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Abstract

We introduce Argoverse 2 (AV2) — a collection of three datasets for perception and
forecasting research in the self-driving domain. The annotated Sensor Dataset con-
tains 1,000 sequences of multimodal data, encompassing high-resolution imagery
from seven ring cameras, and two stereo cameras in addition to lidar point clouds,
and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26
object categories, all of which are sufficiently-sampled to support training and
evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences
of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest
ever collection of lidar sensor data and supports self-supervised learning and the
emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset
contains 250,000 scenarios mined for interesting and challenging interactions be-
tween the autonomous vehicle and other actors in each local scene. Models are
tasked with the prediction of future motion for “scored actors" in each scenario
and are provided with track histories that capture object location, heading, velocity,
and category. In all three datasets, each scenario contains its own HD Map with 3D
lane and crosswalk geometry — sourced from data captured in six distinct cities.
We believe these datasets will support new and existing machine learning research
problems in ways that existing datasets do not. All datasets are released under the
CC BY-NC-SA 4.0 license.

1 Introduction
In order to achieve the goal of safe, reliable autonomous driving a litany of machine learning tasks
must be addressed, from stereo depth estimation to motion forecasting to 3D object detection. In recent
years, numerous high quality self-driving datasets have been released to support research into these and
other important machine learning tasks. Many datasets are annotated “sensor” datasets [4, 39, 34, 35,
21, 28, 16, 12, 36, 31] in the spirit of the influential KITTI dataset [15]. The Argoverse 3D Tracking
dataset [6] was the first such dataset with “HD maps” — maps containing lane-level geometry. Also
influential are self-driving “motion prediction” datasets [11, 19, 29, 4, 45] — containing abstracted
object tracks instead of raw sensor data — of which the Argoverse Motion Forecasting dataset [6]
was the first.

In the last two years, the Argoverse team has hosted six competitions on 3D tracking, stereo depth
estimation, and motion forecasting. We maintain evaluation servers and leaderboards for these tasks,
as well as 3D detection. The leaderboards collectively contain thousands of submissions from four
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hundred teams1. We also maintain the Argoverse API and have addressed more than one hundred
issues2. From these experiences we have formed the following guiding principles to guide the creation
of the next iteration of Argoverse datasets.

1. Bigger isn’t always better. Self-driving vehicles capture a flood of sensor data which is logistically
difficult to work with. Sensor datasets are several terabytes in size, even when compressed. If
standard benchmarks grow further, we risk alienating much of the academic community and
leaving progress to well-resourced industry groups. For this reason, we match but do not exceed
the scale of sensor data in nuScenes [4] and Waymo Open [39].

2. Make every instance count. Much of driving is boring. Datasets should focus on the difficult,
interesting scenarios where current forecasting and perception systems struggle. Therefore we
mine for especially crowded, dynamic, and kinematically unusual scenarios.

3. Diversity matters. Training on data from wintertime Detroit is not sufficient for detecting objects
in Miami — Miami has 15 times the frequency of motorcycles and mopeds. Behaviors differ
as well, so learned pedestrian motion behavior might not generalize. Accordingly, each of our
datasets are drawn from six diverse cities — Austin, Detroit, Miami, Palo Alto, Pittsburgh, and
Washington D.C. — and different seasons, as well, from snowy to sunny.

4. Map the world. HD maps are powerful priors for perception and forecasting. Learning-based
methods that found clever ways to encode map information [27] performed well in Argoverse
competitions. For this reason, we augment our HD map representation with 3D lane geometry,
paint markings, crosswalks, higher resolution ground height, and more.

5. Self-supervise. Other machine learning domains have seen enormous success from self-supervised
learning in recent years. Large-scale lidar data from dynamic scenes, paired with HD maps, could
lead to better representations than current supervised approaches. For this reason, we build the
largest dataset of lidar sensor data.

6. Fight the heavy tail. Passenger vehicles are common, and thus we can assess our forecasting
and detection accuracy for cars. However, with existing datasets, we cannot assess forecasting
accuracy for buses and motorcycles with their distinct behaviors, nor can we evaluate stroller and
wheel chair detection. Thus we introduce the largest taxonomy to date for sensor and forecasting
datasets, and we ensure enough samples of rare objects to train and evaluate models.

With these guidelines in mind we built the three Argoverse 2 (AV2) datasets. Below, we highlight
some of their contributions.

1. The 1,000 scenario Sensor dataset has the largest self-driving taxonomy to date – 30 categories.
26 categories contain at least 6,000 cuboids to enable diverse taxonomy training and testing. The
dataset also has stereo imagery, unlike recent self-driving datasets.

2. The 20,000 scenario Lidar dataset is the largest dataset for self-supervised learning on lidar. The
only similar dataset, concurrently developed ONCE [31], does not have HD maps.

3. The 250,000 scenario Motion Forecasting Dataset has the largest taxonomy – 5 types of dynamic
actors and 5 types of static actors – and covers the largest mapped area of any such dataset.

We believe these datasets will support research into problems such as 3D detection, 3D tracking,
monocular and stereo depth estimation, motion forecasting, visual odometry, pose estimation, lane
detection, map automation, self-supervised learning, structure from motion, scene flow, optical flow,
time to contact estimation, and point cloud forecasting.

2 Related Work
The last few years have seen rapid progress in self-driving perception and forecasting research,
catalyzed by many high quality datasets.

Sensor datasets and 3D Object Detection and Tracking. New sensor datasets for 3D object
detection [4, 39, 34, 35, 21, 28, 16, 12, 36, 31] have led to influential detection methods such as
anchor-based approaches like PointPillars [23], and more recent anchor-free approaches such as

1This count includes private submissions not posted to the public leaderboards.
2https://github.com/argoai/argoverse-api
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AFDet [14] and CenterPoint [44]. These methods have led to dramatic accuracy improvements on all
datasets. In turn, these improvements have made isolation of object-specific point clouds possible,
which has proven invaluable for offboard detection and tracking [37], and for simulation [8], which
previously required human-annotated 3D bounding boxes [30]. New approaches explore alternate
point cloud representations, such as range images [5, 2, 40]. Streaming perception [25, 18] introduces
a paradigm to explore the tradeoff between accuracy and latency. A detailed comparison between the
AV2 Sensor Dataset and recent 3D object detection datasets is provided in Table 1.

Motion Forecasting. For motion forecasting, the progress has been just as significant. A transition
to attention-based methods [24, 33, 32] has led to a variety of new vector-based representations for
map and trajectory data [13, 27]. New datasets have also paved the way for new algorithms, with
nuScenes [4], Lyft L5 [19], and the Waymo Open Motion Dataset [11] all releasing lane graphs
after they proved to be essential in Argoverse 1 [6]. Lyft also introduced traffic/speed control data,
while Waymo added crosswalk polygons, lane boundaries (with marking type), speed limits, and stop
signs to the map. More recently, Yandex has released the Shifts [29] dataset, which is the largest (by
scenario hours) collection of forecasting data available to date. Together, these datasets have enabled
exploration of multi-actor, long-range motion forecasting leveraging both static and dynamic maps.

Following upon the success of Argoverse 1.1, we position AV2 as a large-scale repository of high-
quality motion forecasting scenarios - with guarantees on data frequency (exactly 10 Hz) and diversity
(>2000 km of unique roadways covered across 6 cities). This is in contrast to nuScenes (reports data
at just 2 Hz) and Lyft (collected on a single 10 km segment of road), but is complementary to Waymo
Open Motion Dataset (employs a similar approach for scenario mining and data configuration).
Complementary datasets are essential for these safety critical problems as they provide opportunities
to evaluate generalization and explore transfer learning. To improve ease of use, we have also
designed AV2 to be widely accessible both in terms of data size and format — a detailed comparison
vs. other recent forecasting datasets is provided in Table 2.

Broader Problems of Perception for Self-Driving. Aside from the tasks of object detection
and motion forecasting, new, large-scale sensor datasets for self-driving present opportunities to
explore dozens of new problems for perception, especially those that can be potentially solved via
self-supervision. A number of new problems have been recently proposed; real-time 3D semantic
segmentation in video has received attention thanks to SemanticKITTI [1]. HD map automation
[46, 26] has received additional attention, along with 3D scene flow and pixel-level scene simulation
[43, 8]. Datasets exist with unique modalities such as thermal imagery [10, 9]. Our new Lidar Dataset
enables large-scale self-supervised training of new approaches for freespace forecasting [20] or point
cloud forecasting [41, 42].

3 The Argoverse 2 Datasets

3.1 Sensor Dataset

The Argoverse 2 Sensor Dataset is the successor to the Argoverse 1 3D Tracking Dataset. AV2 is
larger, with 1,000 scenes, up from 113 in Argoverse 1, but each AV2 scene is also richer – there
are 23x as many non-vehicle, non-pedestrian cuboids in AV2. The constituent scenarios in the
Argoverse 2 Sensor Dataset were manually selected by the authors to contain crowded scenes with
under-represented objects, noteworthy weather, and interesting behaviors, e.g. cut ins and jaywalking.
Each scenario is fifteen seconds. Table 1 compares the AV2 Sensor Dataset with a selection of
self-driving datasets. Figures 1, 2, and 3 plot how the scenarios of AV2 compare favorably to other
datasets in terms of annotation range, object diversity, object density, and scene dynamism.

The most similar sensor dataset to ours is the highly influential nuScenes [4] – both datasets have
1,000 scenarios and HD maps, although Argoverse is unique in having ground height maps. nuScenes
contains radar data while the AV2 contains stereo imagery. nuScenes has a large taxonomy – twenty-
three object categories of which ten have suitable data for training and evaluation. Our dataset
contains thirty object categories of which twenty-six are well sampled enough for training and
evaluation. nuScenes spans two cities while our proposed dataset spans six.

Sensor Suite. Lidar sweeps are collected at 10Hz, along with 20 fps imagery from 7 cameras
positioned to provide a fully panoramic field of view. In addition, camera intrinsics, extrinsics and
6-DOF ego-vehicle pose in a global coordinate system are provided. Lidar returns are captured by

3



Table 1: Comparison of the Argoverse 2 Sensor and Lidar datasets with other sensor datasets.
Name # Scenes Cities Lidar? # Cameras Stereo HD Maps? # Classes # Evaluated Classes

Argoverse 1 [6] 113 2 ✓ 7 ✓ ✓ 15 3
KITTI [15] 22 1 ✓ 2 ✓ 3 3
nuScenes [4] 1,000 2 ✓ 6 ✓ 23 10
ONCE [31] 581 – ✓ 7 5 3
Waymo Open [39] 1,150 3 ✓ 5 4 4

Argoverse 2 Sensor 1,000 6 ✓ 9 ✓ ✓ 30 26
Argoverse 2 Lidar 20,000 6 ✓ - ✓ - -
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Figure 1: Number of annotated 3D cuboids per category for Argoverse 1 3D Tracking, Argoverse
2 Sensor Dataset, nuScenes, ONCE, and Waymo Open. The nuScenes annotation rate is 2Hz,
compared to 10Hz for Argoverse, but that does not account for the relative increase in object diversity
in Argoverse 2.

two 32-beam lidars, spinning at 10Hz in the same direction, but separated in orientation by 180°.
The cameras trigger in-sync with both lidars, leading to a 20Hz frame-rate. The seven global shutter
cameras are synchronized to the lidar to have their exposure centered on the lidar sweeping through
their fields of view. In the Supplementary Material, we provide a a schematic figure illustrating the
car sensor suite and its coordinate frames.

Lidar synchronization accuracy. In AV2, we improve the synchronization of cameras and lidars
significantly over Argoverse 1. Our synchronization accuracy is within [−1.39, 1.39] ms, which
compares favorably to the Waymo Open Dataset, which is reported as [−6, 7] ms [39].

Annotations. The AV2 Sensor Dataset contains 10Hz 3D cuboid annotations for objects within our
30 class taxonomy (Figure 1). Cuboids have track identifiers that are consistent over time for the
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Figure 2: Left: Number of annotated 3D cuboids by range in the Argoverse 2 Sensor Dataset. About
14% of the Argoverse 2 cuboids are beyond 75 m – Waymo Open, nuScenes, and ONCE have less
than 1%. Right: Number of 3D cuboids per lidar frame. Argoverse 2 has an average of 75 3D
cuboids per lidar frame – Waymo Open has an average of 61, nuScenes 33, and ONCE 30.
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Figure 3: Left: Number of annotated categories per lidar frame in the Argoverse 2 Sensor Dataset.
Per scene, Argoverse 2 is about 2× more diverse than Argoverse 1 and 2.3× more diverse than
Waymo Open. Right: Speed distribution for the vehicle category. We consider only moving vehicles
with speeds greater than 0.5 m/s. Argoverse 2 has about 1.3× more moving vehicles than Waymo
Open. About 28% of the vehicles in Argoverse 2 are moving with an average speed of 7.27 m/s. We
did not compare against the ONCE dataset because it does not provide tracking information for the
3D cuboids.

same object instance. Objects are annotated if they are within the “region of interest” (ROI) – within
five meters of the mapped “driveable” area.

Privacy. All faces and license plates, whether inside vehicles or outside of the driveable area, are
blurred extensively to preserve privacy.

Sensor Dataset splits. We randomly partition the dataset with train, validation, and test splits of 700,
150, and 150 scenarios, respectively.

3.2 Lidar Dataset

The Argoverse 2 Lidar Dataset is intended to support research into self-supervised learning in the
lidar domain as well as point cloud forecasting [41, 42]. Because lidar data is more compact than
the full sensor suite, we can include far more scenarios – 20,000 instead of 1,000 – for roughly the
same space budget. The AV2 Lidar Dataset is mined with the same criteria as the Forecasting Dataset
(Section 3.3.2) to ensure that each scene is interesting. While the Lidar Dataset does not have 3D
object annotations, each scenario carries an HD map with rich, 3D information about the scene.

Our dataset is the largest such collection to date with 20,000 thirty second sequences. The only
similar dataset, concurrently released ONCE [31], contains 1M lidar frames compared to 6M lidar
frames in ours. Our dataset is sampled at 10Hz instead of 2Hz, as in ONCE, making our dataset
more suitable for point cloud forecasting or self-supervision tasks where point cloud evolution over
time is important.

Lidar Dataset splits. We randomly partition the dataset with train, validation, and test splits of
16,000, 2,000, and 2,000 scenarios, respectively.

3.3 Motion Forecasting Dataset

Motion forecasting addresses the problem of predicting future states (or occupancy maps) for dynamic
actors within a local environment. Some examples of relevant actors for autonomous driving include:
vehicles (both parked and moving), pedestrians, cyclists, scooters, and pets. Predicted futures
generated by a forecasting system are consumed as the primary inputs in motion planning, which
conditions trajectory selection on such forecasts. Generating these forecasts presents a complex,
multi-modal problem involving many diverse, partially-observed, and socially interacting agents.
However, by taking advantage of the ability to “self-label” data using observed ground truth futures,
motion forecasting becomes an ideal domain for application of machine learning.

Building upon the success of Argoverse 1, the Argoverse 2 Motion Forecasting dataset provides
an updated set of prediction scenarios collected from a self-driving fleet. The design decisions

3True if interesting scenarios/actors are mined after data collection, instead of taking all/random samples.
4As retrieved on Aug. 27, 2021.
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Table 2: Comparison between the Argoverse 2 Motion Forecasting dataset and other recent motion
forecasting datasets. Hyphens "-" indicate that attributes are either not applicable, or not available.

ARGOVERSE [6] INTER [45] LYFT [19] WAYMO [11] NUSCENES [4] YANDEX [29] OURS

# SCENARIOS 324k - 170k 104k 41k 600k 250k
# UNIQUE TRACKS 11.7M 40k 53.4M 7.6M - 17.4M 13.9M

AVERAGE TRACK LENGTH 2.48 s 19.8 s 1.8 s 7.04 s - - 5.16 s
TOTAL TIME 320 h 16.5 h 1118 h 574 h 5.5 h 1667 h 763 h

SCENARIO DURATION 5 s - 25 s 9.1 s 8 s 10 s 11 s
TEST FORECAST HORIZON 3 s 3 s 5 s 8 s 6 s 5 s 6 s

SAMPLING RATE 10 Hz 10 Hz 10 Hz 10 Hz 2 Hz 5 Hz 10 Hz
# CITIES 2 6 1 6 2 6 6

UNIQUE ROADWAYS 290 km 2 km 10 km 1750 km - - 2220 km
AVG. # TRACKS PER SCENARIO 50 - 79 - 75 29 73

# EVALUATED OBJECT CATEGORIES 1 1 3 3 1 2 5
MULTI-AGENT EVALUATION × ✓ ✓ ✓ × ✓ ✓

MINED FOR INTERESTINGNESS3 ✓ × - ✓ × × ✓
VECTOR MAP ✓ × × ✓ ✓ × ✓

DOWNLOAD SIZE 4.8 GB - 22 GB 1.4 TB 48 GB 120 GB 32 GB
# PUBLIC LEADERBOARD ENTRIES4 194 - 935 23 18 3 -

enumerated below capture the collective lessons learned from both our internal research/development,
as well as feedback from more than 2,700 submissions by nearly 260 unique teams5 across 3
competitions [38].

1. Motion forecasting is a safety critical system in a long-tailed domain. Consequently, our
dataset is biased towards diverse and interesting scenarios containing different types of focal
agents (see section 3.3.2). Our goal is to encourage the development of methods that ensure safety
during tail events, rather than to optimize the expected performance on “easy miles”.

2. There is a “Goldilocks zone" of task difficulty. Performance on the Argoverse 1 test set has
begun to plateau, as shown in the supplemental. Argoverse 2 is designed to increase prediction
difficulty incrementally, spurring productive focused research for the next few years. These
changes are intended to incentivize methods that perform well on extended forecast horizons (3 s
-> 6 s), handle multiple types of dynamic objects (1 -> 5), and ensure safety in scenarios from the
long tail. Future Argoverse releases could continue to increase the problem difficulty by reducing
observation windows and increasing forecasting horizons.

3. Usability matters. Argoverse 1 benefited from a large and active research community - in large
part due to the simplicity of setup and usage. Consequently, we took care to ensure that existing
Argoverse models can be easily ported to run on 2. In particular, we have prioritized intuitive
access to map elements, encouraging methods which use the lane graph as a strong prior. To
improve training and generalization, all poses have also been interpolated and resampled at exactly
10Hz (Argoverse 1 was approximate). The new dataset includes fewer, longer, and more complex
scenarios; this ensures that total dataset size remains large enough to train complex models but
small enough to be readily accessible.

3.3.1 Data Representation

The dataset consists of 250,000 non-overlapping scenarios (80/10/10 train/val/test random splits)
mined from six unique urban driving environments in the United States. It contains a total of 10
object types, with 5 from each of the dynamic and static categories (see Figure 4). Each scenario
includes a local vector map and 11 s (10Hz) of trajectory data (2D position, velocity, and orientation)
for all tracks observed by the ego-vehicle in the local environment. The first 5 s of each scenario is
denoted as the observed window, while the subsequent 6 s is denoted as the forecasted horizon.

Within each scenario, we mark a single track as the “focal agent". Focal tracks are guaranteed to
be fully observed throughout the duration of the scenario and have been specifically selected to
maximize interesting interactions with map features and other nearby actors (see Section 3.3.2). To
evaluate multi-agent forecasting, we also mark a subset of tracks as “scored actors” (as shown in
Figure 5), with guarantees for scenario relevance and minimum data quality.

5This count includes private submissions not posted to the public leaderboards.
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Figure 4: Object type and geographic histograms for the Motion Forecasting Dataset. Left: Histogram
of object types over the “focal” and “scored” categories. Center: Histogram of object types over all
tracks present in the dataset. The fine grained distinctions between different static object types (e.g.
Construction Cone vs Riderless Bicycle) are unique among forecasting datasets. Right: Histogram of
metropolitan areas included in the dataset.

Figure 5: Visualization of a few interesting scenarios from the Motion Forecasting Dataset. The
scenarios demonstrate a mix of the various object types (Vehicle, Pedestrian, Bus, Cyclist, or Motor-
cyclist). The ego-vehicle is indicated in green, the focal agent is purple, and scored actors are orange.
Other un-scored tracks are shown in blue. Object positions are captured at the last timestep of the
observed history. For visualization purposes the full 5 s history and 6 s future are rendered for the
focal agent, while only 1.5 s of future are shown for the other scored actors. Left shows a pedestrian
crossing in front of the ego-vehicle, while Center and Right depict a motorcyclist weaving through
traffic.

3.3.2 Mining Interesting Scenarios

The source data for Argoverse 2 was drawn from fleet logs tagged with annotations consistent
with interesting or difficult-to-forecast events. Each log was trimmed to 30 s and run through an
interestingness scoring module in order to bias data selection towards examples from the long-tail of
the natural distribution. We employ heuristics to score each track in the scene across five dimensions:
object category, kinematics, map complexity, social context, and relation to the ego-vehicle (details
in supplement).

The final scenarios are generated by extracting non-overlapping 11 s windows where at least one
candidate track is fully observed for the entire duration. The highest scoring candidate track is
denoted as the “focal agent”; all other fully observed tracks within 30m of the ego-vehicle are
denoted as “scored actors”. The resulting dataset is diverse, challenging, and still right-sized for
widespread use (see the download size in Table 2). In Figure 6, we show that the resulting dataset is
significantly more interesting than Argoverse 1.1 and validate our intuition that actors scoring highly
in our heuristic module are more challenging to accurately forecast.

3.4 HD Maps

Each scenario in the three datasets described above shares the same HD map representation. Each
scenario carries its own local map region, similar to the Waymo Open Motion [11] dataset. This
is a departure from the original Argoverse datasets in which all scenarios were localized onto two
city-scale maps – one for Pittsburgh and one for Miami. In the Supplementary Material, we provide
examples. Advantages of per-scenario maps include more efficient queries and their ability to handle
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Figure 6: Left: Histogram comparing the distribution of interestingness scores assigned to focal
agents in both Argoverse 1.1 and 2. Right: Plot showing the relationship between total interestingness
score and prediction difficulty on the Argoverse 2 test split. We evaluate WIMP over each scenario
and fit a regression model to the computed miss rate (K=6, 2m threshold).

map changes. A particular intersection might be observed multiple times in our datasets, and there
could be changes to the lanes, crosswalks, or even ground height in that time.

Lane graph. The core feature of the HD map is the lane graph, consisting of a graph G = (V, E),
where V are individual lane segments. In the Supplemental Material, we enumerate and define
the attributes we provide for each lane segment. Unlike Argoverse 1, we provide the actual 3D
lane boundaries, instead of only centerlines. However, our API provides code to quickly infer the
centerlines at any desired sampling resolution. Polylines are quantized to 1 cm resolution. Our
representation is richer than nuScenes, which provides lane geometry only in 2D, not 3D.

Driveable area. Instead of providing driveable area segmentation in a rasterized format, as we did in
Argoverse 1, we release it in a vector format, i.e. as 3D polygons. This offers multiple advantages,
chiefly in compression, allowing us to store separate maps for tens of thousands of scenarios, yet the
raster format is still easily derivable. The polygon vertices are quantized to 1 cm resolution.

Ground surface height. Only the sensor dataset includes a dense ground surface height map
(although other datasets still have sparse 3D height information on polylines). Ground surface height
is provided for areas within a 5m isocontour of the driveable area boundary, which we define as
the region of interest (ROI) [6]. We do so because the notion of ground surface height is ill-defined
for the interior of buildings and interior of densely constructed city blocks, areas where ground
vehicles cannot observe due to occlusion. The raster grid is quantized to a 30 cm resolution, a higher
resolution than the 1m resolution in Argoverse 1.

Area of Local Maps. Each scenario’s local map includes all entities found within a 100m dilation in
l2-norm from the ego-vehicle trajectory.

4 Experiments

Argoverse 2 supports a variety of downstream tasks. In this section we highlight three different
learning problems: 3D object detection, point cloud forecasting, and motion forecasting — each
supported by the sensor, lidar, and motion forecasting datasets, respectively. First, we illustrate the
challenging and diverse taxonomy within the Argoverse 2 sensor dataset by training a state-of-the-
art 3D detection model on our twenty-six evaluation classes including “long-tail” classes such as
stroller, wheel chairs, and dogs. Second, we showcase the utility of the Argoverse 2 lidar dataset
through large-scale, self-supervised learning through the point cloud forecasting task. Lastly, we
demonstrate motion forecasting experiments which provide the first baseline for broad taxonomy
motion prediction.

4.1 3D Object Detection

We provide baseline 3D detection results using a state-of-the-art, anchorless 3D object detection
model – CenterPoint [44]. Our CenterPoint implementation takes a point cloud as input and crops
it to a 200m × 200m grid with a voxel resolution of [0.1m, 0.1m] in the xy (bird’s-eye-view)
plane and 0.2m in the z-axis. To accommodate our larger taxonomy, we include six detection heads
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Figure 7: Average precision of our 3D object detection baseline on the validation split of the Sensor
Dataset. Our experiments showcase both our diverse taxonomy and difficult “long-tail” classes.

to encourage feature specialization. Figure 7 characterizes the performance of our 3D detection
baseline using the nuScenes [4] average precision metric. Our large taxonomy allows us to evaluate
classes such as “Wheeled Device” (eScooter), “Stroller”, “Dog”, and “Wheelchair” and we find that
performance on these categories with strong baselines is poor despite significant amounts of training
data.

4.2 Point Cloud Forecasting

We perform point cloud forecasting according to the experimental protocol of SPF2 [42] using the
Argoverse 2 Lidar Dataset. Given a sequence of past scene point clouds, a model is required to
predict a sequence of future scene point clouds. We take the scene point clouds in the past 1 s (10Hz)
in the range image format as input, and then predict the next 1 s of range images. SPFNet predicts
two output maps at each time step – the first output map is the predicted range values, while the
second output is a validity mask. Previous point cloud forecasting models were evaluated on smaller
KITTI or nuScenes. To explore how the amount of training data affects the performance, we use
increasing amounts of data for training the same model architecture, up to the full training set of
16,000 sequences.

Evaluation. We use three metrics to evaluate the performance of our forecasting model: mean IoU,
l1-norm, and Chamfer distance. The mean IoU evaluates the predicted range mask. The l1-norm
measures the average l1 distance between the pixel sets of predicted range image and the ground-
truth image, which are both masked out by the ground-truth range mask. The Chamfer distance is
obtained by adding up the Chamfer distances in both directions (forward and backward) between the
ground-truth point cloud and the predicted scene point cloud which is obtained by back-projecting
the predicted range image.

Table 3: Results of point cloud forecasting on the
test split of the Lidar Dataset.

# TRAIN LOGS 125 250 500 1k 2k 4k 16k

MEAN IOU (%) 55.5 63.4 61.7 65.1 68.0 68.4 70.9
l1-NORM 13.5 12.5 11.8 9.9 8.9 8.7 7.4
CHAMFER DIST. 31.1 25.9 22.4 22.9 20.5 18.2 14.0

Results of SPF2 and Discussion. Table 3 con-
tains the results of our point cloud forecasting
experiments. With increasing training data, the
performance of the model grows steadily in all
three metrics. These results and the works from
the self-supervised learning literature [3, 7] in-
dicate that a large amount of training data can
make a substantial difference. Another observa-
tion is that the Chamfer distances for predictions
on our dataset are quite a bit higher than predictions on KITTI [42]. We conjecture that this could be
due to two reasons: (1) Argoverse 2 Lidar Dataset has a much larger sensing range (above 200m
versus 120m of the KITTI lidar sensor), which tends to significantly increase the value of Chamfer
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distance. (2) Argoverse 2 Lidar Dataset has higher proportion of dynamic scenes compared with
KITTI Dataset.

4.3 Motion Forecasting

We present several forecasting baselines [6] which try to make use of different aspects of the data.
Those which are trained using the focal agent only and do not capture any social interaction include:
constant velocity, nearest neighbor, and LSTM encoder-decoder models (both with and without
map-prior). We also evaluate WIMP [22] as an example of a graph-based attention method that
captures social interaction. All hyper-parameters are obtained from the reference implementations.

Evaluation. Baseline approaches are evaluated according to standard metrics. Following [6],
we use minADE and minFDE as the metrics; they evaluate the average and endpoint L2 distance
respectively, between the best forecasted trajectory and the ground truth. We also use Miss Rate
(MR) which represents the proportion of test samples where none of the forecasted trajectories were
within 2.0 meters of ground truth according to endpoint error. The resulting performance illustrates
both the community’s progress on the problem and the significant increase in dataset difficulty when
compared with Argoverse 1.1.

Baseline Results. Table 4 summarizes the results of baselines. For K=1, Argoverse 1 [6] showed
that constant velocity model (minFDE=7.89) performed better than NN+map(prior) (minFDE=8.12),
which is not the case here. This further proves that Argoverse 2 is kinematically more diverse and
cannot be solved by making constant velocity assumptions. Surprisingly, NN and LSTM variants that
make use of map prior perform worse than those who do not, illustrating the scope of improvement
in how these baselines leverage the map. For K=6, WIMP significantly outperforms every other
baseline. This emphasizes that it is imperative to train expressive models that can leverage map
prior and social context along with making diverse predictions. The trends are similar to our past 3
Argoverse Motion Forecasting competitions [38]: Graph-based attention methods (e.g. [22, 27, 32])
continued to dominate the competition, and were nearly twice as accurate as next best baseline
(Nearest Neighbor) at K=6. That said, some of the rasterization-based (eg. [17]) methods also showed
promising results. Finally, we also evaluated baseline methods in the context of transfer learning and
varied object types, the results of which are summarized in supplementary.

Table 4: Performance of motion forecasting baseline methods on vehicle-like (vehicle, bus, motorcy-
clist) object types. Usage of map prior indicates access to map information whereas usage of social
context entails encoding other actors’ states in the feature representation. Mining intersection (multi-
modal) scenarios leads to poor performance at K=1 for all methods. Constant Velocity models have
particularly poor performance due to the dataset bias towards kinematically interesting trajectories.
Note that modern deep methods such as WIMP still have a miss rate of 0.42 at K=6, indicating the
increased difficulty of the Argoverse 2 dataset.

K=1 K=6
MODEL MAP PRIOR SOCIAL CONTEXT MINADE ↓ MINFDE ↓ MR ↓ MINADE ↓ MINFDE ↓ MR ↓

CONST. VEL. [6] 7.75 17.44 0.89 - - -
NN [6] 4.46 11.71 0.81 2.18 4.94 0.60
NN [6] ✓ 6.45 15.51 0.84 4.3 10.08 0.78

LSTM [6] 3.05 8.28 0.85 - - -
LSTM [6] ✓ 5.07 12.71 0.9 3.73 9.09 0.85

WIMP [22] ✓ ✓ 3.09 7.71 0.84 1.47 2.90 0.42

5 Conclusion

Discussion. In this work, we have introduced three new datasets that constitute Argoverse 2. We
provide baseline explorations for two tasks – point cloud forecasting and motion forecasting. Our
datasets provide new opportunities for many other tasks. We believe our datasets compare favorably
to existing datasets, with HD maps, rich taxonomies, geographic diversity, and interesting scenes.

Limitations. As in any human annotated dataset, there is label noise, although we seek to minimize
it before release. 3D bounding boxes of objects are not included in the motion forecasting dataset,
but one can make reasonable assumptions about the object extent given the object type. The motion
forecasting dataset also has imperfect tracking, consistent with state-of-the-art 3D trackers.
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