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Abstract

The advent of digital pathology has transformed diagnostic and research capabilities, of-
fering unprecedented insights through the analysis of high-resolution whole slide images
(WSIs). However, the gigapixel size and complexity of WSIs present significant compu-
tational challenges. To address this, we propose a scalable and efficient pipeline for WSI
classification that integrates patch-based feature extraction, clustering, and advanced repre-
sentation techniques. Our methodology begins by extracting features from patches identified
based on their pathological significance using deep feature embeddings from a pre-trained
convolutional neural network (CNN) fine tuned on a histology dataset under noisy labels.
This approach ensures that the extracted features are robust and tailored to histopatho-
logical patterns despite the inherent noise in the training data. These embeddings are
then clustered using K-means clustering to group semantically similar regions. To represent
these clusters effectively, we experimented with two strategies: first, using the cluster mean
to summarize each cluster; and second, employing Fisher vector (FV) encoding to model
the distribution of patch embeddings within clusters using a parametric Gaussian mixture
model (GMM). The resulting high-dimensional feature vector encapsulates both local and
global tissue structures, enabling robust classification of WSIs. This approach significantly
reduces computational overhead while maintaining high accuracy, as validated across mul-
tiple datasets. Our innovative framework combines the precision of Fisher vectors with the
scalability of clustering, establishing an efficient and precise solution for WSI analysis that
advances the practical application of digital pathology in medical diagnostics and research.

1 Introduction

Whole Slide Tmaging (WSI) has transformed the field of digital pathology by enabling the digitization of
histological slides at gigapixel resolution, providing detailed views of entire tissue sections. This technology
has facilitated remote diagnostics, educational opportunities, and advanced research, significantly enhancing
the visualization, analysis, and management of tissue samples essential for accurate disease diagnosis (Pan-
tanowitz et al., 2011; Malarkey et al., 2015)). However, the large size and complexity of WSIs present unique
computational challenges, including high memory and storage requirements, as well as difficulties in pro-
cessing and analyzing the vast amount of data they contain (Brachtel & Yagi, 2012; [Kumar et al., |2020)).
Traditional machine learning and deep learning methods struggle to efficiently process WSIs while preserving
their rich structural information, necessitating innovative approaches for feature extraction and classification.

One common solution is to divide WSIs into smaller patches, which are processed independently to reduce
computational overhead. While this approach mitigates the challenges posed by WSI size, it risks overlook-
ing broader structural and contextual information crucial for accurate classification. Recent research has
focused on integrating patch-level features to capture both local and global tissue characteristics, enabling
comprehensive representation of the entire WSI. Building on this foundation, our study introduces a robust
framework that explores two complementary methods to address the challenges of WSI analysis.

The first method utilizes cluster mean representation, where WSIs are divided into fixed-size patches (e.g.,
512x512 pixels), and feature embeddings are extracted using pre-trained convolutional neural networks



Under review as submission to TMLR

e

Figure 1: Thumbnail image samples of TCGA Lung data (Coudray et all [2018)) (first row) and Camelyon17
dataset (Bandi et all [2018a) (bottom row)

(CNNs)(Albawi et all 2017) or transformers(Khan et al) [2022). These embeddings are grouped using K-
means clustering , where each cluster aggregates semantically similar patches. The cluster
means, which summarize the feature distribution within each cluster, are concatenated to form a compact
representation of the WSI. This representation is then fed into advanced classifiers, including attention-
based multiple instance learning (MIL) and transformer-based models. The self-attention
mechanisms in transformers effectively capture spatial relationships among cluster centroids, allowing the
classifier to focus on regions most indicative of pathological states. MIL, by treating the WSI as a "bag" of
cluster centroids, learns to attend to the most diagnostically relevant clusters, enhancing both interpretability
and accuracy.

The second method builds upon the first by replacing the cluster mean representation with a more expressive
Fisher vector (FV) encoding. In this approach, patch-level feature embeddings are extracted using a robust
feature encoder a pre-trained ResNet34 fine-tuned on a histology dataset. During fine-tuning, patches were
assumed to share the same label as their corresponding WSI, with 30% of the labels intentionally treated
as noise. This robust feature extractor, trained under noisy label conditions, achieved improved accuracy.
In this approach, after patch-level feature embeddings are extracted, K-means clustering is used to group
similar patches, as in the first method. However, instead of summarizing each cluster using its mean, Fisher
vectors are computed for each cluster using a Gaussian Mixture Model (GMM) (Arun et al., 2020)). These
FVs capture the distribution of patch embeddings within each cluster, encoding richer local and global
information about the WSI. The concatenated Fisher vectors provide a high-dimensional feature vector that
serves as input to the same set of classifiers. This substitution significantly enhances the representational
power of the model, as Fisher vectors can capture nuanced patterns and relationships within the data, leading
to improved classification performance.

Both methods were evaluated on multiple datasets, including TCGA-LUAD (Gupta et al [2023) for EGFR
mutation prediction, and CAMELYON17 (Bandi et al., 2018b)) for metastasis detection as shown in Fig
and Warwick (Qaiser et al., 2017) for HER2 scoring, TCGA-BRCA (Genomic Data Commons| 2024) for
HER2 classification (snapshot of thumbnail is shown Fig[2). The first method demonstrated substantial
improvements over traditional patch-based approaches, offering a balance between computational efficiency
and classification accuracy. The second method, leveraging Fisher vector encoding, further enhanced these
results by providing a richer representation of WSI features. These findings highlight the flexibility and
robustness of our framework, paving the way for scalable and insightful WSI analysis, with broad applications
in automated disease diagnosis and biomarker discovery. A preliminary version of this work has been
reported( (Gupta et al [2024) for method 1, (Gupta et all [2025) related to method 2)
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Figure 2: Thumbnail of TCGA HER2neu immunohistochemistry staining, showcasing patches from slides
with different HER2 scores, each reflecting varying staining intensities

2 Background and Related Work

Extracting robust and discriminative features is crucial for image classification, with approaches ranging from
handcrafted to data-learned features. Whole slide image (WSI) classification is often grouped by pooling
strategies, underlying assumptions, or specific challenges |Dimitriou et al.| (2019); [Ibrahim et al.| (2020).

The immense size of WSIs, often exceeding 100,000 pixels per dimension, necessitates patch-based processing.
Under multiple instance learning (MIL), WSIs are represented as "bags" of patches (instances), with various
methods assuming patch-level labels align with WSI-level labels. For example/Hou et al| (2016)); |Combalia)
|& Vilaplana) (2018) utilize MIL to classify WSIs by aggregating features from individual patches through
CNNs and pooling strategies like max pooling, global average poolingZhou et al.| (2016)), or k-min/k-max
pooling Durand et al| (2016)). Pooling strategy significantly impacts performance in both natural

(2017) and histopathological images [Couture et al.| (2018)).

Advanced methods like ACMIL |Zhang et al. (2024) address limitations in traditional MIL by enhancing
discriminative pattern extraction, while PAMT Lin et al.[(2024)) adapts pre-trained models for histopathology
data through prompt-guided transformations. Similarly, PEMP improves few-shot WSI
classification by leveraging visual and textual prompts aligned via vision-language models.

To tackle computational challenges in processing hundreds of thousands of WSI patches, generative mod-
els Huang et al. (2019) and efficient dataloaders Akbarnejad et al|(2021) have been proposed. Fisher vector
(FV) representations [Perronnin et al.| (2010]) provide robust feature extraction by capturing fine-grained de-
tails across multiple regions, addressing the high computational cost of exhaustive patch encoding

(2021)).

3 Proposed Methodology

In this study, we present a comprehensive framework for the classification of whole slide images (WSIs),
leveraging two complementary methods to address the challenges of WSI analysis. The methodology en-
compasses preprocessing, feature extraction, clustering, and classification, with distinct approaches in how
cluster representations are used for final classification.

3.1 Method 1: Cluster Mean Representation

The first approach focuses on creating a computationally efficient pipeline centered on cluster mean repre-
sentation for classification shown in Fig[3] Initially, we preprocess WSIs using a deep learning model
(2023D)) to remove artifacts and non-tissue regions. Subsequently, we apply an automated tissue de-
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Figure 3: Method1l: Patches from WSIs are encoded into embeddings, clustered via K-means. The cluster
means are concatenated into a single vector representing the WSI, which is then used for classification.

tection algorithm based on color thresholding and morphological operations using HistomicsTK This
step retains only diagnostically relevant ROIs.

From the identified ROIs, non-overlapping patches of size 512 x 512 pixels are extracted at a 40x zoom level
using the OpenSlide library. To enhance patch quality, patches with a nuclei count < 10, computed using
HistomicsTK, are excluded as they lack significant diagnostic value. This preprocessing step ensures that
only high-quality tissue regions are included, filtering out white space and other non-diagnostic areas.

For feature extraction, various pre-trained encoders, including SimCLR |Chen et al.| (2020]), ResNet50 |Jian

(2016), EfficientNet Tan & Le| (2019), RegNet |Schneider et al.| (2017)), ConvNeXT_Tiny |Liu et al.
(2022), and Swin Tiny (2021), are used to transform raw pixel data into high-dimensional feature

vectors. These vectors are then clustered using the K-means algorithm Lloyd| (1982), with the optimal number
of clusters determined empirically using the Elbow Method [Syakur et al| (2018). In our experiments, we
found 10 clusters to be optimal for maintaining a balance between computational efficiency and pathological
diversity.

Cluster mean vectors are concatenated to form a comprehensive feature vector for each WSI. To address

sensitivity to cluster order, permutation-invariant classifiers like Swin-Tiny (2021)), MLP
(1994)), and AMIL (2018)) are employed. These enhance robustness and accuracy by focusing on

histopathological content and highlighting diagnostically significant WSI regions for pathologists.

3.2 Method 2: Fisher Vector Encoding

Method 2 builds on Method 1 by replacing cluster mean representation with Fisher vector (FV) encoding
for better feature distribution modeling (Fig@. Patch-level embeddings were extracted using a fine-tuned
ResNet34 on histology data, with 30% noisy labels to improve robustness. After artifact removal and tissue
detectionPatil et al.| (2023al), WSIs were divided into 512 x 512 patches, and embeddings were extracted
using pre-trained CNNs and transformer architectures.

After obtaining patch-level feature embeddings, K-means clustering is applied to group patches based on
feature similarity, reducing dataset complexity and capturing meaningful tissue patterns. The number of
clusters is determined using the Elbow Method, similar to Method 1. For each cluster, Fisher vectors are
computed using a Gaussian Mixture Model (GMM) |Arun et al.| (2020). This process results in a Fisher
vector for each feature, capturing the directional rate of change of the log-likelihood. By concatenating these
vectors, we obtain a comprehensive and dense representation of the feature distribution. The dimensionality
of the resulting Fisher vector is determined by the number of Gaussians in the mixture and the dimensionality
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Figure 4: Method2: Patches from WSIs are encoded into embeddings (robust), clustered via K-means, and
transformed into Fisher vectors using a GMM model. These Fisher vectors are concatenated into a single
vector representing the WSI, which is then used for classification.
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of the features (D). Therefore, for a GMM with N Gaussians, the Fisher vector for a D-dimensional feature
would have a dimensionality of 2ND (since it includes both mean and covariance information for each
Gaussian) Novotny et al. (2015)).

In this method, we take into account a predefined set of vectors, denoted as {v1,vs....,vpr}, within the
descriptor space. A collection of descriptors is represented by {f(z1),..., f(zn)}. The Fisher vector is gen-
erated by concatenating the normalized gradients of the log-likelihood of local image descriptors concerning
the GMM parameters ji,, and o, Akbarnejad et al. (2021). Fisher vectors encode the distribution of patch
embeddings within a cluster, capturing both the mean and variance of the feature components. The Fisher
vector FV(f(z;)) for a set of descriptors {f(x1),..., f(xn)} is formulated as:

FV() = |22 (f@) —v1) yeees 2 (f(@i) = vm) s

C1 Cm,

where ¢; and ¢é; are scaling constants, and v,, represents GMM coding centers. By modeling the feature
space with a GMM, Fisher vectors provide a robust and compact representation of feature distributions in
each cluster.

The Fisher vectors from all clusters are concatenated to form a single high-dimensional vector, which aggre-
gates local and global information across the WSI. This vector is then fed into classifiers such as Swin-Tiny |[Liu
et al.| (2021), AMIL [lse et al.| (2018]), and MLP Haykin| (1994])), which leverage the rich patch-level and global
representations encoded by Fisher vectors. Compared to Method 1, this approach provides a more nuanced
understanding of feature distributions, resulting in improved classification accuracy for WSIs.

By combining these two complementary methods, our study demonstrates the flexibility and robustness of
feature representation strategies in WSI classification. While Method 1 focuses on computational efficiency
and interpretability through cluster means, Method 2 enhances representational power using Fisher vectors,
capturing richer local and global patterns. Both methodologies address the challenges of WSI analysis and
contribute to scalable, accurate, and interpretable diagnostic pipelines.

4 Experimentation and Dataset

4.1 Experimentation

We evaluated two methodologies for WSI classification: cluster mean representation and Fisher vector en-
coding.

Artifacts and non-tissue regions were removed |Patil et al.| (2023b]), and ROIs were identified via Histomic-
sTK [His. Non-overlapping 512 x 512 patches were extracted at 40x magnification, excluding patches with
nuclei count < 10. Features were extracted using encoders like SimCLR, [Chen et al.| (2020), ResNet50 |Jian
et al| (2016), EfficientNet [Tan & Le| (2019)), RegNet |Schueider et al.| (2017), ConvNeXT_Tiny |[Liu et al.
(2022), and Swin_ Tiny |Liu et al.| (2021)), trained on ImageNet Russakovsky et al.| (2015)). K-means cluster-
ing (k = 10) was applied using the elbow method [Syakur et al.| (2018).

For Method 1, cluster means were concatenated and classified using AMIL, MLP, and Swin-Tiny, optimized
with AdamW. Feature augmentation (scaling, jittering, mixup) improved robustness. Evaluations on TCGA-
LUAD and CAMELYON17 targeted EGFR mutation and metastasis detection.

Method 2 utilized Fisher vectors from GMM to capture richer distributions, classified with the same models as
Method 1. This approach was tested on TCGA-BRCA and Warwick HER2 datasets for HER2 classification
and scoring.
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4.2 Dataset

Our study utilized four diverse datasets, each associated with specific tasks and methodologies:

o CAMELYON17 (Method 1,2): 500 WSIs with four classes (Negative, ITC, Macro-, and Micro-
metastases). Binary classification distinguished Metastasis Positive (ITC, Macro, Micro) from Neg-
ative cases |Litjens et al.| (2018]).

o TCGA-LUAD (Method 1,2): 159 slides (79 EGFR mutations, 80 Non-EGFR). Binary classifi-
cation focused on EGFR vs. Non-EGFR mutations |Gupta et al.| (2023)).

o« TCGA-BRCA (Method 2): 92 slides (36 HER2-, 56 HER2+). Binary classification distinguished
HER2+ from HER2- cases.

o Warwick HER2 (Method 2): 86 WSIs (52 training, 34 testing) from the Warwick HER2 chal-
lenge. Tasks included HER2+ vs. HER2- classification and HER2 score prediction.

Across all datasets, rigorous evaluation identified optimal encoders and clustering methods. Feature augmen-
tation and Fisher vector encoding improved accuracy, highlighting the framework’s scalability and robustness.

Table 1: Results (%) on the Lung dataset for binary classification with methodl. The best performance is
marked as bold.

Feature Extractor Clustering  Classifier Accuracy Precision Recall
ResNet-50Jian et al.|(2016) No MLP 0.71 0.71 0.74
ResNet-50 [Jian et al.|(2016)  Yes AMIL 0.83 0.81 0.83
SimCLR |Chen et al.[(2020) Yes AMIL 0.81 0.80 0.84
Swin Tiny |[Liu et al.|(2021) No AMIL 0.75 0.75 0.75
Swin Tiny |Liu et al.|(2021) Yes AMIL 0.67 0.70 0.62
ConvNeXT [Liu et al.|(2022)  Yes MLP [Haykin| (1994) 0.72 0.70 0.74
ConvNeXT |Liu et al.|(2022) No AMIL 0.72 0.75 0.70
ConvNeXT |Liu et al.[(2022)  Yes AMIL 0.81 0.81 0.75
5 Results

The results from our experiments are presented across two methods: cluster mean representation and Fisher
vector encoding. Both methods were evaluated on multiple datasets, demonstrating robust classification
performance for diverse tasks. A detailed comparison of the outcomes is outlined below.

5.1 Method 1: Cluster Mean Representation

Table [I] summarizes the binary classification results for the TCGA-LUAD dataset, focusing on distinguish-
ing EGFR-positive (mutated) and Non-EGFR (wild-type) samples. Using pre-trained backbone feature
extractors such as SImCLR |Chen et al.| (2020]), ResNet50 |Jian et al.| (2016), EfficientNet (Tan & Le| (2019),
RegNet |Schneider et al| (2017), ConvNeXT_Tiny |Liu et al.| (2022), and Swin_ Tiny Liu et al.[ (2021)), the
pipeline clustered features into 10 clusters using K-means. Each cluster was replaced with its mean vector,
which was then fed into classifiers such as Swin-Transformer, MLP, and AMIL.

The proposed method achieved comparable results to the classical approach in |Gupta et al.| (2023), while
significantly reducing memory requirements by representing a gigapixel WSI with a single vector (cluster
mean vector). Ablation studies revealed that regions of high cellularity in tumor areas played a critical role
in determining the EGFR class, highlighting the utility of clustering for capturing global representations.

Similarly, Table [2| presents the results for the binary classification of metastasis-positive versus metastasis-
negative samples in the CAMELYON17 dataset. The same pipeline was applied as for the TCGA-LUAD
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Table 2: Results (%) on the Camelyonl7 dataset for binary classification with methodl. The best perfor-
mance is marked as bold.

Feature Extractor Clustering Classifier Accuracy Kappa Score Precision Recall
ResNet-50 [Jian et al.|(2016) No AMIL 0.72 0.54 0.73 0.72
ResNet-50 [Jian et al.|(2016) Yes AMIL 0.75 0.56 0.80 0.75
SimCLR |Chen et al.|(2020) No AMIL 0.64 0.48 0.64 0.66
SimCLR |Chen et al.|(2020) Yes AMIL 0.68 0.50 0.70 0.68
ConvNeXT |Liu et al.|(2022) No AMIL 0.58 0.42 0.60 0.60
ConvNeXT |Liu et al.|(2022) Yes AMIL 0.72 0.57 0.72 0.75

dataset. While solid results were obtained, the findings suggest that regions of high cellularity may not always
serve as reliable morphological biomarkers for metastasis detection, underlining the distinct challenges posed
by metastasis classification tasks.

5.2 Method 2: Fisher Vector Encoding

For the Warwick dataset, our model outperformed baselines in HER2 scoring into three classes (negative,
equivocal, positive) and binary HER2+4 versus HER2- classification tasks, as shown in Tables 3| and
The proposed pipeline, combining patch-based feature extraction, K-means clustering, and Fisher vector
encoding, demonstrated robustness across both tasks.

Table 3: Results (%) on the Warwick dataset for HER2 score (method2). The best performance is marked
as bold.

Methods Robust Encoding Feature Extractor Accuracy AUC Precision Recall Fl-score
DFVC |Akbarnejad et al.|(2021) No ResNet-50 0.63 - 0.75 0.63 0.61
AMIL [Ilse et al.|(2018) No ResNet50 0.66 0.70 0.75 0.67 0.71
Ravi, et al. |Gupta et al.|(2025) No EfficientNetV2-S 0.72 0.71 0.77 0.75 0.76
Proposed method Yes EfficientNetV2-S 0.75 0.71 0.77 0.77 0.77

Table 4: Results (%) on the Warwick dataset for HER2+ vs HER2- classification (method2). Best perfor-
mance is in bold.

Methods Robust Encoding Feature Extractor Accuracy AUC Precision Recall Fl-score
Anand, et al. |Anand et al.|(2020) No Neural Network 0.75 0.82 0.80 0.75 0.77
AMIL [Ilse et al.|(2018) No ResNet-50 0.78 0.80 0.75 0.81 0.80
Ravi, et al.|Gupta et al.|(2025) No RegNetY-3.2GF 0.80 0.83 0.91 0.90 0.90
Proposed Method Yes RegNetY-3.2GF 0.82 0.84 0.91 0.90 0.90

Similarly, Table[5]highlights the superior performance achieved on the TCGA-BRCA dataset for HER2 status
classification. Fisher vector encoding effectively captured local and global feature distributions, resulting in
enhanced classification accuracy compared to baseline methods.

To evaluate the adaptability of the approach, experiments were extended to the TCGA-LUAD and CAME-
LYON17 datasets for EGFR mutation prediction and metastasis detection, respectively. As shown in Table[6]
the Fisher vector method achieved strong results, demonstrating its generalizability and applicability in dig-
ital pathology.
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Table 5:  Results (%) on the TCGA-BRCA dataset for HER2+ vs HER2- classification (method2). Best
performance is in bold.

Methods Robust Encoding Feature Extractor Accuracy AUC Precision Recall F1l-score
Anand, et al. |Anand et al.|(2020) No ResNet-50 0.73 0.76 0.70 0.87 0.78
AMIL [Ilse et al.|(2018) No ResNet-50 0.76 0.64 0.67 0.75 0.71
Sekhar, et al. |Sekhar et al.|(2024) No MoCo-v2 0.82 0.85 0.77 0.91 0.83
Ravi, et al. |Gupta et al.|(2025) No MoCo-v2 0.86 0.83 0.88 0.86 0.87
Proposed Method Yes MoCo-v2 0.85 0.84 0.90 0.86 0.88

Table 6: Results (%) on the different datasets for binary classification (Metastasis detection for CAME-
LYON17 and Mutation prediction for TCGA-LUAD) with our proposed method2. Best performance is in
bold.

Dataset (Method) Robust Encoding Feature Extractor Accuracy AUC Precision Recall Fl-score
TCGA-LUAD (AMIL [Ilse et al.|(2018)) No RegNetY-3.2GF 0.72 0.72 0.75 0.71 0.73
TCGA-LUAD (ISBI|Gupta et al.[(2025)) No RegNetY-3.2GF 0.84 0.79 0.75 0.80 0.77
TCGA-LUAD (Proposed) Yes RegNetY-3.2GF 0.84 0.81 0.80 0.80 0.80
CAMELYON17 (AMIL [Ilse et al.|(2018)) No EfficientNetV2-S 0.75 0.70 0.73 0.73 0.73
CAMELYON17 (Ravi, et. al|Gupta et al.|(2025)) No EfficientNetV2-S 0.77 0.71 0.73 0.73 0.73
CAMELYON17 (Proposed) Yes EfficientNetV2-S 0.75 0.71 0.75 0.75 0.75

Overall, our findings showcase the proposed approaches’ flexibility and robustness: the cluster mean method
suits computationally efficient tasks, while Fisher vector encoding excels at capturing nuanced features for
complex classification.

6 Conclusion and Discussion

This study introduces a robust framework for preprocessing, feature extraction, clustering, and classification
of WSIs, addressing high dimensionality and limited labeled data. By combining multiple encoders with
cluster mean and Fisher vector encoding methods, our approach efficiently captures both local and global
tissue features.

The cluster mean representation method offers computational efficiency by summarizing clusters with mean
feature vectors, using classifiers like Swin-Tiny, MLP, and AMIL. It balances complexity and accuracy, mak-
ing it suitable for tasks like EGFR mutation prediction (TCGA-LUAD) and metastasis detection (CAME-
LYON17), where clustering highlights regions of high cellularity critical for classification.

The Fisher vector encoding method models patch feature distributions within clusters, capturing mean and
variance for richer morphological and pathological details. It outperformed the cluster mean approach in
HER2 classification and scoring tasks (Warwick, TCGA-BRCA), excelling in heterogeneous datasets but
requiring higher computational resources.

Our framework demonstrated strong performance across datasets, with no universally optimal encoder-
classifier combination. Transformer-based encoders like Swin-Tiny, coupled with MLP or AMIL, enhanced
both accuracy and interpretability, aiding pathologists by focusing attention on diagnostically relevant re-
gions.

Future directions include integrating multimodal data for holistic diagnostics, improving interpretability
through visualization tools, and enhancing MIL with hierarchical or spatially aware clustering methods.
This flexible and scalable framework has significant potential to automate disease diagnosis, optimize clinical
workflows, and personalized medicine.
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