pm = [ pm
1 ,pm

2 ,pm
3 , ...,pm

N ], (1)

where m ∈ {V,A, I} represents different modalities; pm
i ∈ Rd denotes i-th class-specific prompt;

N denotes the total number of labels. Note that the length of the prompt pool is identical for each
modality (i.e., Pm ∈ RN×d,m ∈ {V,A, I}), encompassing all labels across different modalities.
When a new modality emerges, a new modality-specific prompt pool will be created, avoiding affect
the already learned other prompt pools. When a new label arises, a new class-specific prompt will
be also added to each prompt pool, avoiding affecting the existing class-specific prompts either.
Therefore, TaAM-CPT can be easily extended to unlimited modalities and categories.

Modality Text Encoding. According to previous methods (Guo et al., 2023; Li et al., 2024; Wu
et al., 2024; Zhu et al., 2023b; Yang et al., 2024), text is treated as a surrogate for other modalities(e.g.
image and audio) for zero-shot classification. Such a paradigm potentially assumes that pre-trained
models have aligned text with other modalities into a shared embedding space, thereby making
it feasible to extract text features as substitutes for other modalities. However, these methods are
designed for individual modalities and fail to utilize complementary information among multiple
modalities. Hence, as shown in Figure 2, we adopt a parallel architecture and obtain modality-aligned
text encoders (Textv,Texta,Texti Encoder) from pre-trained models ViCLIP (Wang et al., 2024b),
CLAP (Wu et al., 2023b), and CLIP (Cherti et al., 2023), to extract text features. Furthermore, we
find CLIP (Cherti et al., 2023) and CLAP (Wu et al., 2023b) have superior representation abilities
for image and audio, compared to ViCLIP (Wang et al., 2024b) for video, specifically reflected in
the zero-shot classification performance. Inspired by the discovery, we design an uni-directional

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

learning strategy to use stronger modalities to guide the learning of weaker modalities. We find that
uni-directional learning can improve the performance for all modalities simultaneously.

3.3 INTRA- AND INTER-MODAL LEARNING

To learn the modality prompt pool for each modality, our work is to design two learning objectives:
a) intra-modal learning aims to optimize the prompt pool for each modality using global text
features extracted by modality-aligned text encoders. b) inter-modal learning aims to improve the
representational abilities of weaker modalities based on stronger ones.

Intra-modal Learning. To make it easier, we take image modality as an example to introduce
intra-modal learning, and the same approach is applied to video and audio modalities. The candidate
label set is represented as C = {l1, l2, ..., lN}, where N is the total number of labels across all
modalities. Then, we denote the text training data for image labels as T = {ti,yi}Mi=1, where M
is the number of texts; yi = {yi1, yi2, ..., yi,N} denotes the ground truth of the text ti and yij for
j ∈ {1, 2, ..., N} is 1 if the ti is generated from the label lj and 0 otherwise. Then, the text embedding
of ti is extracted by frozen text encoder of CLIP (Cherti et al., 2023), formulated as follows:

hi = ϕ(ti), (2)

where ϕ denotes the text encoder of CLIP, hi ∈ Rd denotes the normalized global text feature of ti
with d being the dimension. When processing the input text data of video or audio modalities, we
simply replace ϕ as the text encoder of ViCLIP (Wang et al., 2024b) or CLAP (Wu et al., 2023b) to
extract the corresponding text feature. The similarity of ti and the prompt pool of image modality
can then be computed by:

sij = ⟨hi, pj⟩, ∀j ∈ {1, 2, 3, ..., N}, (3)

where pj denotes the j-th prompt in the prompt pool of image modality. Note that the prompt can be
optimized directly without processing through any encoder or MLP. Compared to (Guo et al., 2023;
Yang et al., 2024; Li et al., 2024; Wu et al., 2024), which requires the design of complex multi-grained
prompt and cumbersome encoding procedure, our method simplifies the design of the prompt and
reduces the computational cost to half. For the optimization of prompt, we employ Ranking loss
instead of InfoNCE or Cross-Entropy loss, since InfoNCE loss requires massive negative samples
and high-cost softmax function to optimize well, Cross-Entropy loss only optimizes positive labels
while ignoring loss from negative labels, leading to very slow convergence. Therefore, we employ
Ranking loss to directly compare the similarity between positive and negative labels:

LI =
1

B

B∑
k=1

∑
i∈{c+}

∑
j∈{c−}

max(0,m− ski + skj), (4)

where c+ denotes positive labels with yij for j ∈ {1, 2, ..., N} is 1, c− denotes negative labels, ski
and skj are positive pair and negative pair similarities described in Eq. (3), m is denoted as the margin
to measure the difference between each pair of similarities. For the video and audio modalities, we
substitute the text encoder ϕ described in Eq. (3) to the text encoder of ViCLIP and CLAP to obtain
the text feature, and then compute the similarities between the text feature and video prompt pool,
audio prompt pool. As a result, we can obtain the Ranking loss LV and LA and LI. The total loss
for intra-modal learning can be written as:

Lintra = LI + LV + LA. (5)

During training, we fix text encoders and optimize the modality-specific prompt pools by Eq. (5).
Note that the positive labels in Eq. (4) only contain positive image labels, while negative labels contain
not only negative image labels but also labels from other modalities. Other modality’s labels serving
as negative labels not only expand the number of negative pairs but also enhance the representational
ability of video modality. By analogy, this rule can be applied to audio and image modalities also.

Inter-modal Learning. Contrastive learning aims to align different modalities, such as image-
text, video-text, and audio-text, into a shared embedding space. However, the discrepancy in the
information content of image, audio, and video modalities results in a significant modality gap
between the aligned video and text modalities and subpar zero-shot classification performance.
Motivated by this phenomenon, we propose uni-directional contrastive learning, which guides the
learning of weaker modalities using the stronger ones. In this paper, we adaptively determine the
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weak modality during training based on the lowest validation performance. Specifically, the video
modality is treated as weak as its performance is always lower, and image and audio as stronger ones.
To facilitate understanding, we rephrase Eq. (1) into the follow format:

PV = [ pVv1
,pVv2

, ...,pVvv
,pVa1 ,p

V
a2 ...,p

V
aa ,p

V
w1

,pVw2
, ...,pVww

],

PA = [ pAv1
,pAv2

, ...,pAvv
,pAa1 ,p

A
a2 ...,p

A
aa ,p

A
w1

,pAw2
, ...,pAww

],

PI = [ pIv1
,pIv2

, ...,pIvv
,pIa1 ,p

I
a2 ...,p

I
aa ,p

I
w1

,pIw2
, ...,pIww

],

(6)

where v+a+w=N , pVk , pAk and pIk represent class-specific prompt of video, audio, and image prompt
pools. Note that the initialized prompt pool of each modality is identical, which means the prompt
pool of the video modality contains video labels of size v, audio labels of size a, and image labels of
size w. The prompt pool for image and audio modalities is the same as the video modality.

We then present the uni-directional contrastive objective based on PV and PA. Specifically, the
similarity matrix can be computed by P⊤APV ∈ RN×N . And the ground truth for PV and PA of
N labels is a diagonal matrix. Note that the size of the similarity matrix and ground truth matrix is
batch-size agnostic and equals the number of total labels. Therefore, for each video prompt of PV
and audio prompt of PA, the softmax-normalized video prompt to audio prompt and ground truth
matrix can be defined as:

pv2aij =
exp

(
s(vi,aj)/τ

)∑N
k=1 exp

(
s(vi,ak)/τ

) , yv2a =



0 0 · · · 0 · · · 0

0
. . . . . .

...
...

...
. . . 0 0 · · · 0

0 · · · 0 1 · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · 1


, (7)

where vi and aj denote video prompt and audio prompt, s(·, ·) represents similarity function, τ
is a learnable temperature parameter. Note that the ground truth label yv2a is different from the
label matrix in vanilla contrastive learning (i.e. identity matrix), where the first v + w diagonal
elements are set to 0. It indicates that the loss generated at these positions will be ignored when
calculating the cross-entropy loss. Therefore, the uni-directional contrastive loss for PV and PA can
be defined as Lv2a=LCE(y

v2a, pv2a), where yv2aij ∈{0, 1} for ∀i, j∈{1, 2, . . . , N} represents the
similarity ground truth between video prompt vi and audio prompt aj . Similarly, we can obtain the
uni-directional contrastive loss between the prompt pool of video modality PV and prompt pool of
image modality PI : Lv2w=LCE(y

v2w, pv2w). And the total inter-learning loss can be defined as:

Linter = Lv2a + Lv2w. (8)

Consequently, We align the prompts of image labels in the video prompt pool with those in the
image prompt pool, and the prompts of audio labels with those in the audio prompt pool. These
aligned image and audio prompts will be treated as negative labels for training video prompt pool
in intra-modal learning, thereby expanding the number of negative pairs. In addition, the diagonal
elements corresponding to video and image labels in the ground truth matrix are set to 0, which
avoids affecting the learning of the prompt of video labels. During training, we apply uni-directional
contrastive learning to video-to-audio and video-to-image. The total loss of TaAM-CPT is: Ltotal =
λ1Lintra+λ2Linter, where λ1 and λ2 denote the loss weights of intra-modal learning and inter-modal
learning.

3.4 DISCUSSION Positive/Negative

image labels

Negative

video labels

Negative

audio labels

Negative

image labels

Positive/ Negative

video labels

Negative

audio labels

Negative

image labels

Negative

video labels

Positive/ Negative

audio labels

: Inter-modal learning: Intra-modal learning

Figure 3: Visualization of learning process.

In this subsection, as illustrated in Figure 3, we dis-
cuss how intra- and inter-modal learning works well.
For inter-modal learning, we employ uni-directional
contrastive learning, aligning “negative image/audio
labels” from the “video prompt pool” with “posi-
tive/negative image labels” from the “image prompt
pool” and “positive/negative audio labels” from the
“audio prompt pool”. We can actually treat this process as transferring knowledge from “image/audio
prompt pool” to “video prompt pool”. For intra-modal learning, take the image modality as an
example. Although the “negative labels” contain “negative image/video/audio labels” in the “image
prompt pool”, these “negative video/audio labels” don’t require modality alignment. The purpose
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is just to increase the number of negative samples, thereby learning more robust representations of
“positive image labels”. For the video modality, the “negative labels” come from aligned “negative
image/audio labels” and “negative video labels” in the “video prompt pool”. Such a uni-directional
contrastive learning strategy ensures that “negative image/audio labels” in the “video prompt pool”
can not affect the learning of “positive image/audio labels” in the “image/audio prompt pool”.

3.5 MODEL TESTING

After learning the prompt pool of each modality, each prompt uniquely represents a specific class.
We take the video modality as an example to showcase the video classification. Given an input video,
we replace the video modality-specific text encoder in Figure 2 with the video encoder of ViCLIP
to obtain the video feature. Then, we directly calculate the similarity between the video feature
and each prompt in the video prompt pool, and the prediction of the input video is the prompt with
the highest similarity. It can be seen that each prompt is calculated directly with the video features
without any encoding processing, which significantly improves the inference speed of the model. For
image classification and audio classification, we adopt the same approach, calculating the similarity
between image or audio and their corresponding prompt pools to obtain the predictions.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We conduct extensive experiments on 13 datasets across video, image, and audio modalities.
For video classification, we select UCF101 (Soomro et al., 2012) and large-scale datasets Kinetic-
400/600/700 (Carreira & Zisserman, 2017; Carreira et al., 2018; 2019). For image classification,
besides MSCOCO (Lin et al., 2014), VOC2007 (Everingham et al., 2010) and NUSWIDE (Chua et al.,
2009) used in previous works (Guo et al., 2023; Wu et al., 2024), we also select the VOC2012 (Ever-
ingham et al., 2010), ImageNet-mini (Russakovsky et al., 2015) and Objects365 (Shao et al., 2019)
to evaluate our method. For audio classification, we follow PT-Text (Li et al., 2024), selecting
ESC50 (Piczak, 2015) and US8K (Salamon et al., 2014). For all the datasets mentioned above, we
use the official test set to evaluate our method, when the labels of test set are not publicly available,
we choose the validation set for evaluation instead. See appendix for the details of these datasets.

Implementation Details. We select the pre-trained models, open-sourced by the LAION (Schuhmann
et al., 2022), as the modality-specific encoders, i.e., ViCLIP-Base (Wang et al., 2024b) for video
modality, CLIP-ViT-B-32 (Cherti et al., 2023) for image modality, and CLAP (Wu et al., 2023b)
for audio modality. The LLaMA-2-7B (Touvron et al., 2023b) is selected for generating 100k text
sentences for each modality, on a single Tesla V100, it takes about 2 hours. By simply adding some
spatial relationships instruction in the template, LLaMA-2-7B can generate text descriptions that
accurately reflect spatial relationships. For each class-specific prompt, we initialize it as a vector with
a length of 512, mean being 0, and std being 0.02. During training, all modality-aligned text encoders
are fixed, and only prompts are optimized. We evaluate our methods by top-1/5 accuracy and mean
average precision (mAP) metrics. See appendix for the more implementation details.

4.2 RESULTS ON ZERO-SHOT TASKS

To evaluate TaAM-CPT, besides the zero-shot performance comparison with pre-trained multimodal
models (i.e. ViCLIP (Wang et al., 2024b), CLIP (Cherti et al., 2023), CLAP (Wu et al., 2023b)),
we also compare its performance with existing SOTA methods on image classification and audio
classification tasks. Notably, in the zero-shot video classification field, there has been no research that
explores a similar training setting, i.e., solely training with text data for prompt tuning. Therefore, we
only select ViCLIP (Wang et al., 2024b) as the zero-shot benchmark for comparison.

Table 1: Results with ZS-ViCLIP on zero-shot video classification.

Methods UCF101 K400 K600 K700
top1 top5 top1 top5 top1 top5 top1 top5

ZS-ViCLIP[ICLR24] 73.3 93.3 53.8 78.7 52.0 78.4 43.5 68.6
TaAM-CPT(Ours) 75.4 95.7 55.2 80.4 52.9 80.1 46.0 71.1

Video Classification. We adopt
the default prompt "a video of a
[CLASS]" to obtain the zero-shot re-
sults of ViCLIP (Russakovsky et al.,
2015). From Table 1, our approach
outperforms ZS-ViCLIP by 2.1% top-
1 and 2.4% top-5 accuracy on UCF101. On the larger Kinetic-400/600/700 datasets with 400, 600,
and 700 labels, respectively, TaAM-CPT also surpasses ZS-ViCLIP by 0.9~3.0% top-1 and top-5
accuracy on all datasets, showing the effectiveness of TaAM-CPT without labeled video data.
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Table 2: Comparison with ZS-CLIP and SOTAs on zero-shot image classification.

Methods MSCOCO VOC2007 VOC2012 NUSWIDE ImageNet-mini Objects365
ZS-CLIP[ICLR24] 55.6 80.5 80.1 37.1 ( 85.5, 94.3 ) 19.8
TAI-DPT[CVPR23] 65.1 88.3 85.1 46.5 ( 86.2, 94.7 ) 24.1
TAI-Adapter[arXiv23] 67.7 89.0 85.5 53.3 ( 86.7, 94.4 ) 25.8
Data-free[arXiv24] 66.8 88.7 86.0 47.0 ( 86.1, 94.9 ) 23.9
PVP[IJCAI24] 67.7 88.9 86.2 49.3 ( 87.4, 95.3 ) 26.3

TaAM-CPT(Ours) 68.1 89.4 87.8 49.6 ( 90.4, 98.3 ) 28.2

Image Classification. For zero-shot image classification, we present the results in Table 2 and
compare our approach with SOTAs TAI-DPT (Guo et al., 2023),TAI-Adapter (Zhu et al., 2023b),
Data-free (Yang et al., 2024), and PVP (Wu et al., 2024) trained with complex prompt design or
adapter module. The results of ZS-CLIP are obtained by inputting the default prompt "a photo of a
[CLASS]" to CLIP. From Table 2, our TaAM-CPT outperforms ZS-CLIP by a large margin of 12.5%
and 12.4% mAP on MSCOCO and NUSWIDE, respectively. On VOC2007 and VOC2012 with 20
object classes, our method also improves by 7.0% ~9.0% over ZS-CLIP. For large-scale datasets,
TaAM-CPT can still achieve promising results over ZS-CLIP, e.g., 90.4% vs 85.5% top-1 accuracy
on ImageNet-mini, and 28.2% vs 19.8% mAP on Objects365. Compared with these SOTAs that also
solely train with text data, our method achieves sota performance in most datasets, while the previous
methods require the design of complex prompt and prompt encoding processes.

Table 3: Results on zero-shot audio
classification.

Methods ESC50 US8K

ZS-CLAP[ICASSP23] 90.5 76.2
PT-Text[ICASSP24] 93.9 –
TaAM-CPT(Ours) 94.2 85.2

Audio Classification. The results for zero-shot audio classifica-
tion with CLAP (Wu et al., 2023b) and recent SOTA PT-Text (Li
et al., 2024) are shown in Table 3. Our TaAM-CPT outperforms
ZS-CLAP with 3.7% and 9.0% accuracy on ESC50 (Piczak,
2015) and US8K (Salamon et al., 2014), despite the high perfor-
mance of CLAP. Furthermore, without intricate prompt design,
TaAM-CPT surpasses PT-Text 0.3% on the ESC50 dataset.

4.3 INTEGRATING WITH OTHER METHODS

Following TAI-DPT (Guo et al., 2023), we conduct the experiments of integrating TaAM-CPT
with other supervised models in an off-the-shelf manner, further improving their performance.
Take a video with n labels as an example, the supervised model’s softmax predictions denote as
PS = (ps1,ps2, ...,psn). For TaAM-CPT, we calculate the similarity between video and n class-
specific video prompts and obtain softmax predictions PT = (pt1,pt2, ...,ptn). Therefore, the
intergrated results can be computed by PI = (ps1 + pt1,ps2 + pt2, ...,psn + ptn).

Table 4: Results of integrating TaAM-CPT with supervised models on
Kinetic-400/600/700 datasets.

Methods K400 K600 K700
top1 top5 top1 top5 top1 top5

Video Swin[CVPR22] 82.7 95.5 84.0 96.5 – –
+TaAM-CPT(Ours) 83.5 95.9 84.8 97.1 – –
MTV[CVPR22] 81.8 95.0 83.8 96.2 73.5 90.3
+TaAM-CPT(Ours) 82.9 95.7 84.7 97.0 74.8 91.2
AIM[ICLR23] 83.9 96.3 – – 76.9 92.1
+TaAM-CPT(Ours) 84.6 97.2 – – 77.2 93.0
UniFormerV2[ICCV23] 84.0 96.3 84.8 96.8 75.4 92.6
+TaAM-CPT(Ours) 84.8 97.1 85.5 97.6 76.1 93.4
UMT[ICCV23] 85.7 97.0 87.8 97.8 78.5 94.3
+TaAM-CPT(Ours) 86.2 97.6 88.1 98.0 78.8 94.7

Video Classification. We se-
lect the Base size model of
Video Swin Transformer (Liu
et al., 2022a), MTV (Yan et al.,
2022a), AIM (Yang et al., 2023),
UniFormerV2 (Li et al., 2022),
and UMT (Li et al., 2023c)
as baselines. The results
are shown in Table 4. Af-
ter integrating our TaAM-CPT
with Video Swin, MTV, AIM-B,
UniFormerV2-B, and UMT-B on
Kinetic-400/600/700 datasets, the
video classification performance
of these methods can be further
improved, while these methods achieve promising performances.

Image Classification. In Table 5, we select the newest DualCoOp++ (Hu et al., 2023) instead
of DualCoOp (Sun et al., 2022) used in previous SOTAs (Guo et al., 2023; Wu et al., 2024), and
reproduce DualCoOp++ on these datasets (marked with *). + indicates integrating predictions with
DualCoOp++*. In Table 5, while DualCoOp++* obtains promising performance, +TaAM-CPT can
further enhance the image classification results. Compared with +TAI-DPT and +PVP, our +TaAM-
CPT achieves higher performance in all cases, and surpasses +PVP by considerable margins of 0.2%,
0.3%, and 1.2% mAP on these datasets. Notably, TAI-DPT and PVP rely on costly prompt encoders
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Table 5: The mAP results for partial-label setting on all datasets, where the performance of +TAI-
DPT/+PVP/+TaAM-CPT integrates the predictions of TAI-DPT/PVP/TaAM-CPT and DualCoOp++*.

Methods 10% 20% 30% 40% 50% 60% 70% 80% 90% Avg

M
SC

O
C

O
DualCoOp[NeurIPS22] 81.0 82.3 82.9 83.4 83.5 83.9 84.0 84.1 84.3 83.3
DualCoOp++[TPAMI24] 81.4 83.1 83.7 84.2 84.4 84.5 84.8 85.0 85.1 84.0
DualCoOp++*[TPAMI24] 81.5 83.2 84.0 84.4 84.5 84.7 84.8 85.1 85.2 84.1
+TAI-DPT[CVPR23] 81.7 83.3 84.5 84.5 84.7 85.0 85.1 85.2 85.2 84.3
+PVP[IJCAI24] 82.1 83.6 84.5 84.7 85.0 85.3 85.3 85.6 85.6 84.6
+TaAM-CPT(Ours) 82.4 83.8 84.6 85.0 85.1 85.3 85.5 85.7 85.8 84.8

V
O

C
20

07

DualCoOp[NeurIPS22] 91.4 93.8 93.8 94.3 94.6 94.7 94.8 94.9 94.9 94.1
DualCoOp++[TPAMI24] 92.7 93.4 93.8 94.0 94.3 94.4 94.4 94.7 94.9 94.1
DualCoOp++*[TPAMI24] 93.0 93.9 94.2 94.4 94.6 94.8 94.9 95.1 95.0 94.4
+TAI-DPT[CVPR23] 93.2 94.0 94.2 94.6 94.7 94.8 95.0 95.1 95.1 94.5
+PVP[IJCAI24] 93.5 94.3 94.4 94.6 95.0 95.1 95.2 95.2 95.3 94.7
+TaAM-CPT(Ours) 93.9 94.6 94.8 95.1 95.3 95.4 95.4 95.5 95.6 95.0

N
U

SW
ID

E DualCoOp[NeurIPS22] 54.0 56.2 56.9 57.4 57.9 57.9 57.6 58.2 58.8 57.2
DualCoOp++*[TPAMI24] 54.4 56.6 58.1 58.7 58.9 59.3 59.7 59.8 60.1 58.4
+TAI-DPT[CVPR23] 56.9 58.1 58.5 58.8 58.8 59.1 59.1 59.5 60.0 58.7
+PVP[IJCAI24] 57.3 58.6 59.3 59.4 59.6 60.0 60.1 60.1 60.3 59.4
+TaAM-CPT(Ours) 58.2 59.6 60.5 60.7 60.8 61.3 61.4 61.3 61.7 60.6

and are only customized for a single image modality. Our TaAM-CPT is a general representation
model that can accommodate unlimited modalities and class labels.

Table 6: Results of integrating TaAM-CPT
with supervised audio classification methods.

Methods ESC50 US8K
HTS-AT[ICASSP22] 97.0 94.7
+TaAM-CPT(Ours) 97.2 95.1
CrissCross[AAAI23] 90.5 92.1
+TaAM-CPT(Ours) 94.7 92.8

Audio Classification. We also study the audio classifi-
cation results of integrating with HTS-AT (Chen et al.,
2022) and CrissCross (Sarkar & Etemad, 2023). As the
same video classification task, we compute the similari-
ties between the audio feature and audio prompt pool as
the predictions. From Table 5, the performance of both
HST-AT and CrissCross is enhanced on ESC50 (Piczak,
2015) and US8K (Salamon et al., 2014) datasets.

4.4 FURTHER ANALYSIS

We conduct further analysis to explore TaAM-CPT. More results (e.g., each component, hyper-
parameter, prompt dimension, more datasets, training data size, etc.) are presented in appendix.

Quantity of modalities and categories. We first explore the feasibility of TaAM-CPT for unlimited
modalities and categories. For clarity, we adopt the Bert-base model (Devlin et al., 2019) with 110MB
parameters as reference. TaAM-CPT initializes each prompt with a 512-d vector, meaning one
class prompt occupies 512 parameters. Therefore, for N modalities, TaAM-CPT can accommodate
approximately 110,000,000

512n class prompts. For example, for 10 modalities, the prompt pool size can
reach 21484, which is sufficient to cover the common categories.

Table 7: Results of different learning manners.

LInter K400 MSCOCO ESC50
ZS-ViCLIP,CLIP,CLAP ( 53.8, 78.7 ) 55.6 90.5

⟨I,V⟩ −→ ⟨A⟩ ( 52.1, 79.3 ) 64.8 91.7
⟨A,V⟩ −→ ⟨I⟩ ( 51.9, 79.5 ) 65.1 91.8

⟨I⟩ −→ ⟨V⟩ ( 53.6, 79.4 ) 67.1 92.4
⟨A⟩ −→ ⟨V⟩ ( 53.2, 79.2 ) 65.3 93.2

⟨I,A⟩ ←→ ⟨V⟩ ( 54.3, 79.8 ) 67.1 92.9
⟨I,A⟩ −→ ⟨V⟩(Ours) ( 55.2, 80.4 ) 68.1 94.2

Inter-moda Learning. In Table 7, ⟨a,b⟩ −→ ⟨c⟩
denotes uni-directional contrastive learning from
a,b to c, while←→ denotes naive bi-directional
learning. Both ⟨I,V⟩ −→ ⟨A⟩ and ⟨A,V⟩ −→ ⟨I⟩
improve the performance of image and audio
modalities while decreasing on video modal-
ity. Notably, ⟨I⟩ −→ ⟨V⟩ and ⟨A⟩ −→ ⟨V⟩ sig-
nificantly outperform ZS-CLIP and ZS-CLAP
by a large margin, demonstrating the effective-
ness of inter-modal learning. Additionally, uni-
directional learning can achieve higher performance than bi-directional learning on all datasets.

Table 8: Results of different prompt initialization.

Prompt initialization K400 MSCOCO ESC50
ZS-ViCLIP,CLIP,CLAP ( 53.8, 78.7 ) 55.6 90.5

Initialize by CLIP, w/o LInter ( 54.5, 79.6 ) 65.3 93.1

TaAM-CPT(Ours) ( 55.2, 80.4 ) 68.1 94.2

Prompt Initialization. Here, we explore
the initializations of the prompt in Table
8. Different from randomly initializing the
prompt in the method, we use the output
embeddings by CLIP’s text encoder to ini-
tialize class-specific prompt and remove
inter-modal learning. Therefore, each class-specific prompt encompasses class-specific textual prior
knowledge, allowing TaAM-CPT to converge quickly with less training data (we collect only 50 text
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training data for one class). Although without inter-modal learning, TaAM-CPT achieves higher
performance compared to CLIP, ViCLIP, and CLAP.

4.5 VISUALIZATION

Step: 61 Step: 121 Step: 201

Step: 1201 Step: 1601 Step: 2001 Step: 2401

Step: 301

Step: 501 Step: 801

Step: 21Step: 1

Figure 4: Distribution of video prompt and video feature by t-SNE (van der Maaten & Hinton, 2008).

Intra-modal Learning. We randomly selected 20 video classes on Kinetic-400. For each video
sample, we computed its similarity with each video prompt, resulting in a 400-d vector and using
t-SNE (van der Maaten & Hinton, 2008) for visualization, which reflects the learning process of each
video class prompt in Figure 4. Since the initialization method is identical, video samples from the
same category show a uniform distribution before model training (Step: 0). As training progresses,
the class-specific prompt begins to learn the unique representations (Step: 21~1201) for each category
(Step: 1601~2401). Visualizations for more datasets can be found in the appendix.

Video Labels

Image Labels

Audio Labels

Step: 11Step: 0 Step: 211 Step: 411 Step: 611

Step: 1211Step: 1011 Step: 1411 Step: 1611 Step: 1811Step: 811

Figure 5: Distribution of prompt for different modalities by t-SNE (van der Maaten & Hinton, 2008).

Inter-modal Learning. We select Kinetic-400, MSCOCO, and ESC50 datasets, which contain 400,
80, and 50 class labels, respectively. As shown in Figure 5, before model training (Step: 0), the prompt
pools for each modality are initialized in the same vector. When starting training, the distribution of
different modalities rapidly separates (Step: 11~211), as each modality first learns modality-specific
representations through modality-aligned text encoders. As training progresses, uni-directional
contrastive learning gradually pulls the representation space of the video modality towards image and
audio modalities (Step: 411~1411), indicating that the video modality is continuously learning the
representations of image and audio modalities. Furthermore, each modality still maintains its own
representation space without being disrupted by the other modalities (Step: 1611~1811).

5 CONCLUSION

In this paper, we explore a scalable way of constructing a universal representation model for various
modalities. Based on a flexible architecture and aligned pre-trained models, we develop TaAM-CPT,
treating any category as a learnable vector and optimizing it directly through aligned pre-trained
models. In addition, uni-directional contrastive learning also improves the classification performance
of all modalities. The experimental results on 13 datasets show that TaAM-CPT achieves leading
results in various classification tasks, including zero-shot video classification, image classification,
audio classification, and partial-label image classification.
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Appendix for Text as Any-Modality for Zero-Shot Classification
by Consistent Prompt Tuning

A DETAILS OF PRE-TRAINED MULTIMODAL MODELS.

Our TaAM-CPT is built upon multimodal pre-trained models, including video-language model,
image-language model, and audio-language model, and uses frozen text encoders for prompt tuning,
as well as frozen modality encoders for object recognition predicting. In our work, we choose the
pretrained multimodal models, open-sourced by the LAION (Schuhmann et al., 2022) organization,
as the modality-aligned text and modality encoders. For a total of 300k text sentences on a single
Tesla V100 for the Kinetic-400, MSCOCO, and ESC50 datasets, each epoch takes 12 minutes and
the total training cost for 10 epochs is about 2 hours.

ViCLIP. ViCLIP is a video-language pretraining model, building upon the open-source CLIP of
OpenAI. The model consists of a video encoder and corresponding text encoder, which is pretrained
on the InternVid dataset containing 7 million videos, each with detailed text descriptions. We use the
BASE architecture as our baseline model with 12 attention layers and 512 encoding dimensions.

CLIP. We select the open-source image-language pretraining model released by the LAION organi-
zation as our baseline model. The model comprises an image encoder and corresponding transformer-
based text encoder, each with 12 attention layers and an encoding dimension of 512. The size of the
input image is 224× 224, with the patch size being 32. For image modality, CLIP-ViT-B-32 (Cherti
et al., 2023) is selected as the image encoder and image-text encoder.

CLAP. For the audio-language pretraining model, likewise, we select CLAP released by the LAION
organization as our baseline model. The audio encoder is a transformer-based model with 4 groups of
swin-transformer blocks, while the text encoder is RoBERTa. Two-layer MLPs with ReLU activation
are applied to mAP both audio and text outputs into 512 dimensions. For audio modality, we select
CLAP (Wu et al., 2023b) from LAION (Schuhmann et al., 2022) as the audio encoder and the built-in
Robert as the audio-text encoder.

B DETAILS OF DATASETS

B.1 VIDEO DATASETS

UCF101. UCF101 (Soomro et al., 2012) is a commonly used video classification dataset that contains
101 different action classes, each class contains approximately 100~300 video clips, and a total of
13,320 video clips. These video clips are collected from real data on YouTube, ranging in length from
10~30 seconds. We use all of the video data to evaluate our methods.

Kinetic-400. Kinetic-400 (Carreira & Zisserman, 2017) is a large-scale, high-quality video dataset
collected from YouTube, including 400 human action classes. Each action class contains 450~1150
video clips, covering a wide range of classes, e.g., playing instruments, interactions between humans
and objects, and handshakes. Each action has 250~1000 video clips for the training set, 50 video
clips for the validation set, and 100 video clips for the test set. The validation set is used to evaluate
our methods.

Kinetic-600. Kinetic-600 (Carreira et al., 2018) is an extension of the Kinetic-400 dataset, comprising
approximately 480K video clips from 600 action classes. Each action class has at least 700 video
clips. The dataset consists of 450~1000 video clips for training, 50 for validation, and 100 for testing
per action class. The validation set is used to evaluate our methods.

Kinetic-700. Kinetic-700 (Carreira et al., 2019) is an extension of the Kinetic-600 dataset, covering
700 human action classes. Each action class has at least 700 video clips. Each video is a 10-second
action clip extracted from original YouTube videos and labeled accordingly. There are a total of
650,000 video clips, with each action class comprising 450,100 video clips for training, 5,000 video
clips for validation, and 1,000 video clips for testing. We use the validation set to evaluate our
methods.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.2 IMAGE DATASETS

MSCOCO. MSCOCO (Lin et al., 2014) is a large-scale computer vision dataset used for tasks such
as object recognition, object detection, and image segmentation. It includes 80 image classes, 328,000
images, and 2,500,000 instances. It comprises 82,783 training images, 40,504 validation images, and
40,775 test images. We use the validation set to evaluate our methods.

VOC2007. VOC2007 (Everingham et al., 2010) is an image dataset containing 20 image classes
that can be used to evaluate image classification, object detection, and image segmentation tasks. It
consists of 9,963 images in total, with 5,011 images in the training set and 4,952 images in the test
set. The test set is used to evaluate our methods.

VOC2012. VOC2012 (Everingham et al., 2010) dataset contains 20 classes, including people,
animals, vehicles, indoor objects, and a background category, making a total of 20 classes. It can be
used for evaluating image classification, object detection, and image segmentation tasks. It comprises
11,540 images, with 5,717 images in the training set and 5,823 images in the test set. The test set is
used to evaluate our methods.

NUSWIDE. NUSWIDE (Chua et al., 2009) is an image dataset that contains 269,648 images collected
from Flickr, with a total of 81 manually annotated concepts, including objects and scenes. It includes
161,789 images for the training set and 107,859 images for the validation set. We use the validation
set to evaluate our methods.

ImageNet-mini. ImageNet-mini (Russakovsky et al., 2015) is derived from the ImageNet dataset
and contains 100 classes with a total of 60,000 images, with 600 samples per class. The training and
validation sets are typically divided into an 8:2 ratio by class. (For small sample classification, 64
classes are used for training, 16 for validation, and 20 for testing.) We use the test set to evaluate our
methods.

Objects365. Objects365 (Shao et al., 2019) is a large object detection dataset that contains 638k im-
ages, 365 image classes, and 10,101k bounding boxes, far surpassing datasets like COCO. According
to the paper’s annotation process, a total of 740k images were annotated, with 600k used for training,
38k for validation, and 100k for testing. We use the test set to evaluate our methods.

B.3 AUDIO DATASETS

ESC50. ESC50 (Piczak, 2015) is a standard dataset for environmental sound classification that
contains 50 different environmental categories, each with 40 samples of up to 5 seconds in duration,
totaling 2,000 samples. These samples cover a wide range of environments, such as animal sounds,
traffic noise, indoor activities, etc. All samples are carefully balanced to ensure uniformity when
training models. We use the validation set to evaluate our methods.

US8K. UrbanSound8k (Salamon et al., 2014) is a widely used open data set for automatic urban
environment sound classification, which includes ten categories such as air conditioning sound and
car horn sound. There are 8732 audio clips in the dataset with a length of about 4 seconds. The data
set is divided into training and testing sets. We use the test set to evaluate our methods.

C TRAINING TEXT DATA CONSTRUCTION.

Here, we discuss the text training data construction for different modalities. We construct the
following prompt template to input into LLaMA-2-7B for generating text description data.

TEMPLATE: Make several English sentences to describe a { Modality }. Requirements: Generate 5
English sentences! Each sentence should be less than 25 words and includes: { Labels }.

where { Modality } is replaced with video, audio, and image, { Labels } denotes the sampled classes.
For video and audio datasets, which typically involve single classification tasks, we set the number
of sampled categories to 2 to prevent too many categories from appearing in one sentence, which
could interfere with the model’s learning of specific representations for each category. For image
classification datasets, where multiple categories can appear on a single image, the number of sampled
categories is set to 1, 2, 3, or 4 to ensure that the model not only learns the dependencies between
image categories but also acquires independent representations for each category. As shown in Figure
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air drumming, blowing out candles, climbing 
tree, jumping into pool, playing recorder, ...,
robin, elephant, backpack, frisbee, fork, 
snowboard, bookshop, banana, vase, ... ,
can opening, pouring water, brushing teeth, 
hand saw, coughing, train, dog, ...,

Label Sets

Video: 

Image: 

Audio: 

In a surprising shift, the air drummer halts his beat to 
enthusiastically climb a tree.

In a surprising shift, the air drummer halts his beat to 
enthusiastically climb a tree.

In a surprising shift, the air drummer halts his beat to 
enthusiastically climb a tree.

Prompt: Make several English sentences to describe a 
{ video }. Requirements: Generate English sentences! Each 

sentence should be less than 25 words and includes: 

{ air drumming, climbing tree}.

Prompt: Make several English sentences to describe a 
{ video }. Requirements: Generate English sentences! Each 

sentence should be less than 25 words and includes: 

{ air drumming, climbing tree}.

Prompt: Make several English sentences to describe a 
{ video }. Requirements: Generate English sentences! Each 

sentence should be less than 25 words and includes: 

{ air drumming, climbing tree}.

A robin fluttered between bookshelves, drawing attention 
to a striking vase.

A robin fluttered between bookshelves, drawing attention 
to a striking vase.

A robin fluttered between bookshelves, drawing attention 
to a striking vase.

Prompt: Make several English sentences to describe an 
{ Image}. Requirements: Generate English sentences! Each 

sentence should be less than 25 words and includes: 

{robin, bookshop, vase}.

Prompt: Make several English sentences to describe an 
{ Image}. Requirements: Generate English sentences! Each 

sentence should be less than 25 words and includes: 

{robin, bookshop, vase}.

Prompt: Make several English sentences to describe an 
{ Image}. Requirements: Generate English sentences! Each 

sentence should be less than 25 words and includes: 

{robin, bookshop, vase}.

The train is coming, overpowering the sound of pouring 
water and coughing.

The train is coming, overpowering the sound of pouring 
water and coughing.

The train is coming, overpowering the sound of pouring 
water and coughing.

Prompt: Make several English sentences to describe an 
{ audio }. Requirements: Generate English sentences! Each 

sentence should be less than 25 words and includes: 

{ pouring water, train, coughing}.

Prompt: Make several English sentences to describe an 
{ audio }. Requirements: Generate English sentences! Each 

sentence should be less than 25 words and includes: 

{ pouring water, train, coughing}.

Prompt: Make several English sentences to describe an 
{ audio }. Requirements: Generate English sentences! Each 

sentence should be less than 25 words and includes: 

{ pouring water, train, coughing}.

(a) Text data for video class

(a) Text data for image class

(a) Text data for audio class

Figure 6: The candidate label set and text data generated by LLMs.

6, we randomly select several classes from the label set and construct a prompt template to query the
LLMs to generate text data containing the semantic information of these classes.

D ABLATION STUDY

Table 9: Results of different prompt designs.

Prompt K400 MSCOCO ESC50
Shared-Intra (1024) ( 43.1, 74.2 ) 55.4 90.6
Shared-Intra (512) ( 47.5, 75.3 ) 58.7 91.9
Shared-Inter (512) ( 50.1, 79.3 ) 62.2 92.1

TaAM-CPT(Ours) ( 55.2, 80.4 ) 68.1 94.2

Prompt Design. Here, we mainly discuss the
variants of consistent prompt tuning (CPT) in
Table 9: a) Shared-Intra (1024), where the
prompt is initialized as 1024-d vector and
mapped to 512-d through a FC; b) Shared-
Intra (512) represents initialization as a 512-d
vector and then mapped to 512-d; c) Shared-
Inter (512), where all prompts across all modalities share a FC and are mapped to 512-d. On
Kinetic-400, we note a pronounced degradation of these variants. We believe the decline is mainly
attributable to the numerous categories that are semantically proximate (e.g., making pizza and making
sandwich). These phenomena are also observed in the MSCOCO and ESC50 datasets.

Table 10: Results of evaluating the unified architecture.

VP IP AP LIa LIe K400 MSCOCO ESC50
ZS-ViCLIP,CLIP,CLAP ( 53.8, 78.7 ) 55.6 90.5

✓ × × ✓ × ( 53.8, 78.9 ) – –
× ✓ × ✓ × – 65.8 –
× × ✓ ✓ × – – 92.5
✓ ✓ ✓ ✓ × ( 53.7, 79.1 ) 65.2 92.7
✓ ✓ ✓ ✓ ✓ ( 55.2, 80.4 ) 68.1 94.2

Unified Architecture. Our TaAM-CPT
is designed as a general model toward
unlimited modalities, exhibiting more ro-
bust object recognition capabilities than
single modality-specific models. Table
7 presents the results of training each
modality independently by intra-modal
learning (e.g. VP ✓with LIa ✓), as
well as the impact of applying the uni-
directional contrastive learning (LIe) across modalities. We can see that training single modality
prompt by intra-modal learning has already yielded better results than the pre-trained models, and
when all modalities are trained together, the performance of each modality can be further improved.
In addition, applying uni-directional contrastive learning to guide the learning of video modality,
not only improves the performance of the video modality but also enhances the object classification
capabilities of the image and audio modalities.

Table 11: Results of different loss weight between
intra-modal learning and inter-modal learning.

LIa LIe K400 MSCOCO ESC50
0.4 1.6 ( 54.9, 80.0 ) 67.9 94.0
0.8 1.2 ( 55.1, 80.2 ) 68.1 94.1
1.0 1.0 ( 55.2, 80.4 ) 68.1 94.2
1.2 0.8 ( 55.0, 80.2 ) 68.0 94.0
1.6 0.4 ( 54.5, 79.6 ) 68.0 93.9

Loss Weight. In this study, we design Ranking
loss and uni-directional contrastive loss to per-
form intra-modal learning and inter-modal learn-
ing. The Ranking loss aims to learn class-specific
prompt for each modality, while the contrastive
loss is applied to guide the learning of weaker
modalities (video) through those stronger ones
(image and audio). Here, we explore the impact
of setting different loss weights for these two loss
functions. As shown in Figure 11, LIa represents the Ranking loss for intra-modal learning, and
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LIe represents the uni-directional contrastive loss for inter-modal learning. Our method achieves the
best results when the weights of LIa and LIe are identical. Additionally, we notice that when the
weight of LIe is set to 1.0,0.8 and 0.4, there is a significant decrease in top-1 and top-5 accuracy on
the Kinetic-400 dataset, while the performance on MSCOCO and ESC50 datasets only suffer minor
damage. This indicates that inter-modal learning greatly affects the learning of weaker modality,
which is the video modality in this case.
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Figure 7: Results of different size of text training data on Kinetic-400, MSCOCO and ESC50 datasets.

Text Training Data Size. Our TaAM-CPT is trained with text data generated by LLMs instead
of modality-specific labeled data. Therefore, we conduct various experiments with different sizes
of text training data on the Kinetic-400, MSCOCO, and ESC50 datasets. As shown in Figure 7,
on the Kinetic-400 dataset with text data size being 1k, the top-1 accuracy is only 9.8% due to the
insufficient number of text data for each class, which hinders the learning of robust class-specific
representations. However, as continuing to expand the scale of text training data, the corresponding
text data for each class also increases gradually. When the text data reaches 100K, our TaAM-CPT
outperforms ZS-ViCLIP. On the MSCOCO and ESC50 datasets, which contain 80 and 50 class labels,
respectively, when the amount of text data is 5K, our method has already significantly surpassed
ZS-CLIP and ZS-CLAP by 7% mAP and 2% top-1 accuracy. The performance on these two datasets
begins to stabilize when the amount of text data is increased to 50K, indicating that datasets with
more classes require a larger scale of text training data.

E VISUALIZATION OF INTRA-MODAL LEARNING.

Here, as shown in Figure 8, 9, 10, 11, 12, we present the more visualization results of the
distribution of class-specific prompt learned by intra-modal learning on Kinetic-600/700, MSCOCO,
ImageNet-mini, and ESC50 datasets.
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Step: 21Step: 1 Step: 61 Step: 121 Step: 201

Figure 8: Visualization of the distribution of video prompt and video feature using t-SNE (van der Maaten &
Hinton, 2008) for dimensionality reduction. We randomly select 20 video classes from the Kinetic-600 dataset.
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Figure 9: Visualization of the distribution of video prompt and video feature using t-SNE (van der Maaten &
Hinton, 2008) for dimensionality reduction. We randomly select 20 video classes from the Kinetic-700 dataset.
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Figure 10: Visualization of the distribution of image prompt and image feature using t-SNE (van der Maaten &
Hinton, 2008) for dimensionality reduction. We randomly select 20 image classes from the MSCOCO dataset.
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Figure 11: Visualization of the distribution of image prompt and image feature using t-SNE (van der Maaten
& Hinton, 2008) for dimensionality reduction. We randomly select 20 image classes from the ImageNet-mini
dataset.
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Figure 12: Visualization of the distribution of audio prompt and audio feature using t-SNE (van der Maaten &
Hinton, 2008) for dimensionality reduction. We randomly select 20 audio classes from the ESC50 dataset.
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