
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIFFWIND: PHYSICS-INFORMED DIFFERENTIABLE
MODELING OF WIND-DRIVEN OBJECT DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modeling wind-driven object dynamics from video observations is highly challeng-
ing due to the invisibility and spatio-temporal variability of wind, as well as the
complex deformations of objects. We present DiffWind, a physics-informed dif-
ferentiable framework that unifies wind-object interaction modeling, video-based
reconstruction, and forward simulation. Specifically, we represent wind as a grid-
based physical field and objects as particle systems derived from 3D Gaussian
Splatting, with their interaction modeled by the Material Point Method (MPM). To
recover wind-driven object dynamics, we introduce a reconstruction framework that
jointly optimizes the spatio-temporal wind force field and object motion through
differentiable rendering and simulation. To ensure physical validity, we incorporate
the Lattice Boltzmann Method (LBM) as a physics-informed constraint, enforcing
compliance with fluid dynamics laws. Beyond reconstruction, our method natu-
rally supports forward simulation under novel wind conditions and enable new
applications such as wind retargeting. We further introduce WD-Objects, a dataset
of synthetic and real-world wind-driven scenes. Extensive experiments demon-
strate that our method significantly outperforms prior dynamic scene modeling
approaches in both reconstruction accuracy and simulation fidelity, opening a new
avenue for video-based wind–object interaction modeling.

1 INTRODUCTION

The motion of objects under wind, such as leaves swaying, flags fluttering, or fabrics billowing,
is a visually distinctive yet physically complex phenomenon, arising from the interplay between
external fluid forces and internal material properties. From visual observations alone, humans
can intuit the presence of invisible wind and anticipate how objects would respond under similar
conditions. Enabling computational systems to replicate this ability, which involves recovering
both the underlying wind field and the resulting object dynamics from visual input, would have
broad impact on applications in augmented and virtual reality, visual effects, scientific analysis, and
simulation-based editing.

However, this task presents significant challenges: wind is invisible, dynamic, and spatially non-
uniform, while object deformations depend on unknown physical parameters such as mass, elasticity,
and geometry. Existing methods face significant limitations: Dynamic neural representations, such as
Deformable NeRF Du et al. (2021); Chu et al. (2022) and 3D Gaussian Splatting Yang et al. (2024b);
Wu et al. (2024), model object appearance and motion over time but capture only visible dynamics,
ignoring underlying physical causes like wind fields. Differentiable physics simulators Zhong et al.
(2024); Li et al. (2023b); Zhang et al. (2024) can optimize motion parameters, but are restricted
to simple, predefined motion patterns such as constant-force projectile motion and cannot handle
complex fluid–object interactions. Video-based wind inference methods Zhang et al. (2022); Runia
et al. (2020) estimate coarse wind speed or target specific scenarios such as cloth deformation, lacking
generality and physical consistency. These limitations motivate the following question: Can we
jointly recover visible object dynamics and invisible wind fields from videos input, while ensuring
physical consistency and generalization to arbitrary wind conditions?

To address this challenge, we propose DiffWind, a physics-informed differentiable framework for
wind–object interaction. In DiffWind, the invisible wind is modeled as a grid-based physical field,
while objects are modeled as deformable particle systems derived from 3D Gaussian Splatting, with

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: DiffWind is a physics-informed differentiable wind-object interaction framework that
models wind and object dynamics separately. This design enables the reconstruction of wind and
object motion from sparse-view videos, physically consistent simulation under new wind conditions,
and retargeting to novel objects.

their interaction modeled by the Material Point Method (MPM). This design leverages physical
intuition: fluids are naturally defined on Eulerian grids, where quantities such as velocity and pressure
evolve over space and time, whereas solid or semi-solid objects undergo localized deformation,
making Lagrangian particles a more effective representation. By coupling these domains, our
formulation supports accurate reconstruction, physically plausible simulation, and novel applications
such as wind retargeting. (Fig. 1)

A key strength of DiffWind is its differentiable formulation, which enables joint reconstruction of
the spatio–temporal wind force field and dynamic object motion from sparse-view RGB videos.
Reconstruction is achieved by minimizing the image-space reconstruction error via gradient-based
optimization. However, photometric loss alone cannot guarantee physical validity, as wind forces
follow complex fluid interactions that often entangle physical properties with scene-specific dynamics,
limiting transferability. To address this, we introduce a physics-informed optimization loss that
enforces compliance with fluid dynamics. Specifically, we use the Lattice Boltzmann Method
(LBM) Li et al. (2023a) to provide directional guidance for the wind force field at each time step,
constraining its reconstruction to yield physically plausible results.

Our contributions can be summarized as follows:

• We propose a novel differentiable modeling framework DiffWind for wind-object interaction,
where the wind is represented as a grid-based physical field and the object is modeled with
particle-based deformable geometry. This particle-grid coupling enables physically plausible,
3D-consistent simulations of wind-induced object motion.

• Based on the proposed interaction model, we develop a differentiable inverse reconstruction
framework that simultaneously recovers the dynamic motion of visible objects and the invisible
wind force field from sparse-view videos.

• We employ the Lattice Boltzmann Method (LBM) as a physics-informed constraint to ensure
the wind force field adheres to fluid dynamics laws, and demonstrate applications in forward
simulation under novel wind conditions and wind retargeting.

• We construct WD-Objects, a dataset covering both synthetic and real-world wind-driven object
scenes. Extensive experiments show that DiffWind substantially outperforms existing methods
in reconstruction accuracy, simulation fidelity, and generalization ability, advancing the frontier
of video-based wind–object modeling.

2 RELATED WORK

4D Dynamic Scene Reconstruction. Dynamic scene reconstruction and free-viewpoint rendering
have been widely explored by extending Neural Radiance Field (NeRF) Mildenhall et al. (2020)
and 3D Gaussian Splatting (3DGS) Kerbl et al. (2023). NeRF-based approaches model dynamics
either by adding temporal inputs Du et al. (2021); Chu et al. (2022) or by learning canonical spaces
with deformation fields Pumarola et al. (2021); Park et al. (2021). 3DGS offers fast reconstruction
and high-quality rendering, and has been extended to dynamic scenes via Gaussian tracking Luiten
et al. (2024), canonical-space deformation Yang et al. (2024b); Wu et al. (2024), or 4D Gaussian

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

primitives Duan et al. (2024); Wang et al. (2025). But they mainly capture visible object dynamics
and struggle to model complex, invisible effects such as wind fields, limiting their applicability to
wind-driven motion modeling.

Windy Object Modeling. Windy object modeling involves: (1) simulating wind-induced dynamics,
and (2) reconstructing physical parameters from observed motion. Existing simulations use grid-
based or particle-based fluid methods to animate specific objects (e.g., grass, trees, cloth) Lo et al.
(2016); Pirk et al. (2014); Wilson et al. (2014), but are often category-specific. We instead employ the
Material Point Method (MPM) Hu et al. (2018) to model complex deformations of various categories
of objects under wind fields. Reconstruction methods estimate wind speed or material properties
from monocular videos Runia et al. (2020); Cardona et al. (2019); Bouman et al. (2013); Yang et al.
(2017), but cannot recover full 4D dynamics. Our method jointly reconstructs temporally varying
wind fields and dynamic scenes via differentiable optimization.

Differentiable Physics-Based System Identification. System identification is a methodology for
building mathematical models of dynamic systems using measurements of the input and output
signals of the system. Recent advances in differentiable physical simulation, enabled by frameworks
like Taichi Hu et al. (2019; 2020) and Warp Macklin (2022), have facilitated such tasks. Prior works
optimize material or geometry parameters for cloth Li et al. (2022), solids Jin et al. (2024), and
fluids Li et al. (2024b) using differentiable solvers. Other studies combine differentiable simulation
with NeRF Mildenhall et al. (2020) or 3DGS Kerbl et al. (2023) to jointly recover object geometry
and physical properties from multi-view observations Li et al. (2023b); Zhong et al. (2024); Cai
et al. (2024); Zhang et al. (2024); Cao et al. (2024); Liu et al. (2025), but are restricted to simple,
predefined motion settings (e.g., gravity, dragging) and optimize initial velocity at the first frame.
Moreover, these approaches focus solely on object motion and do not model the influence of the
external environment such as wind fields on the dynamics. In contrast, our method reconstructs
the wind force field through a differentiable optimization process, while enabling the modeling of
complex and dynamic wind–object interactions.

3 METHOD

Problem Specification: Given the sparse-view observed videos as input V = {{Ii0, ..., IiT }|i =
1, ..., Nv} of the wind-object interaction, our goal is to reconstruct the dynamic process in 3D. Our
key idea is to optimize the wind force field to match the observed sequences through differentiable
simulation and differentiable rendering.

As shown in Fig. 2, we model the wind as a grid field, where each node can contain various physical
quantities. The object is represented as a set of particles, each carrying attributes such as appearance,
material, and motion. We employ a differentiable Material Point Method (MPM) to model the
interaction between the wind and the object. The force property of the wind grid field is applied
to the background grid of MPM, which drives the motion of object particles and results in object
deformation. More details about the interaction modeling are provided in Sec. 3.2. Then, given
observed sequences of object motion under wind influence, we perform differentiable optimization
of the force property in the wind grid field that enables the reconstruction of the dynamic process
(Sec. 3.3). Furthermore, we propose a novel physics-informed optimization method that leverages
LBM to enforce the force field’s compliance with the fundamental laws of fluid dynamics (Sec. 3.4).

3.1 PRELIMINARY: PHYSICAL MODELS

Fluid Mechanics. Our wind field dynamics are governed by incompressible Navier-Stokes equa-
tions (NSE). We build the fluid simulator by leveraging the Lattice Boltzmann Method (LBM). With
t discretized into fixed intervals, xw discretized on a regular grid and uw discretized into fixed
unit directions at grid points. Under this discretization, one can solve the NSE by computing the
corresponding lattice Boltzmann equation (LBE) SHAN et al. (2006):

fi(xw + ci, t+ 1)− fi(xw, t) = Ωi + Foi, (1)

where ci is the discrete lattice velocity in the i-th direction, Ωi is the Bhatnagar-Gross-Krook(BGK)
collision model term SHAN et al. (2006) and Foi is the external force. The macroscopic physical

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Overview of DiffWind. We propose a novel wind-object interaction modeling approach,
where the wind is represented as a grid field and the object is modeled as a set of particles. Based
on this modeling approach, we introduce a reconstruction framework for wind–object interaction by
optimizing the wind force field. In addition, we employ the Lattice Boltzmann Method (LBM) to
generate wind force field direction guidance to enforce compliance with fluid dynamics laws.

quantities of the wind field, such as density ρw, linear momentum ρwuw, and the stress tensor Sw

can be calculated as:

ρw =

q−1∑
i=0

fi, ρwuw =

q−1∑
i=0

cifi +
1

2
Foi, ρSw,αβ =

q−1∑
i=0

(
c2i −

1

3
δαβ

)
fi, (2)

where α, β ∈ {x, y, z} refer to the coordinates of the stress tensor Sw and δ is Kronecker delta. In
particular, we use HOME-LBM Li et al. (2023a) as our simulator, which solves the LBE through
High-Order Moment Encoding with Hermite polynomial expansion SHAN et al. (2006) to achieve
more efficient and accurate fluid simulation.

Continuum Mechanics. Our object deformations are governed by continuum mechanics which
describes motions by a time-dependent deformation map xo = ϕ(Xo, t) that relates rest material
position and deformed material position and the deformation gradient F (Xo, t) = ∇Xo

ϕ(Xo, t).
The evolution of ϕ is governed by:

∂ρo
∂t

+ uo · ∇ρo + ρo∇ · uo = 0, ρo(
∂uo

∂t
+ uo · ∇uo) = ∇ · σ + ρoFw, (3)

where ρo is the mass density, uo is the local material velocity of the object, σ = 1
JP(F)F T is the

Cauchy stress. These two equations respectively describe the conservation of mass and momentum.
We use the differentiable Material Point Method Hu et al. (2020) to evolve Eq. (3).

3.2 WIND-OBJECT INTERACTION MODELING

We represent the object with 3D Gaussians, a particle-based approach suited for high-quality recon-
struction and rendering. The wind, being invisible and difficult to represent with discrete particles,
is modeled as a continuous grid-based field, where each grid node stores physical quantities such
as density, velocity, and force, and its evolution is simulated using the Lattice Boltzmann Method
(LBM). To model the interaction between the two representations, we adopt the Material Point
Method (MPM), which exchanges information between particle-based objects and the grid-based
wind: objects are treated as moving Lagrangian particles, while wind acts as a force field on an
Eulerian grid.

Object Modeling. To integrate 3D Gaussians into physical simulations, the representation should
minimize rendering artifacts under deformation, accurately capture surfaces for boundary conditions,
preserve volume integrity, and support region-wise physical properties. Vanilla 3DGS, however,
may produce needle-like artifacts and floaters under large deformations, lacks internal structure, and
creates holes in weakly textured regions. We mitigate these issues by adding regularization terms
during optimization and densifying invisible points in geometry-deficient areas.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In particular, we define the following loss to optimize the 3D Gaussians:

Lstatic = Lcolor + λaLaniso + λoLo, (4)

where Lcolor is the color loss between render and training image in vanilla 3DGS; Laniso is designed
to constrain the anisotropy of the Gaussian kernels:

Laniso =
1

|P |
∑
i∈P

max

(
max ({sxi , s

y
i , s

z
i })

median ({sxi , s
y
i , s

z
i })

, ϵ

)
− ϵ, (5)

where ϵ = 2.0 is a hyperparameter that controls the level of anisotropy; and Lo is designed to
encourage the 3D Gaussian points to stay close to the object surface by encouraging each Gaussian’s
opacity to be either near zero or near one:

Lo = exp
(
−βo · (oi − 0.5)2

)
, (6)

where βo = 20 is a hyperparameter. Additionally, we prune Gaussian points whose opacity falls
below a threshold τo = 0.05.

Based on the optimized Gaussian kernels, we employ the octree-based voxel filling algorithm from
Kaolin Fuji Tsang et al. (2024) to densify additional invisible points for improved geometric support.
Since 3DGS directly models the entire scene, extracting objects for simulation becomes necessary.
Moreover, physical properties related to object deformation cannot be directly obtained from static
image observations. Therefore, we train a 3D-consistent feature field by contrastive learning to
extract 2D segmentation priors for 3D regions segmentation in the scene, and employ a multimodal
large language model (MLLM) to construct a physical agent that infers their corresponding physical
properties, including material name, density, Poisson’s ratio νp, and Young’s modulus E. For more
details about 3D regions segmentation and the physical agent, please refer to the Appendix.

Interaction Modeling. We employ Material Point Method (MPM) to model the interaction between
the object and wind, by binding each Gaussian kernel and densified point to a corresponding particle
in the MPM simulation. During the P2G and G2P process in MPM, wind is applied as a force field
to the MPM grid to simulate the deformation of objects. Similar to PhysGaussian Xie et al. (2024),
we update the covariance matrix of 3DGS as Σp(t) = Fp(t)ΣpFp(t)

T , Fp(t) is the deformation
gradient of each particle p at time step t.

3.3 RECONSTRUCTION FRAMEWORK FOR WIND-OBJECT INTERACTION

We formulate the simulation process of wind-object interaction for a single step as:

(xt+1,vt+1,F t+1,Ct+1) = S(xt,vt,F t,Ct, θ,Fw,∆t), (7)

where (xt,vt,F t,Ct) denote the position, velocity, deformation gradient, and affine momentum of
all object particles at time t, respectively. Note that the particles include both Gaussian kernels and
densified invisible points. θ denotes the collection of the physical properties of all particles, which
are obtained during the object modeling step, and Fw denotes the wind force field.

We can then render the object at each time and each viewpoint by 3DGS:

Ît = Rrender(x
t
gs, σ,F

t
gs,Σ, c,W), (8)

where xt
gs and F t

gs denote the subset of xt and F t corresponding to the Gaussian kernels.

Owing to the differentiable nature of Eq. (7) and Eq. (8), we can optimize the invisible wind force
field from the visible motion of the object by minimizing the photometric loss between the rendered
image and input image as:

Lrender =

Nv∑
i=1

(1− λ)Li
1 + λLi

D−SSIM , (9)

where Nv denotes the number of viewpoints, Li
1 and Li

D−SSIM represent the L1 and structural
similarity index measure losses at viewpoint i, respectively. We set λ = 0.1 in our experiments.

Although θ also receives gradients during backpropagation, jointly optimizing both the wind force
field Fw and the material parameters leads to an ill-posed problem, because different combinations

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

of material stiffness and external forces can produce nearly identical motions. For instance, a small
Young’s modulus paired with a small force can generate the same motion as a large Young’s modulus
with a large force. Therefore, we use MLLM-based reasoning to obtain reasonable material priors
as initialization (see Sec. 3.2), and treat only Fw as the optimization target, initializing it from zero
for each time-step optimization. We use the results from object modeling as the initial state and
optimize the wind force field between two consecutive states. The optimization proceeds sequentially,
with each time step starting only after the previous one has been completed. The optimized object
state from the previous step serves as the initial condition for the next which mitigates gradient
instability that can occur when performing multi-step simulation followed by a single backward pass.
By optimizing the wind force field at each time step, we simultaneously achieve the reconstruction of
wind-object interaction dynamics.

Wind Retargeting. By accurately reconstruction of wind-object interaction, the proposed frame-
work enables a novel task: wind retargeting. This involves applying the estimated wind force fields to
other objects, as illustrated in Fig. 1, which is infeasible for the existing object dynamics modeling
methods like Deformable-GS Yang et al. (2024b), which only focus on dynamic scene reconstruction.

3.4 PHYSICS-INFORMED OPTIMIZATION OF WIND FORCE FIELD

Although we can optimize the wind force field in each timestep using visual observations, it does not
guarantee adherence to physical laws as wind forces are fluid and exhibit complex interactions with
the target objects. Therefore, we further exploit a physics-informed optimization loss to guide the
force field optimization process. Specifically, we use the Lattice Boltzmann Method (LBM) to solve
Eq. (1), thereby generating the guiding direction of the force field.

Wind Source Inference. We start from the posed RGB video and estimate temporally-consistent
monocular depth maps using Video Depth Anything Chen et al. (2025). The RGB–depth pairs are
provided to a multimodal large language model (MLLM), which infers the wind source direction.
Then, the inferred direction serves as an inlet velocity boundary condition for the LBM simulator.

Wind Field Evolution. We use HOME-LBM Li et al. (2023a) to simulate wind field evolution,
where the positions of particles serve as the boundary condition for LBM, thereby influencing the
wind field dynamics. In particular, we first distinguish solid and fluid nodes in the LBM lattice based
on the positions of particles at the current state by converting object particles into occupied voxel
grids:

Solid(xw) =

{
1, if ∃xp s.t. ∀d ∈ {x, y, z}, 0 ≤ xp,d − xw < ∆x

0, otherwise
(10)

where xw is the position of wind grid node, xp is the position of particle, and ∆x is the grid spacing.
This mapping enables the LBM simulator to capture the effect of the object’s instantaneous position
on the wind field. At each simulation step, macroscopic wind field quantities are computed from the
distribution functions using Eq. (2). Additional details of the algorithm are provided in the Appendix.

Physics-Informed Loss. The wind velocity field from the LBM simulator Dguide is used to guide
the direction of the reconstructed wind force field Drecon:

Lphys = ∥Drecon − (Drecon ·Dguide)Dguide∥2, (11)

where Lphys is the physics-informed optimization loss that measures the directional difference between
the reconstructed wind force field and the one obtained from the LBM simulator. Here, the wind
force is governed by the aerodynamic drag equation Fw = 1

2ρwCD|v|2 · v
|v| , where CD is the drag

coefficient and v is the wind velocity, this formulation implies that an accurate estimation of the wind
velocity field direction can effectively guide the reconstruction of the wind force field. Through both
physics-informed constraints and visual supervision, we ensure the accuracy and continuity of the
reconstructed wind force field.

4 EXPERIMENTS

In this section, we first introduce the implementation details of our method (Sec. 4.1), followed by
evaluations of the capability in reconstructing wind-driven object dynamics (Sec. 4.2). We then

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Our reconstruction dataset from one camera view, with PSNR values of our dynamic
reconstruction shown above. Please use Adobe Reader/KDE Okular to see animations.

Figure 4: Qualitative results of novel view synthesis for a selected synthetic wind-object interaction
scene. We compare our method with Deformable-GS Yang et al. (2024b), Efficient-GS Katsumata
et al. (2024), 4D-GS Wu et al. (2024) and GaussianPrediction Zhao et al. (2024). Please use Adobe
Reader/KDE Okular to see animations.

conduct ablation studies (Sec. 4.3) to validate key design choices. Finally, we demonstrate the
application of our method to forward simulation of wind-driven object dynamics (Sec. 4.4).

4.1 IMPLEMENTATION DETAILS

For real-world captured data, we first use Detector-Free SFM He et al. (2024) to compute the pose
of each viewpoint. Subsequently, we use EntitySeg Lu et al. (2023) to generate instance-level 2D
segmentation masks and Grounded-SAM Ren et al. (2024) to generate part-level 2D segmentation
masks. Afterward, we train 3D Gaussians for 60k iterations. For 3D regions segmentation, we
train 20k iterations to build 3D consistent feature fields, and then use GPT5 Hurst et al. (2024) for
physical property reasoning. In our experiments, we divide the simulation space into a 1283 grid,
and for real-world scenes, only the segmented foreground objects are used as input to the simulator.
All components of our simulator are implemented using Taichi Hu et al. (2019; 2020), and all our
experiments are evaluated on a single NVIDIA GeForce RTX 4090 GPU.

4.2 EVALUATION ON RECONSTRUCTION

In this section, we first introduce our datasets, then compare our method with SOTA dynamic scene
reconstruction approaches for novel view synthesis, and finally show our wind retargeting results.

Datasets. As there are no publicly available datasets for modeling wind-driven object dynamics,
we introduce both synthetic and real-world datasets, named WD-Objects, in this paper for evaluation.
For the synthetic dataset, we first reconstruct seven object-level 3D Gaussians from various sources,
including NeRF Mildenhall et al. (2020), PhysDreamer Zhang et al. (2024), ShapeNet Chang et al.
(2015); Ma et al. (2024), and LoopGaussian Li et al. (2024a). We then simulate dynamic scenes
of the objects moving with the wind, further details are provided in Sec. 4.4. Next, we select eight
orthogonal views to render reference videos, where four viewpoints are used for training and the
remaining four for evaluating the quality of novel view synthesis. The evaluation is conducted
over 50 simulation time steps. We show the object states from one camera view in Fig. 3. For a
more complete visualization of the motion process, please refer to our video supplementary. For
the real-world dataset, we record 360-degree surround videos of real-world static scenes by GoPro
cameras, each scene includes an object and a background. The objects include a pothos plant, a

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Quantitative comparison on the synthetic dataset for the novel view synthesis. Best results
are highlighted as first , second , third .

Dress Flag Pants Sweater
Method

PSNR(↑) SSIM(↑) LPIPS (↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

Deformable-GS 27.32 .9715 .0253 40.86 .9939 .0057 42.36 .9924 .0149 33.10 .9557 .0594
Efficient-GS 22.79 .9470 .0481 26.72 .9483 .0499 34.73 .9782 .0385 26.06 .9241 .0920
4D-GS 27.64 .9729 .0239 36.96 .9868 .0147 41.33 .9911 .0184 30.14 .9556 .0702
GaussianPrediction 29.00 .9773 .0201 39.89 .9930 .0067 42.11 .9917 .0168 28.64 .9465 .0734
Ours 41.76 .9986 .0007 41.86 .9974 .0009 58.38 .9998 .0002 41.72 .9951 .0021

Ficus ShapeNetPlant Alocasia Average
Method

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

Deformable-GS 41.72 .9967 .0030 38.58 .9946 .0047 32.79 .9681 .0364 36.68 .9818 .0213
Efficient-GS 22.67 .8951 .0906 24.63 .9467 .0532 28.41 .9463 .0533 26.57 .9408 .0608
4D-GS 28.80 .9508 .0372 32.91 .9865 .0115 28.96 .9491 .0386 32.39 .9704 .0306
GaussianPrediction 38.81 .9920 .0083 37.46 .9935 .0061 34.65 .9738 .0292 35.79 .9811 .0229
Ours 48.82 .9995 .0003 52.54 .9998 .0001 44.94 .9980 .0010 47.15 .9983 .0008

Table 2: Quantitative comparison on the real-world dataset for the novel view synthesis. Best results
are highlighted as first , second , third .

POTHOS HAT POMPON TULIIP
Method

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

Deformable-GS 24.95 .9572 .0362 30.55 .9575 .0297 26.06 .9604 .0303 20.49 .9536 .0439
Efficient-GS 22.25 .9368 .0573 29.53 .9562 .0442 24.02 .9477 .0447 19.34 .9432 .0707
4D-GS 24.37 .9516 .0427 30.32 .9556 .0347 26.23 .9614 .0298 20.41 .9527 .0462
GaussianPrediction 24.69 .9532 .0401 30.36 .9564 .0307 25.57 .9568 .0348 19.96 .9511 .0463
Ours 26.18 .9692 .0256 31.37 .9585 .0281 26.14 .9660 .0267 23.53 .9719 .0308

beanie hat, a pompon flower, and a tulip. Additionally, we capture synchronized videos of these
plants being affected by a hairdryer.

Baselines. We compare our approach against the current state-of-the-art dynamic scene reconstruc-
tion methods: Deformable-GS Yang et al. (2024b), Efficient-GS Katsumata et al. (2024), 4D-GS Wu
et al. (2024) and GaussianPrediction Zhao et al. (2024). For a fair comparison, we run their opti-
mization process using our reconstructed static 3D Gaussians as initialization, and apply the same
regularization terms as described in Sec. 3.2.

Comparison on Novel View Synthesis. The quantitative results are shown in Table 1 and Table 2.
We present the PSNR/SSIM/LPIPS (VGG) values for the novel view rendering results to validate
the accuracy of our wind force field reconstruction results. We can see that the proposed method
significantly outperforms existing methods. A set of qualitative results is shown in Fig. 4, with full
results provided in the Appendix, demonstrating that our method produces more realistic novel views
than existing approaches, owing to its superior modeling of wind-driven object dynamics.

4.3 ABLATION STUDIES

Table 3: Ablation of effectiveness of physics-
informed loss on the synthetic dataset.

Config. PSNR SSIM LPIPS ×10−1

w/o Lphys 51.31 .9995 .0030
Full Model 53.24 .9997 .0021

Effectiveness of Physics-Informed Loss. We evaluate
the effectiveness of physics-informed loss during dynamic
reconstruction. The quantitative results in Table 3, show
that our full model, by embedding physical directional
constraints during training, further significantly enhances
rendering quality, resulting in reconstructions that are not
only more precise but also more physically plausible.

Table 4: Ablation of robustness against
physical property reasoning on the synthetic
dataset.

Config. PSNR SSIM LPIPS ×10−1

Soft 49.78 .9993 .0040
Medium 49.83 .9992 .0044
Hard 48.64 .9988 .0068
MLLM 51.31 .9995 .0030

Robustness against Physical Property Reasoning. We
also inspect the robustness of our method to variations in
material parameters. To this end, we conduct experiments
on the synthetic dataset to analyze how changes in Young’s
modulus affect reconstruction performance. We predefine
three categories of Young’s modulus: soft, medium, and
hard, with values of E = 4× 104, 4× 105, and 4× 106,
respectively, and also include values inferred using MLLM.
We perform dynamic reconstruction for each case without
the physics-informed loss, in order to better assess the influence of physical properties on the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Ours DynamiCrafter CogVideoX

Figure 5: Wind synthesis results at the same viewpoint across different timesteps. DynamiCrafter Xing
et al. (2023) fails to maintain temporal coherence, CogVideoX Yang et al. (2024a) produces unrealistic
jittering. In contrast, DiffWind generates realistic time-evolving wind-object interactions. Please use
Adobe Reader/KDE Okular to see animations.

Figure 6: Wind retargeting on synthetic data (left) and real-world data (right).

reconstruction results. Table 4 shows that using different predefined physical parameters still achieves
comparable reconstruction performance, while the values inferred by MLLM yield slightly better
results. Hence, we adopt MLLM for more convenient and accurate physical property estimation.

Table 5: Ablation of necessity of invisible
points densification on the real-world dataset.

Config. PSNR SSIM LPIPS ×10−1

w/o Densification 27.31 .9614 .0292
Full Model 27.90 .9646 .0268

Necessity of Invisible Points Densification. We also
evaluate the impact of invisible points densification, which
provides geometric support for the simulation process.
The quantitative results in Table 5 indicate that training
with densified points improves the reconstruction results,
justifying its necessity for accurate geometric modeling.

Table 6: Ablation of influence of grid resolu-
tion on the synthetic dataset.

Config. PSNR SSIM LPIPS ×10−1

643 49.08 .9991 .0046
1283 51.31 .9995 .0030
2563 51.90 .9997 .0024

Influence of Grid Resolution. To evaluate how discretiza-
tion resolution affects reconstruction quality and computa-
tional efficiency, we compare grid sizes of 643, 1283, and
2563. As shown in Table 6 the quantitative results show
that reconstruction quality remains stable across different
grid resolutions, while 1283 provides the best trade-off
between fidelity and runtime. Under our default 1283 set-
ting, each optimization iteration, including the LBM update, the MPM simulation, the differentiable
rendering, and the gradient backpropagation, takes approximately 1.17 seconds on a single NVIDIA
RTX 4090 GPU, compared to 1.02 seconds for 643 and 2.02 seconds for 2563.

4.4 FORWARD SIMULATION OF WIND-DRIVEN OBJECT DYNAMICS

Simulation under Specified Wind Conditions. Benefiting from our wind–object interaction mod-
eling approach, we enable forward simulation of wind-driven object dynamics, where object de-
formations are simulated by MPM and wind field evolution is simulated by LBM. To evaluate the
visual quality of our wind-object simulations, we compare our method against SOTA and publicly
available video generation models, including SVD Blattmann et al. (2023), CogVideoX Yang et al.
(2024a), VideoCrafter Chen et al. (2024), and DynamiCrafter Xing et al. (2023). The comparison is
performed on four test scenes. The multi-view images of the static test scenes, Vase and Garden, are
sourced from NeRF Mildenhall et al. (2020) and Feature-Splatting Qiu et al. (2024), respectively.
Additionally, we captured two static scenes ourselves, Cloth and Sock.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 7: Human evaluation on visual quality.

Method Visual Quality

Cloth Garden Sock Vase Avg

SVD 2.59 2.53 2.66 2.19 2.49
CogVideoX 2.31 1.72 2.69 2.63 2.34
VideoCrafter 2.56 2.44 2.38 1.94 2.33
DynamiCrafter 1.97 3.33 2.69 3.44 2.84
Ours 4.47 4.16 4.59 4.13 4.34

We conduct a user study with 32 participants, who rate
20 randomly ordered videos generated by different meth-
ods. Both motion realism and the physical realism of
wind–object interactions are evaluated on a 5-point Lik-
ert scale, from 1 (strongly disagree) to 5 (strongly agree).
Results in Table 7 demonstrate the superior visual quality
of our simulations, with comparative examples shown in
Fig. 5. Additional results are provided in the Appendix
and supplementary video.

Wind Retargeting. By using the reconstructed wind force field as input for forward simulation, our
method enables a new application, i.e., wind retargeting. We present several representative results of
wind retargeting in Fig. 1, Fig. 2 and Fig. 6, with additional examples provided in our supplementary
video. It can be observed that our method effectively decouples the invisible wind force field from
the visible object dynamics, while enabling accurate transfer to previously unseen scenes.

5 CONCLUSION

In this paper, we present a novel framework for modeling wind-object interactions. The proposed
framework can reconstruct wind-driven object dynamics, simulate in new wind conditions and
perform wind retargeting. To build this framework, we represent wind as a grid-based physical field
and model objects using particle-based deformable geometry. By leveraging differentiable physical
simulation and rendering, our system achieves backward reconstruction of wind-object interactions.
In addition, we employ the LBM as a physics-informed constraint to enforce compliance with fluid
dynamics laws. We also present a new dataset for comprehensive evaluation. The experiments
demonstrate the superiority of the proposed framework in modeling realistic wind-object dynamics.

Limitation and Future Work. The proposed framework currently focuses on modeling object-level
dynamics under wind conditions, without accounting for interactions between objects. Robustly
handling multi-object collisions is challenging due to discontinuous contact dynamics and complex
force interactions, which complicate gradient-based optimization. In addition, MPM is primarily
used for simulating continuum objects, however, our framework is simulator-agnostic and can be
extended to non-continuum objects by replacing MPM with an appropriate differentiable simulator
without changing the overall formulation, other types of simulators such as the spring–mass method
or the Finite Element Method (FEM) could be explored to model a wider range of object motion
behaviors. We leave these extensions as future work.

ETHICS STATEMENT
Our study focuses on modeling wind-driven object dynamics using physics-informed differentiable
simulations. All experimental evaluations are conducted using synthetic, publicly available, or
self-captured datasets, curated to avoid sensitive or private content. We assert that this research has
been carried out in accordance with the code of ethics.

REPRODUCIBILITY STATEMENT
In order to support reproducibility and verification, we present implementation and evaluation details
in our paper, and will release the associated source code upon acceptance.

REFERENCES

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Javier Bonet and Richard D Wood. Nonlinear continuum mechanics for finite element analysis.
Cambridge university press, 1997.

Katherine L Bouman, Bei Xiao, Peter Battaglia, and William T Freeman. Estimating the material
properties of fabric from video. In Proc. of ICCV, pp. 1984–1991, 2013.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Junhao Cai, Yuji Yang, Weihao Yuan, Yisheng He, Zilong Dong, Liefeng Bo, Hui Cheng, and Qifeng
Chen. Gaussian-informed continuum for physical property identification and simulation. In Proc.
of NeurIPS, 2024.

Junyi Cao, Shanyan Guan, Yanhao Ge, Wei Li, Xiaokang Yang, and Chao Ma. Neuma: Neural
material adaptor for visual grounding of intrinsic dynamics. In In Proc. of NeurIPS, 2024.

Jennifer Cardona, Michael Howland, and John Dabiri. Seeing the wind: Visual wind speed prediction
with a coupled convolutional and recurrent neural network. In Proc. of NeurIPS, 32, 2019.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying Shan.
Videocrafter2: Overcoming data limitations for high-quality video diffusion models, 2024.

Sili Chen, Hengkai Guo, Shengnan Zhu, Feihu Zhang, Zilong Huang, Jiashi Feng, and Bingyi Kang.
Video depth anything: Consistent depth estimation for super-long videos. Proc. of CVPR, 2025.

Mengyu Chu, Lingjie Liu, Quan Zheng, Erik Franz, Hans-Peter Seidel, Christian Theobalt, and
Rhaleb Zayer. Physics informed neural fields for smoke reconstruction with sparse data. ACM
TOG, 41(4):1–14, 2022.

Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B Tenenbaum, and Jiajun Wu. Neural radiance flow
for 4d view synthesis and video processing. In Proc. of ICCV, pp. 14304–14314. IEEE Computer
Society, 2021.

Yuanxing Duan, Fangyin Wei, Qiyu Dai, Yuhang He, Wenzheng Chen, and Baoquan Chen. 4d-
rotor gaussian splatting: Towards efficient novel-view synthesis for dynamic scenes. In Proc. of
SIGGRAPH, 2024.

Clement Fuji Tsang, Maria Shugrina, Jean Francois Lafleche, Or Perel, Charles Loop, Towaki
Takikawa, Vismay Modi, Alexander Zook, Jiehan Wang, Wenzheng Chen, Tianchang Shen, Jun
Gao, Krishna Murthy Jatavallabhula, Edward Smith, Artem Rozantsev, Sanja Fidler, Gavriel State,
Jason Gorski, Tommy Xiang, Jianing Li, Michael Li, and Rev Lebaredian. Kaolin: A pytorch library
for accelerating 3d deep learning research. https://github.com/NVIDIAGameWorks/
kaolin, 2024.

Xingyi He, Jiaming Sun, Yifan Wang, Sida Peng, Qixing Huang, Hujun Bao, and Xiaowei Zhou.
Detector-free structure from motion. Proc. of CVPR, 2024.

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chenfanfu Jiang. A
moving least squares material point method with displacement discontinuity and two-way rigid
body coupling. ACM TOG, 37(4):1–14, 2018.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand. Taichi: a
language for high-performance computation on spatially sparse data structures. ACM TOG, 38(6):
201, 2019.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and Frédo
Durand. Difftaichi: Differentiable programming for physical simulation. Proc. of ICLR, 2020.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. The affine
particle-in-cell method. ACM TOG, 34(4):1–10, 2015.

Xutong Jin, Chenxi Xu, Ruohan Gao, Jiajun Wu, Guoping Wang, and Sheng Li. Diffsound: Dif-
ferentiable modal sound rendering and inverse rendering for diverse inference tasks. In Proc. of
SIGGRAPH, pp. 1–12, 2024.

11

https://github.com/NVIDIAGameWorks/kaolin
https://github.com/NVIDIAGameWorks/kaolin

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kai Katsumata, Duc Minh Vo, and Hideki Nakayama. A compact dynamic 3d gaussian representation
for real-time dynamic view synthesis. In Proc. of ECCV, 2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
for real-time radiance field rendering. ACM TOG, 42(4):139–1, 2023.

Jiyang Li, Lechao Cheng, Zhangye Wang, Tingting Mu, and Jingxuan He. Loopgaussian: creating 3d
cinemagraph with multi-view images via eulerian motion field. In Proc. of ACM MM, pp. 476–485,
2024a.

Wei Li, Tongtong Wang, Zherong Pan, Xifeng Gao, Kui Wu, and Mathieu Desbrun. High-order
moment-encoded kinetic simulation of turbulent flows. ACM TOG, 42(6):1–13, 2023a.

Xuan Li, Yi-Ling Qiao, Peter Yichen Chen, Krishna Murthy Jatavallabhula, Ming Lin, Chenfanfu
Jiang, and Chuang Gan. Pac-nerf: Physics augmented continuum neural radiance fields for
geometry-agnostic system identification. Proc. of ICLR, 2023b.

Yifei Li, Tao Du, Kui Wu, Jie Xu, and Wojciech Matusik. Diffcloth: Differentiable cloth simulation
with dry frictional contact. ACM TOG, 42(1):1–20, 2022.

Yifei Li, Yuchen Sun, Pingchuan Ma, Eftychios Sifakis, Tao Du, Bo Zhu, and Wojciech Matusik.
Neuralfluid: Neural fluidic system design and control with differentiable simulation. In Proc. of
NeurIPS, 2024b.

Zhuoman Liu, Weicai Ye, Yan Luximon, Pengfei Wan, and Di Zhang. Unleashing the potential of
multi-modal foundation models and video diffusion for 4d dynamic physical scene simulation.
Proc. of CVPR, 2025.

Yi Lo, Hung-Kuo Chu, Ruen-Rone Lee, and Chun-Fa Chang. A simulation on grass swaying with
dynamic wind force. In Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, pp. 181–181, 2016.

Qi Lu, Jason Kuen, Shen Tiancheng, Gu Jiuxiang, Guo Weidong, Jia Jiaya, Lin Zhe, and Yang
Ming-Hsuan. High-quality entity segmentation. In Proc. of ICCV, 2023.

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
Tracking by persistent dynamic view synthesis. In Proc. of 3DV, 2024.

Qi Ma, Yue Li, Bin Ren, Nicu Sebe, Ender Konukoglu, Theo Gevers, Luc Van Gool, and Danda Pani
Paudel. Shapesplat: A large-scale dataset of gaussian splats and their self-supervised pretraining,
2024. URL https://arxiv.org/abs/2408.10906.

Miles Macklin. Warp: A high-performance python framework for gpu simulation and graphics.
https://github.com/nvidia/warp, March 2022. NVIDIA GPU Technology Confer-
ence.

Leland McInnes, John Healy, Steve Astels, et al. hdbscan: Hierarchical density based clustering. J.
Open Source Softw., 2(11):205, 2017.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In Proc. of ECCV,
2020.

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T. Barron, Sofien Bouaziz, Dan B Goldman,
Ricardo Martin-Brualla, and Steven M. Seitz. Hypernerf: A higher-dimensional representation for
topologically varying neural radiance fields. ACM TOG, 40(6), dec 2021.

Sören Pirk, Till Niese, Torsten Hädrich, Bedrich Benes, and Oliver Deussen. Windy trees: Computing
stress response for developmental tree models. ACM TOG, 33(6):1–11, 2014.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In Proc. of CVPR, pp. 10318–10327, 2021.

Ri-Zhao Qiu, Ge Yang, Weijia Zeng, and Xiaolong Wang. Language-driven physics-based scene
synthesis and editing via feature splatting. In Proc. of ECCV, 2024.

12

https://arxiv.org/abs/2408.10906
https://github.com/nvidia/warp

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
Yukang Chen, Feng Yan, et al. Grounded sam: Assembling open-world models for diverse visual
tasks. arXiv preprint arXiv:2401.14159, 2024.

Tom FH Runia, Kirill Gavrilyuk, Cees GM Snoek, and Arnold WM Smeulders. Cloth in the wind:
A case study of physical measurement through simulation. In Proc. of CVPR, pp. 10498–10507,
2020.

XIAOWEN SHAN, XUE-FENG YUAN, and HUDONG CHEN. Kinetic theory representation of
hydrodynamics: a way beyond the navier–stokes equation. Journal of Fluid Mechanics, 550:
413–441, 2006. doi: 10.1017/S0022112005008153.

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. A material
point method for snow simulation. ACM TOG, 32(4):1–10, 2013.

Yifan Wang, Peishan Yang, Zhen Xu, Jiaming Sun, Zhanhua Zhang, Yong Chen, Hujun Bao, Sida
Peng, and Xiaowei Zhou. Freetimegs: Free gaussian primitives at anytime anywhere for dynamic
scene reconstruction. In Proc. of CVPR, pp. 21750–21760, 2025.

Keith Wilson, Aleka McAdams, Hubert Leo, and Maryann Simmons. Simulating wind effects on
cloth and hair in disney’s frozen. In ACM SIGGRAPH 2014 Talks, pp. 1–1. 2014.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In Proc. of
CVPR, pp. 20310–20320, June 2024.

Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang.
Physgaussian: Physics-integrated 3d gaussians for generative dynamics. In Proc. of CVPR, pp.
4389–4398, 2024.

Jinbo Xing, Menghan Xia, Yong Zhang, Haoxin Chen, Wangbo Yu, Hanyuan Liu, Xintao Wang,
Tien-Tsin Wong, and Ying Shan. Dynamicrafter: Animating open-domain images with video
diffusion priors. arXiv preprint arXiv:2310.12190, 2023.

Shan Yang, Junbang Liang, and Ming C Lin. Learning-based cloth material recovery from video. In
Proc. of ICCV, pp. 4383–4393, 2017.

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
with an expert transformer. arXiv preprint arXiv:2408.06072, 2024a.

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable 3d
gaussians for high-fidelity monocular dynamic scene reconstruction. 2024b.

Haiyang Ying, Yixuan Yin, Jinzhi Zhang, Fan Wang, Tao Yu, Ruqi Huang, and Lu Fang. Omniseg3d:
Omniversal 3d segmentation via hierarchical contrastive learning. In Proc. of CVPR, pp. 20612–
20622, 2024.

Qin Zhang, Jialang Xu, Matthew Crane, and Chunbo Luo. See the wind: Wind scale estimation with
optical flow and visualwind dataset. Science of The Total Environment, 846:157204, 2022.

Tianyuan Zhang, Hong-Xing Yu, Rundi Wu, Brandon Y. Feng, Changxi Zheng, Noah Snavely, Jiajun
Wu, and William T. Freeman. PhysDreamer: Physics-based interaction with 3d objects via video
generation. In Proc. of ECCV. Springer, 2024.

Boming Zhao, Yuan Li, Ziyu Sun, Lin Zeng, Yujun Shen, Rui Ma, Yinda Zhang, Hujun Bao, and
Zhaopeng Cui. Gaussianprediction: Dynamic 3d gaussian prediction for motion extrapolation and
free view synthesis. In Proc. of SIGGRAPH, pp. 1–12, 2024.

Licheng Zhong, Hong-Xing Yu, Jiajun Wu, and Yunzhu Li. Reconstruction and simulation of elastic
objects with spring-mass 3d gaussians. Proc. of ECCV, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

We highly encourage watching the supplementary video where our results are best illustrated.

A BACKGROUND

A.1 3D GAUSSIAN REPRESENTATION

3D Gaussian Splatting (3DGS) Kerbl et al. (2023) employs a substantial number of explicit 3D
Gaussians to represent a static 3D scene. Each 3D Gaussian G is defined by a full covariance matrix
Σ and a center location µ:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ). (12)

For differentiable rendering optimization, 3DGS decomposes Σ into scaling matrix S and rotation
matrix R: Σ = RSSTRT , where S and R are stored by a 3D vector s and a quaternion q respectively.
To project these 3D Gaussians to 2D image, given a viewing transformation W , we obtain the 2D
covariance matrix Σ′ and 2D center location µ′ as:

Σ′ = JWΣWTJT , µ′ = JWµ, (13)

where J is the Jacobian of the affine approximation of the projective transformation. Then we can use
the neural point-based α-blending to render the color C of each pixel with N ordered 3D Gaussians:

C =
∑
i∈N

Ticiαi, (14)

where Ti, αi are calculated as:

Ti =
∏i−1

j=1(1− αj), αi = oie
− 1

2 (x−µ′)TΣ′−1(x−µ′). (15)

Here, oi is the opacity of the 3D Gaussian. Therefore, the 3D scene can be represented by the
parameter set P of 3D Gaussians, where P = {Gi : µi, qi, si, ci, oi}.

A.2 FLUID MECHANICS

Navier-Stokes Equations. Navier-Stokes equations are well-known fundamental equations that
describe fluid mechanics:

∂uw

∂t
+ uw · ∇uw = − 1

ρw
∇p+ ν∇ · ∇uw + Fo,

∇ · uw = 0,

(16)

where uw is the wind velocity field, ρw is the density, p is the pressure, ν is the kinematic viscosity
and Fo is the external force, which represents the influence of objects interacting with the wind field
in our work. The first equation describes the momentum conservation, while the second equation
enforces the incompressibility constraint.

Continuous Boltzmann Equation. The Boltzmann equation was proven to recover Navier-Stokes
equation macroscopically SHAN et al. (2006). It describes fluid dynamics through the time evolution
of a mesoscopic distribution function f(uw,xw, t):

∂f

∂t
+ uw · ∇f = Ω(f) + Fo · ∇uw

f , (17)

where Fo represents external forces, f represents the probability of a particle being at position x at
time t with velocity u and Ω is the collision term to relax distribution function towards the equilibrium
state, typically using the Bhatnagar-Gross-Krook(BGK) model SHAN et al. (2006). By integrating
the microscopic properties, the macroscopic physical quantities of the wind field, such as density ρw,
linear momentum ρwuw, and the stress tensor Sw can be calculated:

ρw =

∫
f duw, ρwuw =

∫
uwf duw,

ρwSw,αβ =

∫ (
u2
w − 1

3
δαβ

)
f duw,

(18)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where α, β ∈ {x, y, z} refer to the coordinates of the stress tensor Sw and δ is Kronecker delta.

We note that all numerical solvers for fluid dynamics, including the Lattice Boltzmann Method (LBM)
adopted in our framework, face inherent limitations under highly turbulent flows or when the local
Reynolds number exceeds the stability range of the scheme. In such regimes, solvers may fail to fully
resolve small-scale vortical structures or highly chaotic flow patterns. In our reconstruction pipeline,
LBM is used as a physics-informed constraint to regularize wind estimation toward physically
plausible behaviors. Consequently, our method can reliably reconstruct moderately complex and
unsteady wind fields, but consistent with the intrinsic limitations of the underlying solver, it does not
capture the full spectrum of fine-grained turbulent structures.

A.3 CONTINUUM MECHANICS

The object deformations are governed by continuum mechanics. In this section, we introduce the
relevant background.

Constitutive Models. Constitutive models describe the material responses to different mechanical
loading conditions, which provide the stress–strain relations to formulate the governing equations.
We use the Neo-Hookean constitutive model to capture the non-linearity of the object’s response to
the wind force field:

ψ(F) =
µ

2

∑
i

[
(F TF)ii − 1

]
− µ log(J) +

λ

2
log2(J),

P(F) =
∂ψ

∂F
= µ(F − F T) + λ log(J)F−T ,

(19)

where ψ is the hyperelastic energy density function, P is the first Piola-Kirchhoff stress, F is the
deformation gradient that encodes local transformations including stretch, rotation, and shearBonet &
Wood (1997) and J = det(F). The Lame parameters µ and λ are related to Young’s modulus E and
Poisson’s ratio νp:

µ =
E

2(1 + νp)
, λ =

Eνp
(1 + νp)(1− 2νp)

. (20)

Material Point Method. Material Point Method (MPM)Stomakhin et al. (2013); Hu et al. (2018)
solves the governing equations by transferring physical properties between Lagrangian particles and
Eulerian grid. In particular, we use MLS-MPMHu et al. (2018) as our simulator. Each particle’s
state is described by a five-tuple (xp,mp,up,Cp,Fp): xp is the particle position, mp is the particle
mass, up is the particle velocity, Cp is the affine momentumJiang et al. (2015) on particle, Fp is the
elastic deformation gradient tracked on the particle. MPM operates in a particle-to-grid (P2G) and
grid-to-particle (G2P) transfer loop to simulate the object dynamics. In the P2G stage, we transfer
mass and momentum from particles to the grid as:

mt
i =

∑
p

wt
ipmp, mt

iu
t
i =

∑
p

wt
ipmp

(
ut
p +Ct

p

(
xi − xt

p

))
. (21)

In the G2P stage, we transfer velocities back to particles and update particle states as:

ut+1
p =

∑
i

ut+1
i wt

ip, xt+1
p = xt

p +∆tut+1
p , (22)

where i represents the property on the Eulerian grid, n represents the property at time tn and wn
ip is

the B-spline kernel weight at xn
p . The deformation gradient is updated by MLS approximation as:

F t+1
p = (I +∆tCt

p)F
t
p . (23)

For more details about the simulation algorithm of MLS-MPMHu et al. (2018), we refer the reader to
its original publication.

B MORE DETAILS ON 3D REGIONS SEGMENTATION

A number of existing methods support 3D Gaussians segmentation. Specifically, we employ a
contrastive learning strategy to lift 2D segmentation results into 3D Gaussians, following Om-
niSeg3DYing et al. (2024). In particular, we use EntitySegLu et al. (2023) to generate instance-level

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

2D segmentation masks and Grounded-SAM Ren et al. (2024) to generate part-level 2D segmentation
masks, where we design prompts for GPT-4o to identify the names of different parts in the scene as
input to Grounded-SAM. For each 2D region, we blend its mask with a canonical view reference
image, and concatenate it with the reference image as a prompt image, then we guide the physical
agent to identify the region in the marked area and explain all possible material types with physical
properties, including Poisson’s ratio νp and Young’s modulus E. Next, we associate each Gaussian
kernel with an optimizable feature vector hg ∈ R16, for the features with region-wise labels L = {lij}
in 2D level, we maximize the similarity for features with the same region and low similarity between
different regions. We design the following loss for L as:

LCC(L) = − 1

Nr

Nr∑
i=1

ni∑
j=1

log
exp(lij · l̄i/ϕi)∑Nr

k=1 exp(l
i
j · l̄k/ϕk)

, (24)

where Nr is the number of regions involved in L, ni = |{li}|, lij is the render feature with point

index j and region id i, l̄i is the mean value for lij , and ϕi =
∑ni

j=1∥lij−l̄i∥
2

ni log(ni+α) is the region temperature,
where α = 10 is a smoothing parameter. After training the feature field, we apply HDBSCAN
clustering algorithmMcInnes et al. (2017) to automatically classify different regions without requiring
a predefined number of clusters, we then compute the convex hull of each region to categorize the
densified invisible points and Gaussian points that may not have been classified by HDBSCAN and
we employ KNN to assign any remaining unclassified points based on their proximity to existing
clusters. Finally, we assign physical properties to each 3D region based on the correspondence
between 2D and 3D segmentations.

C MORE DETAILS ON DENSIFY INVISIBLE POINTS

Although PhysGaussian proposes using a 3D opacity field from 3D Gaussians for internal filling, in
practice, this method often fails to achieve satisfactory results. Moreover, it requires the 3D Gaussian
point cloud to be densely distributed and is not suitable for hole completion. Therefore, we adopt
the octree-based voxel filling algorithm provided by the Kaolin library to densify invisible points for
improved geometric support. The algorithm mainly consists of the following three steps:

(1) Voxelization of 3D Gaussians via Octree Construction. The set of 3D Gaussians is first
converted into a voxel representation using a hierarchical algorithm built upon Kaolin’s Structured
Point Cloud (SPC), which functions as an octree. The axis-aligned bounding box (AABB) of all
Gaussians is enclosed within a cubical root node, which is recursively subdivided in an 8-way manner.
For each sub-node, a list of overlapping Gaussian IDs is maintained. Only the nodes that contain
relevant Gaussian density are further subdivided and checked for overlaps. This process continues
until a specified octree resolution level is reached. The frontier nodes of the octree represent a
voxelized shell of the 3D Gaussians. Optionally, nodes whose accumulated opacity values fall below
a predefined opacity_threshold are culled to remove low-density regions. As a result, this step yields
a voxel shell approximation of the Gaussian surface, without including inner volume content.

(2) Volume Filling via Multi-View Depth Fusion. To convert the voxelized shell into a volumetric
solid, the algorithm performs space carving based on rendered depth maps. Specifically, the SPC is
ray-traced from an icosahedral set of camera viewpoints to generate depth maps. These depth maps
are then fused into a second sparse SPC, where each node of the octree maintains an occupancy state:
empty, occupied, or unseen. The occupancy status of each voxel in a regular 3D grid is determined
by querying this SPC. Finally, the union of all occupied and unseen voxels yields a volumetric
representation that better captures the object’s solid geometry.

(3) Dense Point Sampling. After volume filling, the 3D Gaussians are now represented as dense
voxels that include the object’s interior volume. A point is sampled at the center of each occupied
voxel to construct a dense point cloud. Optionally, a small random perturbation is added to each point.
This perturbation is constrained to be small enough to ensure the point remains within the bounds
of its voxel. By the end of this step, each voxel contains at most one sampled point, resulting in a
uniformly distributed and volume-complete point cloud.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D MORE DETAILS ON HOME-LBM ALGORITHM

The post-collision distribution function in HOME-LBM is given by:

fi = ρwi

[
1 +

ci · u
c2s

+
H [2](ci) : S

2c4s

+
1

2c6s

(
H [3]

xxy(ci)(Sxxuy + 2Sxyux − 2uxuxuy)

+H [3]
yyy(ci)(Syyux + 2Sxyuy − 2uxuyuy)

+H [3]
xxz(ci)(Sxxuz + 2Sxzux − 2uxuxuz)

+H [3]
zzz(ci)(Szzux + 2Sxzuz − 2uxuzuz) (25)

+H [3]
yzz(ci)(Szzuy + 2Syzuz − 2uyuzuz)

+H [3]
yyz(ci)(Syyuz + 2Syzuz − 2uyuyuz)

+H [3]
xyz(ci)(Sxxuy + Syzux + Sxyuz − 2uxuyuz)

)]
,

where H is the Hermite polynomials, S is the stress tensor and u is the velocity. This post-collision
distribution function enables the computation of the microscopic distribution function in the LBM,
which can then be integrated into the standard LBM simulation pipeline.

To address the low accuracy problem caused by the BGK collision model in the classical LBM
algorithm, HOME-LBM introduces a high-order collision model based on Hermite expansion after
the streaming step the update process is given by:

ρ(x, t+ 1) = ρ∗,

uα(x, t+ 1) = u∗
α +

1

2ρ∗
Fα,

Sxy(x, t+ 1) =

(
1− 1

τ

)
S∗
xy +

1

τ
u∗
xu

∗
y +

2τ − 1

2τρ∗
(
Fxu

∗
y + Fyu

∗
x

)
,

Sxx(x, t+ 1) =
τ − 1

3τ

(
2S∗

xx − S∗
yy − S∗

zz

)
+

1

3

(
u∗
x
2
+ u∗

y
2
+ u∗

z
2
)

+
1

ρ∗
Fxu

∗
x +

τ − 1

3τρ∗
(
2Fxu

∗
x − Fyu

∗
y − Fzu

∗
z

)
, (26)

Syy(x, t+ 1) =
τ − 1

3τ

(
2S∗

yy − S∗
xx − S∗

zz

)
+

1

3

(
u∗
x
2
+ u∗

y
2
+ u∗

z
2
)

+
1

ρ∗
Fyu

∗
y +

τ − 1

3τρ∗
(
2Fyu

∗
y − Fxu

∗
x − Fzu

∗
z

)
,

Szz(x, t+ 1) =
τ − 1

3τ

(
2S∗

zz − S∗
xx − S∗

yy

)
+

1

3

(
u∗
x
2
+ u∗

y
2
+ u∗

z
2
)

+
1

ρ∗
Fzu

∗
z +

τ − 1

3τρ∗
(
2Fzu

∗
z − Fxu

∗
x − Fyu

∗
y

)
.

Here, the superscript * denotes the values obtained after the streaming step and F denotes the force
term derived after the streaming step. For a more detailed mathematical derivation, please refer to the
original HOME-LBM paper Li et al. (2023a).

E MORE EXPERIMENTAL RESULTS

E.1 MORE SIMULATION RESULTS

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Detailed time statistics for forward simulation. #OBG denotes the number of object particles,
and #BG indicates the number of background Gaussian particles. "LBM Time", "MPM Time", and
"Render Time" represent the average computation time per timestep for LBM simulation, MPM
simulation, and 3D Gaussian Splatting rendering, respectively.

Scene. #OBG #BG LBM Time(×10−2s) MPM Time(s) Render Time(×10−2s)

Cloth 125223 527159 0.702 0.919 0.598
Garden 52505 4484605 0.710 0.830 3.994
Sock 131794 630068 0.709 0.874 0.669
Vase 145868 1944064 0.720 0.947 1.890

Figure 7: Wind synthesis results at the same timestep from multiple views. SVD Blattmann et al.
(2023) exhibits uncontrolled camera movements, VideoCrafter Chen et al. (2024) and Dynami-
Crafter Xing et al. (2023) fail to maintain 3D consistency in object geometry and generate only subtle
motion, while CogVideoX Yang et al. (2024a) fails to produce geometrically consistent object motion
across views. In contrast, DiffWind maintains 3D consistency and produces realistic wind-object
interaction.

Fig. 7 and Fig. 9 compare our results against various diffusion models, demonstrating that our method
produces more physically plausible and 3D-consistent motion. The time performance of our forward
simulation is reported in Table 8. Please refer to our video supplementary material for more results.

E.2 MORE RECONSTRUCTION RESULTS

Baselines. We compare our approach against the current state-of-the-art dynamic scene reconstruc-
tion methods: Deformable-GS Yang et al. (2024b), Efficient-GS Katsumata et al. (2024), 4D-GS Wu
et al. (2024) and GaussianPrediction Zhao et al. (2024).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 8: DiffWind is capable of simulating realistic wind-object interactions in static scenes
reconstructed from real-world captured multi-view images.

Figure 9: Wind synthesis results at the same viewpoint across different timesteps. SVD Blattmann et al.
(2023) suffers from noticeable camera shake, CogVideoX Yang et al. (2024a) produces unrealistic
jittering, VideoCrafter Chen et al. (2024) distorts the original object structure and DynamiCrafter Xing
et al. (2023) fails to maintain temporal coherence, resulting in implausible motion artifacts. In contrast,
DiffWind generates realistic time-evolving wind-object interactions.

Deformable-GS reconstructs dynamic scenes by introducing an additional MLP-based deformation
field, while Efficient-GS reconstructs dynamic scenes by learning trajectory functions that govern the
motion of Gaussian kernels over time. Similar to Deformable-GS, 4D-GS models the deformation
field via HexPlane representations, and GaussianPrediction associates each Gaussian point with an
additional motion feature as an extra input to the deformation field. For a fair comparison, we run
their optimization process using our reconstructed static 3D Gaussians as initialization, and apply the
same regularization terms as described in Sec. 3.2.

Real-World Data. We also capture real-world datasets for evaluation. Specifically, we record
360-degree surround videos of real-world static scenes by GoPro cameras. Each scene includes an
object and a background. The objects include a pothos plant, a beanie hat, a pompon flower, and a
tulip. Additionally, we capture synchronized videos of these plants being affected by a hairdryer. We
report the quantitative comparison results in Table. 2 and show the qualitative results in Fig. 11.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 10: Qualitative results of novel view synthesis on synthetic wind-object interaction scenes. We
compare our methods with Deformable-GSYang et al. (2024b), Efficient-GSKatsumata et al. (2024),
4D-GSWu et al. (2024) and GaussianPredictionZhao et al. (2024).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 11: Qualitative results of novel view synthesis on real-world wind-object interaction scenes.
We compare our method with Deformable-GSYang et al. (2024b), Efficient-GSKatsumata et al.
(2024), 4D-GSWu et al. (2024) and GaussianPredictionZhao et al. (2024).

Table 9: Evaluations of reconstructed wind force fields on the synthetic dataset.

Metrics Flag Pants Sweater Dress Ficus ShapeNet Alocasia Average

CosSim 0.9489 0.9585 0.9474 0.8390 0.8695 0.9883 0.9229 0.9249
NMSE 0.0341 0.0276 0.0350 0.1074 0.0870 0.0078 0.0514 0.0500

Ablation on Invisible Point Densification. We inspect the effectiveness of densifying invisible
points and conduct the experiments on the real-world dataset. In Fig. 12, the left side shows the
original locations of the 3D Gaussians, while the right side shows the complete point set after
densification.

Figure 12: Visualization of object particle posi-
tions before and after invisible points densifica-
tion.

Figure 13: Prompt for 3D Segmentation.

Evaluations of Reconstructed Wind Force Fields. We assess the fidelity of the reconstructed
wind force field Fw under controlled synthetic settings, as shown in Table 9. Let Fgt

w and Frec
w

denote the ground-truth and reconstructed wind force fields. We normalize the force vector at each
grid location to unit length, and denote the normalized vectors as F̂gt and F̂rec. For directional
consistency, we report the average cosine similarity over all time steps CosSim = 1

N

∑N
i=1 F̂

gt
i
⊤F̂rec

i ,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

with range [−1, 1], where higher values indicate stronger alignment between reconstructed and
ground-truth directions. Additionally, we report the normalized mean squared error over all time steps
NMSE = 1

N

∑N
i=1 ∥F̂

gt
i −F̂rec

i ∥2, with range [0, 4], where lower values indicate better reconstruction.
These results show that the recovered wind force fields are directionally coherent and maintain
consistent relative magnitudes with respect to the ground truth on the synthetic dataset.

PhysDreamer OursPhysFlow

Figure 14: PhysDreamer and PhysFlow fail
to reconstruct dynamics for objects with com-
plex wind-induced motion, with the GT motion
(red) shown underneath for reference, while
our method faithfully captures the motion.

Evaluations of Other Baselines. Note that there
are existing methods that also employ differen-
tiable physical simulation for physics parameter es-
timation from video observation, including Phys-
Dreamer Zhang et al. (2024) and PhysFlow Liu et al.
(2025). However, both of them only optimize the
initial motion velocities at first frame and Young’s
modulus for simple and predefined motion patterns,
which cannot fully characterize the complex dynam-
ics provided in the input video, especially for windy
object reconstruction, as shown in Fig. 14. There-
fore, the results obtained by these methods are gen-
erally worse than those of the dynamic scene recon-
struction methods we listed above for novel view
synthesis. For example, for the Ficus example in our
dataset, the PSNR/SSIM/LPIPS metrics for Phys-
Dreamer and PhysFlow are 18.22/0.8546/0.0948 and
18.11/0.8529/0.0965, respectively, which are consistently worse than other methods. Hence, we focus
on the comparison of our method to those SOTA dynamic scene reconstruction methods for the novel
view synthesis task.

E.3 COMPUTATIONAL COST AND SCALABILITY

All experiments in our paper can be executed on a single NVIDIA RTX 4090 GPU (24GB). Both
the LBM and MPM simulators are implemented using the Taichi GPU framework, enabling high-
performance GPU execution of the entire physics pipeline. For forward simulation, DiffWind requires
less than 1 second per frame for the complete LBM wind update, MPM object simulation, and
differentiable rendering, demonstrating higher efficiency than existing video generation baselines, for
example, VideoCrafter requires ∼ 81.68s to generate 16 frames, DynamiCrafter ∼ 151.47s for 16
frames, and CogVideoX ∼ 292.37s for 50 frames. For reconstruction tasks, each optimization iteration
includes the LBM update, MPM simulation, differentiable rendering, and gradient computation, and
runs in ∼ 1.17 seconds. The overall reconstruction process takes roughly 2 hours per scene. This
makes the optimization computationally practical while maintaining high reconstruction fidelity and
physical consistency. For comparison, 4DGS typically optimizes for ∼ 1 hour per scene. While
DiffWind is slower than 4DGS-style baselines, this is expected because each iteration involves
full differentiable physics simulation, tackling a substantially more complex problem. Improving
the efficiency of differentiable physical simulators is a broader challenge for the community and a
direction for future research, not a limitation unique to our method.

We also evaluated scalability with respect to grid resolution. GPU memory usage during training
increases moderately with grid size: 643 uses ∼ 12.3GB, 1283 uses ∼ 13.0GB, 2563 uses ∼ 14.8GB,
and 5123 uses ∼ 21.0GB. This indicates that memory usage remains practical for moderately
sized scenes, thanks to Taichi’s efficient memory handling. For larger-scale scenarios, multi-GPU
parallelization and other scalability strategies can be employed.

F MORE DETAILS ON PROMPT DESIGN

We present the prompt template for precise 3D segmentation, as shown in Fig. 13. This template is
designed to generate a brief yet accurate segmentation caption when provided with a given image.
Next, we design a physical agent based on MLLMs for open-vocabulary semantic reasoning about
materials and their physical properties. For each segmented object part, we combine its mask with a

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 15: Prompt for video diffusion models.

canonical reference image and concatenate it with the reference image to form a prompt image. The
agent is then guided to identify the object part within the marked area and reason about all possible
material types and their associated physical properties. The prompt template is shown in Fig. 17.
Note that the MLLM we used here is GPT5. For wind source inference, given the observed RGB
video, we first generate the monocular depth video through Video Depth AnythingChen et al. (2025),
and then infer the wind source direction using the prompt as illustrated in Fig. 16.

In addition, we utilize the prompt design shown in Fig. 15 to guide video generation models in
synthesizing scenes of wind-induced object motion. These synthesized videos are qualitatively
compared with our physically-based forward simulation results to evaluate visual realism and motion
plausibility, as presented in the main paper.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 16: GPT Prompt for Wind Source Inference.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 17: GPT Prompt for Physical Properties Reasoning.

25

	INTRODUCTION
	RELATED WORK
	METHOD
	Preliminary: Physical Models
	Wind-Object Interaction Modeling
	Reconstruction Framework for Wind-Object Interaction
	Physics-Informed Optimization of Wind Force Field

	EXPERIMENTS
	Implementation Details
	Evaluation on Reconstruction
	Ablation Studies
	Forward Simulation of Wind-Driven Object Dynamics

	CONCLUSION
	Ethics Statement
	Reproducibility Statement
	Background
	3D Gaussian Representation
	Fluid Mechanics
	Continuum Mechanics

	More details on 3D Regions Segmentation
	More Details on Densify Invisible Points
	More details on HOME-LBM Algorithm
	More Experimental Results
	More Simulation Results
	More Reconstruction Results
	Computational cost and scalability

	MORE DETAILS ON PROMPT DESIGN

	anm4:
	4.47:
	4.46:
	4.45:
	4.44:
	4.43:
	4.42:
	4.41:
	4.40:
	4.39:
	4.38:
	4.37:
	4.36:
	4.35:
	4.34:
	4.33:
	4.32:
	4.31:
	4.30:
	4.29:
	4.28:
	4.27:
	4.26:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

