
A Branch-and-Cut Approach for a Mixed Integer Linear Programming
Compilation of Optimal Numeric Planning

Ryo Kuroiwa, J. Christopher Beck
Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada, ON M5S 3G8

{rkuroiwa, jcb}@mie.utoronto.ca

Abstract

In this paper, we consider optimal numeric planning, fo-
cusing on numeric planning with simple conditions and on
linear numeric planning. We propose a novel compilation
of numeric planning to mixed-integer linear programming
(MILP) and employ a branch-and-cut algorithm to lazily
generate constraints. We empirically compare the proposed
method with heuristic search algorithms and other model-
based approaches including an existing MILP based method.
Although the new method is not competitive with heuris-
tic search algorithms, compared to the existing MILP based
method, it finds the optimal solutions faster in some planning
domains and solves two more instances in one domain.

Introduction
Numeric planning is an extension of classical planning
where states contain numeric variables. As in classical plan-
ning, heuristic search methods are used to solve numeric
planning tasks. Based on the delete-relaxation in classical
planning (Bonet and Geffner 2001; Hoffmann and Nebel
2001), various interval-based relaxation heuristics have been
proposed for numeric planning (Hoffmann 2003; Scala et al.
2016; Aldinger and Nebel 2017; Piacentini et al. 2018b;
Scala et al. 2020b). In addition, other types of heuristics
used in classical planning have been adapted to numeric
planning such as subgoaling based heuristics (Scala et al.
2020a), landmark heuristics (Scala et al. 2017; Kuroiwa
et al. 2021), and operator-counting heuristics (Piacentini
et al. 2018b; Kuroiwa et al. 2021). In terms of optimal plan-
ning, except for the max heuristics proposed by Aldinger
and Nebel (2017), admissible heuristics are limited to nu-
meric planning with simple conditions, a restricted class of
numeric planning. In contrast, model-based planners that
compile numeric planning tasks to optimization problems
have been proposed for optimal numeric planning. Piacen-
tini et al. (2018a) proposed a mixed-integer linear program-
ming (MILP) based method for linear numeric planning, a
superset of numeric planning with simple conditions. An
optimization modulo theories (Sebastiani and Tomasi 2015)
based planner can handle optimal numeric planning with
state-dependent action costs in addition to linear numeric
planning (Leofante et al. 2020).

In this paper, following the previous research on the inte-
ger programming (IP) model for classical planning (van den

tapagent plant

Figure 1: The example numeric planning task.

Briel, Vossen, and Kambhampati 2005), we introduce a
branch-and-cut algorithm, which lazily generates constraints
to the MILP model for numeric planning. We empirically
compare the proposed method with the existing heuristic
search algorithms and model-based planners in optimal nu-
meric planning. Although the MILP based approaches are
not competitive with the state-of-the-art heuristic search al-
gorithms, the new MILP based method is faster and solves
more instances in some numeric planning domains than the
existing MILP based method.

Motivating Example
In the existing MILP model for numeric planning (Piacen-
tini et al. 2018a), decision variables represent which actions
are applied at which time step, and the constraints required
to achieve the goal conditions within a time horizon by ap-
plying actions starting from the initial state. Applying mul-
tiple actions at the same time step is allowed if they do not
interfere, i.e., if they can be applied in any order and the
resulting state is uniquely determined regardless of the or-
der. The latter condition is necessary because the effects of
actions can depend on values of numeric variables and are
computed based on the state at the previous time step in the
MILP model. We relax the former condition by allowing the
application of multiple actions at the same time step if they
can be applied in some order. This modification increases the
number of actions that can be applied at the same time step
and possibly enables the model to find an optimal solution
with a shorter time horizon.

For example, consider a numeric planning task to water a
plant shown in Figure 1.1 A state consists of three numeric
variables x, c, and p where x represents the position of an
agent on a one-dimensional map, c represents the amount of
water carried by the agent, and p represents the amount of

1This task is based on the GARDENING domain (Scala, Haslum,
and Thiébaux 2016).

action preconditions effects
move x ≤ 3 x := x+ 1

move fast x ≤ 2 x := x+ 2
load x = 2, c ≤ 4 c := c+ 1
pour x = 4, c ≥ 1 c := c− 1, p := p+ 1

Table 1: Actions in the example numeric planning task.

load move

move_fastpour

Figure 2: The action precedence relations as a graph.

water poured onto the plant. Actions move and move fast
change the position of the agent, load loads water from the
tap, and pour waters the plant as shown in Table 1. In this ex-
ample, move and move fast interfere; when x ≥ 2, applying
move before move fast is impossible since move results in
x ≥ 3, which violates the precondition of move fast. Sim-
ilarly, applying move fast before move is also impossible
when x ≥ 2, and applying move or move fast before load is
impossible when x = 2. In the existing MILP model, these
interfering actions cannot be applied at the same time step.
However, applying move or move fast after load is possible,
and this order can be found by considering the precedence
relations between actions using a graph shown in Figure 2.
In our MILP model, applying interfering actions at the same
time step is allowed, and the preconditions and effects of
an action are computed based on the state changed by its
preceding actions. Note that if actions form a cycle in the
graph, applying them at the same time step is still prohib-
ited in our model; for example, since neither applying move
before move fast or applying move fast before move is pos-
sible, these actions cannot be applied simultaneously. Thus,
the constraints that prohibit applying the actions in a cycle
at the same time step are required. Since finding all cycles in
advance is computationally expensive, we use a branch-and-
cut algorithm which lazily generates the constraints when
there are cycles in a partial solution and finds another solu-
tion satisfying the new constraints.

Suppose that x = 1, c = 0, and p = 0 in the initial state,
and the goal condition is p ≥ 1. The optimal plan is applying
move, load, move fast, and pour in this order. In the existing
MILP model, since move and move fast interfere with load
and pour, at most one action can be applied at each time step.
Therefore, the model requires the horizon of four to find the
optimal plan. In contrast, in our MILP model, load can be
applied before move fast at the same time step. The optimal
plan is found with the horizon of three where move is at
the first time step, load and move fast are at the second time
step, and pour is at the third time step. During the search, if a
found solution applies move and move fast at the same time
step, the constraints that prohibit applying the two actions at
the same time step are added.

Notation and Preliminaries
We consider a subset of numeric planning tasks defined in
PDDL2.1 level 2 (Fox and Long 2003). A numeric planning
task is defined as a 5-tuple 〈Fp,N ,A, sI , G〉 where Fp is a
set of propositions, N is a set of numeric variables, A is a
set of actions, sI is the initial state, and G is a set of goal
conditions. A state s is a tuple 〈sp, sn〉 where sp ⊆ Fp is a
set of propositions and sn is a value assignment to numeric
variables. The value of v ∈ N in s is denoted by s[v]. A
numeric condition ψ is represented as∑

v∈N (ψ)

wψv v + wψ0 D 0

where N (ψ) ⊆ N , wψ0 ∈ Q, ∀v ∈ N (ψ), wψv ∈ Q \ {0},
and D∈ {≥, >}. A state s satisfies ψ if∑

v∈N (ψ)

wψv s[v] + wψ0 D 0.

We denote this by s |= ψ. For a set of numeric conditions
Ψ̂, we say s |= Ψ̂ if ∀ψ ∈ Ψ̂, s |= ψ. G is defined as a
tuple 〈Gp, Gn〉 where Gp is a set of propositions and Gn is
a set of numeric conditions. s is a goal state if Gp ⊆ sp and
s |= Gn.

An action a ∈ A is a triplet 〈pre(a), eff(a), cost(a)〉
where pre(a) is a set of preconditions, eff(a) is a set of ef-
fects, and cost(a) ∈ R+

0 is the cost of a. pre(a) is defined as
a tuple 〈prep(a), pren(a)〉 where prep(a) is a set of propo-
sitions and pren(a) is a set of numeric conditions. Action
a is applicable in s if prep(a) ⊆ sp and s |= pren(a), and
we denote this by s |= pre(a). By abuse of notation, we say
v ∈ pren(a) if ∃ψ ∈ pren(a), v ∈ N (ψ). eff(a) is defined as
a triplet 〈add(a), del(a), num(a)〉 where add(a) and del(a)
are sets of propositions. num(a) is a set of numeric effects
v := ξ where ξ is a linear combination of numeric variables,
i.e.,

ξ =
∑

u∈N (ξ)

kv,au u+ kv,a

where N(ξ) ⊆ N , kv,a ∈ Q, and ∀u ∈ N (ξ), kv,au ∈ Q \
{0}. A concrete value of ξ in s is defined as follows:

ξ[s] =
∑

u∈N (ξ)

kv,au s[u] + kv,a.

Let lhs(a) = {v | (v := ξ) ∈ num(a)} and rhs(a) =
{v | (u := ξ) ∈ num(a), v ∈ N (ξ)}. When a is applied
in s, s transitions to s[[a]] = 〈s[[a]]p, s[[a]]n〉 where s[[a]]p =
sp \ del(a) ∪ add(a) and s[[a]]n is a value assignment such
that s[[a]][v] = ξ[s] if v ∈ lhs(a) and s[[a]][v] = s[v] if v /∈
lhs(a). For action a, we assume that add(a) ∩ del(a) = ∅
and numeric variable v is changed by at most one effect in
num(a). An s-plan is a sequence of actions which can be
sequentially applied from s to make s transition to a goal
state. A solution for a numeric planning task is an sI -plan,
and an sI -plan is called a plan for the numeric planning task.
The cost of s-plan π = 〈a1, ..., an〉 is defined as cost(π) =
cost(a1)+ ...+ cost(an). Given a numeric planning task, an

optimal planning problem is to find an optimal plan, a plan
for the task which minimizes the cost.

An effect (v := ξ) is called a simple effect ifN (ξ) = {v}
and kv,av = 1, i.e., ξ = v + kv,a. We denote a set of sim-
ple effects of a by nums(a) and a set of actions which have
simple effects on v by se(v). In contrast, we call the other
effects linear effects. We denote a set of linear effects of a
by numl(a) and a set of actions which have linear effects on
v by le(v). We define lhsl(a) = {v | (v := ξ) ∈ numl(a)}
and rhsl(a) = {v | (u := ξ) ∈ numl(a), v ∈ N (ξ)}.

If N = ∅ in a planning task, it is called a classical plan-
ning task. Particularly in the formalism used in this paper,
the classical planning task is called a STRIPS task (Fikes
and Nilsson 1971). If all actions have only simple effects,
the task is a numeric planning task with simple conditions
(SCT). If at least one action has linear effects, the task is a
linear numeric planning task (LT).

A heuristic h is a function which maps state s to heuristic
value h(s) ∈ R+

0 . h is admissible if h(s) is less than or equal
to the optimal cost of s-plan for all state s.

Background
State-Change IP Model for STRIPS
In the state-change IP model for STRIPS (Vossen et al.
1999), starting from the initial state, a state is changed by
actions applied at multiple time steps, and decision variable
xa,t indicates whether a is applied at time step t. Let st de-
note the state at time step t. s0 = sI . a is applied in st if
xa,t = 1, and st transitions to st+1. The objective is to min-
imize the cost of the plan as follows:

min
∑
t∈T

∑
a∈A

cost(a)xa,t (1)

s.t. xa,t ∈ {0, 1} ∀a ∈ A,∀t ∈ T (2)

where T is a set of time steps defined as T = {0, ..., T − 1}
and T is the time horizon. Multiple actions can be applied at
the same time step if the actions do not interfere, i.e., the or-
der in which actions are applied does not affect the result. In
other words, a and b can be applied in s at the same time step
if s[[a]] |= pre(b), s[[b]] |= pre(a), and s[[a]][[b]] = s[[b]][[a]].
This is ensured by the following constraint:

xa,t + xb,t ≤ 1 ∀a ∈ A,∀b ∈ interfering(a),∀t ∈ T
(3)

where
interfering(a) = {b ∈ A \ {a}

| del(a) ∩ (add(b) ∪ prep(b)) 6= ∅}.
(4)

There are additional decision variables representing the
change of propositions.

yap,t ∈ {0, 1} ∀p ∈ Fp,∀t ∈ T̃ (5)

ypap,t ∈ {0, 1} ∀p ∈ Fp,∀t ∈ T̃ (6)

ypdp,t ∈ {0, 1} ∀p ∈ Fp,∀t ∈ T̃ (7)

ymp,t ∈ {0, 1} ∀p ∈ Fp,∀t ∈ T̃ (8)

where T̃ = T ∪ {T}. The constraints over these variables
are defined as follows:

yap,0 = 1 ∀p ∈ sI (9)

yap,0 = 0 ∀p ∈ Fp \ sI (10)

yap,T + ypap,T + ymp,T ≥ 1 ∀p ∈ Gp (11)∑
a∈pnd(p)

xa,t ≥ ypap,t+1 ∀p ∈ Fp,∀t ∈ T

(12)∑
a∈anp(p)

xa,t ≥ yap,t+1 ∀p ∈ Fp,∀t ∈ T

(13)∑
a∈pd(p)

xa,t = ypdp,t+1 ∀p ∈ Fp,∀t ∈ T

(14)

xa,t ≤ ypap,t+1 ∀p ∈ Fp,∀a ∈ pnd(p),∀t ∈ T
(15)

xa,t ≤ yap,t+1 ∀p ∈ Fp,∀a ∈ anp(p),∀t ∈ T
(16)

yap,t + ymp,t + ypdp,t ≤ 1 ∀p ∈ Fp,∀t ∈ T̃ (17)

ypap,t + ymp,t + ypdp,t ≤ 1 ∀p ∈ Fp,∀t ∈ T̃ (18)

ypap,t+1 + ymp,t+1 + ypdp,t+1 ≤ yap,t + ypap,t + ymp,t

∀p ∈ Fp,∀t ∈ T
(19)

where

pnd(p) = {a ∈ A | p ∈ pre(a), p /∈ del(a)}
anp(p) = {a ∈ A | p /∈ pre(a), p ∈ add(a)}
pd(p) = {a ∈ A | p ∈ pre(a), p ∈ del(a)}.

With Constraints (12) and (15), ypap,t indicates that p was re-
quired as a precondition by actions applied at t − 1 and re-
mains in st. With Constraints (13) and (16), yap,t indicates
that p ∈ st because p is added by actions applied at t − 1.
With Constraint (14), ypdp,t indicates that p ∈ st−1 but p /∈ st
because p is deleted by an action applied at t − 1. ymp,t in-
dicates that p existed in st−1, was not required by actions
applied at t − 1, and remains in st. Constraint (19) ensures
that the propositions required to be satisfied in st are satis-
fied; p is required in st if either of ypap,t+1, ymp,t+1, or ypdp,t+1 is
equal to 1, and p is satisfied in st if either of yap,t, y

pa
p,t, or ymp,t

is equal to 1. Constraints (9) and (10) specify the initial state,
and Constraint (11) ensures that the goal condition is satis-
fied in sT . Constraints (17) and (18) prevent applications of
interfering actions at the same time step with Constraints (3).

Branch-and-Cut for STRIPS
A branch-and-cut framework for classical planning (van den
Briel, Vossen, and Kambhampati 2005) was originally pro-
posed for SAS+ (Bäckström and Nebel 1995), another for-
malism of classical planning. Since we use STRIPS formal-
ism, we adapt the framework to STRIPS. In the state-change

IP model, if action a is applied at t and p ∈ prep(a), action b
with p ∈ del(b) cannot be applied at t. However, in fact, we
can apply b after a at t. Similarly, if p is not included in st
but action b with p ∈ add(b) is applied at t, a can be applied
after b. Such precedence relations between actions are rep-
resented by action precedence graph 〈V,E〉 where the set of
nodes is defined as V = A and the set of edges is defined as
E ={(a, b) | p ∈ Fp, a ∈ pnd(p), b ∈ pd(p)}

∪ {(a, b) | p ∈ Fp, a ∈ anp(p), b ∈ pnd(p)}. (20)

If actions do not form cycles in 〈V,E〉, they can be applied
at the same time step in some order. This can be ensured by
the following cycle elimination constraints:∑

a∈V (C)

xa,t ≤ |V (C)| − 1

for all cycles C in 〈V,E〉,∀t ∈ T
(21)

where V (C) is the set of nodes in cycleC. Since the number
of cycles is exponential in |V |, these constraints are lazily
generated by a branch-and-cut algorithm. Given a solution,
cycles are extracted by the following callback procedure
(van den Briel, Vossen, and Kambhampati 2005):

1. Determine the subgraph 〈Vt, Et〉 for time step t consisting
of all actions with xa,t > 0.

2. For each edge (a, b) ∈ Et, define the weight ca,b :=
xa,t + xb,t − 1.

3. Using the Floyd-Warshall algorithm, determine the short-
est path distance da,b for each pair of nodes a ∈ Vt and
b ∈ Vt \ {a} using weight c̄a,b := 1− ca,b.

4. If da,b − cb,a < 0, there is a cycle containing (b, a).
With the cycle elimination constraints, Constraint (15) is re-
placed with Constraint (22), which allows that precondition
p of action a applied at t is added to or deleted from st by
other actions applied at t.

xa,t ≤ ypap,t+1 + yap,t+1 + ypdp,t+1

∀p ∈ Fp,∀a ∈ pnd(p),∀t ∈ T .
(22)

The definition of interfering(a) in Equation (4) is also re-
laxed as follows:

interfering(a) = {b ∈ A\{a} | del(a)∩add(b) 6= ∅}. (23)
This modification increases the number of pairs of actions
that can be applied at the same time step and possibly re-
duces the number of time steps required to find a plan.

The branch-and-cut approach is similar to ∃-step encod-
ing of planning as satisfiability (Wehrle and Rintanen 2007),
where interfering actions can be applied at the same time
step if they can be applied in some order. In ∃-step encoding,
interfering actions are represented by the disabling-enabling
graph, a directed graph that is similar to the action prece-
dence graph but considers only interference in reachable
states. While the branch-and-cut approach prohibits the si-
multaneous application of actions that form a cycle in the
action precedence graph, ∃-step encoding allows it by im-
posing a fixed ordering on actions in all strongly connected
components of the disabling-enabling graph. Using a fixed
ordering in an IP model is an interesting topic for future
work.

MILP Model for Numeric Planning
Recent research has extended the state-change IP model for
STRIPS to numeric planning (Piacentini et al. 2018a). The
model has additional decision variable yvt , which represents
the value of v ∈ N in st.

yvt ∈ Q ∀v ∈ N ,∀t ∈ T̃ . (24)

For the numeric variables in the initial state,

yv0 = sI [v] ∀v ∈ N . (25)

For the numeric goal conditions,∑
v∈N

wψv y
v
T + wψ0 D 0 ∀ψ ∈ Gn. (26)

For the numeric preconditions of actions,∑
v∈N (ψ)

wψv y
v
t + wψ0 D mψ,t(1− xa,t)

∀a ∈ A,∀ψ ∈ pren(a),∀t ∈ T
(27)

where mψ,t is the lower bound of the left-hand side com-
puted by Equation (34). For the numeric effects,

yvt+1 ≤ yvt +
∑

a∈se(v)

kv,axa,t +M step
v,t+1

∑
a∈le(v)

xa,t

∀v ∈ N ,∀t ∈ T
(28)

yvt+1 ≥ yvt +
∑

a∈se(v)

kv,axa,t +mstep
v,t+1

∑
a∈le(v)

xa,t

∀v ∈ N ,∀t ∈ T
(29)

yvt+1 ≤ kv,a +
∑

u∈N (ξ)

kv,au yut +Ma
v,t+1(1− xa,t)

∀a ∈ A,∀(v := ξ) ∈ numl(a),∀t ∈ T
(30)

yvt+1 ≥ kv,a +
∑

u∈N (ξ)

kv,au yut +ma
v,t+1(1− xa,t)

∀a ∈ A,∀(v := ξ) ∈ numl(a),∀t ∈ T
(31)

where M step
v,t+1 and mstep

v,t+1 are upper and lower bounds
of yvt+1 − yvt computed by Equations (35) and (36), and
Ma
v,t+1 and ma

v,t+1 are upper and lower bounds of yvt+1 −
kv,a −

∑
u∈N (ξ) k

v,a
u yut computed by Equations (40) and

(41). Constraints (28) and (29) correspond to simple effects,
and Constraints (30) and (31) correspond to linear effects.
Considering numeric preconditions and effects, Equation (4)
is modified as follows:

interfering(a)

= {b ∈ A \ {a} | del(a) ∩ (add(b) ∪ prep(b)) 6= ∅}
∪ {b ∈ A \ {a} | ∃v ∈ lhs(a), v ∈ pren(b)}
∪ {b ∈ A \ {a} | lhs(a) ∩ rhsl(b) 6= ∅}.

(32)

Equation (32) is used in the original paper (Piacentini et al.
2018a) but is unnecessarily strict; when b is applicable in s,
if a has only simple effects on ∀v ∈ pren(b) and the net

effects of a on ∀ψ ∈ pren(b) are positive, b is also applica-
ble in s[[a]]. Using this fact, we use the following equation
instead of Equation (32).

interfering(a)

= {b ∈ A \ {a} | del(a) ∩ (add(b) ∪ prep(b)) 6= ∅}
∪ {b ∈ A \ {a} | ∃ψ ∈ pren(b), net(a, ψ) < 0}
∪ {b ∈ A \ {a} | lhs(a) ∩ rhsl(b) 6= ∅}

(33)

where net(a, ψ) =
∑
v∈N (ψ) w

ψ
v k

v
a +wψ0 if a has only sim-

ple effects on N (ψ), net(a, ψ) = 0 if a has no effect on
N (ψ), and net(a, ψ) = −∞ otherwise since linear effects
change values depending on the state.

Big-M Values Let Mv,t and mv,t be upper and lower
bounds of yvt . The big-M value in Constraint (27), mψ,t, is
computed as follows:

mψ,t =
∑

v∈N (ψ)−

wψvMv,t +
∑

v∈N (ψ)+

wψvmv,t + wψ0 (34)

where N (ψ)+ = {v ∈ N (ψ) | wψv > 0} and N (ψ)− =

{v ∈ N (ψ) | wψv < 0}. M step
v,t and mstep

v,t in Constraints (28)
and (29) are computed as follows:

M step
v,t = Mv,t −mv,t−1 (35)

mstep
v,t = mv,t −Mv,t−1. (36)

Finally,Ma
v,t andma

v,t in Constraints (30) and (31) are com-
puted as follows:

Ma
v,t =Mv,t − kv,a −

∑
u∈N (ξ)−

kv,au Mu,t−1

−
∑

u∈N (ξ)+

kv,au mu,t−1
(37)

ma
v,t =mv,t − kv,a −

∑
u∈N (ξ)+

kv,au Mu,t−1

−
∑

u∈N (ξ)−

kv,au mu,t−1
(38)

where N (ξ)+ = {u ∈ N (ξ) | kv,au > 0} and N (ξ)− =
{u ∈ N (ξ) | kv,au < 0}. Mv,t and mv,t are computed

through the following equations:

Mv,0 = mv,0 = sI [v] (39)

Mv,t = max

Mv,t−1 +
∑

a∈se+(v)

kv,a, max
a∈le(v)

al(v, t)


(40)

mv,t = min

mv,t−1 +
∑

a∈se−(v)

kv,a, min
a∈le(v)

al(v, t)


(41)

al(v, t) =
∑

u∈N (ξ)+

kv,au Mu,t−1 +
∑

u∈N (ξ)−

kv,au mu,t−1

(42)

al(v, t) =
∑

u∈N (ξ)+

kv,au mu,t−1 +
∑

u∈N (ξ)−

kv,au Mu,t−1

(43)

where se+(v) = {a ∈ se(v) | kv,a > 0} and se−(v) =
{a ∈ se(v) | kv,a < 0}.
Landmark Constraints A fact landmark is a proposition
that is added by all plans, and an action landmark is an action
that is applied by all plans (Hoffmann, Porteous, and Sebas-
tia 2004). Let FL be a set of fact landmarks and AL be a set
of action landmarks. In the MILP compilation, the following
valid inequalities are used (Piacentini et al. 2018a).∑

t∈T̃

yap,t + ypap,t + ymp,t ≥ 1 ∀p ∈ FL (44)

∑
t∈T

xa,t ≥ 1 ∀a ∈ AL. (45)

We extract fact and action landmarks in SCTs using the al-
gorithm proposed by Scala et al. (2017). In LTs, we do not
use these constraints.

Relevance Constraints In STRIPS, action a is relevant if
∃p ∈ add(a), p ∈ Gp or ∃p ∈ prep(b) where b is a rel-
evant action (Imai and Fukunaga 2015). In numeric plan-
ning, in addition to the original condition, a is relevant if
∃ψ ∈ Gn : net(a, ψ) > 0, ∃ψ ∈ pren(b) : net(a, ψ) > 0,
∃v ∈ pren(b) : a ∈ le(v), or ∃v ∈ rhsl(b) : a ∈ se(v)∪le(v)
where b is a relevant action (Piacentini et al. 2018b). The
following valid equations are used in the MILP compilation
(Piacentini et al. 2018a).

xa,t = 0 ∀a ∈ A s.t. a is not relevant,∀t ∈ T . (46)

Iterative Time Horizon Allocation
To find an optimal plan, the iterative time horizon allocation
method is proposed (Piacentini et al. 2018a). Suppose that
plan π∗T is found with horizon T . If cost(π∗T) = l where
l is a known lower bound of the optimal cost, π∗T is op-
timal. Given admissible heuristic h, h(sI) can be used as
the lower bound. If cost(π∗T) ≤ T · mina∈A cost(a), π∗T is
optimal because the right-hand side is the lower bound of
the cost of plans with horizon T ′ ≥ T . Otherwise, when

mina∈A cost(a) > 0, solving the MILP model with hori-
zon T̂ = cost(π∗T)/mina∈A cost(a) gives us an optimal
plan since T̂ is the upper bound of time steps required by
an optimal plan. When solving the MILP model with T̂ , the
following additional constraints are added:∑

a∈A
xa,t ≤ 1 ∀t ∈ T (47)∑

a∈A
xa,t+1 ≤

∑
a∈A

xa,t ∀t ∈ T \ {T − 1}. (48)

The first constraint ensures that at most one action is ap-
plied at each time step, and the second constraint breaks the
symmetries caused by time steps where no action is applied.
Note that this method is not applicable in planning tasks with
mina∈A cost(a) = 0. The MILP based method starts from
some T , increments T by one if the model is infeasible, uses
T̂ if a plan is found but its optimality is not guaranteed, and
terminates when the optimal plan is found.

Branch-and-Cut for Numeric Planning
Following the branch-and-cut framework for classical plan-
ning, we introduce precedence relations between actions us-
ing graph 〈V,E〉. Suppose that 〈V,E〉 is given. Even when a
is not applicable in st, it may be applicable at t if b is applied
at t such that (b, a) ∈ E and ∃ψ ∈ pren(a), net(b, ψ) > 0.
However, even when a is applicable in st, it may not be ap-
plicable at t if b is applied at t such that (b, a) ∈ E and
∃ψ ∈ pren(a), net(b, ψ) < 0. Therefore, Constraint (27) is
modified as follows:∑

v∈N (ψ)

wψv y
v
t + wψ0 +

∑
(b,a)∈E

net(b, ψ)xb,t

D (mψ,t +
∑

(b,a)∈E:net(b,ψ)<0

net(b, ψ))(1− xa,t)

∀ψ ∈ pren(a),∀t ∈ T .

(49)

The left-hand side is now considering effects of b, and the
big-M value in the right-hand side is modified accordingly.
Similarly, the linear effects of a at time step t must consider
the change of values of ∀v ∈ rhsl(a) within t caused by
simple effects of actions b with (b, a) ∈ E. Constraints (30)
and (31) are modified as follows:

yvt+1 ≤ kv,a +
∑

u∈N (ξ)

kv,au (yut +
∑

b∈se(u):(b,a)∈E

ku,axb,t)

+Ma
v,t+1(1− xa,t)

∀a ∈ A,∀(v := ξ) ∈ numl(a),∀t ∈ T

(50)

yvt+1 ≥ kv,a +
∑

u∈N (ξ)

kv,au (yut +
∑

b∈se(u):(b,a)∈E

ku,axb,t)

+ma
v,t+1(1− xa,t)

∀a ∈ A,∀(v := ξ) ∈ numl(a),∀t ∈ T
(51)

where big-M values are also modified as

Ma
v,t =Mv,t − kv,a

−
∑

u∈N (ξ)−

kv,au (Mu,t−1 +
∑

b∈se+(u):(b,a)∈E

ku,b)

−
∑

u∈N (ξ)+

kv,au (mu,t−1 +
∑

b∈se−(u):(b,a)∈E

ku,b)

(52)
ma
v,t =mv,t − kv,a

−
∑

u∈N (ξ)+

kv,au (Mu,t−1 +
∑

b∈se+(u):(b,a)∈E

ku,b)

−
∑

u∈N (ξ)−

kv,au (mu,t−1 +
∑

b∈se−(u):(b,a)

ku,b)

(53)

In addition, Equations (42) and (43) are modified as follows:

al(v, t) =
∑

u∈N (ξ)+

kv,au (Mu,t−1 +
∑

b∈se+(u):(b,a)∈E

ku,b)

+
∑

u∈N (ξ)−

kv,au (mu,t−1 +
∑

b∈se−(u):(b,a)∈E

ku,b)

(54)

al(v, t) =
∑

u∈N (ξ)+

kv,au (mu,t−1 +
∑

b∈se−(u):(b,a)∈E

ku,b)

+
∑

u∈N (ξ)−

kv,au (Mu,t−1 +
∑

b∈se+(u):(b,a)∈E

ku,b).

(55)

Now we define the actual precedence relations. If b is ap-
plied before a and b has linear effects on the preconditions
of a, whether a is applicable or not cannot be represented
by Constraint (49) because the linear effects depend on the
state in which b is applied. Therefore, such a b must be ap-
plied after a. If a is applied before b and a has simple effects
on variables in rhsl(b) ∪ lhsl(b), the value of v ∈ lhsl(b) at
t+1 is represented by yvt+1 in Constraints (50) and (51); if a
changes variables in rhsl(b), the change is considered in the
constraints. If a changes v, the value of v is just overwritten
by b. In contrast, if such an a is applied after b, yvt+1 may
contradict the actual value of v at t+1. Therefore, such an a
must be applied before b. Based on the above observations,
we first define a subset of precedence relations E′ ⊆ E.

E′ = {(a, b) | p ∈ Fp, a ∈ pnd(p), b ∈ pd(p)}
∪ {(a, b) | p ∈ Fp, a ∈ anp(p), b ∈ pnd(p)}
∪ {(a, b) | a ∈ A, v ∈ pren(a), b ∈ le(v) \ {a}}
∪ {(a, b) | v ∈ N , a ∈ se(v), b ∈ A \ {a}, v ∈ lhsl(b)}
∪ {(a, b) | v ∈ N , a ∈ se(v), b ∈ A \ {a}, v ∈ rhsl(b)}.

(56)

Suppose that (a, b) /∈ E′ and (b, a) /∈ E′ for a, b ∈ A.
When net(b, ψ) ≥ 0 for all ψ ∈ pren(a) and s |= pre(a),
applying a after b is possible since s[[b]] always satisfies
∀ψ ∈ pren(a). Conversely, when net(b, ψ) < 0 for some

CSC CSC
cut

Objective (1) (1)
Variables (2), (5)-(8), (24) (2), (5)-(8), (24)

sI (9), (10), (25) (9), (10), (25)
G (11), (26) (11), (26)

pre (12), (15)*, (27)* (12), (22)*, (49)*
eff (13), (14), (16)-(19), (13),(14), (16)-(19)

(28), (29), (30)*, (31)* (28), (29), (50)*, (51)*
interfering (3), (33)* (3), (58)*

Big-M (34)–(36), (37)*, (38)* (34)–(36), (52)*, (53)*,
(39)-(41), (42)*, (43)* (39)-(41), (54)*, (55)*

Valid (44)-(46) (44)-(46)
T (47), (48) (47), (48)
E - (21)*, (57)*

Table 2: Constraints used in the MILP based methods. Con-
straints not included in the other model are marked with ‘*’.

ψ ∈ pren(a) and s |= pre(a), applying a after b is impossi-
ble if s[[b]] does not satisfy ψ. Therefore, when net(b, ψ) <
0, we add edge (a, b) to E so that b is applied after a.

E = E′ ∪ {(a, b) |a, b ∈ A, ψ ∈ pren(a), net(b, ψ) < 0,

(a, b) /∈ E′, (b, a) /∈ E′, a 6= b}
(57)

Now, Equation (33) is relaxed as follows:

interfering(a) ={b ∈ A \ {a} | del(a) ∩ add(b) 6= ∅}
∪ {b ∈ A \ {a} | lhsl(a) ∩ rhsl(b) 6= ∅}.

(58)

Preprocessing Action Precedence
In the branch-and-cut algorithm, each time a solution is
found, the callback procedure to find cycles in graph 〈V,E〉
is executed. However, if the graph has no cycle, we can skip
the callback procedure and just use a branch-and-bound al-
gorithm. We can check if the graph has cycles using topolog-
ical sorting. We adopt the following procedure before solv-
ing the task:

1. ∀(a, b) ∈ E, if (b, a) ∈ E, remove (a, b) and (b, a) from
E and update interfering(a) to interfering(a) ∪ {b} and
interfering(b) to interfering(b) ∪ {a}.

2. Execute topological sorting of 〈V,E〉. If there is no cycle,
disable the callback procedure.

In this procedure, we remove cycles formed by only two ac-
tions to increase the chance that there is no cycle.

Summary of the MILP Based Methods
We denote the baseline MILP based method proposed by
Piacentini et al. (2018a) byCSC and our MILP based method
using the branch-and-cut algorithm by CSC

cut . The constraints
used in the MILP based methods are summarized in Table 2.

Experimental Evaluation
Configurations of the MILP Based Methods
Both methods use the iterative time horizon allocation
method, and the delete relaxation heuristic hCIP (Piacentini

et al. 2018b) is used to compute a lower bound of the cost of
an optimal plan. hCIP ignores numeric conditions in LTs since
they only support SCTs. Since computing hCIP(sI) generates
a relaxed plan, the length of the relaxed plan is used as the
initial time horizon. These are the same settings used in Pi-
acentini et al. (2018a). If the length of the relaxed plan is
zero, we use T = 1 as the initial time horizon. In CSC

cut , the
callback procedure is executed at every node in the branch-
and-bound tree. If one cycle is found at some time step, cy-
cle elimination constraints are added for all time steps, and
the callback procedure is terminated. Therefore, at most one
cycle is found at each execution of the callback procedure.

Experimental Settings
We implemented the MILP based methods on top of Nu-
meric Fast Downward (NFD) (Aldinger and Nebel 2017)2

using C++11 with GCC 7.5.0 and Gurobi 9.1.1 on Ubuntu
18.04. However, for the heuristics, we use CPLEX 12.10
since Gurobi is not supported by the implementations of the
heuristics in NFD. All experiments are run on an Intel(R)
Xeon(R) CPU E5-2620 @2.00GHz processor. We use a 30
minutes time limit and 4GB memory limit for each instance.

Numeric planning domains in SCTs and LTs are taken
from the literature (Scala, Haslum, and Thiébaux 2016;
Scala et al. 2017, 2020a; Li et al. 2018) and IPC 3 remov-
ing duplicate instances. The instances in SCTs are basically
the same as those used by Kuroiwa et al. (2021), but we use
the unit cost versions of DEPOTS, ROVERS, and SATELLITE
since they have actions with the costs of zero, which are not
supported by the iterative time horizon allocation method.
We also exclude FARMLAND-SAT since NFD runs out of
memory when preprocessing the PDDL files.

Comparison of the MILP Based Methods
We show the comparison of the two MILP based meth-
ods in Table 3. ‘C’ is coverage, the number of solved in-
stances within the limits, ‘Time’ is the time to find the op-
timal plan, ‘I’ is the number of iterations used by the iter-
ative time horizon allocation method, and ‘Constraints’ is
the number of constraints in the model used in the last iter-
ation. ‘Cycles’ is the number of eliminated cycles in 〈V,E〉
by the branch-and-cut algorithm, and ‘-’ indicates that there
are no cycles in the domain. In SCTs, only three domains
have cycles in 〈V,E〉. In LTs, there are no cycles at all. Csc

cut
has fewer constraints than Csc in the majority of domains.
In 7 domains, Csc

cut reduces the number of iterations com-
pared to Csc, which means that Csc

cut finds a feasible solution
with fewer time steps. Among these domains, Csc

cut achieves
speed up in GARDENING-SAT, FO-COUNTERS-INV, and
FO-COUNTERS-RND and solves two more instance in FO-
COUNTERS-RND.

Comparison with Other Approaches
Next, we compare the MILP based methods with other ap-
proaches. In SCTs, we evaluate A* search (Hart, Nilsson,

2https://github.com/Kurorororo/numeric-fast-downward

CSC CSC
cut

C T I Constraints C T I Constraints Cycles
SMALLCOUNTERS (8) 8 0.07 1.00 6721.00 8 0.07 1.00 6721.00 -
COUNTERS (8) 8 373.24 1.00 681677.00 8 346.42 1.00 681677.00 -
COUNTERS-INV (11) 11 19.81 1.00 769539.36 11 19.12 1.00 769539.36 -
COUNTERS-RND (33) 33 13.13 1.00 516883.67 33 12.94 1.00 516883.67 -
FARMLAND (30) 30 3.46 1.00 136138.67 30 3.50 1.00 136138.67 -
GARDENING (63) 63 60.43 2.60 15596.08 63 64.06 2.08 14871.95 -
GARDENING-SAT (51) 12 393.25 2.50 33032.58 12 350.91 1.92 31137.00 -
SAILING (40) 38 82.52 1.00 94052.08 38 26.15 1.00 87346.08 -
SAILING-SAT (40) 8 8.23 1.00 64931.38 8 9.33 1.00 60346.38 -
DEPOTS (20) 2 128.87 1.50 56808.00 2 165.85 1.50 32523.00 0.00
ROVERS (20) 7 209.28 1.17 55902.17 6 136.77 1.17 48910.83 6.67
SATELLITE (20) 3 196.74 3.67 44481.33 3 592.31 2.00 41287.33 32.33
TOTAL (344) 223 - - - 222 - - - -
FO-COUNTERS (20) 3 2.37 3.67 2287.67 3 3.15 2.67 2215.33 -
FO-COUNTERS-INV (20) 2 0.93 4.50 2108.00 2 0.38 3.00 1933.00 -
FO-COUNTERS-RND (60) 11 2.03 4.36 4140.64 13 1.90 2.91 4067.18 -
FO-FARMLAND (50) 4 247.06 13.00 2245.00 4 271.49 9.50 2484.75 -
FO-SAILING (20) 1 - - - 0 - - - -
TOTAL (170) 21 - - - 22 - - - -

Table 3: Comparison of the MILP models. Coverage (‘C’), the time (‘T’) in seconds, the number of iterations (‘I’), and the
number of constraints (‘Constraints’) are shown. ‘T’, ‘I’, and ‘Constraints’ are averaged over instances solved by the both
methods. ‘Cycles’ is the number of eliminated cycles and averaged over instances solved by CSC

cut . ‘-’ in ‘Cycles’ indicates that
the domain has no cycle.

hC
IP hLM-cut,SEQ

LP CSC CSC
cut

C T C T C T C T
SMALLCOUNTERS (8) 8 1.56 8 0.04 8 0.07 8 0.07
COUNTERS (8) 4 610.01 8 2.78 8 15.74 8 16.02
COUNTERS-INV (11) 6 250.83 11 1.56 11 3.16 11 3.05
COUNTERS-RND (33) 21 360.62 33 1.91 33 3.05 33 3.02
FARMLAND (30) 30 43.01 30 1.50 30 3.46 30 3.50
GARDENING (63) 63 12.26 63 0.31 63 60.43 63 64.06
GARDENING-SAT (51) 14 51.05 15 1.05 12 393.25 12 350.91
SAILING (40) 40 41.52 40 0.58 38 82.52 38 26.15
SAILING-SAT (40) 24 33.17 12 0.67 8 8.23 8 9.33
DEPOTS (20) 2 47.28 7 0.15 2 128.87 2 165.85
ROVERS (20) 8 261.24 7 130.03 7 209.28 6 136.77
SATELLITE (20) 3 8.21 3 1.43 3 287.75 3 857.27
TOTAL (344) 223 - 237 - 223 - 222 -

Table 4: Results on SCTs. Coverage (‘C’) and the time (‘T’) in seconds are shown. ‘T’ is averaged over instances solved by all
methods.

hblind hC
IP hiimax hirmax OMTPlan CSC CSC

cut
C T C T C T C T C T C T C T

FO-COUNTERS (20) 4 0.10 4 2.20 4 0.11 4 0.21 5 3.89 3 2.37 3 3.15
FO-COUNTERS-INV (20) 3 0.03 3 0.66 3 0.05 3 0.14 4 2.23 2 0.93 2 0.38
FO-COUNTERS-RND (60) 14 5.82 13 133.88 14 0.60 14 9.79 18 3.86 11 2.03 13 1.90
FO-FARMLAND (50) 14 0.03 12 1.06 16 0.06 14 0.09 2 147.45 4 8.74 4 9.00
FO-SAILING (20) 2 - 1 - 2 - 2 - 1 - 1 - 0 -
TOTAL (170) 37 - 33 - 39 - 37 - 30 - 21 - 22 -

Table 5: Results on LTs. Coverage (‘C’) and the time (‘T’) in seconds are shown. ‘T’ is averaged over instances solved by all
methods.

and Raphael 1968) with hCIP and hLM-cut,SEQ
LP , the operator-

counting heuristic with the LM-cut and state-equation con-
straints (Kuroiwa et al. 2021). These are the state-of-the-art

admissible heuristics in SCTs. In LTs, we evaluate A* search
with the blind heuristic which returns zero if a state is a
goal state and mina∈A cost(a) otherwise, hCIP ignoring nu-

meric conditions, the interval-based max heuristic (hiimax)
(Aldinger and Nebel 2017), and the repetition-based max
heuristic (hirmax) (Aldinger and Nebel 2017). To our knowl-
edge, these are the only existing admissible heuristics in LTs.
In addition, we evaluate OMTPlan (Leofante et al. 2020),
a planner for optimal numeric planning based on optimiza-
tion modulo theories in LTs. The results in SCTs and LTs
are shown in Table 4 and 5, respectively. In both classes
of numeric planning tasks, the heuristic search algorithms
clearly outperform the MILP based methods. In LTs, OMT-
Plan solves more instances than the MILP based methods in
domains other than FO-FARMLAND.

Conclusion
In this paper, we propose a novel MILP compilation of nu-
meric planning using a branch-and-cut algorithm. In the ex-
perimental evaluation, the new MILP based method finds the
optimal solution faster than the existing MILP based method
in some domains and solves more instances in one domain
of linear numeric planning tasks. However, the number of
solved instances is not increased in any domain of numeric
planning tasks with simple conditions. Compared with other
approaches, the MILP based methods do not solve more in-
stances than A* with admissible heuristics in any domain.

Developing more competitive MILP compilations is fu-
ture work. Nevertheless, the performance may be improved
without effort in future since the MILP based methods can
benefit from the progress on the off-the-shelf solvers. In ad-
dition, better admissible heuristics will improve the perfor-
mance of the iterative time horizon allocation method used
in the MILP based methods by providing stronger lower
bounds of the time horizon. Pursuing better MILP compi-
lations of planning tasks has an important meaning to the
planning community even if they are not competitive with
other approaches for now.

References
Aldinger, J.; and Nebel, B. 2017. Interval Based Relaxation
Heuristics for Numeric Planning with Action Costs. In KI
2017: Advances in Artificial Intelligence, 15–28.

Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Comput. Intell. 11: 625–656.

Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artif. Intell. 129(1-2): 5–33.

Fikes, R.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. In Proc. IJCAI, 608–620.

Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. J. Artif.
Intell. Res. 20: 61–124.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Trans. Syst. Sci. Cybern. 4(2): 100–107.

Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating ”Ignoring Delete Lists” to Numeric State Variables. J.
Artif. Intell. Res. 20: 291–341.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. J. Artif. In-
tell. Res. 14: 253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. J. Artif. Intell. Res. 22: 215–278.
Imai, T.; and Fukunaga, A. 2015. On a Practical, Integer-
Linear Programming Model for Delete-Free Tasks and its
Use as a Heuristic for Cost-Optimal Planning. J. Artif. Intell.
Res. 54: 631–677.
Kuroiwa, R.; Shleyfman, A.; Piacentini, C.; Castro, M. P.;
and Beck, J. C. 2021. LM-cut and Operator Counting
Heuristics for Optimal Numeric Planning with Simple Con-
ditions. In Proc. ICAPS. 210–218.
Leofante, F.; Giunchiglia, E.; Ábrahám, E.; and Tacchella,
A. 2020. Optimal Planning Modulo Theories. In Proc. IJ-
CAI, 4128–4134.
Li, D.; Scala, E.; Haslum, P.; and Bogomolov, S. 2018.
Effect-Abstraction Based Relaxation for Linear Numeric
Planning. In Proc. IJCAI, 4787–4793.
Piacentini, C.; Castro, M. P.; Ciré, A. A.; and Beck, J. C.
2018a. Compiling Optimal Numeric Planning to Mixed In-
teger Linear Programming. In Proc. ICAPS, 383–387.
Piacentini, C.; Castro, M. P.; Ciré, A. A.; and Beck, J. C.
2018b. Linear and Integer Programming-Based Heuristics
for Cost-Optimal Numeric Planning. In Proc. AAAI, 6254–
6261.
Scala, E.; Haslum, P.; Magazzeni, D.; and Thiébaux, S.
2017. Landmarks for Numeric Planning Problems. In Proc.
IJCAI, 4384–4390.
Scala, E.; Haslum, P.; and Thiébaux, S. 2016. Heuristics for
Numeric Planning via Subgoaling. In Proc. IJCAI, 3228–
3234.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramı́rez, M. 2016.
Interval-Based Relaxation for General Numeric Planning. In
Proc. ECAI, 655–663.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramı́rez, M. 2020a.
Subgoaling Techniques for Satisficing and Optimal Numeric
Planning. J. Artif. Intell. Res. 68: 691–752.
Scala, E.; Saetti, A.; Serina, I.; and Gerevini, A. E.
2020b. Search-Guidance Mechanisms for Numeric Planning
Through Subgoaling Relaxation. In Proc. ICAPS, 226–234.
Sebastiani, R.; and Tomasi, S. 2015. Optimization Modulo
Theories with Linear Rational Costs. ACM Trans. Comput.
Log. 16(2): 12:1–12:43.
van den Briel, M.; Vossen, T.; and Kambhampati, S. 2005.
Reviving Integer Programming Approaches for AI Planning:
A Branch-and-Cut Framework. In Proc. ICAPS, 310–319.
Vossen, T.; Ball, M. O.; Lotem, A.; and Nau, D. S. 1999. On
the Use of Integer Programming Models in AI Planning. In
Proc. IJCAI, 304–309.
Wehrle, M.; and Rintanen, J. 2007. Planning as Satisfiability
with Relaxed ∃-Step Plans. In AI 2007: Advances in Artifi-
cial Intelligence, 244–253.

