
Under review as a conference paper at ICLR 2022

TOWARDS EFFICIENT ON-CHIP TRAINING OF
QUANTUM NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantum Neural Network (QNN) is drawing increasing research interest thanks
to its potential to achieve quantum advantage on near-term Noisy Intermediate
Scale Quantum (NISQ) hardware. In order to achieve scalable QNN learning, the
training process needs to be offloaded to real quantum machines instead of us-
ing exponential-cost classical simulators. One common approach to obtain QNN
gradients is parameter shift whose cost scales linearly with the number of qubits.
This work presents the first experimental demonstration of practical on-chip QNN
training with parameter shift. Nevertheless, we find that due to the significant
quantum errors (noises) on real machines, gradients obtained from naı̈ve param-
eter shift have low fidelity and thus degrade the training accuracy. To this end,
we further propose probabilistic gradient pruning to firstly identify gradients with
potentially large errors and then remove them. Specifically, small gradients have
larger relative errors than large ones, thus having a higher probability to be pruned.
We perform extensive experiments on 5 classification tasks with 5 real quantum
machines. The results demonstrate that our on-chip training achieves over 90%
and 60% accuracy for 2-class and 4-class image classification tasks. The proba-
bilistic gradient pruning brings up to 7% QNN accuracy improvements over no
pruning. Overall, we successfully obtain similar on-chip training accuracy com-
pared with noise-free simulation but have much better training scalability. We
open-source our PyTorch library for on-chip QNN training with parameters shift
and easy deployment at this link.

1 INTRODUCTION

Quantum Computing (QC) has great potential to achieve exponential acceleration over classical
computers, which represents a computational paradigm shift in various domains, including chem-
istry (Peruzzo et al., 2014; Kandala et al., 2017; Cao et al., 2019), cryptography (Shor, 1999; Aumas-
son, 2017; Mavroeidis et al., 2018), database search (Grover, 1996; Meyer, 2000; Giri & Korepin,
2017), etc. Among them, Quantum Neural Network (QNN) is one of the most promising appli-
cations to demonstrate quantum advantage on Machine Learning tasks on near-term devices (Jiang
et al., 2021; Abbas et al., 2021; Coles, 2021; Huang et al., 2021).

In order to achieve QNN quantum advantage, the number of qubit needs to be large enough, which
casts great difficulty in the parameter training process. In existing QNN work (Jiang et al., 2021;
Farhi et al., 2014; Biamonte et al., 2017; Harrow et al., 2009; Lloyd et al., 2013; Rebentrost et al.,
2014; Bausch, 2020), the primary focus has been building quantum models that can outperform clas-
sical model accuracy. Thus they typically perform training on classical computers through software
simulations and then perform inference with simulators as well (Figure 1 left). Although classical
simulation is useful in understanding the capabilities of small-size QNN, it is not scalable due to the
exponentially increased time and memory costs (O(2n), n is the qubit number). As shown in Fig-
ure 2(a), the space (#Regs) and time (#Ops) complexity of classical simulation grows exponentially
as the number of qubit increases. To the authors’ knowledge, this is the first experimental demon-
stration of efficient and scalable QNN on-chip training protocol. The optimization of parametrized
quantum gates is offloaded to the quantum chips with in-situ gradient computation using parame-
ter shift (Crooks, 2019; Schuld et al., 2019). We also perform QNN evaluation on real quantum
machines, making the results more practical as in Figure 1 right.

1

https://anonymous.4open.science/r/iclr-on-chip-qnn-572E

Under review as a conference paper at ICLR 2022

Software Simulation Simulated Inference

Unscalable () Impractical () Scalable () Practical ()

Forward

Backward

Classical QNN Training/Inference QNN On-Chip Training/Inference

In-situ Gradient Eval/Update Real QC Inference

Forward

Figure 1: In this work, quantum neural network training and inference are both performed on real
quantum machines, making the whole pipeline scalable and practical.

0

1E+11

2E+11

3E+11

Th
eo

re
tic

al

#O
ps

classical
quantum

0

5E+10

1E+11

1.5E+11

0 10 20 30 40

Th
eo

re
tic

al

#R
eg

s

#qubits

classical

quantum

(a)

10

30

50

70

0 20000 40000 60000 80000R
ea

l Q
C

 V
al

id
at

io
n

Ac
c.

 (%
)

Training steps

QC Train/Test
Classical Train/Test

Noise-induced gap

(b)

0.01

0.1

1

10

100

0.01

0.1

1

10

100

1000

0 0.05 0.1

M
ea

n
R

el
at

iv
e

Er
ro

r

Gradient Magnitude

Santiago
Casablanca

(c)

Figure 2: (a) Classical simulation has unscalable computational and memory costs. (b) Noises
create significant accuracy gaps between QNN classical simulation and on-chip training. (c) Small
gradients suffer from larger relative errors, thus being less reliable.

One of the major challenges to enable scalable and efficient QNN on-chip learning is the robustness
against quantum noise. In the current Noisy Intermediate Scale Quantum (NISQ) (Preskill, 2018)
era, the gate error rates on real quantum devices are non-negligible (10−3 to 10−2). In the context
of QNN, such errors will lead to noisy gradients which can slow down convergence or even make
training unstable. As shown in Figure 2(b), large gaps exist between the quantum on-chip training
results and the classical noise-free simulation results.

By carefully investigating the on-chip training process, we observe that small gradients tend to
have large relative variations or even wrong directions under quantum noises, as shown in Fig-
ure 2(c). Also, not all gradient computations are necessary in the training process, especially for
small-magnitude gradients. Those observations provide great opportunities for us to boost the ro-
bustness and efficiency of QNN on-chip learning. Inspired by that, we propose a probabilistic
gradient pruning method to predict and only compute gradients of high reliability. Hence we can
reduce noise impact and also save the required number of circuit runs on real quantum machines.

Extensive experiments on 5 classification tasks on 5 real quantum machines show that the proposed
on-chip training method can achieve over 90% and 60% accuracy for 2-class and 4-class image
classification tasks. The proposed probabilistic gradient pruning can boost the classification accu-
racy by 5% on average and up to 7%. Overall, we obtain comparable accuracy (less than 3% loss)
with pure noise-free simulations and unlock high scalability and potential for training large-scale
QNN on real quantum machines towards quantum advantage. We also open-source our PyTorch
library for on-chip QNN training with parameter shift at this link.

2 BACKGROUND

Quantum basics. Quantum circuits use quantum bit (called qubit) to story information, which is
a linear combination of two basis states: |ψ〉 = α |0〉 + β |1〉, for α, β ∈ C, satisfying |α|2 +
|β|2 = 1. An n-qubit system can represent a linear combination of 2n basis states. A 2n-length
complex statevector of all combination coefficients is used to describe the quantum state. To perform
computation on a quantum system, a sequence of parametrized quantum gates are applied to perform
unitary transformation on the statevector, i.e., |ψ(x,θ)〉 = · · ·U2(x, θ2)U1(x, θ1) |0〉, where x

2

https://anonymous.4open.science/r/iclr-on-chip-qnn-572E

Under review as a conference paper at ICLR 2022

is the input data, and θ = (θ1, θ2, . . .) are trainable parameters in quantum gates. In this way,
input data and trainable parameters are embedded in the quantum state |ψ(x,θ)〉. The computation
results are obtained by qubit readout which measures the probability of a qubit state |ψ〉 collapsing
to either |0〉 (i.e., output y = +1) or |1〉 (i.e., output y = −1) according to |α|2 and |β|2. With
sufficient samples, we can compute the expectation value: E[y] = (+1)|α|2 + (−1)|β|2. A non-
linear network can be constructed to perform ML tasks by cascading multiple blocks of quantum
gates and measurements.

Quantum noise. In real quantum computer systems, errors (noises) would occur due to un-
wanted interactions between qubits, imperfect control signals, or interference from the environ-
ment (Bruzewicz et al., 2019; Krantz et al., 2019). For example, quantum gates introduce operation
errors (e.g., coherent errors and stochastic errors) into the system, and qubits also suffer from deco-
herence error (spontaneous loss of its stored information) over time. These noisy systems need to
be characterized (Magesan et al., 2012) and calibrated (IBM, 2021) frequently to mitigate the im-
pact of noise on computation. Noise modeling helps to paint a realistic picture of the behavior and
performance of a quantum computer and enables noisy simulations (Ding & Chong, 2020). While
exact modeling and simulation is challenging, many approximate strategies (Magesan et al., 2012;
Wallman & Emerson, 2016) have been developed based on Pauli or Clifford Twirling (Nielsen &
Chuang, 2002; Silva et al., 2008).

Quantum neural networks. Quantum Machine Learning (QML) (Biamonte et al., 2017) aims
to leverage QC techniques to solve machine learning tasks and achieve much higher efficiency.
The path to quantum advantage on QML is typically provided by the quantum circuit’s ability to
generate and estimate highly complex kernels (Havlı́ček et al., 2019), which would otherwise be
intractable to compute with conventional computers. They have been shown to have potential speed-
up over classical counterparts in various tasks, including metric learning (Lloyd et al., 2020), data

 Block

Pixel Encoder Quantum Neural Layer Measurement

 Block

Figure 3: Quantum neural network architecture.

analysis (Lloyd et al., 2016), and prin-
cipal component analysis (Lloyd et al.,
2014). As shown in Figure 3, the
quantum neural network is one type of
QML model using variational quantum
circuits with trainable parameters to ac-
complish feature encoding of input data
and perform complex-valued linear trans-
formations thereafter. Various theoreti-
cal formulations for QNN have been pro-
posed, such as quantum classifier (Farhi
& Neven, 2018), quantum convolution (Henderson et al., 2020), and quantum Boltzmann ma-
chine (Amin et al., 2018), etc. Most are exploratory and rely on classical simulation of small
quantum systems (Farhi & Neven, 2018). In our work, on the contrary, we explore the practical
setting: the QNN training and inference are both performed on real quantum devices.

3 METHODOLOGY

To enable QNN on-chip learning, we first introduce an in-situ quantum gradient computation via
parameter shift and its real QC implementation. A probabilistic gradient pruning method is proposed
to save the gradient computation cost with enhanced noise-robustness and training efficiency.

3.1 PARAMETER SHIFT RULE FOR QUANTUM GRADIENTS

Parameter shift rule states that we can calculate the gradient of each parameter in some quantum
circuits by simply shifting the parameter twice and calculating the difference between two outputs,
without changing the structure of circuits or using any ancilla qubits. Suppose an m-qubit quantum
circuit is parametrized by n parameters θ = [θ1, · · · , θi, · · · , θn], the expectation value of measure-
ments of this circuit can be represented by a circuit function,

f(θ) = 〈ψ|U(θi)
†Q̂U(θi)|ψ〉, f(θ) ∈ Rm, θ ∈ Rn. (1)

where θi is the scalar parameter whose gradient is to be calculated, and U(θi) is the gate where
θi lies in. Here, for notation simplicity, we have already absorbed the unitaries before U(θi) into

3

Under review as a conference paper at ICLR 2022

Positive shift Negative shift

Softmax

Cross Entropy

On Quantum Device On Classical Device

Figure 4: Quantum gradient calculation using parameter shift on
real quantum devices.

〈ψ|, |ψ〉. Unitaries after
U(θi) and observables are
fused into Q̂. Usually, the
gates used in QNN can be
written in the form U(θi) =

e−
i
2 θiH . Here H is the Her-

mitian generator of U with
only 2 unique eigenvalues +1
and -1. In this way, the gradi-
ents of the circuit function f
with respect to θi are,

∂f(θ)

∂θi
=

1

2

(
f
(
θ+

)
− f

(
θ−

))
,

θ+ = [θ1, · · · , θi +
π

2
, · · · , θn],

θ− = [θ1, · · · , θi −
π

2
, · · · , θn],

(2)
where θ+ and θ− are the positive shift and negative shift of θ. Note that this parameter shift rule is
fundamentally different from any numerical difference methods that only approximate the directional
derivatives. Instead, Eq. 2 calculates the exact gradient w.r.t θi without any approximation errors or
numerical issues.

We apply softmax on the expectation values of measurements f(θ) as the predicted probability
for each class. Then we calculate the cross entropy between the predicted probability distribution p
and the target distribution t as the classification loss L,

L(θ) = −tT · softmax(f(θ)) = −
m∑

j=1

tj log pj , pj =
efj(θ)∑m
j=1 e

fj(θ)
. (3)

Then the gradient of the loss function with respect to θi is ∂L(θ)
∂θi

=
(∂L(θ)
∂f(θ)

)T ∂f(θ)
∂θi

.

Here ∂f(θ)
∂θi

can be calculated on real quantum circuit by the parameter shift rule, and ∂L(θ)
∂f(θ) can be

efficiently calculated on classical devices using backpropagation supported by automatic differenti-
ation frameworks, e.g., PyTorch (Paszke et al., 2019) and TensorFlow (Abadi et al., 2015).

Now we derive the parameter shift rule used in our QNN models.

Assume U(θi) = RX(θi), RX(α) = e−
i
2αX , where X is the Pauli-X matrix.

Firstly, the RX gate is,

RX(α) = e−
i
2
αX =

∞∑
k=0

(−iα/2)kXk/k!

=
∞∑

k=0

(−iα/2)2kX2k/(2k)! +

∞∑
k=0

(−iα/2)2k+1X2k+1/(2k + 1)!

=
∞∑

k=0

(−1)k(α/2)2kI/(2k)!− i

∞∑
k=0

(−1)k(α/2)2k+1X/(2k + 1)!

= cos(α/2)I − i sin(α/2)X.

(4)

Let α = π
2 , RX(±π

2) =
1√
2
(I ∓ iX).

4

Under review as a conference paper at ICLR 2022

G
ra

d
M

ag
.

Current
magnitude

1 2

Accumulated
magnitude

G
ra

d
M

ag
.

G
ra

d
M

ag
.

G
ra

d
M

ag
.

G
ra

d
M

ag
.

G
ra

d
M

ag
.

(1) Window-based Gradient
Magnitude Accumulation

Step

Prune with
50% Sparsity

Pr
ob

.

Prune with
50% Sparsity

Accumulation window

(2) Probabilistic
Gradient Pruning

Pruning window

Update Freeze

norm.

0.4

0.23
0.25

0.12

4
2.3 2.5

1.2

0.9
0.2

0.5
0.2

3.1
2.1 2.0

1.0

1.5 1.1 0.8 0.8
1.6

1.0 1.2
0.2

1.6
1.0 1.2

0.2

Figure 5: Efficient on-chip quantum gradient calculation with probabilistic gradient pruning. Gra-
dient magnitudes are accumulated within the accumulation window and used as the sampling distri-
bution. Based on the distribution, gradients are probabilistically pruned with a ratio r in the pruning
window to mitigate noises and stabilize training.

As f(θ) = 〈ψ|RX(θi)
†Q̂RX(θi)|ψ〉, RX(α)RX(β) = RX(α+β), and ∂

∂αRX(α) = − i
2XRX(α),

we have
∂f(θ)

∂θi
= 〈ψ|RX(θi)

†(− i

2
X)†Q̂RX(θi)|ψ〉+ 〈ψ|RX(θi)

†Q̂(− i

2
X)RX(θi)|ψ〉

=
1

4
(〈ψ|RX(θi)

†(I − iX)†Q̂(I − iX)RX(θi)|ψ〉 − 〈ψ|RX(θi)
†(I + iX)†Q̂(I + iX)RX(θi)|ψ〉)

=
1

2
(〈ψ|RX(θi)

†RX(
π

2
)†Q̂RX(

π

2
)RX(θi)|ψ〉 − 〈ψ|RX(θi)

†RX(−π

2
)†Q̂RX(−π

2
)RX(θi)|ψ〉)

=
1

2
(f(θ+)− f(θ−)).

(5)

Without loss of generality, the derivation holds for all unitaries of the form e−
i
2αH , e.g., RX, RY,

RZ, XX, YY, ZZ, where H is a Hermitian matrix with only 2 unique eigenvalues +1 and -1.

In our circuit functions, we assume each parameter lies in exactly one gate. However, there are cases
that one parameter lies in multiple gates. In that case, we only need to calculate the gradient of the
parameter in those gates separately and sum the gradients up to get the gradient of that parameter.

3.2 In-situ GRADIENT COMPUTATION ON REAL QC

To realize QNN on-chip learning, we implement a TrainingEngine, described in Alg. 1. This Train-
ingEngine contains three parts.

Jacobian calculation via parameter shift. In the first part, we sample a mini-batch of training
data I in Line 6. For each example of the mini-batch, we set up the quantum encoder gates and then
iteratively evaluate gradients for all parameters. In each iteration, we shift the parameter θi twice by
+π/2 and −π/2 respectively. After each shift, we execute the shifted circuit on quantum hardware.
The circuit will be created, validated, queued, and finally run on real quantum machines. As soon
as we get the returned results of the two shifted circuits, i.e., f(θ+) and f(θ−), we apply Eq. 2 to
obtain the upstream gradient ∂f(θ)

∂θi
, illustrated in the left part of Figure 4. Finally, we obtain the

Jacobian matrix ∂f(θ)
∂θ .

Down-stream gradient backpropagation. In the second part, we run the circuit without shift
and get the measurement result f(θ). Then we apply softmax and cross-entropy function to the
measured logits. In the end, we get the training loss L(θ). Then we run back-propagation only from
the loss to the logits to get the down-stream gradients ∂L(θ)

∂f(θ) , shown in the right part of Figure 4.

Gradient calculation. In the third part, we calculate the dot-product between down-stream gradi-
ents and the Jacobian and get the final gradients ∂L(θ)

∂θ = (∂f(θ)∂θ)T ∂L(θ)
∂f(θ) .

5

Under review as a conference paper at ICLR 2022

3.3 PROBABILISTIC QUANTUM GRADIENT PRUNING

Algorithm 1: QNN On-Chip Training with Probabilistic Gradient Pruning
Input : Accumulation window width wa, gradient pruning ratio r, pruning window width wp,

training objective L, initial parameters θ0 ∈ Rn, training data Dtrn, initial step size
η0, and total stages S.

1 θ ← θ0, η ← η0 t← 0;
2 for s = 1, 2, . · · · , S do
3 Initialize gradient magnitude accumulator M ← 0n;
4 for τa = 1, 2, · · · , wa do
5 t← t+ 1;
6 Sample a mini-batch I ∼ Dtrn;
7 In-situ gradient evaluation via parameter shift∇θLI(θ) = 1

2 (
∂f(θ)
∂θ)T ∂L(θ)f(θ) ;

8 Parameter update: θ ← θ − η∇θLI(θ);
9 Update magnitude accumulator M ←M + |∇θLI(θ)|;

10 for τp ← 1, 2, · · · , wp do
11 t← t+ 1;
12 Sample a mini-batch I ∼ Dtrn;
13 Sample a subset with a ratio r based on accumulated gradient magnitude:

θ̃ = {θi ∼ PM (θ)|1 ≤ i ≤ (1− r)n};
14 θ̃ ← θ̃ − η∇θ̃LI(θ);

Output: Converged parameters θ

On quantum chips, there exist various noises and errors that could potentially diminish the fidelity
of the computation results. When the gradient magnitude is small, noises could easily overwhelm
the signals, such that the gradients calculated on real quantum circuit become unreliable when they
have small magnitude. Those unreliable gradients have harmful effects on training convergence.
Skipping the evaluation on those unreliable gradients can benefit both training convergence and
efficiency. Besides, we observe that for most parameters, if the gradient magnitudes are far from
zero for several steps, it will likely keep far from zero in the next several steps. Similarly, if the
gradient magnitude remains small for some steps, it will likely keep small in the next several steps.
This means the gradient reliability is predictable to some extent. Therefore, we propose the gradient
pruning method to sample the parameters whose gradients are more reliable. This method helps
training converge faster while also saving time by skipping the evaluation of unreliable gradients.

Alg. 1 describes the QNN on-chip training flow with probabilistic gradient pruning. We divide all
the training steps into S stages and perform the pruning method periodically on each stage. For
every stage, we split it into two phases, shown in Figure 5. The first phase is called magnitude ac-
cumulation with an accumulation window width wa, and the second is called probabilistic gradient
pruning (PGP) with a pruning window width wp. We only apply pruning in the second phase, while
the parameter subset is sampled from a probability distribution θ̃ = {θi ∼ PM (θ)|1 ≤ i ≤ (1−r)n}
based on the gradient information collected within the accumulation window.

In Lines 4-9, within the accumulation window, we record the magnitude of gradients of each pa-
rameter in each step and accumulate them until the window is over. At the end of the first phase,
we can get an accumulator M that records the accumulated gradient magnitude for each parameter.
Thus, when the pruning phase starts, we normalize the accumulated gradient magnitude and pass it
to our sampler as the sampling distribution. In each pruning step, the sampler samples a subset of
parameters θ̃ with a pruning ratio of r, and we only evaluate gradients for them while the rest θ\θ̃ is
temporarily frozen.

There are three important hyper-parameters in our gradient pruning method: 1) accumulation win-
dow width wa, 2) pruning ratio r, and 3) pruning window width wp. The accumulation window
width and pruning window width decide the reliability of the gradient trend evaluation and our con-
fidence in it, respectively. The pruning ratio can be tuned to balance the gradient variances caused by
noise perturbation and pruning. Thus, the percentage of the time saved by our probabilistic gradient
pruning method is r wp

wa+wp
× 100%. In our experiments, we find that the setting (wa=1, wp=2∼3,

r=0.3∼0.5) usually works well in all cases.

6

Under review as a conference paper at ICLR 2022

Table 1: Accuracy comparison among different settings. Sim. represents simulation.

Method Accuracy on MNIST-4 MNIST-2 Fashion-4 Fashion-2 Vowel-4
Jarkata Jarkata Manila Santiago Lima

Classical-Train Noise-free Sim. 0.61 0.88 0.73 0.89 0.37

Classical-Train 0.59 0.79 0.54 0.89 0.31
QC-Train Real QC 0.59 0.83 0.49 0.84 0.34
QC-Train-PGP 0.64 0.86 0.57 0.91 0.36

20

30

40

50

60

70

0 20000 40000 60000

R
e
a
l
Q

C
 V

a
lid

a
ti
o
n
 A

c
c
.
(%

)

#Inference

QC Train-PGP

QC Train

Classical Train

63.7%
59.3%4.4%↑

MNIST-4 Jakarta

(a)

40

50

60

70

80

90

100

0 10000 20000 30000

R
e
a
l
Q

C
 V

a
lid

a
ti
o
n
 A

c
c
.
(%

)

#Inference

QC Train-PGP

QC Train

Classical Train

90.7% 88.7%2%↑

Fashion-2 Santiago

(b)

0

10

20

30

40

50

60

70

0 10000 20000 30000

R
e
a
l
Q

C
 V

a
lid

a
ti
o
n
 A

c
c
.
(%

)

#Inference

QC Train-PGP

QC Train

Classical Train

57.3%

53.7%

3.6%↑

Fashion-4 Manila

(c)

Figure 6: Real QC validation accuracy curves on different datasets and different quantum devices.

4 EXPERIMENTS

In this section, we deploy our QNN on-chip learning framework on real QC and evaluate it on 5
QML tasks for image and vowel recognition. Compared with classical QNN training protocols,
we can achieve 2-4% real QC test accuracy improvement with 2× convergence speedup. We also
conduct extensive ablation studies to validate our scalability and the effectiveness of the proposed
probabilistic gradient pruning method.

4.1 EXPERIMENT SETUPS

Benchmarks. We conduct our experiments on 5 QML tasks. QML are all classification tasks
including MNIST (Lecun et al., 1998) 4-class (0, 1, 2, 3), 2-class (3 and 6); Fashion (Xiao et al.,
2017) 4-class (t-shirt/top, trouser, pullover, dress), 2-class (dress and shirt); Vowel (Deterding, 1989)
4-class(hid, hId, had, hOd). MNIST and Fashion 2-class use the front 500 images as the training set
and randomly sampled 300 images as the validation set. MNIST, Fashion 4-class uses the front 100
images as the training set and also randomly sampled 300 images as the validation set. The input
images are all 28× 28. We firstly center-crop them to 24× 24 and then down-sample them to 4× 4
for MNIST and Fashion 2 and 4-class tasks. Vowel 4-class uses the front 100 samples as the training
set and randomly sampled 300 samples as the validation set. For each sample, we perform principal
component analysis (PCA) for the vowel features and take the 10 most significant dimensions.

All the tasks use four logical qubits. To embed classical image and vowel features to the quantum
states, we first flatten them and then encode them with rotation gates. For down-sampled 4 × 4
images, we use 4RY, 4RZ, 4RX, and 4RY gates as the encoder. We put the 16 classical input values
to the phases of 16 rotation gates, respectively. Therefore we can encode the classical values to
quantum states. For 10 vowel features, we use 4RY, 4RZ, and 2RX gates for encoding.

The encoding gates are our hand-designed circuits. Our circuits are composed of several layers.
There are 7 kinds of layers used to construct our circuits. (i) RX layer: Add RX gates to all wires;
(ii) RY layer: same structure as in RX layer; (iii) RZ layer: same structure as in RX layer; (iv)
RZZ layer: add RZZ gates to all logical adjacent wires and the logical farthest wires to form a ring
connection, for example, an RZZ layer in a 4-qubit circuit contains 4 RZZ gates which lie on wires
1 and 2, 2 and 3, 3 and 4, 4 and 1; (v) RXX layer: same structure as in RZZ layer; (vi) RZX layer:
same structure as in RZZ layer; (vii) CZ layer: add CZ gates to all logical adjacent logical wires.

7

Under review as a conference paper at ICLR 2022

65

70

75

80

85

90

1 2 3 4 5C
la

s
s
ic

a
l
V

a
lid

.
A

c
c
 (

%
)

Accumulation Window Width

Fashion-4

MNIST-2

65

70

75

80

85

90

0 0.2 0.4 0.6 0.8 1C
la

s
s
ic

a
l
V

a
lid

.
A

c
c
 (

%
)

Pruning Ratio

Fashion-4

MNIST-2
65

70

75

80

85

90

1 2 3 4 5C
la

s
s
ic

a
l
V

a
lid

.
A

c
c
 (

%
)

Pruning Window Width

Fashion-4

MNIST-2

Figure 7: Ablation on pruning ratio, accumulation window width, and pruning window width.

For MNIST and Fashion 2-class tasks, the circuit contains 1 RZZ layer followed by 1 RY layer. For
MNIST 4-class task, the circuit contains 3 RX+RY+RZ+CZ layers (1 RX layer, 1 RY layer, 1 RZ
layer, and 1 CZ layer in series). For Fashion 4-class task, the circuit contains 3 RZZ+RY layers (1
RZZ layer followed by 1 RY layer). For Vowel 4-class task, the circuit contains 2 RZZ+RXX layers
(1 RZZ layer followed by 1 RXX layer).

For the output of our quantum circuits, we measure the expectation values on Pauli-Z basis and
obtain a value [-1, 1] from each qubit. For 2-class, we sum the qubit 0 and 1, 2, and 3 respectively
to get 2 output values. For 4-class, we just use the four expectation values as 4 output values. Then
we process the output values by Softmax to get probabilities.

Quantum devices and compiler configurations. We use IBM quantum computers via qiskit
API (IBM, 2021) to submit our circuits to real superconducting quantum devices and achieve quan-
tum on-chip training. We set all the circuits to run 1024 shots.

Baseline. We have two baselines. (1) QC-Train: We train our model without gradient pruning,
i.e., calculating gradients of every parameter in each step. The gradient calculation is deployed
on real quantum circuits. (2) Classical-Train: We train our QNN model completely on classical
computers. We use a vector to record the amplitudes of the quantum state, utilize complex matrix
multiplication to simulate quantum gates, and sample based on the amplitude vector to simulate
quantum measurement.

The QC-Train-PGP line shows training on real quantum circuits while applying our probabilistic
gradient pruning. In all the cases, we adopt accumulation window size 1, pruning ratio 0.5, and
pruning window size 2, except for Fashion-4, we adopt pruning ratio 0.7, and other settings remain
the same.

4.2 EXPERIMENTAL RESULTS

Main results. Table 1 shows the accuracy of comparison on 5 tasks. In each task, we show 4
accuracy values, which are (1) accuracy of Classical-Train tested on classical devices, (2) accuracy
of Classical-Train tested on real quantum circuits; (3) accuracy of QC-Train tested on real quantum
circuits; (4) accuracy of QC-Train-PGP tested on real quantum circuits. In each task, the accuracy
is collected after finishing a certain number of circuit runs.

We train and evaluate MNIST-2 and MNIST-2 on ibmq jakarta, Fashion-4 on ibmq manila, Fashion-
2 on ibmq santiago, and Vowel-4 on ibmq lima.

The noise-free accuracy is usually the highest among the other 3 accuracy, because it represents the
accuracy without any noise perturbation. The QC-Train-PGP usually takes second place because
compared to Classical-Train, it has the advantage of noise awareness, and compared to QC-Train, it
suffers less from noise thanks to gradient pruning.

Training curves. Figure 6 shows the real QC validation accuracy curve during training. The X-
axis is the number of inferences (how many circuits have been run). The Y-axis is the accuracy
of the validation dataset tested on real quantum circuits. MNIST 4-class runs on the ibmq jakarta
machine. We observe that given a fixed inference budget, our QC-Train-PGP achieves the best
accuracy of 63.7% while the Classical-Train only achieves 59.3%.

We further train Fashion 2-class on ibmq santiago. QC-Train-PGP only takes 13.9k inferences to
reach the peak accuracy 90.7%, while the best accuracy Classical-Train can achieve is merely 88.7%
at the cost of over 30k inferences.

8

Under review as a conference paper at ICLR 2022

Table 2: Probabilistic pruning is better than determinis-
tic pruning.

Method MNIST-4 MNIST-2 Fashion-4 Fashion-2

Deterministic 0.61 0.82 0.72 0.89
Probabilistic 0.62 0.85 0.79 0.90

Table 3: Adam optimizer outperforms
SGD and Momentum.

Optimizer MNIST-4 MNIST-2 Fashion-4 Fashion-2

SGD 0.5 0.8 0.45 76
Momentum 0.55 0.83 0.66 0.90
Adam 0.61 0.88 0.75 0.91

Ablation on gradient pruning. In Figure 7, we evaluate the training performance with different
pruning ratios r, accumulation window size wa, and pruning window size wp on Fashion-4 and
MNIST-2 tasks. We find that the r = 0.5 is generally a good setting for our tasks. Overly large
pruning ratios will induce too many gradient variances that harm the training convergence. For the
accumulation window size, wa = 1 or 2 are suitable choices. When wa is too large, the accu-
mulated gradient magnitudes are similar among all parameters, leading to nearly uniform sampling
distribution. This will bring undifferentiated pruning, and the accuracy will drop as the Fashion-4
curve shows. The pruning window wp should also not be too large. As wp grows, the accumulated
gradient magnitudes used to instruct our pruning become less reliable.

Discussion on scalability. Figure 8 shows the superior scalability of quantum on-
chip training. Classical simulation runtime exponentially increases as #qubits scales up,

0

500

1000

1500

2000

2500

0 10 20 30 40

R
u
n
ti
m

e
 (

s
)

#qubits

classical

quantum

0

5000

10000

15000

20000

25000

30000

35000

0 10 20 30 40

M
e
m

o
ry

 C
o
s
t

(G
b
)

#qubits

classical

quantum

Figure 8: Runtime (s) and memory cost comparison be-
tween classical simulation and quantum on-chip run.

while the runtime on real quantum
machines scales nearly linearly to
#qubits.

The classical curve in Figure 8 rep-
resents runtime and memory cost
of running 50 circuits of different
#qubits with 16 rotation gates and
32 RZZ gates. The curve before
22 qubits is measured on a single
NVIDIA RTX 2080 Ti GPU; points
after 24 qubits are extrapolated. The
quantum curve before 27 qubits is tested on ibmq toronto; points after 30 are extrapolated.

We can observe clear quantum advantages on circuits with more than 27 qubits. In terms of memory
cost, classical simulation consumes thousands of Gigabits for storage which is intractable. In con-
trast, on quantum machines, the information is stored in the quantum state of the circuit itself with
negligible memory cost.

Probabilistic vs. deterministic gradient pruning. Our pruning is decided by a random sampler
based on the accumulated gradient magnitude. We call this probabilistic pruning. If the sampler only
samples the parameters with the biggest accumulated gradient magnitude, this is called deterministic
pruning. We adopt probabilistic pruning instead of deterministic pruning because deterministic
pruning limits the degree of freedom and increases the gradient sampling bias. Table 2 shows that
deterministic pruning has 1%-7% accuracy loss compared with probabilistic pruning.

Different optimizers. Table 3 shows the accuracy tested on classical devices trained with different
optimizers. The learning rate is controlled by a cosine scheduler from 0.3 in the beginning to 0.03 in
the end. We test SGD, SGD with a momentum factor of 0.8 (Qian, 1999), and Adam on MNIST-4,
MNIST-2, Fashion-4, and Fashion-2, and found that Adam always performs the best. Hence, all the
experiments are done using Adam (Kingma & Ba, 2015) optimizers by default.

5 CONCLUSION

In this work, for the first time, we present an efficient and robust on-chip training framework for
quantum neural networks (QNN) and demonstrate its effectiveness on real quantum devices. By
leveraging parameter shift, we can calculate the exact quantum gradients directly on quantum ma-
chines, thus achieving high scalability. To alleviate the negative impact of quantum noises on gradi-
ents, we further propose the probabilistic gradient pruning technique to avoid updating parameters
with unreliable gradients. Experimental results on 5 classification tasks and 5 machines demonstrate
that our method can achieve comparable accuracy with pure noise-free simulation. We hope this
work can open an avenue towards practical training of large QNN models for quantum advantage.

9

Under review as a conference paper at ICLR 2022

ETHICS STATEMENT

There is no significant insights, methodologies of this work potentially harmful to ethnicity. Quan-
tum computing has the potential to lower the energy and time cost for certain computation tasks and
thus reducing the burden of the computing industry to the environment in terms of carbon dioxide
emission, energy consumption, etc.

REPRODUCIBILITY STATEMENT

For easy reproducing our experimental results, we open-source our PyTorch library for on-chip QNN
training with parameters shift and training scripts in an anonymous link as stated in Section 1. To
reduce the impact of intrinsic quantum randomness, we run 1024 shots to obtain the expectation
value of each qubits as stated in Section 4.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Amira Abbas, David Sutter, Christa Zoufal, Aurélien Lucchi, Alessio Figalli, and Stefan Woerner.
The power of quantum neural networks. Nature Computational Science, 1(6):403–409, 2021.

Mohammad H Amin, Evgeny Andriyash, Jason Rolfe, Bohdan Kulchytskyy, and Roger Melko.
Quantum boltzmann machine. Physical Review X, 8(2):021050, 2018.

Jean-Philippe Aumasson. The impact of quantum computing on cryptography. Computer Fraud &
Security, 2017(6):8–11, 2017.

Johannes Bausch. Recurrent quantum neural networks. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 1368–1379. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/0ec96be397dd6d3cf2fecb4a2d627c1c-Paper.pdf.

Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd.
Quantum machine learning. Nature, 549(7671):195–202, 2017.

Colin D Bruzewicz, John Chiaverini, Robert McConnell, and Jeremy M Sage. Trapped-ion quantum
computing: Progress and challenges. Applied Physics Reviews, 6(2):021314, 2019.

Yudong Cao, Jonathan Romero, Jonathan P Olson, Matthias Degroote, Peter D Johnson, Mária
Kieferová, Ian D Kivlichan, Tim Menke, Borja Peropadre, Nicolas PD Sawaya, et al. Quantum
chemistry in the age of quantum computing. Chemical reviews, 119(19):10856–10915, 2019.

Patrick J Coles. Seeking quantum advantage for neural networks. Nature Computational Science, 1
(6):389–390, 2021.

Gavin E Crooks. Gradients of parameterized quantum gates using the parameter-shift rule and gate
decomposition. arXiv preprint arXiv:1905.13311, 2019.

D.H. Deterding. Speaker normalisation for automatic speech recognition. PhD thesis, University of
Cambridge, 1989.

10

https://anonymous.4open.science/r/iclr-on-chip-qnn-572E
https://www.tensorflow.org/
https://proceedings.neurips.cc/paper/2020/file/0ec96be397dd6d3cf2fecb4a2d627c1c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/0ec96be397dd6d3cf2fecb4a2d627c1c-Paper.pdf

Under review as a conference paper at ICLR 2022

Yongshan Ding and Frederic T Chong. Quantum computer systems: Research for noisy
intermediate-scale quantum computers. Synthesis Lectures on Computer Architecture, 15(2):1–
227, 2020.

Edward Farhi and Hartmut Neven. Classification with quantum neural networks on near term pro-
cessors. arXiv preprint arXiv:1802.06002, 2018.

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algo-
rithm. arXiv preprint arXiv:1411.4028, 2014.

Pulak Ranjan Giri and Vladimir E Korepin. A review on quantum search algorithms. Quantum
Information Processing, 16(12):315, 2017.

Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing, pp. 212–219, 1996.

Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of
equations. Physical review letters, 103(15):150502, 2009.

Vojtěch Havlı́ček, Antonio D Córcoles, Kristan Temme, Aram W Harrow, Abhinav Kandala, Jerry M
Chow, and Jay M Gambetta. Supervised learning with quantum-enhanced feature spaces. Nature,
567(7747):209–212, 2019.

Maxwell Henderson, Samriddhi Shakya, Shashindra Pradhan, and Tristan Cook. Quanvolutional
neural networks: powering image recognition with quantum circuits. Quantum Machine Intelli-
gence, 2(1):1–9, 2020.

Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hartmut
Neven, and Jarrod R McClean. Power of data in quantum machine learning. Nature communica-
tions, 12(1):1–9, 2021.

Qiskit IBM, Apr 2021. URL https://qiskit.org/textbook/
ch-quantum-hardware/calibrating-qubits-pulse.html.

Weiwen Jiang, Jinjun Xiong, and Yiyu Shi. A co-design framework of neural networks and quantum
circuits towards quantum advantage. Nature communications, 12(1):1–13, 2021.

Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M
Chow, and Jay M Gambetta. Hardware-efficient variational quantum eigensolver for small
molecules and quantum magnets. Nature, 549(7671):242–246, 2017.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the Interna-
tional Conference on Learning Representations, 2015.

Philip Krantz, Morten Kjaergaard, Fei Yan, Terry P Orlando, Simon Gustavsson, and William D
Oliver. A quantum engineer’s guide to superconducting qubits. Applied Physics Reviews, 6(2):
021318, 2019.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum algorithms for supervised and
unsupervised machine learning. arXiv preprint arXiv:1307.0411, 2013.

Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal component analysis.
Nature Physics, 10(9):631–633, 2014.

Seth Lloyd, Silvano Garnerone, and Paolo Zanardi. Quantum algorithms for topological and geo-
metric analysis of data. Nature communications, 7(1):1–7, 2016.

Seth Lloyd, Maria Schuld, Aroosa Ijaz, Josh Izaac, and Nathan Killoran. Quantum embeddings for
machine learning. arXiv preprint arXiv:2001.03622, 2020.

Easwar Magesan, Jay M Gambetta, and Joseph Emerson. Characterizing quantum gates via ran-
domized benchmarking. Physical Review A, 85(4):042311, 2012.

11

https://qiskit.org/textbook/ch-quantum-hardware/calibrating-qubits-pulse.html
https://qiskit.org/textbook/ch-quantum-hardware/calibrating-qubits-pulse.html

Under review as a conference paper at ICLR 2022

Vasileios Mavroeidis, Kamer Vishi, Mateusz D Zych, and Audun Jøsang. The impact of quantum
computing on present cryptography. arXiv preprint arXiv:1804.00200, 2018.

David A Meyer. Sophisticated quantum search without entanglement. Physical Review Letters, 85
(9):2014, 2000.

Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information, 2002.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.

Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love,
Alán Aspuru-Guzik, and Jeremy L O’brien. A variational eigenvalue solver on a photonic quan-
tum processor. Nature communications, 5(1):1–7, 2014.

John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks, 1999.

Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum support vector machine for big
data classification. Physical review letters, 113(13):130503, 2014.

Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran. Evaluating
analytic gradients on quantum hardware. Physical Review A, 99(3):032331, 2019.

Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM review, 41(2):303–332, 1999.

Marcus Silva, Easwar Magesan, David W Kribs, and Joseph Emerson. Scalable protocol for identi-
fication of correctable codes. Physical Review A, 78(1):012347, 2008.

Joel J Wallman and Joseph Emerson. Noise tailoring for scalable quantum computation via random-
ized compiling. Physical Review A, 94(5):052325, 2016.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

12

	Introduction
	Experiments
	Experiment Setups
	Experimental Results

	Conclusion

