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Abstract
Effective personalization of LLMs is critical for a
broad range of user-interfacing applications such
as virtual assistants and content curation. Inspired
by the strong in-context learning capabilities of
LLMs, we propose few-shot preference optimiza-
tion (FSPO), an algorithm for LLM personaliza-
tion that reframes reward modeling as a meta-
learning problem. Under FSPO, an LLM learns
to quickly infer a personalized reward function
for a user via a few labeled preferences. Since
real-world preference data is scarce and challeng-
ing to collect at scale, we propose careful design
choices to construct synthetic preference datasets
for personalization, generating over 1M synthetic
personalized preferences using publicly available
LLMs. In particular, to successfully transfer from
synthetic data to real users, we find it crucial for
the data to exhibit both high diversity and coher-
ent, self-consistent structure. We evaluate FSPO
on personalized open-ended generation for up to
1,500 synthetic users across across three domains:
movie reviews, pedagogical adaptation based on
educational background, and general question an-
swering. We also run a controlled human study.
Overall, FSPO achieves an 87% Alpaca Eval win-
rate in generating responses that are personalized
to synthetic users and a 72% winrate with real
human users in open-ended question answering.

1. Introduction
As large language models (LLMs) increasingly interact with
a diverse user base, it becomes important for models to
generate responses that align with individual user prefer-
ences. People exhibit a wide range of preferences and beliefs
shaped by their cultural background, personal experience,

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

and individual values. These diverse preferences are human-
annotated preference datasets; however, current preferences
optimization techniques like reinforcement learning from
human feedback (RLHF) largely focus on optimizing a sin-
gle model based on preferences aggregated over the entire
population. This approach may neglect minority viewpoints,
embed systematic biases into the model, and ultimately lead
to worse performance compared to personalized models.
Can we create language models that can adaptively align
with the personal preferences of each user instead of the
aggregated preferences of all users?

Addressing this challenge requires a shift from modeling a
singular aggregate reward function to modeling a distribu-
tion of reward functions that captures the diversity of human
preferences (Sorensen et al., 2024; Jang et al., 2023). By
doing so, we can enable personalization in language models,
allowing them to generate a wide range of responses tai-
lored to individual subpopulations. This approach not only
enhances user satisfaction but also promotes inclusivity by
acknowledging and respecting the varied perspectives that
exist within any user base. Despite this problem’s impor-
tance, to our knowledge LLM personalization has yet to be
achieved for open-ended question answering with real users.

In this paper, we introduce few-shot preference optimization
(FSPO), a novel framework designed to model diverse sub-
populations in preference datasets to elicit personalization
in language models for open-ended question answering. At
a high level, FSPO leverages in-context learning to adapt to
new subpopulations. This adaptability is crucial for prac-
tical applications, where user preferences can be dynamic
and multifaceted. Inspired by past work on black-box meta-
learning for language modeling (Chen et al., 2022; Min
et al., 2022; Yu et al., 2024), we fine-tune the model in a
meta-learning setup using preference-learning objectives
such as IPO (Gheshlaghi Azar et al., 2023). To further
improve personalized generation, we additionally propose
user description chain-of-thought (COT), which allows the
model to leverage additional inference-time compute for
better reward modeling and instruction following.

Learning a model that effectively personalizes to real people
requires training on a realistic, user-stratified preference
dataset. One natural approach to consider is to curate such
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Few-Shot Preference Optimization with Synthetic User Preferences Test-Time Adaptation to Real Users

Few-Shot Preferences

How can I celebrate my birthday?

Quiet night with friends,  
with a dinner and movie 

Have a big celebration with a  
rooftop, club, or yacht party

 . 
. . xN

 p
re

fe
re

nc
es

LLM

Personalized Response

Photography is a great way to 
explore and appreciate the world 
around you at your own pace, 
capturing interesting details that 
often go unnoticed …

Human User

Fine-tuned LLM

Query

What is a new hobby that I can pick up? x(n+1)?

x(1) ?
y(1)

w

y(1)
l

Increase likelihood

Few-Shot Preferences

What should I do this weekend?

Take your kids to the museum

Go on a bar crawl

x(1) ?
y(1)

w

y(1)
l

 . 
. . xN
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User Query

LLM
Head to the Riviera 
Maya for some 
family friendly fun!

Synthetic Users

User Description  
An 30-year-old male from 

California, he is family 
oriented and loves to 

travel in his free time …

Plan a 5 day trip to Mexico? x(n+1) ?

y(n+1)
w

Head to Cancun to 
experience its 
legendary nightlife!

y(n+1)
l

Decrease likelihood

Human User is 
Introverted

Synthetic User is 
Family Oriented

Diverse and Structured Synthetic Preference Dataset Construction User Aware Preference Optimization

Figure 1: Overview of FSPO. N previously collected preferences are fed into the LLM along with the current query, allowing the LLM
to personalize its response to the query using the past preferences.

data from humans, but this is difficult and time-consuming.
Instead, we propose instantiating this dataset synthetically,
and present careful design decisions inspired from the meta-
learning literature (Hsu et al., 2019; Yin et al., 2019) to
generate a dataset that is both diverse and structured.

To evaluate the efficacy of our approach, we construct a
set of three semi-realistic domains to study personalization:
(1) Reviews, studying the generation ability of models for
reviews of movies, TV shows, and books that are consis-
tent with a user’s writing style, (2) Explain Like I’m X
(ELIX): studying the generation ability of models for re-
sponses that are consistent with a user’s education level, and
(3) Roleplay: studying the generation ability of models for
responses that are consistent with a user’s description, with
effective transferability to a real human-study. Here we find
that FSPO outperforms an unpersonalized model on average
by 87%. We additionally perform a controlled human study
showcasing a winrate of 72% of FSPO over unpersonalized
models.

By addressing limitations of existing reward modeling tech-
niques, our work paves the way for more inclusive and
personalized LLMs. We believe that FSPO represents a
significant step toward models that better serve the needs of
all users, respecting the rich diversity of human preferences.

2. Related Work
Personalized learning of preferences. Prior research has
explored personalization through various methods. One
approach is distributional alignment, which focuses on
matching model outputs to broad target distributions rather
than tailoring them to individual user preferences. For
example, some prior work have concentrated on aligning
model-generated distributions with desired statistical proper-
ties (Siththaranjan et al., 2024; Meister et al., 2024; Melnyk
et al., 2024), yet they do not explicitly optimize for indi-
vidual preference adaptation. Another strategy involves
explicitly modeling a distribution of rewards (Lee et al.,
2024; Poddar et al., 2024). However, these methods suffer

from sample inefficiency during both training and infer-
ence (Rafailov et al., 2023; Gheshlaghi Azar et al., 2023).
Additionally, these approaches have limited evaluations:
Lee et al. (2024) focuses solely on reward modeling, while
Poddar et al. (2024) tests with a very limited number of
artificial users (e.g helpfulness user and honest user). Other
works have investigated personalization in multiple-choice
questions, such as GPO (Zhao et al., 2024). Although ef-
fective in structured survey settings, these methods have
not been validated for open-ended personalization tasks.
Similarly, Shaikh et al. (2024) explores personalization via
explicit human corrections, but relying on such corrections
is expensive and often impractical to scale. Finally, several
datasets exist for personalization, such as Prism (Kirk et al.,
2024) and Persona Bench (Castricato et al., 2024). Neither
of these datasets demonstrate that policies trained on these
benchmarks lead to effective personalization. Unlike these
prior works which study personalization based off of human
values and controversial questions, we instead study more
general questions that a user may ask.

Algorithms for preference learning. LLMs are typically
fine-tuned via supervised next-token prediction on high-
quality responses and later refined with human preference
data (Casper et al., 2023; Ouyang et al., 2022). This pro-
cess can use on-policy reinforcement learning methods like
REINFORCE (Sutton et al., 1999) or PPO (Schulman et al.,
2017), which optimize a reward model with a KL constraint.
Alternatively, supervised fine-tuning may be applied to a
curated subset of preferred responses (Dubois et al., 2024b)
or iteratively to preferred completions as in ReST (Gulcehre
et al., 2023). Other methods, such as DPO (Rafailov et al.,
2023), IPO (Gheshlaghi Azar et al., 2023), and KTO (Con-
textualAI, 2024), learn directly from human preferences
without an explicit reward model, with recent work explor-
ing iterative preference modeling applications (Yuan et al.,
2024).

Black-box meta-learning. FSPO is an instance of black-
box meta-learning, which has been studied in a wide range
of domains spanning image classification (Santoro et al.,
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2016; Mishra et al., 2018), language modeling (Chen et al.,
2022; Min et al., 2022; Yu et al., 2024), and reinforcement
learning (Duan et al., 2016; Wang et al., 2016). Black-box
meta-learning is characterized by the processing of task
contexts and queries using generic sequence operations like
recurrence or self-attention, instead of specifically designed
adaptation mechanisms.

3. Preliminaries and Notation
Preference fine-tuning algorithms, such as reinforcement
learning from human feedback (RLHF) and direct pref-
erence optimization (DPO), typically involve two main
stages (Ouyang et al., 2022; Ouyang et al., 2022): su-
pervised fine-tuning (SFT) and preference optimization
(DPO/RLHF). First, a pre-trained model is fine-tuned on
high-quality data from the target task using SFT. This pro-
cess produces a reference model, denoted as πref. The pur-
pose of this stage is to bring the responses from a partic-
ular domain in distribution with supervised learning. To
further refine πref according to human preferences, a pref-
erence dataset Dpref = {(x(i),y

(i)
w ,y

(i)
l )} is collected. In

this dataset, x(i) represents a prompt or input context, y(i)
w

is the preferred response, and y
(i)
l is the less preferred re-

sponse. These responses are typically sampled from the
output distribution of πref and are labeled based on human
feedback.

Most fine-tuning pipelines assume the existence of an un-
derlying reward function r∗(x, ·) that quantifies the quality
of responses. A common approach to modeling human
preferences is the Bradley-Terry (BT) model (Bradley and
Terry, 1952), which expresses the probability of preferring
response y1 over y2, given a prompt x, as:

p∗(y1 ≻ y2 | x) = er
∗(x,y1)

er∗(x,y1) + er∗(x,y2)
(1)

Here, p∗(y1 ≻ y2 | x) denotes the probability that y1 is
preferred over y2 given x.

The objective of preference fine-tuning is to optimize the
policy πθ to maximize the expected reward r∗. However,
directly optimizing r∗ is often impractical due to model
limitations or noise in reward estimation. Therefore, a re-
ward model rϕ is trained to approximate r∗. To prevent
the fine-tuned policy πθ from deviating excessively from
the reference model πref, a Kullback-Leibler (KL) diver-
gence constraint is imposed. This leads to the following
fine-tuning objective:

max
π

E[r∗(x, y)]− β DKL(π ∥ πref) (2)

In this equation, the regularization term weighted by β con-
trols how much πθ diverges from πref, based on the reverse
KL divergence constraint. This constraint ensures that the

LLM
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User Query 
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Few-Shot Preferences

Head to the Riviera 
Maya for some 
family friendly fun!

y(n+1)
w

Response

User Description  
An 30-year-old male from 

California, he is family 
oriented and loves to 

travel in his free time …

User Description Chain-of-Thought (COT)
1. Predict User Description 

2. Predict Response from User Query and Predicted Description

Figure 2: User description chain-of-thought (COT). Prediction
is a two-stage process: first predicting a (synthetic) user description
from the few-shot preferences and next predicting the response.

updated policy remains close to the reference model while
improving according to the reward function.

Reward model training. To fine-tune the large language
model (LLM) policy πθ(y | x), the Bradley-Terry frame-
work allows for either explicitly learning a reward model
rϕ(x,y) or directly optimizing preferences. Explicit re-
ward models are trained using the following classification
objective:

max
ϕ

EDpref [log σ (rϕ(x,yw)− rϕ(x,yl))] (3)

where σ is the logistic function, used to map the difference in
rewards to a probability. Alternatively, contrastive learning
objectives such as Direct Preference Optimization (Rafailov
et al., 2023) and Implicit Preference Optimization (Ghesh-
laghi Azar et al., 2023) utilize the policy’s log-likelihood
log πθ(y | x) as an implicit reward:

rθ(x,y) = β log
(
πθ(y | x)/πref(y | x)

)
(4)

This approach leverages the policy’s log probabilities to
represent rewards, thereby simplifying the reward learning
process.

4. The Few-Shot Preference Optimization
(FSPO) Framework

Personalization as a meta-learning problem. Generally,
for fine-tuning a model with RLHF a preference dataset of
the form: Dpref = {(x(i),y

(i)
w ,y

(i)
l )} is collected, where x

is a prompt, yw is a preferred response, and yl is a dispre-
ferred response. Here, preferences from different users are
aggregated to learn the preferences over a population. How-
ever, through this aggregation, individual user preferences
are marginalized, leading to the model losing personalized
values or beliefs due to population-based preference learn-
ing and RLHF algorithms such as DPO as seen in prior
work (Siththaranjan et al., 2024).

How can we incorporate user information when learning
from preference datasets? In this work, we have a weak
requirement to collect scorer-ids S(i) of each user for differ-
entiating users that have labeled preferences in our dataset:

3
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Dpref = {(x(i),y
(i)
w ,y

(i)
l ,S(i))}. Now consider each user

as a task instance, where the objective is to learn an effective
reward function for that user using the user’s set of pref-
erences. This can be naturally instantiated as a black-box
meta-learning objective, where meta-learning is done over
users (also referred to as a task in meta-learning). Meta-
learning should enable rapid personalization, i.e. adaptabil-
ity to new users with just a few preferences.

More formally, consider that each unique user S(i)’s reward
function is characterized by a set of preferences with prompt
and responses (x, y1, y2), and preference label c (indicating
if y1 ≻ y2 or y1 ≺ y2). Given a distribution over users
S = P (S(i)), a meta-learning objective can be derived to
minimize its expected loss with respect to θ as:

min
θ

ES(i)∼S

[
E(x,y1,y2,c)∼Di,{(x,y1,y2,c)}N

1 ∼Di[
Lθ

pref

(
x, y1, y2, c|{(x, y1, y2, c)}N1

)] ]
(5)

where Di is a distribution over preference tuples
(x, y1, y2, c) for each user S(i), and Lθ

pref is a preference
learning objective such as DPO (Rafailov et al., 2023) or
IPO (Gheshlaghi Azar et al., 2023):

Lθ
pref = ||hyw,yl

πθ
− (2β)−1||22,

hyw,yl
πθ

= log
πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

(6)

where yw and yl are the preferred and dispreferred responses
(respectively) according to the responses y1, y2 and class
label c in the preference dataset.

Following black-box meta-learning approaches, FSPO re-
ceives as input a sequence of preferences Dfewshot

i ∼ Di

from a User S(i). This is followed by an unlabeled, held-out
preference (x, y1, y2) ∼ Di\Dfewshot

i for which it outputs its
prediction c. To make preferences compatible with a pre-
trained language model, a few-shot prompt is constructed,
comprising of preferences from a user and the held-out
query as seen in Figure 1. This construction has an added
benefit of leveraging a pretrained language model’s capabil-
ities for few-shot conditioning (Brown et al., 2020), which
can enable some amount of steerage/personalization. This
prediction c is implicitly learned by a preference optimiza-
tion algorithm such as DPO (Rafailov et al., 2023), which
parameterizes the reward model as β log πθ(y|x)

log πref(y|x) . This pa-
rameterization enables us to leverage the advantages of pref-
erence optimization algorithms such as eliminating policy
learning instabilities and computational burden of on-policy
sampling, learning an effective model with a simple classifi-
cation objective.

User description chain-of-thought (COT). If provided
with a description of the user (potentially synthetically gen-
erated), FSPO can be converted to a two-step prediction

problem as seen in Figure 2. In the first step, conditioned on
user few-shot preferences, the user description is generated,
then conditioned on the prompt, few-shot preferences, and
generated user description, a response can then be generated.
This prediction of the user description is an interpretable
summarization of the fewshot preferences and a better rep-
resentation to condition on for response generation. Similar
to the rationale generated in Zhang et al. (2024) for veri-
fiers, the COT prediction can be viewed as using additional
inference-compute for better reward modeling. Additionally,
this formulation leverages the instruction following ability
of LLMs (Ouyang et al., 2022) for response generation.

User representation through preference labels. From
an information-theoretic perspective, the few-shot binary
preferences can be seen as a N -bit representation of the user,
representing up to 2N different personas or reward functions.
There are several ways to represent users: surveys, chat
histories, or other forms of interaction that reveal hidden
preferences. We restrict our study to such a N -bit user
representation, as such a constrained representation can
improve the performance when transferring reward models
learned on synthetic personalities to real users. We defer
the study of less constrained user representations to future
work.

We summarize FSPO in Algorithm 1. Next, we will discuss
domains to study FSPO.

Algorithm 1 Overview of few-Shot preference optimization
(FSPO).

0: Input: For each unique user S(i), a dataset of prefer-
ences D := (x, y1, y2, c)i, and optionally user descrip-
tion yS(i) for COT, ∀i

0: Output: Learned policy πθ

0: while not done do
0: Sample training user S(i) (or minibatch)
0: Sample a subset of preferences from the user

Dfewshot
i ∼ Di

0: Sample held-out preference examples Dheldout
i ∼

Di\Dfewshot
i

0: if COT then
0: Use Equation (5) and Equation (6) to predict the

loss on the user description yS(i)

0: end if
0: Conditioning on Dfewshot

i (optionally yS(i)), use
Equation (5) and Equation (6) to predict the loss on
the held-out preference example Dheldout

i

0: Update learner parameters θ, using gradient of loss
on Dheldout

i

0: end while
0: Return πθ =0

4
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5. Domains to Study Personalization
To study personalization with FSPO we construct a bench-
mark across 3 domains ranging from generating per-
sonalized movie reviews (Reviews), generating personal-
ized responses based off a user’s education background
(ELIX), and personalizing for general question answering
(Roleplay). We open-source preference datasets and eval-
uation protocols from each of these tasks for future work
looking to study personalization (sample in supplementary).

Reviews. The Reviews task is inspired by the IMDB
dataset (Maas et al., 2011), containing reviews for movies.
We curate a list of popular media such as movies, TV shows,
anime, and books for a language model to review. We con-
sider two independent axes of variation for users: sentiment
(positive and negative) and conciseness (concise and ver-
bose). Here being able to pick up the user is crucial as the
users from the same axes (e.g positive and negative) would
have opposite preferences, making this difficult to learn with
any population based RLHF method. We also study the
steerability of the model considering the axes of verbosity
and sentiment in tandem (e.g positive + verbose).

ELIX. The Explain Like I’m X (ELIX) task is inspired
by the subreddit "Explain Like I’m 5" where users answer
questions at a very basic level appropriate for a 5 year old.
Here we study the ability of the model to personalize a ped-
agogical explanation to a user’s education background. We
construct two variants of the task. The first variant is ELIX-
easy where users are one of 5 education levels (elementary
school, middle school, high school, college, expert) and the
goal of the task is to explain a question such as “How are
beaches formed?” to a user of that education background.
The second, more realistic variant is ELIX-hard, which
consists of question answering at a high school to university
level. Here, users may have different levels of expertise in
different domains. For example, a PhD student in computer
science may have a very different educational background
from an undergraduate studying studying biology, allowing
for preferences from diverse users (550 users).

Roleplay. The Roleplay task tackles general question an-
swering across a wide set of users, following PRISM (Kirk
et al., 2024) and PERSONA Bench (Castricato et al., 2024)
to study personalization representative of the broad human
population. We start by identifying three demographic traits
(age, geographic location, and gender) that humans differ in
that can lead to personalization. For each trait combination,
we generate 30 personas, leading to 1,500 total personas.
To more accurately model the distribution of questions, we
split our questions into two categories: global and specific.
Global questions are general where anyone may ask it, but
specific questions revolve around a trait, for example an
elderly person asking about retirement or a female asking
about breast cancer screening.

One crucial detail for each task is the construction of a
preference dataset that spans multiple users. But how should
one construct such a dataset that is realistic and effective?

6. Sim2Real: Synthetic Preference Data
Transfers to Real Users

Collecting personalized data at scale presents significant
challenges, primarily due to the high cost and inherent un-
reliability of human annotation. Curating a diverse set of
users to capture the full spectrum of real-world variability
further complicates the process, often limiting the scope and
representativeness of the data. Synthetically generating data
using a language model (Li et al., 2024; Bai et al., 2022) is
a promising alternative, since it can both reduce costly hu-
man data generation and annotation and streamline the data
curation process. Can we generate diverse user preference
data using language models in a way that transfers to real
people?

We draw inspiration from simulation-to-real transfer in non-
language domains like robotics (Makoviychuk et al., 2021)
and self-driving cars (Yang et al., 2023), where the idea of
domain randomization (Tobin et al., 2018) has been par-
ticularly useful in enabling transfer to real environments.
Domain randomization enables efficient adaptation to novel
test scenarios by training models in numerous simulated
environments with varied, randomized properties.

But why is this relevant to personalization? As mentioned
previously, each user can be viewed as a different “environ-
ment” to simulate as each user has a unique reward function
that is represented by their preferences. To ensure models
trained on synthetic data generalize to real human users,
we employ domain randomization to simulate a diverse set
of synthetic preferences. However, diversity alone isn’t
sufficient to learn a personalized LM. As studied in prior
work (Hsu et al., 2019; Yin et al., 2019), it is crucial that the
task distribution in meta-learning exhibits sufficient struc-
ture to rule out learning shortcuts that do not generalize.
But how can we elicit both diversity and structure in our
preference datasets?

Encouraging diversity. Diversity of data is crucial to learn-
ing a reward function that generalizes across prompts. Each
domain has a slightly different generation setup as described
in Section 5, but there are some general design decisions
that are shared across all tasks to ensure diversity.

One source of diversity is in the questions used in the pref-
erences. We use a variety of strategies to procure questions
for the three tasks. For question selection for ELIX, we first
sourced questions from human writers and then synthetically
augmented the set of questions by prompting GPT-4o (Ope-
nAI et al., 2024) with subsets of these human-generated
questions. This allows us to scalably augment the human
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Iterative Persona Improvement

Traits: {age, gender, geographic location}
A 22-year-old woman from Asia, she enjoys participating in 
local festivals, often dressing in traditional attire and sharing 
stories of her family's heritage.

Seed Persona

Question

How can someone start a career in digital marketing?

Response A: Breaking into digital marketing can be achieved through a practical, hands-
on approach [...] Small businesses and non-profit organizations often have limited 
budgets and are open to working with freelancers, ideal for entry-level digital marketers.

Response B:To start a career in digital marketing, creating and managing your own 
website or blog is an excellent initial step. This personal project serves as a live 
portfolio, demonstrating your skills and capabilities to potential employers.

An 22-year-old woman from Asia, she enjoys participating in local festivals, often 
dressing in traditional attire and sharing stories of her family's heritage. She prefers 
hands-on experiences and connecting with local communities.

Modified persona

Which response does persona prefer?

View Conditioning

What should I do this weekend in San Francisco?

View N: Enjoy a 10 course dinner

View 1: Explore museums & galleries

View 2: Go on a hike

 . 
. .

What should I do this weekend in San Francisco? 
Viewpoint: Explore museums & galleries

San Francisco is a haven for art and culture lovers, 
offering a diverse array of museums and galleries to 
explore this weekend. Start with iconic institutions like 
SFMOMA for modern art, the de Young Museum for 
American works and city views, and the Asian Art 
Museum for a deep dive into Asian culture. […]

Final responses

Iteratively 
repeat with 
modified 
persona

Viewpoint Conditioned Response Generation

Viewpoint Generation

Figure 3: Overview of domain randomization techniques. View-conditioning (left) decomposes a given question into multiple
viewpoints, allowing for diverse response generation. Iterative persona generation (right) allows for better structure by removing
underspecification of the persona by iteratively refining a persona if it is insufficient to make a preference prediction.

Figure 4: Flowchart of Roleplay dataset generation: Starting
from a set of traits, a seed persona is constructed and a set of
specific questions about that trait. Then responses are constructed
with View-Conditioning. The seed personas are then iteratively
refined to not be underspecified. Finally, the refined persona is
used to score consistent preferences.

question dataset, while preserving the stylistic choices and
beliefs of human writers. For the reviews dataset, we com-
piled a list of popular media from sites such as Goodreads,
IMDb, and MyAnimeList. For the Roleplay dataset, we
prompted GPT-4o to generate questions all users would ask
(global) or questions only people with a specific trait would
ask (specific). This allows us to have questions that are
more consistent with the distribution of questions people
may ask.

Additionally, having a diversity of responses is crucial for
not only training the model on many viewpoints but also
reward labeling, allowing for greater support over the set
of possible responses for a question. To achieve diverse re-
sponses, we employ two strategies: Persona Steering (Cheng
et al., 2023) and view conditioning. For ELIX and Reviews,
we use persona steering by prompting the model with a
question and asking it to generate an answer for a randomly
selected persona. For Roleplay, the user description was
often underspecified so responses generated with persona
steering were similar. Therefore, we considered a multi-
turn approach to generating a response. First, we asked the
model to generate different viewpoints that may be possible
for a question. Then, conditioned on each viewpoint inde-
pendently, we prompted the model with the question and

Figure 5: Disagreement matrix across 5 users in Roleplay.
Here we plot the disagreement of preferences for 5 users. There is
a mix of users with high and low disagreement.

the viewpoint and asked it to answer the question adhering
to the viewpoint presented. For example, if you consider the
question, "How can I learn to cook a delicious meal?", one
viewpoint here could be "watching a youtube video", better
suited for a younger, more tech savvy individual, whereas
viewpoints such as "using a recipe book" or "taking a cook-
ing class" may be better for an older population or those
who would have the time or money to spend on a cooking
class. This allowed for more diversity in the responses and
resulting preferences.

Finally, we sampled responses from an ensemble of models
with a high temperature, including those larger than the base
model we fine-tuned such as Llama 3.3 70b (Grattafiori
et al., 2024) and Gemma 2 27b (Team et al., 2024), allowing
for better instruction following abilities of the fine-tuned
model, than the Llama 3.2 3B we fine-tune.

Encouraging task structure. Meta-learning leverages a
shared latent structure across tasks to adapt to a new task
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quickly. The structure can be considered as similar feature
representations, function families, or transition dynamics
that the meta-learning algorithm can discover and leverage.
For a preference dataset, this structure can be represented
as the distribution of preferences across different users and
is controlled by the scoring function and the distribution of
responses.

One thing we controlled to enable better structure is the scor-
ing function used to generate synthetic preferences. Firstly,
we wanted to ensure consistent preference labeling. We
use AI Feedback (Bai et al., 2022) to construct this, using
relative pairwise feedback for preference labels, akin to Al-
pacaEval (Dubois et al., 2024b), as an alternative to absolute
rubric based scoring, which we found to be noisy and inac-
curate. The preference label along with being conditioned
on the prompt, response, and general guidance on scoring,
is now also conditioned on the scoring user description and
additional scoring guidelines for user-aware preference la-
beling. Additionally, due to context length constraints, many
responses for our preference dataset are shorter than the in-
struct model that we fine-tune from. Therefore, we prompt
the model to ignore this bias. Furthermore, we provide each
preference example to the model twice, flipping the order
of the responses, and keeping filtering out responses that
are not robust to order bias for both training and evaluation
(win rates).

Additionally, as mentioned above, in some cases, such as
with the Roleplay dataset, the user description is underspeci-
fied, leading to challenges in labeling consistent preferences.
For example, if a user description does not have informa-
tion about dietary preferences, inconsistency may arise for
labeling preferences about that topic. For instance, in one
preference pair, vegan cake recipes may be preferred but in
another, steakhouses are preferred for date night. To fix this,
we take an iterative process to constructing user descriptions.
Firstly, we start with a seed set of user descriptions gener-
ated from the trait attributes. After generating questions and
responses based on these seed descriptions, we take a set of
question and response pairs. For each pair, we iteratively re-
fine the user description by prompting a model like GPT-4o
to either label the preference pair or if the user description
is insufficient, to randomly choose a preference and append
information to the description so a future scorer would make
the same decision. Finally, we utilize the updated user de-
scription to relabel preferences for the set of questions and
responses allocated to that user with the labeling scheme
above. This fix for underspecification also helps the COT
prediction as predicting an underspecified user persona, can
lead to ambiguous generated descriptions.

Finally, we desire structured relationships between users.
To ensure this, we analyzed the disagreement (average dif-
ference of preference labels) of user’s preferences across

prompts to understand where users agreed and disagreed,
and regenerated data if this disagreement was too high
across users. By having users with some overlap, meta-
learning algorithms can learn how to transfer knowledge
effectively from one user to another. A sample disagreement
plot for a subset of users in the Roleplay task can be found
in Figure 5. We outline our full dataset generation process
in Figure 4 in the Roleplay Task, starting from just a simple
set of demographic traits.

Strategy Mean Similarity (↓) Median Similarity (↓)

Temp. = 0.3 0.96 0.97
Temp. = 1.0 0.94 0.95
Persona Steering (ours) 0.81 0.82
View Steering (ours) 0.78 0.78
Ensemble + View (ours) 0.71 0.73

Table 1: Comparison of diversity-inducing strategies as
evaluated under ALOE (Wu et al., 2024).

Evaluating diversity and structure. We evaluate our de-
sign decisions with the following vignettes. For diversity, we
measure semantic similarity using the dense score from the
BGE-M3 model, following ALOE (Wu et al., 2024), on 100
randomly sampled prompts and 10 responses per prompt in
the Roleplay task. As seen in Table 1, our proposed steering
and ensembling mechanisms result in the base Llama 3.2 3B
Instruct model exhibiting significantly reduced mean sim-
ilarity. For structure, we estimate binary Shannon entropy
of the preference label before and after iterative refinement.
We condition on the persona and an unlabeled preference
tuple (prompt and responses) and sample a preference label
with a fixed temperature of 1.0 on 100 randomly sampled
prompts from the Roleplay task with 100 pairs of personas
and 10 samples per prompt. We use GPT-4o as the scoring
model. Iterative persona refinement causes the entropy to
drop from 0.64 nats to 0.13 nats, validating the efficacy of
this approach in inducing better persona-prompt-response
consistency.

7. Experimental Evaluation
Baselines. We compare FSPO against five baselines: (1)
a base model generating user-agnostic responses, (2) few-
shot prompting with a base model, following Meister et al.
(2024), (3) few-shot supervised fine-tuning (Pref-FT) based
off the maximum likelihood objective from GPO (Zhao
et al., 2024), (4) prompting with an oracle user description
following Persona Steering (Cheng et al., 2023), and (5)
Rewards-in-Context (Yang et al., 2024b). Specifically, for
(1) we use a standard instruct model that is prompted solely
with the query, resulting in unconditioned responses. For
(2) and (3), the base instruct model is provided with the
same few-shot personalization examples as in FSPO, but
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Method Trained Interpolated

Llama 3.2 3B Instruct 50.0 50.0

4-shot Prompted 66.6 61.9
4-shot Pref-FT 66.5 66.1
4-shot FSPO (Ours) 78.4 71.3

8-shot Prompted 69.1 59.1
8-shot Pref-FT 65.6 70.7
8-shot FSPO (Ours) 80.4 73.6

8-shot FSPO + COT (Ours) 92.3 84.6

Table 2: Review Winrates

Method Winrate (%)

Llama 3.2 3B Instruct 50.0
IPO 72.4
Few-shot Prompting 63.2
Few-shot Pref-FT (GPO (Zhao et al., 2024)) 62.8
RIC (Yang et al., 2024b) 53.3
FSPO (Ours, DPO) 81.3
FSPO (Ours, IPO) 82.6
FSPO + COT (Ours) 90.3
Oracle (prompt w/ g.t. persona) 90.9

Table 3: GPT-4o Winrates on Roleplay (1500 users)

Method ELIX-easy ELIX-hard

Llama 3.2 3B Instruct 50.0 50.0
Few-shot Prompted 92.4 81.4
Few-shot Pref-FT 91.2 82.9
FSPO (Ours) 97.8 91.8

Table 4: GPT-4o Winrates on ELIX

Baseline Method Winrate (%)

FSPO vs Base 71.2
FSPO vs SFT 72.3

Table 5: Roleplay: Human Eval Winrates

(2) zero-shot predicts the preferred response and (3) is opti-
mized with SFT to increase the likelihood on the preferred
response. In (4), the base model is prompted with the oracle,
ground truth user description, representing an upper bound
on FSPO’s performance.

Synthetic winrates. We first generate automated win rates
using the modified AlpacaEval procedure from Section 6.
In the ELIX task in Table 4, we study two levels of difficulty
(easy, hard), where we find a consistent improvement of
FSPO over baselines. Next, in Table 2 for the Review task,
on both Trained and Interpolated Users, FSPO allows for bet-
ter performance on held-out questions. Finally, in Table 3,
we study Roleplay, scaling to 1500 real users, seeing a win
rate of 82.6% on both held-out users and questions. Also,
COT closes the gap to the oracle response, effectively recov-
ering the ground-truth user description. In Appendix A.2,
sample generations from FSPO show effective personaliza-
tion to the oracle user description. Given this result, can we
personalize to real people?

Preliminary human study. We evaluate our model trained
on the Roleplay task by personalizing responses for real hu-
man participants. We build a data collection app (Figure 7),
interacting with a user in two stages. First, we ask partici-
pants to label preference pairs, used as the few-shot exam-
ples in FSPO. Then, for held out questions, we show a user
a set of two responses: (1) a response from FSPO personal-
ized based on their preferences and (2) a baseline response.
Prolific is used to recruit a diverse set of study participants,
evenly split across genders and continents, corresponding
to the traits used to construct user descriptions. Question
and response order is randomized to remove confounding

factors. We evaluate with 25 users and 11 questions. As
seen in Figure 5, we find that FSPO has a 71% win rate
over the Base model and a 72% win rate over an SFT model
trained on diverse viewpoints from the preference dataset.

8. Discussion and Conclusion
We introduce FSPO, a novel framework for eliciting per-
sonalization in language models for open-ended question
answering that models a distribution of reward functions to
capture diverse human preferences. Our approach leverages
meta-learning for rapid adaptation to each user, addressing
limitations of conventional reward modeling techniques that
learn from aggregated preferences. Through rigorous evalu-
ation in 3 domains, we demonstrate that FSPO’s generations
are consistent with user context and preferred by real hu-
man users. Our findings also underscore the importance of
diversity and structure in synthetic personalized preference
datasets to bridge the Sim2Real gap. Overall, FSPO is a step
towards developing more inclusive, user-centric language
models.

8.1. Limitations, Potential Risks, and Societal Impact
Key limitations include ethical concerns like reinforcing
user biases, requiring future work on safeguards. The pre-
liminary human study, though a first for personalized open-
ended QA, had controlled elements and needs further abla-
tion. Computational constraints restricted us to smaller mod-
els with limited context; investigating larger, more capable
models is an open question, especially for Chain-of-Thought
processes.
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A. Appendix
A.1. Limitations, Potential Risks, and Societal Impact
There are several limitations and potential risks. One limitation pertains to the ethical and fairness considerations of
personalization. While FSPO improves inclusivity by modeling diverse preferences, the risk of reinforcing user biases
(echo chambers) or inadvertently amplifying harmful viewpoints requires careful scrutiny. Future work should explore
mechanisms to balance personalization with ethical safeguards, ensuring that models remain aligned with fairness principles
while respecting user individuality. Additionally, our human study was preliminary with control over the questions that
a user may ask, format normalization where formatting details such as markdown are removed, and view normalization
comparing the same number of viewpoints for both FSPO and the baselines. However, to the best of our knowledge, we
are the first approach to perform such a human study for personalization to open-ended question answering. Future work
should do further ablations with human evaluation for personalization. Additionally, due to compute constraints, we work
with models in the parameter range of 3B (specifically Llama 3.2 Instruct 3B) with a limited context window of 128K, and
without context optimization such as sequence parallelism (Li et al., 2022; Yang et al., 2024a), further limiting the effective
context window. It is an open question on how fine-tuning base models with better long-context and reasoning capabilities
would help with FSPO for personalization, such as the 2M context window of Gemini Flash Thinking models, especially in
the case of COT.

A.1.1. ADDITIONAL ABLATIONS

Percentage of Preference Data Winrate (%)
10% 70.1
25% 69.5
50% 78.3
100% 82.6 (reported)

Table 6: Ablation study showing the effect of varying the percentage of preference data per user for FSPO without COT on
roleplay task winrates with held-out synthetic users.

Number of Few-Shot Examples Winrate (%)
1 65.7
2 69.3
4 72.1
8 82.6 (reported)

Table 7: Ablation study showing the impact of varying the number of few-shot examples per user on roleplay task
performance.

A.2. Sample Personalized Responses

We provide sample responses from FSPO in Figure 6 across the 3 tasks that were studied (ELIX, Reviews, and Roleplay).
We additionally include the oracle scoring description for each response, demonstrating FSPO’s ability to personalize.
Additionally, for the Review task, we show responses for interpolated users which were not found in the preference dataset,
showing the ability of FSPO to generalize and be controllable.

A.2.1. ROLEPLAY COT

QUESTION :
What a r e some good v o l u n t e e r o p p o r t u n i t i e s f o r me?

TRUE PERSONA:
A 53− year − o l d woman l i v i n g i n Nor th America , an a v i d t r a v e l e r and w r i t e r who

s h a r e s h e r a d v e n t u r e s t h r o u g h a p o p u l a r t r a v e l b log . She l o v e s s p o n t a n e o u s
a d v e n t u r e s and v a l u e s long − te rm f i n a n c i a l s e c u r i t y . She i s a t a p o i n t i n h e r
c a r e e r where o p p o r t u n i t i e s f o r advancement might be t ime − s e n s i t i v e . She
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e n j o y s movies t h a t c h a l l e n g e p e r s p e c t i v e s and s p a r k d i s c u s s i o n s . She
p r i o r i t i z e s wel l − b e i n g ove r b e i n g f u l l y i n f o r m e d . She i s i n t e r e s t e d i n t h e
van l i f e movement . She a p p r e c i a t e s c r e a t i v i t y and v a r i e t y i n meal o p t i o n s .
She e n j o y s e n g a g i n g i n c r e a t i v e and t a c t i l e a c t i v i t i e s and p r e f e r s
t r a d i t i o n a l l e a r n i n g methods . She v a l u e s c o m p a s s i o n a t e and r e s p o n s i b l e
c h o i c e s . She e n j o y s e x p l o r i n g new and dynamic e x p e r i e n c e s . She i s c o n c e r n e d
a b o u t f a s t food . She v a l u e s me n t a l wel l − b e i n g and m i n d f u l n e s s . She e n j o y s
a t t e n d i n g e v e n t s and c o n f e r e n c e s t o meet new p e o p l e . She a p p r e c i a t e s
p r a c t i c a l i t y and h e a l t h . She e n j o y s shows wi th da rk humor and s u s p e n s e f u l
s t o r y t e l l i n g .

COT GENERATED PERSONA:
Based on t h e examples p rov ided , t h e u s e r a p p e a r s t o v a l u e a more h o l i s t i c and

e x p e r i e n t i a l a p p r o a c h t o l e a r n i n g and p e r s o n a l growth . They seem t o
p r i o r i t i z e human c o n n e c t i o n , n a t u r e , and p e r s o n a l deve lopmen t ove r t e c h n o l o g y
and m a t e r i a l w e a l t h .

Th i s u s e r i s l i k e l y someone who i s i n t e r e s t e d i n p e r s o n a l s t o r i e s , emot ions , and
e x p e r i e n c e s , a s e v i d e n t from t h e i r a p p r e c i a t i o n f o r S y l v i a P l a t h ’ s p o e t r y and

t h e s u g g e s t i o n t o weave s t o r y t e l l i n g i n t o p u b l i c s p e a k i n g . They may a l s o be
someone who v a l u e s a u t h e n t i c i t y , s i m p l i c i t y , and community , a s seen i n t h e i r
s u g g e s t i o n o f house swapping and v o l u n t e e r i n g as a l t e r n a t i v e v a c a t i o n o p t i o n s
.

In t e r m s of l i f e s t y l e , t h i s u s e r l i k e l y p r e f e r s a b a l a n c e d and f l e x i b l e a p p r o a c h
t o l i f e , a l l o w i n g f o r a mix of work , p e r s o n a l growth , and l e i s u r e a c t i v i t i e s .

They may a l s o be someone who v a l u e s e n v i r o n m e n t a l s u s t a i n a b i l i t y and s o c i a l
r e s p o n s i b i l i t y , a s h i n t e d a t by t h e i r c o n s i d e r a t i o n o f eco − f r i e n d l y home
improvements and s u s t a i n a b l e f i n a n c i a l p l a n n i n g . O v e r a l l , t h i s u s e r seems t o
be a t h o u g h t f u l , e m p a t h e t i c , and n a t u r e − l o v i n g i n d i v i d u a l who p r i o r i t i z e s
human c o n n e c t i o n s , e x p e r i e n c e s , and p e r s o n a l growth ove r m a t e r i a l p o s s e s s i o n s

and t e c h n o l o g i c a l advancement s .

FINAL RESPONSE :
Based on your a f f i n i t y f o r human c o n n e c t i o n s , p e r s o n a l growth , and e n v i r o n m e n t a l

s u s t a i n a b i l i t y , I ’ d l i k e t o s u g g e s t t h e f o l l o w i n g v o l u n t e e r o p p o r t u n i t i e s
t h a t might r e s o n a t e wi th you :

** Community Garden or Urban Farm * * : Many o r g a n i z a t i o n s i n your a r e a o f f e r
community g a r d e n s o r u rban fa rms where you can h e l p c u l t i v a t e and m a i n t a i n a
s h a r e d space , p romot ing s u s t a i n a b i l i t y and food s e c u r i t y . Th i s a l l o w s you t o
c o n n e c t w i th n a t u r e and c o n t r i b u t e t o your community ’ s wel l − b e i n g .

** N a t u r e R e s e r v e s o r C o n s e r v a t i o n E f f o r t s * * : C o n s i d e r v o l u n t e e r i n g wi th l o c a l
w i l d l i f e c o n s e r v a t i o n o r g a n i z a t i o n s , such as b i r d w a t c h i n g t o u r s , t r e e
p l a n t i n g i n i t i a t i v e s , o r h a b i t a t r e s t o r a t i o n p r o j e c t s . Th i s w i l l e n a b l e you
t o work o u t d o o r s , c o n n e c t w i th o t h e r s who s h a r e your p a s s i o n f o r n a t u r e , and
c o n t r i b u t e t o p r e s e r v i n g t h e e n v i r o n m e n t .

** Community C e n t e r s o r E n v i r o n m e n t a l E d u c a t i o n Programs * * : Many community c e n t e r s
o f f e r v a r i o u s programs , such as g a r d e n i n g workshops , e n v i r o n m e n t a l e d u c a t i o n
c l a s s e s , o r s u s t a i n a b l e l i v i n g workshops . By v o l u n t e e r i n g a t t h e s e c e n t e r s ,

you can s h a r e your knowledge , l e a r n from o t h e r s , and make a p o s i t i v e im pa c t
on your community .
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Name Value

Learning Rate (SFT/Pref-FT) 1e−5, 1e−6,1e−7

Learning Rate (IPO) 1e−5,1e−6, 1e−7

Beta (IPO) 0.1, 0.05, 0.01,0.005, 0.001

Number of Shots 4,8

Model Name Llama 3.2 3B Instruct (Grattafiori et al., 2024)

Table 8: Sweep over hyperparameters for FSPO, recommended hyperparameters in bold.

** Animal S h e l t e r s o r W i l d l i f e R e h a b i l i t a t i o n C e n t e r s * * : I f you ’ r e an a n im a l l o v e r
, c o n s i d e r v o l u n t e e r i n g a t a l o c a l an ima l s h e l t e r o r w i l d l i f e r e h a b i l i t a t i o n
c e n t e r . You ’ l l have t h e o p p o r t u n i t y t o c a r e f o r an ima l s , i n t e r a c t w i th l i k e −
minded i n d i v i d u a l s , and c o n t r i b u t e t o an im a l w e l f a r e and c o n s e r v a t i o n e f f o r t s
.

** Neighborhood E ven t s o r Community F e s t i v a l s * * : Look f o r o p p o r t u n i t i e s t o
v o l u n t e e r a t l o c a l e v e n t s , such as f e s t i v a l s , f a r m e r s ’ marke t s , o r s t r e e t
f a i r s . Th i s a l l o w s you t o engage wi th your community , promote s u s t a i n a b i l i t y ,
and b u i l d c o n n e c t i o n s wi th n e i g h b o r s t h r o u g h s h a r e d p a s s i o n f o r

e n v i r o n m e n t a l c a u s e s .

These o p p o r t u n i t i e s w i l l n o t on ly n u r t u r e your s p i r i t o f v o l u n t e e r i n g b u t a l s o
h e l p you f o s t e r m e a n i n g f u l c o n n e c t i o n s wi th n a t u r e , o t h e r s , and your
community w h i l e n u r t u r i n g a s e n s e o f p e r s o n a l growth and f u l f i l l m e n t .

A.3. Additional Details on Dataset Construction and Evaluation

Dataset Details We include a representative subset of the roleplay task and a jupyter notebook demonstrating shot
construction for training and evaluation in the supplementary material (due to size restrictions). We will release the full
datasets for each task in the final release of the paper.

Evaluation Prompt for Synthetic Preferences We used GPT-4o as a Judge using a modified variant of the Alpaca
Eval (Dubois et al., 2024b;a) Prompt to be aware of a user description when scoring preference examples.

Here is the system prompt:

You a r e a h i g h l y e f f i c i e n t a s s i s t a n t , who e v a l u a t e s and s e l e c t s t h e b e s t l a r g e
l a n g u a g e model (LLMs) based on t h e q u a l i t y o f t h e i r r e s p o n s e s t o a g i v e n
i n s t r u c t i o n . Th i s p r o c e s s w i l l be used t o c r e a t e a l e a d e r b o a r d r e f l e c t i n g t h e
most a c c u r a t e and human− p r e f e r r e d answer s .

Here is the user prompt:

You a r e t a s k e d wi th e v a l u a t i n g t h e o u t p u t s o f m u l t i p l e l a r g e l a n g u a g e models t o
d e t e r m i n e which model p r o d u c e s t h e b e s t r e s p o n s e from a human p e r s p e c t i v e .

## I n s t r u c t i o n s

You w i l l r e c e i v e :
1 . A ** User I n s t r u c t i o n * * : Th i s i s t h e que ry o r t a s k p r o v i d e d t o t h e models .
2 . ** Model O u t p u t s * * : Unordered r e s p o n s e s from d i f f e r e n t models , each i d e n t i f i e d

by a un iq ue model i d e n t i f i e r .
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Personalized Responses (ELIX-easy)
Q: How does a thermostat control temperature?

Oh boy, are you ready to learn about thermostats?
So, you know how sometimes your room gets too hot or too cold? 
That’s because of something called temperature. Temperature is like a 
measure of how warm or cool things are. And thermostats are like 
superheroes that help control the temperature in your home.
Imagine you’re playing with a thermostat in your room. It’s like a 
special button that makes the temperature go up or down. But how 
does it actually work?
Thermostats are made up of three main parts:
1. Sensors: These are like special eyes that look at the room’s 

temperature. They tell the thermostat how warm or cool it is.
2. Control Unit: This is like the brain of the thermostat. It looks at the 

sensor’s readings and decides what to do next.
3. Heating/Cooling System: This is like the arm that actually moves. It 

heats or cools the room based on what the control unit tells it to 
do.

Here’s how it works:
• The sensors send a message to the control unit, like “Hey, it’s 75 

degrees in here!”
• If the control unit thinks the room is too cold, it sends a signal to 

the heating system, saying “Turn on the heater!”
[...]

Elementary School Student

Q: What makes diamonds so hard?

Diamonds are renowned for their exceptional hardness, 
which is attributed to their unique crystal structure and 
chemical composition. Below is a breakdown of the factors 
contributing to diamond hardness:

Key Factors Behind Diamond Hardness

• Crystal Structure: Diamonds possess a face-centered 
cubic (FCC) crystal structure. Each carbon atom is 
bonded to four neighboring carbon atoms in a 
tetrahedral arrangement. This structure provides 
unparalleled strength and rigidity, enabling diamonds to 
resist deformation and fracture.

• Chemical Composition: Composed solely of carbon 
atoms arranged in a repeating pattern, diamonds owe 
their remarkable hardness to this carbon-rich 
composition.

• Tetravalent Bonds:Every carbon atom in a diamond is 
bonded to four neighbors through strong covalent bonds. 
These tetravalent bonds create a robust framework that 
supports the diamond’s rigid crystal structure.

[...]

Expert

Personalized Responses (Reviews)
Write a review for the Action movie, The Dark Knight.

The Dark Knight is a thrilling ride, but its flaws hold it back from being a 
truly great movie. The film's pacing is well-balanced, and the action 
scenes are intense and well-executed. The cast, led by Christian Bale 
and Heath Ledger, deliver solid performances. However, the plot is 
somewhat predictable, and the characters' motivations are not always 
clear. Overall, The Dark Knight is a fun, but forgettable, superhero film.

Interpolated User: Concise + Negative Interpolated User: Verbose + Negative

Write a review for the Action movie, The Dark Knight.

**A Flop of Catastrophic Proportions: "The Dark Knight Rises" Falls 
Woefully Short of its Pompous Promises**

"The Dark Knight Rises," Christopher Nolan's vaunted swan song to the 
Batman franchise, is a calamitous, soulless, and creatively bankrupt 
exercise in superheroic excess, a monstrosity of monumental 
proportions that has left me questioning the very fabric of cinematic 
reality.

From its opening frames, it is evident that Nolan has traded his artistic 
integrity and attention to detail for a saccharine, crowd-pleasing formula 
that prioritizes style over substance, spectacle over sensibility. The 
narrative, a jumbled mess of convoluted plot twists, cheap thrills, and 
cringe-worthy romantic subplots, careens wildly from one paradox to the 
next, sabotaging any semblance of coherence or logical consistency.

Tom Hardy's Bane, the film's ostensibly formidable villain, is a paragon of 
cartoonish one-dimensionality, his motivations and demeanor reduced to 
a simplistic, mustache-twirling caricature of menace. The usually reliable 
Christian Bale, as Bruce Wayne/Batman, fares little better, his character 
reduced to a puzzle piece of angst-ridden introspection, his entire 
persona rendered inexplicably thin and unengaging.

[…] Continues

Figure 6: Sample Personalized Response for ELIX (top) and Reviews (bottom).
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Figure 7: An overview of the Human Study Interface. First, users label a set of preferences. Then, a set of personalized answers are
provided, conditioned on label preferences.

3 . A ** User D e s c r i p t i o n * * : Th i s d e s c r i b e s t h e use r ’ s p r e f e r e n c e s o r a d d i t i o n a l
c o n t e x t t o g u i d e your e v a l u a t i o n .

Your t a s k i s t o :
1 . E v a l u a t e t h e o u t p u t s based on q u a l i t y and r e l e v a n c e t o t h e use r ’ s i n s t r u c t i o n

and d e s c r i p t i o n .
2 . S e l e c t t h e b e s t o u t p u t t h a t meets t h e use r ’ s needs .

## I n p u t Format

### User I n s t r u c t i o n
{QUESTION}

### Model O u t p u t s
− Model "m" : {RESPONSE_A}
− Model "M" : {RESPONSE_B}

### User D e s c r i p t i o n
{USER_DESCRIPTION}

## Task

From t h e p r o v i d e d o u t p u t s , d e t e r m i n e which model p r o d u c e s t h e b e s t r e s p o n s e .
Outpu t on ly t h e model i d e n t i f i e r o f t h e b e s t r e s p o n s e ( e i t h e r ‘m‘ o r ‘M‘ )
wi th no a d d i t i o n a l t e x t , quo t e s , spaces , o r new l i n e s .

## Bes t Model I d e n t i f i e r
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Additional Human Study Details As shown in Alpaca Eval 2.0 (Dubois et al., 2024a), several biases can affect the
evaluation of language models such as length, format, and more. For this reason, we took action to normalize both FSPO
and baselines in 3 different categories. First, length is an evaluation bias. For this reason, we computed the average length of
responses from FSPO and prompted the base model during evaluation to keep its responses around the average length in
words (≈ 250 words). For the SFT baseline, we found that this was consistent with FSPO since it was fine-tuned on the
same preference dataset. Additionally, due to context length restrictions and the instruction following abilities of smaller
open-source LLMs, we decided to have formatting be consistent as paragraphs rather than markdown for the Roleplay
task. Thus, we similarly prompted the Base model with this behavior. Finally, a differing number of views can also skew
the evaluation, as a large proportion of users seem to prefer direct answers. Additionally, if more views are presented, a
user may prefer just one of the many views provided, skewing evaluation. Thus, we ensure that when two responses are
compared, they have the same number of views. In future, work, it would be interesting to consider how to relax some of the
design decisions needed for the human study. We additionally provide screenshots of the human study interface in Figure 7.

Below is the full text of instructions given to the participants:
"This is a study about personalization. You will be asked to read a set of 20 questions (9 on the first page, 11 on the second
page). For each question, there are two responses. Please select the response that you prefer. Make this selection based on
your individual preferences and which response you find the most helpful. Read the entire response and think carefully
before making your selection."

We utilize the demographic information that Prolific provides for each user such as their age group, continent and gender
to chose questions but do not store that information about the user. We collect no identifying information about the user
and will not make any of the individual preferences from a user public. We pay each user a fair wage subject to the current
region that we reside in. We received consent from the people whose data we are using and curating as the very first question
in our survey. The demographic and geographic characteristics of the annotator population is exactly the same as Prolific.
We do no filtering of this at all.

A.4. Training Details and Hyperparameters for FSPO and baselines

Similar to DPO (Rafailov et al., 2023) and IPO (Gheshlaghi Azar et al., 2023), we trained FSPO in a two stage manner.
The first stage is Fewshot Pref-FT, increasing the likelihood of the preferred response. The second stage is Fewshot IPO,
initialized from the checkpoint of Fewshot Pref-FT. One epoch of the dataset was performed for each stage. For the IPO
baseline, we followed a similar procedure. Additional hyperparameters can be found in Table 8.

A.5. Additional Details of Setup for Reproducability

We used both code, models, and data as scientific artifacts. In particular, for code, we built off of the codebase from Rafailov
et al. (2023), with an Apache 2.0 license. We additionally adapted our evaluation script from Alpaca EVAL, including the
prompt, and other criterion for evaluation and normalization. We have reported the implementation details for synthetic
evaluation in Section 6 and human study evaluation in Section A.3.

For models, we used a combination of open-source and closed-source models. The models that we used for sampling data
are the Llama family of models (Grattafiori et al., 2024) (Llama 3.2 3b, Llama 3.1 8b, Llama 3.3 70b) with the llama license
(3.1, 3.2, 3.3), the Qwen family of models (Qwen et al., 2025) (Qwen 2.5 3b, Qwen 2.5 32b, Qwen 2.5 72b) with the qwen
license, the Gemma 2 family of models (Team et al., 2024) (Gemma 2 2b, Gemma 2 9b, and Gemma 2 27b) with the gemma
license, and the OpenAI (OpenAI et al., 2024) family of models (GPT4o, GPT4o-mini) with the OpenAI API License
(based off of the MIT License). We used SGLang (Zheng et al., 2024) and VLLM (Kwon et al., 2023) for model inference.
For training, we used 1 node of A100 GPUs (8 GPUs) for 8 hours for each experiment with FSDP. Cumulatively, we used
approximately 4000 hours of GPU hours for ablations over dataset, architecture design and other details.

With respect to the dataset, for questions for the review dataset, we sourced media names from IMDb (IMDb, 2025),
Goodreads (Goodreads, 2025), and MyAnimeList (MyAnimeList, 2025). We define the domains in more detail in section 5.
Seed questions for ELIX were human generated, sourced from Prolific. The dataset is entirely in English, with some artifacts
of Chinese from the Qwen model family, which will be filtered out for the final release of the dataset. None of this data
has identifying information about individual people or offensive content as the dataset was sourced from instruction and
safety-tuned models, with each step of the dataset having a manual check of the inputs and outputs. In terms of statistics
of the dataset, the review dataset has 130K train/dev examples and 32.4K test examples, the ELIX-easy dataset has 235K
train/dev examples and 26.1K test examples, the ELIX-hard dataset has 267K train/dev examples and 267K test examples,
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and the roleplay dataset has 362K train/dev examples and 58.2K test examples, with a total of 1.378 million examples. For
our statistics, we reported the average winrate % for each method on both synthetic and human evals, following prior work
in alignment like AlpacaFarm (Dubois et al., 2024b).

Each of the artifacts above was consistent with its intended use and the code, models, and datasets should be usable outside
of research contexts.
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