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Abstract

This paper presents a reproducibility study of SLICE: Stabilized LIME for Consistent Ex-
planations for Image Classification by Bora et al. (2024). SLICE enhances LIME by incor-
porating Sign Entropy-based Feature Elimination (SEFE) to remove unstable superpixels
and an adaptive perturbation strategy using Gaussian blur to improve consistency in feature
importance rankings. The original work claims that SLICE significantly improves explana-
tion stability and fidelity. Our study systematically verifies these claims through extensive
experimentation using the Oxford-IIIT Pets, PASCAL VOC, and MS COCO datasets. Our
results confirm that SLICE achieves higher consistency than LIME, supporting its ability
to reduce instability. However, our fidelity analysis challenges the claim of superior per-
formance, as LIME often achieves higher Ground Truth Overlap (GTO) scores, indicating
stronger alignment with object segmentations. To further investigate fidelity, we introduce
an alternative AOPC evaluation to ensure a fair comparison across methods. Addition-
ally, we propose GRID-LIME, a structured grid-based alternative to LIME, which improves
stability while maintaining computational efficiency. Our findings highlight trade-offs in
post-hoc explainability methods and emphasize the need for fairer fidelity evaluations. Our
implementation is publicly available at our GitHub repository.

1 Introduction

Explainability in AI is crucial as deep learning models grow increasingly complex Grobrügge et al. (2024), yet
interpreting their non-transparent decisions remains challenging. Post-hoc methods like Local Interpretable
Model-agnostic Explanations (LIME)(Ribeiro et al., 2016) address this by approximating a model’s local
behavior with simpler surrogates. LIME generates perturbed samples around an input and fits a linear
model, but while locally faithful, its explanations often suffer from inconsistency across runs(Gosiewska &
Biecek, 2019; Zafar & Khan, 2019; Zhao et al., 2021; Zhou et al., 2021).

Stabilized LIME for Consistent Explanations (SLICE) (Bora et al., 2024) aims to resolve LIME’s instability
using adaptive Gaussian blurring and sign entropy-based feature elimination (SEFE). This reproducibility
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study validates SLICE's claims regarding improved consistency and �delity by replicating its core experiments
using the Oxford-IIIT Pets, PASCAL VOC, and MS COCO datasets. Our implementation is available at 1.

Beyond verifying SLICE's claims, this study investigates limitations and proposes alternatives. Observing
LIME's instability stems partly from segmentation randomness and SLICE's signi�cant computational cost,
we introduce GRID-LIME. It employs a structured grid segmentation, optimized using model predictions, to
enhance stability while maintaining e�ciency closer to LIME. Furthermore, recognizing that perturbation-
based �delity metrics like AOPC can be biased by the perturbation strategy (e.g., SLICE's blur vs. LIME's
masking), we introduce the Ground Truth Overlap (GTO) metric. GTO directly compares explanations
to ground-truth segmentations, o�ering a potentially less biased �delity assessment. Our �ndings con�rm
SLICE's improved consistency but challenge its superior �delity claims, particularly when considering GTO
scores and computational cost, highlighting inherent trade-o�s in post-hoc explainability. This work details
the reproduction of SLICE's claims, introduces and evaluates GRID-LIME and GTO, analyzes SLICE's
components, and extends evaluations across multiple datasets.

2 Scope of reproducibility

To address the stability issues in LIME-based explanations, Bora et al. (2024) proposed SLICE, a method that
enhances LIME by incorporating a novel feature elimination strategy and an adaptive perturbation technique.
Speci�cally, SLICE utilizes Sign Entropy-based Feature Elimination (SEFE) to remove superpixels with
high sign entropy, ensuring greater consistency in explanations. Additionally, SLICE introduces an adaptive
Gaussian Blur mechanism that dynamically selects the optimal perturbation level, reducing variance in
feature importance rankings and improving the overall reliability of explanations.

The focus of our work is on reproducing the following claims made by Bora et al. (2024):

ˆ Claim 1: LIME su�ers from inconsistencies in its explanations, primarily due to variance in sign
and importance ranking of superpixels. These inconsistencies stem from the perturbation method
used by LIME.

ˆ Claim 2: The Sign Entropy-based Feature Elimination (SEFE) method improves stability in ex-
planations by identifying and eliminating spurious superpixels.

ˆ Claim 3: The introduction of Gaussian Blur with an adaptively selected hyperparameter� enhances
the perturbation method, leading to greater consistency in explanations.

ˆ Claim 4: Explanations generated by SLICE demonstrate signi�cantly better �delity compared to
those produced by LIME.

3 Post-Hoc Explainability Methods

Post-hoc explainability methods aim to interpret complex AI models without requiring access to their internal
structures. Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al., 2016) is a widely used
method that approximates a model's decision function locally by generating perturbed samples around a
given instance and �tting a linear surrogate model. However, LIME su�ers from inconsistencies across
di�erent runs, leading to instability in feature importance rankings and sign variations.

Several extensions have been proposed to improve the stability of LIME.DLIME (Rashid et al., 2024)
employs hierarchical clustering to select perturbed samples from the cluster nearest to the instance of interest,
ensuring greater locality adherence. S-LIME (Shi et al., 2020) leverages a hypothesis testing framework
based on the Central Limit Theorem to determine the number of samples required for stable explanations.
ALIME (Knab et al., 2025) introduces an autoencoder-based weighting function to improve coe�cient
stability by re�ning sample selection. BayLIME (Dehghani et al., 2024) formulates explanations as a
Bayesian-weighted sum of prior knowledge and new observations, reducing variance in feature importance.

1https://github.com/CSBXAI/slice_reproducibility
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More recent methods focus on enhancing LIME's applicability to image-based models.Beyond Pix-
els (Knab et al., 2025) integrates hierarchical feature representations with segmentation foundation models
to improve visual explanations. SMILE (Dehghani et al., 2024) employs statistical distances based on em-
pirical cumulative distribution functions to enhance interpretability in instruction-based image editing tasks.
These advancements contribute to improving LIME's robustness across diverse applications.

As our study primarily investigates post-hoc explanations for image classi�cation, we focus on evaluating
SLICE (Bora et al., 2024), which introduces an adaptive Gaussian perturbation method and a feature
elimination strategy to improve stability. For SLICE and LIME, we provide a comprehensive assessment of
its e�ectiveness in producing consistent and reliable explanations.

4 Methodology

The objective of this reproducibility study is to verify the stability and consistency of SLICE, which uses
Adaptive Gaussian Blur and Sign Entropy based Feature Elimination (SEFE). For re-implementing the code
in PyTorch, we referred to the SLICE code that was made publicly available by the authors at2.

It should be noted that the author's code is not referenced directly in the original paper. However, since
the link to the author's code was provided to us by the authors, we decided to use this implementation
as our reference. Furthermore, we added intermediate images at every step of the process, making the
interpretation pipeline more transparent. We also introduced a new interpretability metric to enhance the
usability of SLICE. The code for this reproducibility study is publicly available on Github 3

4.1 Model descriptions

4.1.1 LIME

Local Interpretable Model-agnostic Explanations (LIME) is a widely used post-hoc interpretability method
that approximates the decision boundary of black-box models using a local surrogate model. LIME operates
through three key steps: perturbation, weighting, and surrogate model training. Given a black-box model
f and an input instance x, LIME generates perturbed imagesz by masking superpixels. A weighting
function � x assigns importance to these perturbed samples based on their similarity to the original input.
Subsequently, a linear surrogate modelg is trained on these perturbed samplesz0 to approximate f locally.
Z is the set of all perturbed samples. The objective function for LIME is given by:

L (f; g; � x ) =
X

z;z 02Z

� x (z) ( f (z) � g(z0))2 (1)

While LIME e�ectively provides locally faithful explanations, it su�ers from instability in feature importance
rankings and sign �uctuations across multiple runs, limiting its reliability.

4.1.2 SLICE

SLICE (Stabilized LIME for Consistent Explanations) is designed to mitigate the instability of LIME by
introducing two key components: Adaptive Gaussian Blur and Sign Entropy-based Feature Elimination
(SEFE). An overview of SLICE is illustrated in Figure 1.

The �rst component, Adaptive Gaussian Blur, applies a range of perturbation strengths (� values) to su-
perpixels using Gaussian blurring. Instead of replacing superpixels with a �xed value (as in LIME), SLICE
adaptively selects an optimal� value based on entropy, ensuring perturbations are closer to the original data
distribution.

2https://github.com/rebathip/SLICE-Stabilized-LIME-for-Consistent-Explanations-for-Image-Classification/
tree/main

3https://github.com/CSBXAI/slice_reproducibility

3



Published in Transactions on Machine Learning Research (05/2025)

The second component, SEFE, eliminates superpixels that exhibit high sign entropy, meaning their attribu-
tion �ips between positive and negative across multiple iterations. This ensures greater stability in feature
importance rankings and improves the consistency of explanations.

The SLICE algorithm iteratively generates N perturbed samples and trainsM Ridge Regression models.
SEFE identi�es and removes unstable superpixels, while the �nal ranking of superpixels is based on the
learned coe�cients from the regression models. Training continues until a prede�ned number of iterations
or a stability tolerance threshold is reached.

Figure 1: Overview of the SLICE framework. SLICE improves LIME's stability by incorporating Adaptive
Gaussian Blur and Sign Entropy-based Feature Elimination (SEFE).

4.1.3 GRID-LIME

Quickshift generates superpixel segments based on the intensity values of the three color channels of the
image, introducing variability across runs and potentially ignoring semantically relevant boundaries captured
by the model. To address this and LIME's segmentation instability, we introduce GRID-LIME. This method
replacesQuickshift with a structured grid-based segmentation where the optimal grid size is determined
using the black-box model's predictions, aiming to improve consistency without SLICE's computational
overhead.

As shown in Figure 2, GRID-LIME evaluates a set of potential grid sizes,S = f s1; s2; :::; sk g. For each grid
sizes 2 S, the imagex is divided into non-overlapping grid cellscs;j . Perturbed imagesxs;j are generated by
setting the pixels within each cell cs;j to zero (or another baseline value). Letf (x) be the model's prediction
probability for the target class on the original image and f (xs;j ) be the prediction on the perturbed image
where cellcs;j is masked.

To select the optimal grid size, we analyze the sensitivity of the model's predictions to these grid-based
perturbations. For each grid sizes, we calculate the prediction di�erences� s;j = jf (x) � f (xs;j )j for all cells
j . We then compute the mean� s and standard deviation � s of these di�erencesf � s;j gj . The Coe�cient of
Variation (CV) for grid size s is calculated as:

CVs =
� s

� s
(2)
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The optimal grid size s� is chosen as the one maximizing the CV, indicating the grid resolution that yields
the highest relative variability in prediction changes upon perturbation:

s� = argmax
s2 S

CVs (3)

This process ensures a balance between segmentation granularity and stability, selecting a grid that is infor-
mative according to the model's sensitivity. Onces� is determined, GRID-LIME proceeds with the standard
LIME framework (perturbation, weighting, surrogate model training) using the superpixels de�ned by the
optimal grid s� . This structured, model-informed segmentation helps reduce the randomness associated
with LIME's original segmentation step. However, a limitation remains: the rigid grid structure may not
always align perfectly with natural object boundaries, potentially impacting interpretability for irregularly
shaped objects compared to adaptive segmentation methods. The speci�c range of grid sizes tested in our
implementation is detailed in Appendix C.

Figure 2: Illustration of GRID-LIME. GRID-LIME replaces color-space-based segmentation with a grid-
based approach to ensure stable explanations. Here,� = 0 denotes that it uses the same perturbation
strategy as LIME.

4.2 Datasets

To evaluate the reproducibility of SLICE and compare its performance against LIME, we conduct experiments
using three widely recognized image classi�cation datasets:Oxford-IIIT Pet Dataset , PASCAL Visual
Object Classes (VOC) , and MS COCO . These datasets provide a diverse range of images, enabling a
comprehensive assessment of explanation consistency and �delity.

4.2.1 Oxford-IIIT Pet Dataset

The Oxford-IIIT Pet dataset (Parkhi et al., 2012) consists of 37 categories of pet images, covering various
breeds of cats and dogs. Each category contains approximately 200 images, leading to a total of 7,349
images. The dataset includes pixel-wise trimap segmentation annotations, enabling precise localization of
object regions within the images. This dataset is particularly useful for evaluating explanation methods
due to its clear object boundaries and distinct features. In our study, we randomly sample 50 images from
this dataset and apply LIME, SLICE, and GRID-LIME to analyze the consistency and �delity of their
explanations.
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4.2.2 PASCAL VOC 2009

The PASCAL Visual Object Classes (VOC) 2009 dataset (Everingham et al., 2010) is a benchmark dataset
for object recognition tasks. It contains a total of 7054 images in the training and validation set. The dataset
includes 20 object categories, covering a broad range of natural and man-made objects, making it suitable
for testing explainability methods across di�erent object types. Each image is annotated with bounding
boxes and pixel-wise segmentation masks. Given its complexity and variation in object scales, we evaluate
whether SLICE and GRID-LIME can improve the stability of LIME explanations. For our experiments, we
randomly select 50 images from this dataset for comparative analysis.

4.2.3 MS COCO

The Microsoft Common Objects in Context (MS COCO) dataset (Lin et al., 2015) is one of the largest
and most diverse datasets for image recognition and segmentation tasks. It contains over 330,000 images,
annotated with 80 object categories, instance-level segmentation masks, and dense captions. This dataset
presents a greater challenge due to the presence of multiple objects per image, occlusions, and background
clutter, making it an ideal testbed for evaluating robustness in explanation methods. We apply LIME,
SLICE, and GRID-LIME to 50 randomly selected images from the validation set to assess their performance
in complex visual environments.

4.3 Hyperparameters

To ensure a fair and reproducible comparison between SLICE, LIME, and GRID-LIME, we carefully tune
hyperparameters based on prior research and controlled experiments. Each explainer algorithm (SLICE,
LIME, or GRID-LIME) is executed for 10 iterations per image to generate the results presented in Section 5.

For SLICE, we used the authors' choice of hyperparameters for all of the experiments. We train 1000
Ridge regression models to obtain model coe�cients for all superpixels. Each Ridge model is trained on
500 randomly generated perturbations of the original test image. The Adaptive Gaussian Blur mechanism
in SLICE requires selecting the optimal � value. We conduct a small-scale hyperparameter search, testing
values in the range[0:1; 0:5] with a step size of0:1, and select the� value yielding the highest adjustedR2.

In the Sign Entropy-based Feature Elimination (SEFE) module, the tolerance limit is set to 3, and the
maximum number of iterations is capped at 10 to balance computational e�ciency and convergence.

GRID-LIME, our proposed variant, does not require a segmentation algorithm such as quickshift. Instead,
it utilizes structured grid-based segmentation, where we empirically determine the optimal grid size by
evaluating perturbation consistency across di�erent con�gurations.

For all experiments, we randomly sample 50 images per dataset and apply the same hyperparameters across
SLICE, LIME, and GRID-LIME to maintain consistency. The details of hyperparameter values used in our
experiments are provided in Appendix C.

4.4 Experimental setup and code

In this study, we conduct experiments to evaluate the performance of SLICE, LIME, and GRID-LIME
in generating interpretable explanations. Our methodology and hyperparameter values follow the original
paper, ensuring reproducibility. Additionally, we introduce an auxiliary experiment to assess the alignment
of saliency maps with ground-truth segmentation maps. For MS COCO and PASCAL VOC datasets, we
sample those images that have only one segmentation object map present for evaluation using Ground Truth
Overlap (GTO).

We use ResNet50 (He et al., 2016) and InceptionV3 (Szegedy et al., 2016) models, both pretrained on
ImageNet as used in the original paper. For superpixel segmentation, we applyquickshift (Vedaldi &
Soatto, 2008) from theskimage library. SLICE iteratively perturbs images by blurring selected superpixels,
�ts local ridge regression models, and eliminates inconsistent superpixels until convergence. The Gaussian
blur parameter � is optimized via a small hyperparameter search.
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To evaluate model explanations, we use multiple metrics assessing consistency and �delity. Consistency is
measured through Average Sign Flip Entropy (ASFE), which quanti�es sign stability across multiple runs,
and Average Rank Similarity (ARS), which evaluates the consistency of ranked importance scores. We
combine these into the Combined Consistency Metric (CCM), a metric introduced by the original paper,
providing a uni�ed measure of explanation stability.

Fidelity is assessed using the Area Over Perturbation Curve (AOPC), which tracks classi�er con�dence
changes as important superpixels are perturbed, and the Area Under Curve (AUC), which captures the
cumulative impact of these perturbations. Higher AOPC and higher AUC values for insertion and higher
AOPC and lower AUC values for deletion of superpixels indicate that the explainer correctly identi�es the
most in�uential features.

As an additional metric, we introduce Ground Truth Overlap (GTO) to evaluate the alignment between
model-generated saliency maps and ground-truth segmentation maps. Unlike previous metrics relying on
classi�er con�dence, GTO directly compares the predicted importance regions with known object boundaries.
Figure 3 illustrates the computation of the GTO metric and provides an example of its calculation.

GTO =
Area of Ground Truth \ Area of top-k positive superpixels

Area of top-k positive superpixels
(4)

Lastly, our code is available on GitHub4. A detailed analysis of the computational requirements and en-
vironmental impact of our experiments, including runtime and estimated carbon emissions, is provided in
Appendix D.

Figure 3: Ground Truth Overlap (GTO) metric. The intersection between the top-k positive superpixels
and the segmentation map is computed and normalized by the area of top-k positive superpixels. In this
example, GTO = 0.58.

5 Results

We have performed extensive experimentation to test the claims made by Bora et al. (2024). Our evaluation
focuses on the interpretability, consistency, and �delity improvements claimed for SLICE over LIME. We
also introduce GRID-LIME as an alternative method and assess its e�ectiveness.

In this section, we provide a detailed analysis of the consistency and �delity of explanations produced by
these methods. We examine the impact of Sign Entropy-based Feature Elimination (SEFE) and Adaptive
Gaussian Blur, and conduct an ablation study to determine their individual contributions. Additionally, we
extend our analysis beyond the original paper by introducing the Ground Truth Overlap (GTO) metric to
compare explanation maps with segmentation labels.

Overall, our results partially support the claims of Bora et al. (2024). While we con�rm that SLICE
produces signi�cantly more consistent explanations than LIME, we �nd that its �delity improvements are
less conclusive. Additionally, we identify potential biases in the evaluation methodology, particularly in the

4https://github.com/CSBXAI/slice_reproducibility
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choice of perturbation strategies. Our �ndings suggest that while SLICE improves consistency, further work
is required to ensure fair �delity comparisons.

Furthermore, we provide additional qualitative examples in Appendix F, illustrating the di�erences in expla-
nation maps generated by LIME, SLICE, and GRID-LIME. These visualizations help to better understand
the distinct attribution patterns produced by each method. In Appendix B, we also present an alternative
AOPC evaluation where SLICE is tested under the same perturbation conditions as LIME and GRID-LIME,
leading to more comparable �delity results.

In the following subsections, we analyze each claim in detail and present supporting evidence.

5.1 Claim 1: LIME su�ers from inconsistencies due to sign �ip and rank variance

To assess explanation stability, we compare the Combined Consistency Metric (CCM) distributions across
methods. Figure 4 presents the Kernel Density Estimation (KDE) plots of CCM scores for SLICE, LIME,
and GRID-LIME across di�erent datasets and models.

The results indicate that SLICE produces signi�cantly more stable explanations than LIME, as evidenced
by a strong peak near 1.0, meaning that sign �ips and ranking inconsistencies are minimized. In contrast,
LIME's CCM values are more widely spread, con�rming instability. GRID-LIME exhibits a CCM distribution
between that of LIME and SLICE, indicating improved stability while maintaining �exibility.

Figure 4: Kernel Density Estimation (KDE) plots of Combined Consistency Metric (CCM) scores for SLICE,
LIME, and GRID-LIME. A higher peak in CCM indicates greater explanation consistency, while a wider
spread re�ects higher variability.

5.2 Claim 2: SEFE improves stability in explanations

The impact of Sign Entropy-based Feature Elimination (SEFE) is evaluated using the Combined Consistency
Metric (CCM), which measures explanation stability. Figure 5 consists of six plots, each containing three
KDE curves representing di�erent methods. Across these plots, SLICE consistently achieves the highest
CCM, with values closest to 1, con�rming that it provides the most stable explanations. SLICE_BLUR
follows with a CCM around 0.9, indicating strong stability. In contrast, SLICE_SEFE alone exhibits much
lower stability, with a CCM ranging between 0.2 and 0.3. While SEFE reduces sign �ips and ranking
inconsistencies, its direct impact on stability is limited. The improvement in CCM is primarily observed
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when SEFE is combined with Adaptive Gaussian Blur, rather than when used in isolation. These results
suggest that SEFE alone is insu�cient for improving stability in explanations and is most e�ective when
integrated with Adaptive Gaussian Blur.

5.3 Claim 3: Adaptive Gaussian Blur enhances explanation consistency

To evaluate the e�ect of Adaptive Gaussian Blur, we compare the adjustedR2 values of Ridge regression
models trained with di�erent � values. Our results show that dynamically selecting� based on entropy
increasesR2, suggesting that perturbations remain realistic while improving consistency. However, the
improvement is not always signi�cant across all cases. This can also be observed in Figure 5, where Adaptive
Gaussian Blur (AdaBlur) achieves relatively high CCM values, but the di�erence compared to SLICE without
Adaptive Gaussian Blur is not always signi�cant. These �ndings indicate that while Adaptive Gaussian Blur
contributes to stability, its impact depends on the speci�c setting and dataset.

5.3.1 Ablation Study

We conducted an ablation study to replicate the �ndings of (Bora et al., 2024), evaluating the individual
contributions of SEFE and AdaBlur in SLICE. Since SLICE consists of these two key components, we
performed the ablation study by isolating each module, as shown in Figure 5.

Our results align with the original ablation study in (Bora et al., 2024). SLICE achieves the highest con-
sistency when both components are included, con�rming their complementary roles. Among the individual
modules, AdaBlur contributes more to consistency than SEFE. The absence of AdaBlur leads to perturbed
images that deviate further from the original, reducing consistency. These �ndings highlight the importance
of using both components together for optimal stability.

Figure 5: Distribution of CCM scores for ablation experiment. SLICE_FE shows the results for the SEFE
while SLICE_Blur shows the results for the Adaptive Gaussian Blur component. SLICE shows the results
for both components included. (higher is better).

5.4 Claim 4: SLICE provides better �delity than LIME

To assess �delity, we use the Area Over Perturbation Curve (AOPC) and Area Under Curve (AUC) metrics.
Figure 6 presents the ECDF plots of AOPC scores. We performed the Most Relevant First (MoRF) procedure
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