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Abstract

Reinforcement Learning has lead to considerable break-throughs in diverse areas1

such as robotics, games and many others. But the application of RL to complex real-2

world decision making problems remains limited. Many problems in Operations3

Management (inventory and revenue management, for example) are characterized4

by large action spaces and stochastic system dynamics. These characteristics5

make the problem considerably harder to solve for existing RL methods that6

rely on enumeration techniques to solve per step action problems. To resolve7

these issues, we develop Programmable Actor Reinforcement Learning (PARL), a8

policy iteration method that uses techniques from integer programming and sample9

average approximation. Analytically, we show that the for a given critic, the learned10

policy in each iteration converges to the optimal policy as the underlying samples11

of the uncertainty go to infinity. Practically, we show that a properly selected12

discretization of the underlying uncertain distribution can yield near optimal actor13

policy even with very few samples from the underlying uncertainty. We then apply14

our algorithm to real-world inventory management problems with complex supply15

chain structures and show that PARL outperforms state-of-the-art RL and inventory16

optimization methods in these settings. We find that PARL outperforms commonly17

used base stock heuristic by 51.3% and RL based methods by up to 9.58% on18

average across different supply chain environments.19

1 Introduction20

Reinforcement Learning (RL) has led to considerable breakthroughs in diverse areas such as games21

[1], robotics [2] and others. Since RL provides a systematic framework to solve diverse problems22

with very limited domain knowledge, it has also been applied to other domains such as healthcare [3].23

But the application of RL in real world problems poses unique challenges.24

Many real world problems (e.g., inventory and revenue management), have large action spaces,25

specific state-dependent action constraints, and underlying stochastic transition dynamics. For26

example, a retailer managing the inventory across a network of nodes in the supply chain has to27

decide how much inventory to place across the different nodes of the network. To accomplish this,28

the retailer has to account for (i) uncertain demand across the nodes in the network; (ii) a possible29

large set of feasible actions since the retailer decides on the number of units to allocate at different30

nodes; and (iii) a large number of constraints to ensure that the allocation remains feasible. These31

characteristics ensure that a direct application of existing RL methods remains limited [4, 5, 6].32

Large action spaces render enumeration based techniques computationally infeasible. Hence, existing33

research has focused on either analyzing simplified inventory settings where a parameterized optimal34

policy can be constructed [7, 8], or relevant constraints are relaxed and heuristics are used to estimate35
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feasible solutions [9, 10], or domain expertise is used to decide to approximate the state-space36

representation [11, 12].37

The current paper takes a different approach to solving this problem. Our approach uses Neural38

Networks to approximate the value-to-go function and uses ideas from Mathematical Programming39

(MP) and Sample Average Approximation (SAA) to solve the per-step-action optimally. Our proposed40

framework is general and can be used to solve real world inventory management problems with41

complexities that make analytical solutions intractable (e.g. lost sales, dual sourcing with lead times,42

multi-echelon supply chains and many others).43

We make the following contributions through this work:44

1. We present a policy iteration algorithm for dynamic programming problems with large action45

spaces and underlying stochastic dynamics that we call Programmable Actor Reinforcement46

Learning (PARL). The algorithm uses a neural network to approximate the value-to-go47

function along with techniques from SAA. In each iteration, the approximated NN is then48

used to generate an actor policy using integer-programming techniques.49

2. To resolve the issue of computational complexity and underlying stochastic dynamics, we50

use techniques from SAA and discretization of continuous functions. Analytically, we show51

that for a given critic, the learned policy in each iteration converges to the optimal policy52

as the underlying samples of the uncertainty go to infinity. Practically, we show that if the53

underlying distribution of the uncertainty is known, a properly selected discretization can54

yield near optimal actor policy even with very few samples.55

3. We perform extensive computational experiments on real world inventory management56

settings and compare our proposed algorithm with state-of-the-art benchmark algorithms.57

We find that the proposed PARL algorithm is able to outperform both state-of-the-art58

machine learning (9.53% on average across different settings) as well as a standard inventory59

management heuristic (up to 51.3% on average across different settings). Our extensive60

simulation results provide a benchmark for various previously known intractable supply61

chain settings (network inventory management with lost sales, back order costs, stochastic62

demand and lead times), and could be of independent interest to researchers.63

2 Literature Review64

The current paper is related to three different areas:65

Approximate Dynamic Programming (ADP): Our work is related to the broad field of approxi-66

mate dynamic programming [13]. ADP methods use an approximation of the value-to-go function to67

optimize over computationally intractable dynamic programming problems. Traditionally, a set of68

features is chosen and polynomial functions of these features are used to approximate the value-to-go69

function. Naturally, one drawback that remains is that the quality of approximation depends on70

appropriately selecting the features as well as the functions for the approximation, which is not trivial.71

Hence, NN can be used to approximate the value-to-go, thereby replacing the step of feature and72

function selection [14, 15].73

Mathematical programming based RL actor: Mathematical programming (MP) techniques74

have recently been used for optimizing actions in RL settings with DNN-based function approximator75

and large action spaces. They leverage MP to optimize a mixed-integer (linear) problem (MIP)76

over polyhedral action space using commercially available solvers such as CPLEX and Gurobi. A77

number of papers show how trained RELU-based DNNs can be expressed as a MP with [16, 17] also78

providing ideal reformulations that improve computational efficiencies with a solver. [18] propose a79

Q-learning framework to optimize over continuous action spaces using a combination of MP and80

DNN actor. [19, 14, 15] show how to use RELU-based DNN value-to-go functions to optimize81

combinatorial problems (e.g., vehicle routing, traveling salesman) where the immediate rewards are82

deterministic and the action space is vast. We extend the approaches and results to problems where83

immediate reward can be uncertain as in the case of inventory management problems.84

RL for inventory management: Early work that show the benefits of RL for multi-echelon85

inventory management problems include [11, 20, 21]. There has been a recent surge in using DNN-86
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based reinforcement learning techniques to solve supply chain problems [4, 5, 6] because the widely87

used base stock (s, S) threshold polices are known to be optimal only special cases (e.g., serial chain88

with back-ordered demands or the inability to hold demand in warehouses). See seminal works89

of [22, 23] and a recent review of multi-echelon inventory models studied in [24]. Optimal policy90

structures are unknown even in the single-node lost sales, dual sourcing settings and known heuristics91

are optimal in an asymptotic sense (see discussion and references in § 4). A DNN-based actor critic92

method to solve the inventory management problem in [4] for the case of single node lost sales93

and dual sourcing settings, as well as multi-echelon settings and show improved performance in94

the latter setting. [5] shows how RL can be used to solve the classical beer game problem where95

agents in a serial supply chain compete for limited supply. More recently [6] use a multi-agent96

A2C framework to solve an inventory management problem for a large number of products in a97

multi-echelon setting. Unlike these papers, we adopt a MP-based RL actor and show the benefit over98

vanilla DRL approaches. These methods have the ability factor in known state dependent constraints99

as opposed to learning them.100

3 PARL: Programming Actor Reinforcement Learning101

102

We consider an infinite horizon discrete-time discounted Markov decision process (MDP) with the103

following representation: states s 2 S , actions a 2 A(s), uncertain random variable D 2 Rdim with104

probability distribution P (D = d|s) that depends on the context state s, reward function R(s, a,D),105

distribution over initial states �, discount factor � and transition dynamics s0 = T (s, a, d) where s
0106

represents the next state. A stationary policy ⇡ 2 ⇧ is specified as a distribution ⇡(.|s) over actions107

A(s) taken at state s. Then the expected return of a policy ⇡ 2 ⇧ is given by J
⇡ = Es⇠�V

⇡(s)108

where the value-to-go function is defined as V
⇡(s) =

P1
t=0 E [�t

R(st, at, Dt)|s0 = s,⇡, P, T ].109

The optimal policy is given by ⇡
⇤ := argmax⇡2⇧ J

⇡. The Bellman’s operator F [V ](s) =110

maxa2A(s) ED⇠P (./s,a) [R(s, a,D) + �V (T (s, a,D))] over the state space is known to have a111

unique fixed point (i.e., to V = FV ) at V ⇡⇤
. This is crucial in the policy iteration scheme developed112

below that improves the learned value function and hence the policy over subsequent iterations.113

We assume that the state space S is bounded, the action space A(s) is composed of discrete and/or114

continuous actions in a bounded polyhedron and lastly the transition dynamics T (s, a, d) and the115

reward function R(s, a,D) are piece-wise linear and continuous in a 2 A(s).116

We propose a Monte-Carlo simulation based policy-iteration framework where the learned policy is the117

outcome of a mathematical program which we refer to as PARL: Programming Actor Reinforcement118

Learning (see Algorithm 1). PARL is initialized with a random policy. The initial policy is iteratively119

improved over epochs with a learned critic (or the value-to-go function). In epoch j, policy ⇡j�1120

is used to generate N sample paths, each of length T. At every time step, a tuple of {state, reward,121

next-state} is also generated that is then used to estimate the value function V̂
⇡j�1

✓ using a neural122

network parametrized by ✓. Particularly, in every epoch, for each sample path, we also get an estimate123

of the cumulative reward given by Yn(sn0 ) =
PT

t=1 �
t�1

Rit, 8n = 1, .., N , where s
n
0 is the initial124

state of sample-path n. Note that to increase the buffer size, we also use partial sample paths. The125

initial states and cumulative rewards can be then passed on to a neural network which estimates the126

value of policy ⇡j�1 for any state, i.e., V̂ ⇡j�1

✓ . Once a value estimate is generated, the new policy127

using the trained critic is simply128

⇡j(s) = arg max
a2A(s)

ED

h
R(s, a,D) + �V̂

⇡j�1

✓ (T (s, a,D))
i
. (1)

Problem (1) is hard to solve because of two main reasons. First, notice that V̂ ⇡j�1 is a neural network129

which makes enumeration based techniques intractable, especially for settings where the actions space130

is large. And second, the objective function involves evaluating expectation over the distribution of131

uncertainty D that is analytically intractable to compute. We next discuss how PARL addresses each132

of these complexities.133

Optimizing over a neural network: Consider Problem (1) for a single realization of uncertainty
D given by maxa2A(s) R(s, a, d) + �V̂

⇡j�1

✓ (T (s, a, d)). We describe a mathematical programming
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(MP) approach to solve this problem. We begin by assuming the value-to-go V -function is a trained
K-layer feed forward RELU-network with input state s satisfying the following equations:

z1 = s, ẑk = Wk�1zk�1 + bk�1, zk = max{0, ẑk}, 8k = 2, · · · ,K, V̂✓(s) := c
T
ẑK ,

where ✓ = (c, {(Wk, bk)}K�1
k=1 ) are the weights of the V -network with (Wk, bk) being the multiplica-134

tive and bias weights of layer k and c being the weights of the output layer. Here ẑk, zk denotes the135

pre- and post-activation values at layer k. The non-linear equations re-written exactly as a MP with136

binary variables and M -constraints [18, 17]. For completeness, we briefly describe the steps.137

Consider a neuron in the network with parameters (w, b). For example, in layer k neuron i’s138

parameters are (W i
k, b

i
k). Assuming a bounded input x 2 [l, u], the output z of that neuron can be139

obtained with the following MP representation:140

P (w, b, l, u) =

⇢
(x, z, y)

��� z � w
T
x+ b, z � 0, z  w

T
x+ b�M

�(1� y), z  M
+
y

x 2 [l, u], y 2 {0, 1}, z 2 R

�
(2)

where M
+ = maxx2[l,u] w

T
x + b and M

� = minx2[l,u] w
T
x + b. Let ũi = ui if wi � 0 and li141

otherwise and, let l̃i = li if wi � 0 and ui otherwise. Hence M
+ = w

T
ũ+ b and M

� = w
T
l̃ + b.142

Note that if M+
<= 0 (or if M�

>= 0), the binary variable y in MP can eliminated and the MP can143

be reduced to z = 0 (or z = w
T
x+ b respectively).144

Starting with the bounded input to the V -network, which can be derived from the bounded nature of145

S , the upper and lower bounds for subsequent layers can be obtained by assembling the max{0,M+}146

and max{0,M�} for each neuron from its prior layer. We will refer to them as [lk, uk] for every layer147

k. This reformulation of the V-network combined with linear nature of the reward function R(s, a, d)148

w.r.t a and polyhedral description of the feasible set A(s), lend themselves in reformulating Problem149

(1) as a MP for any given realization of d. In Appendix 5, we provide the corresponding formulation150

for the inventory management problem.151

Maximizing expected reward with a large action space: Problem (1) maximizes the expected152

profit where the expectation is taken over the uncertainty set D. Evaluating the expected value of153

the approximate reward is computationally hard. Hence, we take a Sample Average Approximation154

(SAA) approach to solve it. Let d1, d2, ..d⌘ denote ⌘ independent realizations of the uncertainty D.155

Then, we let156

⇡̂
⌘
j (s) = arg max

a2A(s)

1

⌘

⌘X

i=1

R(s, a, di) + �V̂
⇡⌘
j�1

✓ (T (s, a, di)) . (3)

Problem (3) involves evaluating the objective only at sampled demand realizations. Assuming that157

for any ⌘, the set of optimal actions is non empty, we show that as the number of samples, ⌘ grows,158

the estimated optimal action converges to the optimal action. We make this statement precise in159

Proposition 3.1.160

Proposition 3.1 Consider epoch j of the PARL algorithm with a RELU-network value-to-go estimate161

V̂
⇡j�1

✓ (s) for some fixed policy ⇡j�1. Suppose ⇡j , ⇡̂
⌘
j are the optimal policies as described in Problem162

(1) and its corresponding SAA approximation respectively. Then, 8 s,163

lim
⌘!1

⇡̂
⌘
j (s) = ⇡j(s).

Proposition 3.1 shows that the quality of the estimated policy improves as we increase the number of164

demand samples. Nevertheless, the computationally complexity of the problem also increases linearly165

with the number of samples: for each demand sample, we represent the DNN based value-to-go166

estimation using binary variables and the corresponding set of constraints.167

We propose to use a weighting scheme when the uncertainty distribution P (D = d|s) is known and168

independent across different dimensions. Let q1, q2, ..q⌘ denote ⌘ quantiles (for example, evenly169

split between 0 to 1). Also let Fj & fj , 8j = 1, 2.., dim, denote the cumulative distribution function170

and the probability density function of the uncertainty D in each dimension respectively. Let171

dij = F
�1
j (qi) & wij = fj(qi), 8i = 1, 2, .., ⌘, j = 1, 2.., dim denote the uncertainty samples172

and their corresponding probability weights. Then, a single realization of the uncertainty is a dim173
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dimensional vector di = [di1, .., di,dim] with associated probability weight wpool
i = wi1⇤wi2..⇤wi,dim.174

With ⌘ realizations of uncertainty in each dimension, in total there are ⌘
dim such samples. Let175

Q = {di, wpool
i } be the set of demand realizations sub sampled from this set along with the weights176

(based on maximum weight or other rules) such that |Q| = ⌘. Also let wQ =
P

i2Q w
pool
i . Then177

Problem (3) becomes178

⇡̂
⌘
j (s) = arg max

a2A(s)

X

di2Q
wi

⇣
R(s, a, di) + �V̂

⇡⌘
j�1

✓ (T (s, a, di))
⌘
, (4)

where wi = w
pool
i /wQ. The computational complexity of solving the above problem remains the179

same as before but since we use weighted samples, the approximation to the underlying expectation180

improves.

Algorithm 1 PARL
1: Initialize with random actor policy ⇡0.
2: for j 2 [T ] do
3: for (epoch) n 2 [N ] do
4: Play policy ⇡j�1 for T (1� ✏) and random action for ✏T steps starting with state sn0 ⇠ �.
5: Let Rcum,n

t =
PT

i=t �
i�tRn

i and store tuple {snt ,Rcum,n
t } 8t = 1, .., T .

6: end for
7: Approximate a DNN value-to-go approximator by solving

V̂j = argmin
✓

NX

n=1

TX

t=1

(Rcum,n
t � f(snt , ✓))

2

8: Sample ⌘ realizations of the underlying uncertainty D and obtain a new policy (as a lazy evaluation as
needed) by solving either Problem (3) or (4) depending on the selected sampling method.

9: end for

181

4 Application of PARL to Multi-echelon Inventory Management182

We now describe the application of PARL to the classic real-world multi-echelon inventory man-183

agement problems in supply chain. We consider a firm managing inventory replenishment and184

distribution decisions for a single product across a network of stores (also referred to as nodes) with185

goal to maximize profits while meeting customer demands.186

Let ⇤ be the set of nodes, indexed by l. Each of the nodes can produce a stochastic amount of187

inventory in every period denoted by the random variable (r.v) Dp
l which is either kept or distributed188

to other nodes. Any such distribution from node l to l
0 has a deterministic lead time Lll0 � 0 and is189

associated with a fixed cost Kll0 and a variable cost Cll0 . Every node uses the inventory on-hand to190

fulfill local stochastic demand denoted by the r.v D
d
l at a price pl. We assume any excess demand is191

lost. If there is an external supplier, we denote it by a dummy node S
E . For simplicity, we assume192

there is at most one external supplier and that the fill rate from that external supplier is 100% (i.e.,193

everything that is ordered is supplied). We denote the upstream nodes that supply to node l by the set194

Ol ⇢ ⇤ [ S
E . In every period the firm has to decide how much inventory to distribute from node to195

node and how much inventory should each node request from the external supplier. All replenishment196

decisions are have lower and upper capacity constraints denoted by U
L
ll0 and U

H
ll0 . There is also197

holding capacity at every node denoted by Ūl. The firm’s objective is to maximize the overall profit.198

Assuming an i.i.d nature of stochasticity for each r.v, the firm’s problem can be modeled as an infinite199

horizon discrete-time MDP as follows:200

V (I) = max
xl0l2Z+,ULxUH

ED [R(I,x,D) + �V (I0)] (5)

where R(I,x,D) =
X

l2⇤

Rl(Il,xl,Dl), (6)

Rl(Il,xl,Dl) = pl min{Dd
l , Ĩ

0
l }�

X

l02Ol

⇥
Kl0l xl0l>0 + Cl0lxl0l

⇤
� hlI

0
l
0
, 8 l 2 ⇤, (7)
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Ĩ
0
l = I

0
l + I

1
l +D

p
l +

X

l02Ol

xl0l Ll0l=0 �
X

{l02⇤|l2Ol0}

xll0 , 8 l 2 ⇤, (8)

I
0
l
0 = min

⇢
Ūl,

h
Ĩ
0
l �D

d
l

i+�
, 8 l 2 ⇤, (9)

I
0
l
j = I

j+1
l +

X

l02Ol

xl0l Ll0l=j , 8 1  j  max
l02Ol

Ll0l, l 2 ⇤. (10)

Here I is the inventory pipeline vector for all nodes and the state space of the MDP, xl the action201

taken by the firm described by the vector of inventory movements from all other nodes to node l at202

time t, Rl(.) the reward function for each node l described in Eq. (7), I0 the next state defined by203

the transition dynamics in Eqs. (9-10) and auxiliary variables Ĩ0l defined in Eq. (8). The auxiliary204

variable has an interpretation of the total inventory in the system prior to meeting demand which205

stems from the on-hand inventory I
0
l , incoming pipeline inventory I

1
l , stochastic node production206

D
p
l , the incoming inventory from other nodes with lead time zero and the out-going inventory from207

this node.208

Note that the state space I is a collapsed state space compared to the inventory pipelines over209

connections between nodes as the reward Rtl(.) just depends on collapsed node inventory pipelines.210

Also, transportation cost and holding cost related to pipeline inventory are without loss of generality211

set to 0, as the variable purchase cost Cll0 can be modified according to account for these additional212

costs.213

This setting models many real-world multi-echelon supply chain structures shown in Fig. 1. The214

figures aim to show three types of nodes - supply nodes (S) that just produce inventory for downstream,215

warehouse nodes (W) that act as distributors and retail nodes (R) which face external demand. The216

supply node can be part of ⇤ or be an external supplier SE . Example 1S-2W-3R (dual sourcing)217

depicts how sometimes nodes can have two inventory sources, commonly referred to in the supply218

chain literature as dual-sourcing setting.219

Figure 1: Example of different multi-echelon supply chain networks. In 1S-3R, a single supplier node
serves a set of 3 retail nodes directly. In 1S-2W-3R, the supplier node serves the retail nodes through
two warehouses. In 1S-2W-3R (dual sourcing), each retail nodes can is served by two distributors.

It is easy to observe that the assumptions about PARL related to the state and action spaces, the220

reward and the transition dynamics are satisfied by the inventory management setting described221

here. In Appendix A.2, we provide the exact mixed-integer linear programming reformulation of222

the PARL actor for the inventory management MDP, using standard linearization techniques for223

the immediate reward and the M reformulation for the value-to-go part discussed in § 3. In § 5224

we provide computational results on the performance of PARL for various supply chain settings225

represented in Fig. 1.226

As a note, in the MDP model, we assume excess demand is lost, while there can be settings such as227

in a B2B environment where the demands can be backordered. This extension is easy to include by228

allowing the current on-hand inventory to be negative (see [11, 4] for a hybrid model). For a single229

node retail node (|⇤| = 1) and one external supplier SE , the optimal policy for back-ordered demand230

has a (s, S) structure where S is referred to as the order-up-level based on the inventory position231

(sum of on-hand plus this in the pipeline) and s an inventory position threshold, below which orders232

are placed [22]. This (s, S) policy is commonly referred to as the base stock policy. In the lost sales233

setting that we consider, even with just a retail node, when lead times are non-zero, the structure234

of the optimal policy is unknown [25, 26] and [27, 28] prove structural results when p/h ! 1.235

[29] prove that the lost sales problem is a special case of dual sourcing problem (one retail node236

with 2 external suppliers), and thus, base stock policies are not optimal in general. Despite their237

non-optimality, they are popular both in practice and in the literature where authors restrict to the238
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set of base stock policies for tractability reasons or to prove guarantees on the policy structure. For239

example, recently [30] propose a learning-based method to find the best base stock policy in a single240

node lost sales setting with regret guarantees and [31] develop a DNN-based learning approach to241

find the best order up-to levels in each link of a general supply chain network. Hence we benchmark242

PARL against base stock policies in the following section.243

5 Computational Experiments244

We develop a general purpose multi-echelon inventory management simulation environment defined245

with nodes (entities) and directional-connections (links). We model three types of entities - suppliers246

(S), warehouses (or distributors, W) and retailers (R). All entities are associated with holding costs,247

holding capacities and spillage costs, while retailers are additionally associated with price, demand248

uncertainties and a lost-sales demand type, and suppliers with production uncertainties. Each link is249

associated with order costs, lead time and maximum order quantity. The environment executes on250

the ordering and distribution actions specified by the actors by first ensuring its feasibility using a251

proportional fulfillment scheme (as it cannot send more than the inventory in a node), samples the252

uncertainties, accumulates the reward, which here is the revenue from fulfillment and cost of ordering253

and holding, and returns the next state to the actor.254

We consider 5 different instances of this environment for our computations based on the 2 and 3255

echelon structures described in Fig. 1. We consider 3 variations of 2 echelon supplier-retailer settings:256

1S-3R-High, 1S-3R, 1S-10R, where high refers to higher production capacity compared to the 1S-3R257

system, and 2 variations of the 3 echelon system: 1S-2W-3R and 1S-2W-3R (DS), with (DS) referring258

to dual sourcing. The specific details on the parameters for each of these environments are provided259

in Appendix A.4.260

Benchmark Algorithms: We compare PARL with four state-of-the-art, widely used RL algo-261

rithms: PPO [32], TD3 [33], SAC [34], and A2C [35]; and a popularly used (s, S) base stock policy262

[36] for each link.263

For the RL algorithms we used the tested and reliable implementations provided by Stable-Baselines3264

[37], under the MIT License. We made all our environment compatible with OpenAI Gym [38] and to265

implement PARL we built on reference implementations of PPO provided in SpinningUp [39] (both266

MIT License). We ran RL baselines on a 152 node X 26 (average) CPU cluster (individual jobs used 1267

CPU and max <1GB RAM), and PARL on a 13 nodes X 48 (average) CPU cluster (individual PARL268

job uses 16 CPUs for trajectory parallelization and CPLEX computations and average <4GB RAM).269

We use version 12.10 of CPLEX with a time constraint of 60s per decision step with 2 threads.270

In the inventory management literature[36], parametric (s, S) base stock policies are discussed for271

retail nodes with infinite capacity upstream supplier. In this policy, if I is the inventory pipeline272

vector for a retailer, the inventory position is defined as IP =
PL

i=0 I
j , where L is the lead time273

from the supplier, and the order quantity is max{0, S � IP} as long as IP <= s and 0 otherwise.274

For the 2 echelon 1S � nR environments, we identify the best base stock policy via grid search275

for each link using a 1S � 1R environment. Recall that if the retailers over order, they receive276

inventory proportional to the request because of the proportional fulfillment strategy. For the 3-277

echelon environments, we use the same strategy for the W � R links but computing inventory278

positions IP based on the lead time for that link (note that inventory pipelines can be longer than279

leadtime in the dual sourcing setting). For the S � W links we use environments that treat the280

warehouse as a retailer with demand equal to the sum of the downstream retail demands to find the281

optimal parameters for that link.282

Parameter tuning and Evaluation: We perform extensive tuning of different hyper parameters283

(HPs) of the benchmark RL algorithms considered. We first evaluated methods over a large ran-284

dom grid of HP combinations to narrow down hyper parameters to a reasonable subset across our285

environments, in particular fixing a set of gamma values to try, fixing the representations for the286

observation and action spaces to continuous (interestingly discrete and multi-discrete consistently287

performed worse, likely because of their larger space size), using ReLU activation (consistently288

better or equal to tanh), fixing the network architecture to the standard used 64x64 as we did not289

see benefit from larger or different architectures, fixing the epoch length where applicable to 2048290

steps (worked better than shorter initial PPO experiments), fixing a set of learning rates and value291
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function coefficients to try, and fixing the batch size to the standard 64. In the end we defined a292

grid of 32 to 36 hyper-parameter combinations for each benchmark method (mainly varying gamma,293

learning rates, and exploration options) and ran 10 different randomly seeded modeling runs for294

each combination. We then computed the average accuracy per epoch (using 20 evaluation episodes)295

across the 10 runs for each environment and HP combo. We then selected the HP combo for each296

method and environment that gave the maximum mean reward as its best HP combo.297

For the PARL algorithm, because of computational constraints, we only tune two parameters: learning298

rate and number of samples to be used for solving the SAA problem per time step, 3 values each. For299

base stock, the main hyper parameter is the granularity of the grid search, which was set to 2 units.300

Then for all methods, given a selected best hyper-parameter combination per method and environment,301

to perform the evaluation we then ran 10 different training runs for each (i.e., with different random302

seeds). Finally we took the best epoch model according to evaluation scoring from each of those303

10 runs as the best model per run, and evaluated each of the 10 with 20 episodes to get our final304

reported mean and standard deviation per method and environment. Additional and complete details305

of the hyper parameter tuning procedure including final range used and selected hyper-parameters are306

provided in Appendix A.3.307

Performance: In Table 1, we present the average per step reward (over test runs) of the different308

algorithms and compare them to PARL. PARL outperforms all benchmark algorithms in all the309

five settings. Notably, the improvement is higher in supply chain settings that are more complex310

(1S-10R, 1S-2W-3R and 1S-2W-3R (DS)) amongst the five settings tested in the paper. While in311

the 10R setting, the retailer has to optimize decisions over a larger network with larger action space,312

1S-2W-3R and 1S-2W-3R (DS) are multi-echelon settings with more complex supply chain structure.313

Similarly, in the 1S-3R setting, the supplier is more constrained than the 1S-3R-High setting, which314

makes the inventory allocation decision more complex. In each of these settings PARL outperforms315

the best performing RL algorithm by 4.65% and the BS policy by 51.3% on average, across different316

supply chain settings.317

Setting SAC TD3 PPO A2C BS PARL

1S-3R-High
478.8 ± 8.5

478.3
374.7 ± 15.7

374.1
499.4 ± 5.7

500.2
490.8 ± 8.9

490.1
513.3 ± 5.9

513.0
514.8 ± 5.3

514.3

1S-3R
398.0 ± 3.2

398.3
329.6 ± 45.2

311.7
397.0 ± 1.6

397.4
392.4 ± 4.4

392.87
313.7 ± 3.1

314.3
400.3 ± 3.3

400.8

1S-10R
870.5 ± 68.9

905.8
744.4 ± 71.4

766.3
918.3 ± 24.7

919.2
768.1 ± 40.5

773.52
660.5 ± 2.1

659.9
1006.3 ± 29.5

1015.7

1S-2W-3R
374.2 ± 3.7

375.0
361.1 ± 15.4

362.7
377.5 ± 3.7

377.5
360.2 ± 23.2

365.3
300.8 ± 5.4

302.2
398.3 ± 2.5

399.7

1S-2W-3R (DS)
344.1 ± 20.6

346.1
259.3 ± 32.3

262.8
387.8 ± 5.3

388.9
327.5 ± 32.7

322.61
166.2 ± 3.8

166.4
405.4 ± 2.0

405.9
Table 1: Average per-step-reward with standard deviation and (median) of different benchmark
algorithms, averaged over different testing runs. PARL outperforms benchmark algorithms in all
these settings.

We also analyze the rate of learning of different algorithms during training. In Figure 2, we plot the318

average per-step reward over training steps. On the left, we plot the outcome from the 1S-3R setting,319

and on the right, we plot the outcome from the 1S-2W-3R setting. We note that the average reward for320

the base line algorithms (TD3, SAC, PPO and A2C) is calculated without exploration while PARL’s321

results include random exploration, with starting rate 10% and decaying every subsequent epoch (see322

Appendix A.3 for details). We find that in both cases, the PARL actor performs much worse in the323

initial training runs on account of optimizing over a poorly trained critic. Once, the critic improves in324

accuracy, PARL is able to recover a very good policy during training.325
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(a) 1S-2W-3R (b) 1S-2W-3R (DS)

Figure 2: Learning curves of PARL and benchmark algorithms during training runs. PARL quickly
learns a good policy and improves over benchmark algorithms.

Finally, the overall run-time of our algorithm is also of interest. In Table 2, we present the per-step326

run time of the algorithm in different settings during the training runs. The average per step run time327

is highest in the 1S-3R-High setting. This is due to the larger feasible action set in this setting. In328

all other settings, the run time remains below 0.10 seconds. We note that during training, we use 8329

parallel environments to gather training trajectories, and use 2 CPLEX threads per environment. The330

run time can improve further by increasing parallelization.331

Setting Average Per-Step Run Time (PARL) Standard Deviation

1S-3R-High 0.178 0.06

1S-3R 0.051 0.01

1S-10R 0.089 0.03

1S-2W-3R 0.051 0.01

1S-2W-3R (DS) 0.044 0.01
Table 2: Per-step run time (in seconds) of PARL over different settings.

6 Conclusions and Discussion332

We consider the problem of inventory management over complex supply chain networks and develop333

a novel RL algorithm to solve this problem. Our proposed solution combines ideas from SAA, MP334

and traditional RL techniques and we show that the method outperforms state-of-the-art RL as well335

as inventory management methods in various supply chain settings. Through extensive computations,336

we also provide the first benchmark results for various RL algorithms on diverse supply chain settings.337

This work also opens up various directions of future research. While the current work used paral-338

lelization to improve computational speed of PARL, further improvements in run time can be made339

from developing GPU based LP/IP solvers. This can also be achieved by using sparse neural networks340

for value-to-go approximation, or combining the MP based actor with parametric policies. Another341

direction of future research is to increase robustness of PARL to changing critic. Since PARL takes342

deterministic actions that optimize over the learned critic, the method’s performance can be affected343

in cases when the critic provides a poor approximation of the value-to-go. This can be improved344

by using techniques from robust optimization to optimize actions over uncertain NN parameters.345

Finally, developing more informed sampling techniques to improve expected value approximation346

with very limited demand samples also remains an interesting direction that could lead to substantial347

improvements in run time without affecting the overall performance of the learned policy.348
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