
Under review as a conference paper at ICLR 2021

LEARNING TO BALANCE WITH INCREMENTAL LEARN-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Classification tasks require balanced distribution of data in order to ensure the
learner to be trained to generalize over all classes. In realistic settings, however,
the number of instances vary substantially among classes. This typically leads
to a learner that promotes bias towards the majority group due to its dominating
property. Therefore, methods to handle imbalanced data is crucial for alleviating
distributional skews and fully utilizing the under-represented data. We propose a
novel training method, Sequential Targeting, that forces an incremental learning
setting by splitting the data into mutually exclusive subset and adaptively balanc-
ing the data distribution as tasks develop. To address problems that arise within
incremental learning, we apply dropout and elastic weight consolidation with our
method. It is demonstrated in a variety of experiments on both text and image
dataset (IMDB, CIFAR-10, MNIST) and has proven its superiority over traditional
methods such as oversampling and under-sampling.

1 INTRODUCTION

In a real-world application setting, it is rarely the case where the discrete distribution of the data is
perfectly balanced. It is common for real-world data to be skewed to majority classes when the mi-
nority class is often the class of interest. Skewed data distribution is explicitly addressed in anomaly
detection as it is a matter of high interest in various fields including disease, fraud and malware
detection[ Rao et al. (2006); Wei (2013); Cieslak et al. (2006)]. Since correctly classifying under-
represented classes is equally important as classifying majority classes, if not more so, methods
to temper the model from biasing towards certain classes are of great importance. In order to de-
velop an intelligent classifier, approaches to generalize over different distributional tasks are getting
increasingly important and being extensively researched.

Learning from imbalanced data inevitably brings bias toward frequently observed classes. Data-
level manipulation tries to under-sample majority classes or over-sample minority classes. But these
methods have a tendency to discard valuable information from observations of majority classes or
over-fit to limited data, especially as the imbalance level gets severe.

We propose a novel training architecture, Sequential Targeting (ST), which handles the data imbal-
ance problem without manipulating the data by forcing an incremental learning setting. ST divides
the entire training data set into mutually exclusive partitions, adaptively balancing the data distri-
bution among tasks. The split data is then sorted in similarity with the target distribution and used
to train a balanced learner. In order to address catastrophic forgetting (French, 1999), which is an
inevitable phenomenon when training a learner in a sequential fashion, we utilize different meth-
ods[Kirkpatrick et al. (2016); Goodfellow et al. (2013)] to stabilize the knowledge attained from the
previous tasks. This allows the learner to pay more focus on the newly adapted data distribution
while not forgetting the representation from previous tasks.

We validate the effectiveness of our method with experiments conducted on both text and image
data. Different data imbalance levels as well as proportion of the minority classes were experi-
mented. Experimental results show that Sequential Targeting outperforms previous approaches, with
notable gap especially in extremely imbalanced cases. Furthermore, Sequential Targeting proves to
be compatible with both traditional data-level methods and recent algorithm-level approaches.

Our contribution in this paper is as follows:
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• We introduce a novel method addressing the data imbalance problem by splitting the data
and incrementally training a learner to perform a balanced learning by paying equal atten-
tion to the minority data as to the majority. The learner’s initial focus on the majority class
is compensated by the redistributed task that comes sequentially, resulting in an overall
increase of performance.

• Incremental learning techniques have been utilized to prevent catastrophic forgetting on
tasks encountered before. The novelty of our method stands since we applied incremental
learning to address the data imbalance problem.

• We propose a novel method that is compatible with previous methods addressing the data
imbalance problem. Best performance is shown when utilized together.

2 RELATED WORKS

Balancing Methods Previous researchers have proposed data-level methods as well as algorithm-
level methods that address the data imbalance problem. Data-level techniques such as SMOTE and
its variants [Chawla et al. (2002); Han et al. (2005)] attempt to alleviate the level of imbalance by
manipulating the training data. Cluster based oversampling (Puntumapon et al., 2016) attempts to
cluster the data into groups using k-means algorithm and apply oversampling to each cluster, which
proves to reduce within-class imbalance and between-class imbalance. SMOTEboosting (Chawla
et al., 2003) applies SMOTE before every round of boosting and provides more samples of misclas-
sified set for weak learners often including the minority class samples.

Alternatively, algorithm-level methods[Krawczyk (2016); Sheng & Ling (2006)], commonly imple-
mented with a weight or cost schema, modify the underlying learner or its output to reduce bias
towards the majority group. Algorithm-level methods modify the structure of the decision process
of how much to focus on under-represented samples. This could be implemented by assigning cost
matrix as a penalty (Fernando et al., 2017). Moreover, loss functions could be modified, such as in
the case of focal loss (Lin et al., 2017), which reshapes the standard cross entropy loss such that it
penalizes the loss assigned to well-classified instances.

Catastrophic Forgetting Researchers have investigated methods to circumvent catastrophic for-
getting, a phenomenon of a learner forgetting about the previously learned task when encountered
with another task. One of the major approaches is to use an ensemble of networks, each trained
with individual tasks (Rusu et al., 2016). However, this approach has a complexity issue. Alterna-
tively, Fernando et al. (2017) proposed an ensemble approach which attempts to fix the parameters
learned from the previous task and train new parameters on consecutive tasks. This method has
successfully reduced complexity issues, but performance suffers from the lack of trainable param-
eters. Goodfellow et al. (2013), on the other hand, investigated catastrophic forgetting in neural
networks and showed that applying dropout substantially helps overcome this phenomenon without
any apparent downfalls. This accounts to the increased optimal size of the parameters with dropout
applied, thereby increasing the capacity of the learner and reducing generalization error.

Recent studies have focused on developing a regularization term that buffers the model from for-
getting the previously trained information. Elastic weight consolidation (EWC) (Kirkpatrick et al.,
2016) is one of the most conspicuous works in this field. EWC algorithm, which implements modi-
fied regularization term that consolidates knowledge across tasks, imposes restriction on the model
to slow down updating certain important parameters from the previous task.

EWC considers neural network training from a probabilistic perspective. Optimizing the network
parameters θ is equivalent to finding their most feasible values given some data D. We can com-
pute this conditional probability p(θ|D) from the prior probability of the parameters p(θ) and the
probability of the data p(D|θ) by using Bayes’ rule:

log p(θ|D) = log p(D|θ) + log p(θ)− log p(D) (1)

By assuming that the data is split into two independent parts, one defining the previous task Dprev

and the other current task Dcurr. we can rearrange the equation 1 by applying Bayesian update rule:
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log p(θ|D) = log p(Dcurr|θ) + log p(θ|Dprev)− log p(Dcurr) (2)

The prior distribution learned from previous dataset is further enriched by the data given at the
current task. Due to the intractability of the posterior distribution, EWC poses an assumption on the
prior distribution to follow a Gaussian distribution with the mean as θ∗prev and the Fisher information
matrix, F, of the previous task as the precision. In order to minimize the loss of information, the
objective function is defined as follows:

L(θ) = Lcurr(θ) +
∑
i

λ

2
Fi(θi − θ∗prev,i)2 (3)

where Lcurr(θ) sets the loss for the current task, λ sets the importance of the previous task and i
labels each parameter.

3 SEQUENTIAL TARGETING

We first introduce a broad overview of the novel training architecture: Sequential Targeting. Next,
we show how this method has been applied to address the data imbalance problem.

3.1 MATCHING THE TARGET DISTRIBUTION

We propose a novel model architecture of forced incremental learning on imbalanced setting.
The term forced incremental learning has rarely, if ever, been used since incremental learning is a
much complicated task. In incremental learning, the new data is referred to as different task in this
paper. The task is consistently provided therefore the learner needs to be constantly updated on the
new task. Because of catastrophic forgetting, learners perform much better when trained with an
individual task than continually being updated with multiple tasks. In spite of this phenomenon, we
have proven it is beneficial to force an incremental learning setting where the given data distribution
varies substantially from the target data distribution, such as in the case of data imbalance. The
target distribution, denoted as PT , is the idealistic data distribution in which the learner would
perform the best if trained on.

Our method effectively improves the model by dividing a given task, Dtotal, into multiple tasks,
D1,D2, ...Dk, so that

⋃
Di = Dtotal and

⋂
Di = ∅. Each task is partitioned into varying distribu-

tions: P1,P2, ...Pk. The learner is sequentially trained on these tasks in the order of similarity with
the target distribution, which is measured with KL-divergence. The following has to hold:

DKL(PT ‖Pprev) > DKL(PT ‖Pcurr), where Pi
D−→ PT (4)

Using a single learner over all tasks, we incrementally condition on the maximum performance from
the previous task and stabilize the learned parameters on the current task. As explained in equation
2, the learner’s parameters from the previous task distribution is used to train on the current task
distribution. KL divergence explains the discrepancy between the task distribution and the target
distribution. As tasks proceed, the data distribution approximates the target distribution. At last, the
task becomes identical to the target distribution ensuring DKL(PT ‖Pk) ≈ 0.

The number of data splits, k, and how each task is partitioned to have varying KL-divergence values
are both highly dependent on what PT is defined to be. We believe this training approach is the first
of its kind, with the best of our knowledge.

3.2 ADAPTIVE BALANCING FOR DATA IMBALANCE

Imbalanced data setting tempers the model from learning extensively from under-represented in-
stances. Therefore, it is crucial to enforce the learner to acquire knowledge equally among classes.
In an idealistic setting, a learner is trained with equally represented dataset. However, in a realis-
tic setting, imbalanced data includes some under-represented classes and the learner has difficulty
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acquiring sufficient knowledge to generalize. Sequential Targeting enables balanced learning by
redistributing the task to approach the target distribution as tasks develop.

It is idealistic to assume PT
d
=Uniform[0, p] in an imbalanced data setting therefore when p de-

notes the number of classes the target distribution is discrete uniform: { 1p ,
1
p , , , , ,

1
p}. In our method,

the training data is redistributed into two splits so that the last split is identical to the uniform distri-
bution.

Figure 1: Comparison between baseline and Sequential Targeting

This training architecture lets the learner pay more focus to the under-represented data by manipu-
lating the learning sequence. Sequentially training the learner to be exposed to increasing portion
of minority class data benefits the overall performance. Moreover, applying dropout to the layers
and implementing EWC during the transfer between tasks proves to help the learner maintain the
knowledge acquired from the previous split.

4 EXPERIMENTS

4.1 EVALUATION METRICS AND RATIOS

Accuracy is commonly used to measure the performance of a classification model. However, when
it comes to skewed data, accuracy alone can be misleading and thus other appropriate metrics are
needed to correctly evaluate the performance of the model. In this paper, we use precision, recall,
and macro F1-score to objectively evaluate the model in a skewed data setting. Precision measures
the percentage of actual positive among the number of positively predicted samples. Recall measures
the percentage of the truly positive instances that was correctly predicted by the model. As precision
and recall is in a trade-off relationship, selecting a learner that performs well on both metrics would
be a reasonable policy. Macro F1-score combines both precision and recall as a harmonic mean
weighted with equal importance on each class rather it be sparse or rich. In this paper, F1-score is
used as the core metric for measuring performance.

Following the conventions of the previous research on imbalanced data[ Buda et al. (2018); Johnson
(2019)], we employ three distinct ratios used throughout the experiment to represent the imbalanced
state of the data. One is the proportion of minority classes over majority classes µ:

µ =
|{i ∈ 0, 1, . . . , N : Ci is minority}|

N
(5)

whereCi is the set of instances in class i and N is the total number of classes. Another parameter ρ is
a ratio between the number of instances in majority classes and the number of instances in minority
classes defined as follow:

ρ =
{maxi(Ci)}
{mini(Ci)}

(6)

The other parameter η is a parameter that compares the relative number of minority class instances
among splits. For instance, if the first task consists of 100 samples in minority class and the second
task consists of 50 samples, then η will be 2:1. We experienced various combinations of these three
ratios and concluded that η does not have a significant effect on model performance. Therefore, the
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number of instances of the minority classes between the splits is fixed as 1:1 throughout the whole
experiment. Further consideration of η can be found in the discussion section.

Figure 2: Idealistic and Realistic data distributions

Figure 2 shows variation of µ and ρ in the case of a idealist dataset and a realistic dataset.

4.2 DATASET AND NEURAL NETWORK ARCHITECTURE

In this research, we performed experiments on IMDB, CIFAR-10, and MNIST datasets. The datasets
were deliberately made into varying imbalanced states as shown in Table 1.

Table 1: Simulated Dataset in variations of ρ and µ.

Dataset ρ µ Class Train Validation Test
Minority Majority Minority Majority Minority Majority

IMDB
10

N/A 2
1,250 12,500 2,500 2,500 10,000 10,000

20 625 12,500 2,500 2,500 10,000 10,000
50 250 12,500 2,500 2,500 10,000 10,000

CIFAR-10 10 0.8 10 400 4,000 100 100 100 100
5 0.6 800 4,000 200 200 200 200

MNIST 10 0.8 10 500 5,000 100 100 100 100

IMDB is a text dataset, which contains 50000 movie reviews with binary labels (positive/negative).
Reviews have been preprocessed, and each review is encoded as a sequence of word indexes. Three
different imbalance ratios have been deliberately made (ρ = 10, 20, 50) to test how each method
performs as the imbalance level worsens. The positive reviews are regarded as the positive class
in our experiment. A CNN + LSTM model architecture was used for this task. After an initial
embedding layer, a 1-dimension convolution layer is followed with a dropout layer (dr = 0.2). It
is then followed by a Bidirectional LSTM and a Uni LSTM layer. Lastly, a 1-dimensional fully-
connected layer (dr = 0.2) is followed by a sigmoid activation.

CIFAR-10 is a image dataset that consists of 10 classes with 6000 training and 1000 test data for
each class. We sampled from the original data with predetermined ρ ratio (ρ = 5, 10) in order to
experiement on an imbalanced setting. Since there are multiple classes in this dataset, two varied
fraction of minority classes (µ = 0.8, 0.6) were simulated and tested as well. Following the work
of Masko & Hensman (2015) on CIFAR-10, we used a variant of CNN (Lecun et al., 1998). After
applying two dimensional convolutional layer, ReLU activation is applied followed by maxpooling
and a dropout layer (dr = 0.5). This procedure is repeated twice and three fully-connected layers
with hidden node size of 120, 84, and 10 are utilized.

MNIST is a image dataset that consists of simple handwritten single digits. Each class of digits
consists of 5500 training, 500 validation and 1000 test data. MNIST data is deliberately manipulated
in order to match the predetermined ρ and µ ratio(ρ = 10, µ = 0.8). The model architecture used
in MNIST data is a simple Multi-Layer Perception network which includes three consecutive fully-
connected layers with hidden node size of 512, 512, and 10. A dropout layer with dropout rate 0.2
is implemented on each hidden layer. The activation function used in this architecture is ReLU.

Experimental setup. In our experiments, our proposed method has been extensively compared with
two data-level methods, random oversampling (ROS) and random under-sampling (RUS). A naive
duplicate sampling approach has been used for oversampling the minority data for simplicity. We
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explored the full capability of Sequential Targeting by comparing multiple combinations with ROS
and EWC. ROS is combined with ST by oversampling the first split; no sampling method is applied
to the second split. For each configuration, five independent trial runs were trained with different
initial weights. This setting ensures the effect of weight initialization to be ruled out in evaluating
model performance. Among the five trials, the model with the highest validation score was used for
evaluation. All the experimental settings including epochs, learning rate, and model architecture are
fixed for each corresponding task.

4.3 EXPERIMENT RESULTS

Table 2: Experimental results on IMDB
Ratios ρ = 10 ρ = 20 ρ = 50
Metrics F1 Precision Recall F1 Precision Recall F1 Precision Recall
Baseline 0.7291 0.8751 0.6248 0.3216 0.6677 0.2118 0.0833 0.69 0.0443

ROS 0.7548 0.702 0.8162 0.5738 0.5839 0.564 0.5837 0.5618 0.6061
RUS 0.7921 0.7305 0.865 0.1837 0.6758 0.1063 0.0256 0.6065 0.0131
ST 0.7956 0.7499 0.8472 0.5844 0.5984 0.571 0.5601 0.5266 0.5981

ST + EWC 0.8002 0.7181 0.9035 0.7543 0.7368 0.7727 0.6457 0.7188 0.586
ST + EWC + ROS 0.8143 0.7984 0.8307 0.7259 0.6728 0.788 0.6471 0.6156 0.6819

IMDB Results. Table 2 shows the experimental results on the IMDB dataset (Maas et al., 2011). We
observe training the model with ST outperforms, if not on par with, traditional methods. Baseline is
a setting where no deep learning techniques are employed therefore the learner is trained from the
intrinsic imbalanced distribution. Results show a considerable increase in recall when ST is applied.
This is because the model is able to predict more positive(minority) instances correctly since focus
was put on the under-represented class. It is natural to expect a significant decrease in precision
since the focus has been shifted away from the majority class. However, the drop is minimal when
EWC is applied. This is because EWC helps the model to remember valuable information obtained
during the training of the first split as the model is trained with the balanced second split. It was
further observed that applying EWC, ROS, and ST together significantly outperforms other methods.
Lastly, as the severity of data imbalance increases, the performance gap between applying ST and
not applying grows substantially. In the case of ρ=10 and ρ=50, applying ROS together with ST and
EWC shows the best performance in terms of F1-Score.

Table 3: Experimental results on image data
Ratios (CIFAR-10) ρ = 5 µ = 0.6 (CIFAR-10) ρ = 10 µ = 0.8 (MNIST) ρ = 10 µ = 0.8
Metrics F1 Precision Recall F1 Precision Recall F1 Precision Recall
Baseline 0.6695 0.6187 0.8794 0.6333 0.5903 0.8422 0.8931 0.8897 0.8966

ROS 0.8187 0.7956 0.8540 0.8194 0.7960 0.8525 0.8984 0.8978 0.8990
RUS 0.8263 0.8028 0.8567 0.8294 0.8073 0.8556 0.8263 0.8981 0.8990
ST 0.7916 0.7633 0.8329 0.7901 0.7495 0.8428 0.8962 0.8941 0.8984

ST + EWC 0.8033 0.7733 0.8403 0.8260 0.8045 0.8511 0.8968 0.8950 0.8987
ST + EWC + ROS 0.8298 0.8122 0.8532 0.8311 0.8099 0.8566 0.8986 0.8980 0.8992

CIFAR-10 and MNIST Results. Table 3 shows the results of experiments performed on the two
image datasets. While MNIST (Lecun et al., 1998) is a simple handwritten digits dataset without
color information, CIFAR-10 (Krizhevsky, 2012) is a relatively complicated image classification
task with color information. The experimental results manifest larger gap exists when using ST on
CIFAR-10 rather than on MNIST. This accounts to the relative simplicity of MNIST dataset which
alleviates the shortcoming of skewed data during representation learning. This shows that ST greatly
benefits the learner in a difficult setting where the the task difficulty and imbalance ratio is severe.
The results show that a variant of our proposed method, ST with EWC and ROS, scores the best
among other approaches in general.
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5 CONCLUSION

Learning from imbalanced class inevitably brings bias toward frequently observed classes. Data-
level manipulation tries to under-sample the majority classes or over-sample the minority classes.
But these methods have a tendency to discard valuable information from observations of majority
classes or overfit to sparse representation of minority classes, especially as the imbalance level gets
higher. If the learning of a classification model is limited to maximizing the total accuracy over the
entire data, models pay more attention to majority classes while neglecting the rest.

We propose Sequential Targeting, which effectively circumvents these issue by simply decomposing
the data into k splits and sequentially training a learner in the decreasing order of KL divergence
with the target distribution, which in the case of data imbalance problem is the discrete uniform
distribution. Our architecture proves to be compatible with previous methods and outperforms ex-
isting methods when validated on imbalanced text and image classification tasks. Our model shows
superiority in performance because of simultaneous increase in both precision and recall thereby
improving the overall F1-score. We believe that our work makes a meaningful step towards the
application of incremental learning on the data imbalance problem.

6 DISCUSSION

Variations of η ratio has been tested. However, it proves to be domain-dependent and most variations
still outperformed previous methods. A fixed ratio of 1:1 was used throughout the experiment in this
paper. However, in order to fully utilize ST, variations of different η ratio should be tested for
optimal performance.

In the case of ROS and RUS, ensemble methods could be utilized since data is randomly sampled.
Each sample instance can be considered to train weak learners that can use max-voting schemes to
create a single strong learner. Likewise, variations of η ratio can be considered different samples
train multiple weak learners. In further research, ensemble methods of ROS, RUS, and ST will be
tested as well.

Lastly, since ST is compatible with algorithm-level methods, successful methods such as focal
loss (Lin et al., 2017) and cost-sensitive deep neural network (Khan et al., 2015) are expected to
increase overall performance if implemented together.
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