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Abstract

Many commonly well-performing convolutional neural net-
work models have shown to be susceptible to input data
perturbations, indicating a low model robustness. Adver-
sarial attacks are thereby specifically optimized to reveal
model weaknesses, by generating small, barely perceivable
image perturbations that flip the model prediction. Robust-
ness against attacks can be gained for example by using ad-
versarial examples during training, which effectively reduces
the measurable model attackability. In contrast, research on
analyzing the source of a model’s vulnerability is scarce. In
this paper, we analyze adversarially trained, robust models in
the context of a specifically suspicious network operation, the
downsampling layer, and provide evidence that robust mod-
els have learned to downsample more accurately and suffer
significantly less from aliasing than baseline models.

Introduction
Convolutional Neural Networks (CNNs) provide highly ac-
curate predictions in a wide range of applications. Yet, to al-
low for practical applicability, CNN models should not be
fooled by small image perturbations, as they are realized
by adversarial attacks (Goodfellow, Shlens, and Szegedy
2015a; Moosavi-Dezfooli, Fawzi, and Frossard 2016; Rony
et al. 2019). Such attacks aim to fool the network by per-
turbing image pixels such that human observers would still
easily recognize the correct class label, while the network
makes incorrect predictions. Susceptibility to such perturba-
tions is prohibitive for the applicability of CNN models in
real-world scenarios, as it indicates limited reliability and
generalization of the model.

To establish adversarial robustness many sophisticated
methods have been developed (Goodfellow, Shlens, and
Szegedy 2015a; Rony et al. 2019; Kurakin, Goodfellow,
and Bengio 2017; Goodfellow, Shlens, and Szegedy 2015b).
Some can defend only against one specific attack (Good-
fellow, Shlens, and Szegedy 2015a) while others propose
more general defences against diverse attacks. Another way
to protect CNNs against adversarial examples is to detect
them. Harder et al. (2021) classify adversarial examples by
inspecting each input image and its feature maps in the fre-
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Figure 1: Illustration of down-sampling, with (top right) and
without anti-aliasing filter (bottom right) as well as an ad-
versarial example (bottom left). The top left image shows
the original, on the top right, this image is correctly down-
sampled with an anti-aliasing filter. In the bottom right, no
filter is applied, leading to aliasing. The adversarial example
(bottom left) shows visually similar artifacts. In this paper,
we investigate the role of aliasing for adversarial robustness.

quency domain. Similarly, Yin et al. (2020) showed that nat-
ural images and adversarial examples differ significantly in
their frequency spectra.

In fact, when considering the architecture of commonly
employed CNN models, one could wonder why these mod-
els perform so well although they ignore basic sampling
theoretic foundations. Concretely, most architectures sub-
sample feature maps without ensuring to sample above the
Nyquist rate (Shannon 1949), such that, after each down-
sampling operation, spectra of sub-sampled feature maps
may overlap with their replica. This is called aliasing and
implies that the network should be genuinely unable to fully
restore an image from its feature maps. One can only hy-
pothesize that common CNNs learn to (partially) compen-
sate for this effect by learning appropriate filters. Follow-
ing this line of thought, recently, several works suggest im-



proving CNNs by including anti-aliasing techniques during
down-sampling in CNNs (Zhang 2019; Zou et al. 2020).
They aim to make the models more robust against image-
translations, such that the class prediction does not suffer
from small vertical or horizontal shifts of the content.

In this paper, we further investigate the relationship be-
tween adversarial robustness and aliases. While previous
works (Yin et al. 2020; Harder et al. 2021; Lorenz et al.
2021) focused on adversarial examples, we systematically
analyze potential aliasing effects inside CNNs. Specifically,
we compare several recently proposed adversarially robust
models to models which result from conventional training
schemes in terms of aliasing. We inspect intermediate fea-
ture maps before and after the down-sampling operation at
inference. Our first observation is that these models indeed
fail to sub-sample according to the Nyquist Shannon The-
orem (Shannon 1949): we observe severe aliasing. Further,
our experiments reveal that adversarially trained networks
exhibit less aliasing than standard trained networks, indicat-
ing that adversarial training encourages CNNs to learn how
to properly down-sample data without severe artifacts.

In summary, our contributions are:

• We introduce a measure for aliasing and show that com-
mon CNN down-sampling layers fail to sub-sample the
feature maps in a Nyquist-Shannon conform way.

• We analyze various adversarially trained models, that are
robust against a strong ensemble of adversarial attacks,
AutoAttack (Croce and Hein 2020), and show that they
exhibit significantly less aliasing than standard models.

Aliasing in CNNs
CNNs usually have a pyramidal structure in which the data
is progressively sub-sampled in order to aggregate spatial
information while the number of channels increases. Dur-
ing sub-sampling, no explicit precautions are taken to avoid
aliases, which arise from under-sampling. Specifically, when
sub-sampling with stride 2, any frequency larger than N/2,
where N is the size of the original data, will cause patho-
logical overlaps in the frequency spectra. Those overlaps in
the frequency spectra cause ambiguities such that high fre-
quency components appear as low frequency components.
Hence, local image perturbations can become indistinguish-
able from global manipulations.

Aliasing Metric
To measure the possible amount of aliasing appearing af-
ter down-sampling we compare each down-sampled feature
map in the Fourier domain with its aliasing-free counter-
part. To this end, we consider a feature map f(x) of size
2N × 2N before down-sampling. We compute an ”aliasing-
free” down-sampling by extracting the N lowest frequen-
cies along both axes in Fourier space. W.l.o.G., we consider
specifically down-sampling operations by strided convolu-
tions, since these are predominantly used in adversarially
robust models (Zagoruyko and Komodakis 2017).

In each strided convolution, the input feature map f(x)
is convolved with the learned weights w and downsampled

by strides, thus potentially introducing frequency replica
(i.e. aliases) in the downsampled signal f̂s2.

f̂s2 = f(x) ∗ g(w, 2) (1)
To measure the amount of aliasing, we explicitly construct
feature map frequency representations without such aliases.
Therefore, the original feature map f(x) is convolved with
the learned weights w of the strided convolution without ap-
plying the stride g(w, 1) to obtain f̂s1.

f̂s1 = f(x) ∗ g(w, 1) (2)

Afterwards the 2D FFT of the new feature maps f̂s2 is com-
puted, which we denote Fs2.

Fs2(k, l) =
1

N2

N−1∑
m=0

N−1∑
n=0

f̂s2(m,n)e−2πj( k
M m+ l

N n), (3)

for k, l = 0, . . . , N − 1. For the non-down-sampled fea-
ture maps f̂s1, we proceed similarly and compute for k, l =
0, . . . , 2 ·N − 1

F ↑
s1(k, l) =

1

4N2

2N−1∑
m=0

2N−1∑
n=0

f̂s1(m,n)e−2πj( k
2M m+ l

2N n).

(4)
The aliasing free version Fs1 can be obtained by setting
all frequencies above the Nyquist rate to zero before down-
sampling,

F ↑
s1(k, l) = 0 (5)

for k ∈ [N/2, 3N/2] and for l ∈∈ [N/2, 3N/2]. Then the
down-sampled version in the frequency domain corresponds
to extracting the four corners of F ↑

s1 and reassembling them
as shown in Figure 2,

Fs1(k, l) = F ↑
s1(k, l) for k, l = 0, . . . , N/2

Fs1(k, l) = F ↑
s1(k +N, l) for k = N/2, . . . , N

and l = 0, . . . , N/2

Fs1(k, l) = F ↑
s1(k, l +N) for k = 0, . . . , N/2

and l = N/2, . . . , N

Fs1(k, l) = F ↑
s1(k +N, l +N) for k, l = N/2, . . . , N

(6)
This way we guarantee that there are no overlaps, i.e. aliases,
in the frequency spectra. Figure 2 illustrates the computing
process of the aliasing free down-sampling in the frequency
domain. The aliasing free feature map can be compared to
the actual feature map in the frequency domain to measure
the degree of aliasing. The full procedure is shown in Fig-
ure 3, where we start on the left with the original feature
map. Then we obtain the two down-sampled versions (with
and without aliases) and get the difference between both by
taking the L1 norm.

The overall aliasing metric AM for a down-sampling
operation is calculated by taking the L1 distance between
downsampled and alias-free feature maps fk in the Fourier
domain, averaged over K generated feature maps,

AM =
1

K

K∑
k=0

|Fs1,k − Fs2,k|. (7)



Figure 2: Step by step computation of the aliasing free version of a feature map. The left image shows the magnitude of the
Fourier representation of a feature map with the zero-frequency in the upper left corner, i.e. high frequencies are in the center.
Alias-free downsampling suppresses high frequencies prior to sampling. This can be implemented efficiently in the Fourier
domain by cropping and reassembling the low-frequency regions of the Fourier representations, i.e. its four corners. Aliasing
would correspond to folding the deleted high frequency components into the constructed representation.
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Figure 3: FFT (Fast Fourier Transformation) of a feature map in the original resolution (left). This feature map is downsampled
by striding with a factor of two after aliasing suppression (middle left) and with aliasing (middle right). The difference between
the original and aliasing-free FFT of the down-sampled feature map (right).

The proposed AM measure is zero if aliasing is visible in
none of the down-sampled feature maps, i.e. if sampling has
been performed above the Nyquist rate. Whenever AM is
greater than 0, this is not the case and we should, from a
theoretic point of view, expect the model to be easy to attack
since it can not reliably distinguish between fine details and
coarse input structures.

Experiments
We conducted an extensive analysis of already existing ad-
versarially robust models trained on CIFAR-10 (Krizhevsky
2012) with two different architectures, namely WideResNet-
28-10 (WRN-28-10) (Zagoruyko and Komodakis 2017)
and Preact ResNet-18 (He et al. 2016). Both architectures
are commonly supported by many adversarial training ap-
proaches. As baseline, we trained a plain WRN-28-10 and
Preact ResNet-18, both with similar training schemes. All
adversarially trained networks are pre-trained models pro-
vided by RobustBench (Croce et al. 2020).
The WRN-28-10 networks have four operations in which
down-sampling is performed. These operations are located
in the second and third block of the network. In comparison,
the Preact ResNet-18 networks have six down-sampling op-
erations, located in the second, third and fourth layers of the
network.

Both architectures have similar building blocks and the
key operations including down-sampling are shown ab-
stractly in the appendix in Figure 6. Each block starts with
a convolution with stride two followed by additional opera-
tions like ReLu and convolutions with stride one. The char-

acteristic skip connection of ResNet architectures also needs
to be implemented with stride two if down-sampling is ap-
plied in the according block. Consequently, we need to an-
alyze all down-sampling units and skip connections before
they are summed up to form the output feature map.

WideResNet 28-10 In the following, differently trained
WRN-28-10 networks are compared in terms of their robust
accuracy against AutoAttack (Croce and Hein 2020) and the
amount of aliasing in their down-sampling layer. The train-
ing procedure of the baseline can be found in the appendix.

Figure 4 indicates significant differences between adver-
sarially trained and standard trained networks. First, the
standard trained networks are not able to reach any robust
accuracy, meaning their accuracy under adversarial attacks
is equal to zero. Second, and this is most interesting for
our investigation, standard trained networks exhibit much
more aliasing during their down-sampling layer than ad-
versarially trained networks. Through all layers and oper-
ations in which down-sampling is applied, the adversarially
trained networks (blue dots) have much higher robust accu-
racy and much less aliasing compared to the standard trained
networks. Additionally, we can observe that the amount of
aliasing in the second layer is much higher than in the third
layer. This can be explained by the different feature map
sizes in the two layers as we calculate the absolute L1 norm.

When comparing the conventionally trained network
against each other it can be seen that also the specific train-
ing scheme used for training the network can have an in-
fluence on the amount of aliasing of the network. Con-
cretely, the standard baseline model provided by Robust-
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Figure 4: Adversarial Robustness versus Aliasing exem-
plary evaluated on different pre-trained WRN-28-10 models
from RobustBench (Croce et al. 2020) as well as two base-
line models, one from RobustBench (Standard RB) and one
trained by us (Baseline). All blue dots represent adversari-
ally trained networks for the purpose of clarity we marked
three popular models from Carmon et al. (2019), Wang et al.
(2020) and Hendrycks, Lee, and Mazeika (2019) by name.

Bench (Croce et al. 2020) exhibits less aliasing than the one
trained by us. Unfortunately, there is no further information
about the exact training schedule from RobustBench, such
that we can not make any assumptions on the interplay be-
tween model hyperparameters and aliasing.

Preact ResNet-18 We conducted the same measurements
for the Preact ResNet-18 as we did for the WRN-28-10 and
used the same training procedure described in the appendix.
Additionally, we needed to account for one more layer with
two additional down-sampling operations.

The overall results, presented in Figure 5, are similar to
the ones for the WRN-28-10 networks, most adversarially
trained networks exhibit much less aliasing and higher ro-
bustness than conventionally trained ones. Yet, the addi-
tional down-sampling layer allows one further observation.
While the absolute aliasing metric is overall lower, the ro-
bust networks reduce the aliasing predominantly in the ear-
lier layers, the second and third layers. The aliasing in the
fourth layer of adversarially robust models is not signifi-
cantly different from the aliasing in conventionally trained
models in the same layer.

Discussion
Our experiments reveal that common CNNs fail to sub-
sample their feature maps in a Nyquist-Shannon conform
way and consequently introduce aliasing artifacts. Further,
we can give strong evidence that aliasing and adversarial ro-
bustness are highly related. All evaluated robust models ex-
hibit significantly less aliasing than standard trained models.

After the application of down-sampling operations in
standard CNNs all feature maps suffer from aliasing artifacts
occurring due to insufficient sub-sampling.

Adversarially trained networks exhibit significantly less
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Figure 5: Adversarial robustness versus aliasing exemplary
evaluated on different pre-trained Preact ResNet-18 models.
The blue dots represent adversarial trained networks, trained
with the training schemes of Wong, Rice, and Kolter (2020),
Rice, Wong, and Kolter (2020) and Sehwag et al. (2021) pro-
vided by RobustBench (Croce et al. 2020). The orange dot
is the baseline, trained by us without adversarial training.

aliasing in their feature maps than standard trained networks
with the same architecture. As shown previously this is valid
for different model architectures and training schemes, espe-
cially in the early layers, closer to the input layer. It raises
the question whether models with a low amount of aliasing
are necessarily more robust. It further entails the question
whether there are additional factors that are relevant in this
context such as padding techniques, for example. These as-
pects will be subject to future research.

Conclusion

Concluding, we were able to show strong evidence that
aliasing and adversarial robustness of CNNs are highly cor-
related. We hypothesize that aliasing is one of the main
underlying factors that lead to the vulnerability of CNNs.
Recent methods to increase model robustness rather heal
the symptoms of the underlying problem than investigate
its origins. To overcome this challenge we might need to
start thinking about CNNs in a more signal processing man-
ner and account for basic principles from this field, like the
Nyquist-Shannon theorem, which gives us clear instructions
on how to prevent aliasing. Still, it is not straightforward to
incorporate this knowledge into the architecture and struc-
ture of common CNN designs. We aim to give a new and
more traditional perspective on CNNs to help improve their
performance and reliability to enable their application in
real-world use cases.
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A1: Downsampling Block Preact ResNet
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Figure 6: Abstract Illustration of a building block in Preact
ResNet-18 and WRN-28-10. The first operation in a block
is a convolution. This convolution is executed with a stride
of either one or two. For a stride of one (left) the shortcut
simply passes the identity of the feature maps forward. If the
first convolution is done with a stride of two, the shortcut
needs to have a stride of two (right) too, to guarantee that
both representations can be added at the end of the building
block.

A2: Training Procedure
The baseline models for the Preact ResNet-18 and the WRN-
28-10 are both the same trained with the same schedule.
Each model is trained with 200 epochs, a batch size of 512,
cross entropy loss and stochastic gradient descent (SGD)
with an adaptive learning rate starting by 0.1 and reducing it
at 100 and 150 epochs by a factor of 10, a momentum of 0.9
and a weight-decay of 5e-4.


