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ABSTRACT

Multi-agent collaboration, especially in human-AI (HAI) teaming, requires agents
that can adapt to novel partners with diverse and dynamic behaviors. Conventional
Deep Hierarchical Reinforcement Learning (DHRL) methods focus on agent-
centric rewards and overlook partner behavior, leading to shortcut learning, where
skills exploit spurious information instead of adapting to partners’ dynamic be-
haviors. This limitation undermines agents’ ability to adapt and coordinate effec-
tively with novel partners. We introduce Partner-Aware Skill Discovery (PASD),
a DHRL framework learning skills conditioned on partner behavior. PASD in-
troduces a contrastive intrinsic reward to capture patterns emerging from partner
interactions, aligning skill representations across similar partners while maintain-
ing discriminability across diverse strategies. By structuring the skill space based
on partner interactions, this approach mitigates shortcut learning and promotes
behavioral consistency, enabling robust and adaptive coordination. We conduct
extensive evaluations in Overcooked-AI across three complementary settings: (1)
a diverse self-play partner population spanning a wide range of skill levels and
play styles, (2) human proxy partners trained from real human–human trajectories,
and (3) a controlled human-subject study with 25 participants. PASD consistently
outperforms existing population-based and hierarchical baselines, demonstrating
transferable skill learning that generalizes across a wide range of partner behav-
iors. Analysis of learned skill representations shows that PASD adapts effectively
to diverse partner behaviors, highlighting its robustness in HAI collaboration.

1 INTRODUCTION

Developing intelligent agents that can coordinate effectively with humans and other novel partners
has long been a central challenge in multi-agent reinforcement learning (MARL) (Klein et al., 2004;
Alami et al., 2006; Bard et al., 2020). Unlike adversarial settings (Ye et al., 2020), where suc-
cess is measured by outperforming an opponent, collaboration is far more challenging as it requires
adapting to novel partners with diverse and often unpredictable behaviors (Hu et al., 2020). Early
approaches relied on behavior cloning (BC) from human–human interaction data, but these methods
are costly, time-consuming, and struggle to capture the diversity of real-world behaviors (Carroll
et al., 2019). Furthermore, even in fully observable environments, partner behaviors are not fully
predictable from a single state. Differences in timing, hesitation, movement rhythms, and style pref-
erences unfold over sequences of actions, requiring temporal modeling to capture and adapt to these
patterns. Conditioning on the current state is insufficient to avoid behavioral interference or forget-
ting of previously learned coordination strategies. More recently, hierarchical reinforcement learn-
ing (HRL) has advanced collaboration by decomposing complex tasks into reusable skills, enabling
more structured exploration and improved coordination (Eysenbach et al., 2019; Loo et al., 2023).
HRL provides a framework for structuring agent behavior through temporally extended actions, or
’skills’, which can capture reusable patterns of behavior. By learning a set of diverse and reusable
skills, agents can explore more efficiently and adapt their behavior in complex environments.

However, standard skill discovery methods remain largely agent-centric, optimizing for diversity
without accounting for partner influence. Consequently, the learned skills may support individual
performance but are insufficient for robust coordination with diverse partners. We argue that this
limitation arises from the agent-centric nature of reward optimization. Existing approaches max-
imise expected returns from the agent’s perspective, often ignoring the influence of the partner on
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cooperative dynamics. This misalignment leads to shortcut learning (Wei et al., 2023), where agents
exploit spurious correlations in the environment rather than capturing information relevant for part-
ner interactions. As a result, agents develop behaviors that prioritize their own action diversity but
fail to generalize coordination across novel partners.

Prior skill discovery methods in HRL often maximize mutual information (MI) between skills and
observational states as a proxy for behavioral diversity Gregor et al. (2016); Eysenbach et al. (2019).
While this encourages the agent to develop distinguishable behaviors, the objective is bounded by
the entropy of skills and does not ensure sensitivity to partner behavior. As a result, these approaches
often learn simple and static skills with limited adaptability, leading to poor state coverage and weak
coordination, as highlighted in recent studies (Campos et al., 2020; Jiang et al., 2022). Moreover,
tractable variational estimators of MI (Eysenbach et al., 2019), typically implemented with neural
networks optimized via cross-entropy or related objectives, are prone to shortcut learning . In prac-
tice, they often capture spurious correlations in state features rather than the interaction patterns
relevant for effective collaboration Wei et al. (2023).

We introduce Partner-Aware Skill Discovery (PASD), an HRL approach for learning skills that adapt
to diverse collaborator behaviors. PASD maximizes a variational lower bound on MI between skills
and sub-trajectories, encouraging representations that are consistent and reproducible across part-
ner interactions. This is achieved via a contrastive objective that ensures skill representations are
discriminative across heterogeneous partners while remaining consistent for partners with similar
behaviors. By capturing patterns shaped by partner behavior rather than agent-centric correlations,
PASD mitigates shortcut learning and produces skills that generalize across partners, supporting
effective partner-adaptive coordination.

In summary, our work makes the following key contributions. First, we introduce PASD, a DHRL
framework that enables robust human-AI coordination through skill representations conditioned on
partner behavior. Second, a novel contrastive intrinsic reward is proposed and incorporated into
PASD to encourages consistency in skill representations across similar partners by capturing shared
patterns from parallel rollouts while maintaining discriminability across diverse partner behaviors.
This intrinsic reward, derived from contrastive learning, encourages behavioral diversity across di-
verse partners, mitigating shortcut learning caused by spurious state information, and directly lever-
aging partner-relevant information from the observational space. We further emphasize that PASD
leverages HRL to mitigate forgetting by learning separate latent skills and captures temporal pat-
terns of partner behavior, enabling robust adaptation to diverse human-like coordination styles even
in fully observable environments. Finally, we extensively evaluate PASD in the Overcooked-AI en-
vironment, partnering the agent with a diverse self-play population spanning multiple skill levels
and play styles, as well as with human-proxy models trained from human–human demonstrations.
In addition, a controlled human-subject study with real human participants further shows that PASD
yields significantly higher joint rewards than existing approaches, demonstrating that PASD learns
transferable skills that generalize effectively across a wide range of partners, enabling robust and
adaptive human-AI coordination.

2 RELATED WORK

Recent work has explored building agents that can coordinate with human partners Carroll et al.
(2019); Hao et al. (2024). Carroll et al. Carroll et al. (2019) introduced the Overcooked-AI environ-
ment and trained PPO agents with human proxy models from human gameplay. While improving
robustness, this requires extensive and costly human data. Hao et al. Hao et al. (2024) introduce
intrinsic rewards to encourage agents to explore states that yield sparse rewards when coordinat-
ing with human proxy models. Strouse et al. Strouse et al. (2021) propose Fictitious Co-Play (FCP),
generating a pool of self-play policies and past versions to train adaptive agents without human data.
Some works further improve partner heterogeneity using entropy-based objectives during training
(Lupu et al., 2021; Garnelo et al., 2021; Zhao et al., 2023; Loo et al., 2023). Hidden-utility Self-Play
HSP (Yu et al., 2023) extends FCP by modeling human biases as hidden reward functions, generating
a diverse policies to train adaptive agents that can cooperate with unseen humans with preferences
deviating from environment rewards. Jha et al. Jha et al. (2025) propose Cross-Environment Cooper-
ation (CEC), which trains agents across a distribution of environments to acquire general cooperative
skills, enabling zero-shot coordination with novel partners. While effective for generalization across
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tasks, CEC does not explicitly model partner-adaptive skill discovery within a single environment,
which is the focus of our method. While these methods focus on learning a single-level agent pol-
icy, effective human-AI coordination requires reasoning over temporally extended behaviors and
adapting to partners with diverse and evolving strategies.

HRL provides a framework for reasoning over temporally extended behaviors, making it well-suited
for multi-agent and human-AI coordination. By learning policies at multiple temporal levels (Sutton
et al., 1999; Flet-Berliac, 2019; Pateria et al., 2021), HRL captures high-level strategic planning and
low-level execution. Classical approaches such as options (Bacon et al., 2017; Eysenbach et al.,
2019) and feudal learning (Vezhnevets et al., 2017) illustrate temporal hierarchy benefits, extended
to cooperative multi-agent settings in recent work (Loo et al., 2023; Yang et al., 2023a). Methods like
DIAYN (Eysenbach et al., 2019) encourage diverse behaviors using intrinsic rewards maximizing
MI between skills and states/actions. However, these agent-centric approaches are prone to shortcut
learning, capturing spurious patterns instead of partner-relevant behaviors. Hierarchical Population
Training (HIPT) (Loo et al., 2023) adapts HRL to human-AI coordination by shaping the high-
level policy via influence-based intrinsic rewards but trains the low-level policy only on extrinsic
rewards, risking skill collapse. Our approach introduces a novel intrinsic reward to mitigate shortcut
learning, ensuring behavioral consistency across similar partners while remaining discriminative to
diverse strategies, supporting adaptive human-AI coordination

3 PRELIMINARIES

We consider a multi-agent setting in which two agents collaborate to complete shared tasks, with
the framework naturally extending to settings involving more agents. One agent is controlled by
a learning policy πθ(· | st), while the other is governed by a partner policy πp(· | st), sampled
uniformly from a population of pretrained partners Dp at the start of each episode. The objec-
tive is to train πθ(· | st) to achieve high returns when paired with novel partners drawn from a
separate evaluation distribution D′

p. The environment is modeled as a two-player Markov game
M = (S,A,Ap,P, r, γ, ρ0), where S is the state space, A and Ap are the action spaces of the
learning agent and the partner, P is the transition kernel, r : S × A × Ap → R is the shared team
reward, γ ∈ (0, 1) is the discount factor, and ρ0 is the initial state distribution. At each timestep t,
the learning agent selects an action at ∼ πθ(· | st), while the partner executes apt ∼ πp(· | st), and
the next state is drawn from st+1 ∼ P(st+1 | st, at, apt ).
From the perspective of the learning agent, the effective dynamics marginalize over both the part-
ner’s stochasticity and the population distribution:

PDp
(s′ | s, a) = Eπp∼Dp

Eap∼πp(·|s)
[
P(s′ | s, a, ap)

]
.

This formulation emphasizes that the agent must learn a policy that is robust to variations in partner
behavior while maximizing expected returns over the population of collaborators. For a given partner
πp, the return is

J(πθ | πp) = E

[ ∞∑
t=0

γt r(st, at, a
p
t )

]
. (1)

To encourage robustness to novel partners, the learning objective is the expected return over the
partner population:

J(πθ) = Eπp∼Dp

[
J(πθ | πp)

]
. (2)

Hierarchical reinforcement learning: In collaborative multi-agent environments, effective coor-
dination requires reasoning over temporally extended behaviors and adapting to partners with diverse
and dynamically changing strategies. To capture these aspects, we model the learning agent using
a hierarchical policy inspired by the options framework Sutton et al. (1999). Formally, we consider
DHRL setup with a high-level manager πhi(z | s) and a low-level controller πlo(a | s, z). The
high-level manager selects latent skills z ∈ Z , which guide temporally extended behaviors executed
by the low-level controller. Each skill zk is executed over a segment from tk to tk+1 − 1, producing
cumulative segment reward:

RZ(stk , zk) =

tk+1−1∑
t=tk

γt−tkr(st, at, a
p
t ), zk ∼ πhi(· | stk), at ∼ πlo(· | st, zk), (3)
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where apt denotes the partner’s action at time t and γ ∈ [0, 1] is a discount factor. The high-level
objective is the expected return over all skill segments:

Jhi(πhi, πlo | πp) = E

[
K−1∑
k=0

γtkRZ(stk , zk)

]
. (4)

Skill execution is controlled by a stochastic termination function β(z, s), which determines whether
the current skill continues or a new skill should be selected. This allows the manager to adaptively
update skills at irregular intervals Thi based on the evolving collaborative context.

Within each skill segment, the low-level controller πlo(a | s, z) outputs primitive actions conditioned
on the current state and the active skill. The low-level policy is trained to reliably realize the intended
skill, producing sequences of actions that induce state transitions s → s′ through the environment
dynamics. Formally, the low-level objective can be expressed as:

Jlo(πlo | z, πp) = E

[
tk+1−1∑
t=tk

γt−tkr(st, at, a
p
t )

]
, (5)

where the expectation is conditioned on the currently active skill zk. The high-level manager,
low-level controller, and termination function together define the joint hierarchical policy π =
(πhi, πlo, β), which is optimized end-to-end via proximal policy optimization (PPO) algorithm
(Schulman et al., 2017) to maximize both high-level and low-level objectives.

4 METHOD

4.1 MOTIVATION

While the high-level and low-level objectives in 4 and 5 focus on maximizing extrinsic team rewards,
optimizing only for these objectives often leads to skill collapse, where all skills converge to sim-
ilar behaviors. Each skill independently maximizes cumulative reward without explicit constraints
promoting discriminability, which can result in a single skill dominating entire episodes. Under
such conditions, the termination function β(z, s) cannot effectively differentiate among skills, and
the hierarchical policy loses expressive power. Prior works Eysenbach et al. (2019); Gregor et al.
(2016) have addressed skill collapse by introducing intrinsic objectives that maximize the mutual in-
formation (MI) between skills and states, I(Z;S) = H(Z)−H(Z | S), thereby encouraging skills
to induce distinguishable state distributions. These approaches typically separate skill discovery
and high-level optimization into two phases: skills are first discovered by mapping them to diverse
states, and then the high-level policy is optimized with extrinsic reward on downstream tasks.

However, in collaborative multi-agent environments, the next state is determined jointly by the agent
and the partner policy, st+1 ∼ P(st+1 | st, at, apt ), so the state distribution induced by a skill z
depends not only on the agent policy π but also on the partner policy πp.

Assumption 1: The skill space is lower-dimensional than the joint state space, i.e., H(Z) <
H(S), s ∼ ρπ,π

p

(s). This reflects the fact that each skill typically corresponds to a sub-trajectory
of the high-dimensional state space, allowing distinct behaviors to be captured as separate skills.

Under Assumption 1, maximizing I(Z;S) is limited by the low dimensionality of the skill space.
Since H(Z) is fixed, the agent can achieve the maximum MI even by producing only minor, agent-
centric variations that capture very little meaningful information about the partner-conditioned dy-
namics. For instance, consider two policies π1 and π2 that interact with the same partner πp. Sup-
pose π2 explores the state space more broadly than π1, which is reflected by: Hρπ1,πp (S) <
Hρπ2,πp (S). However, since Z has fixed entropy H(Z), maximizing the MI still yields

max I(Z;S)π1
= max I(Z;S)π2

= H(Z), (6)

meaning that I(Z;S) alone does not distinguish policies with different exploration capacities. Thus,
I(Z;S) provides no extra information to prefer policies that better coordinate with the partner.

Furthermore, variational approximations of H(Z | S) typically rely on neural networks (NN) trained
via cross-entropy (CE) loss, which is well known to be biased toward spurious information in fea-
ture space Wei et al. (2023). As a result, the agent can increase I(Z;S) through local, repeatable
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Figure 1: Overview of PASD training and evaluation. Left: PASD is trained with K parallel
rollouts, each paired with a different partner sampled from the partner poolDp. After every episode,
high-level and low-level trajectories are stored in buffers βh and βl. These trajectories are used to
form positive pairs Pz (same skill across different partners) and negative pairs Nz (different skills),
enabling computation of the contrastive intrinsic rewards in Eq. 13. Right: The optimized policies
πhi and πlo are evaluated with real human partners to measure collaborative performance.

perturbations that are largely agent-centric and do not improve coordination. Formally, maximizing
I(Z;S) does not prevent large conditional divergences, KL

(
πhi(· | s1) ∥πhi(· | s2)

)
, s1 ≈ s2,

for states corresponding to similar partner behaviour, implying that high entropy does not necessarily
ensure alignment with πp. These observations motivate a more structured objective that conditions
skill discovery on partner-relevant information and encourages skills to be meaningfully distinct. In
particular, skill embeddings should capture partner behaviors, ensuring that discovered skills reflect
collaborative interactions rather than agent-only perturbations.

4.2 PARTNER-ADAPTIVE SKILLS DISCOVERY

In collaborative settings such as Overcooked Carroll et al. (2019), the behavior induced by a skill
is shaped jointly by the agent and its partner. The same high-level skill may lead to different state
transitions depending on whether the partner is fast, slow, or prioritizes different tasks. Thus, dis-
covering meaningful skills requires capturing how a skill behaves across diverse partner policies, not
just how the agent behaves in isolation. The objective in this section is to construct skill represen-
tations that remain consistent when interacting with behaviorally similar partners while remaining
discriminative across different skills, ensuring that behaviorally distinct skills induce distinguishable
interaction patterns. Figure 1 illustrates the overall PASD framework, showing both the training
setup with partner interactions and the evaluation process with human partners. To capture partner
influence as a skill discriminability measure, consider collecting K parallel rollouts under the joint
dynamics of the skill-conditioned agent and the partner:

τ (k) ∼ ρπ(·|s,z),π
p∼Dp

(τ), k = 1, . . . ,K, (7)

where ρπ,π
p

(τ) denotes the trajectory distribution induced by the agent-partner interaction. Each
rollout is segmented into M sub-trajectories of length L:

τ (k,j) = {stj , atj , . . . , stj+L}, j = 1, . . . ,M, (8)

and representative states are sampled from each sub-trajectory, s(k,j) ∼ τ (k,j).

Assumption 2: We assume that distinct sub-trajectory views of the same skill encode a consistent
partner-adaptive strategy, independent of which partner πp ∼ Dp is sampled, up to stochastic noise.
In other words, for any two views (k1, j1) ̸= (k2, j2), the additional information about the skill
identity provided by one view given the other is negligible:

I(S(k1,j1);Z | S(k2,j2)) ≈ 0, or equivalently S(k1,j1) ⊥⊥ Z | S(k2,j2). (9)

Intuitively, once one view is observed, other views add little new information about the skill identity,
reflecting reproducible partner-conditioned behavior across the partner population despite stochastic
variations in trajectories. Under Assumption 2, the MI between sub-trajectory states can be used
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to discover useful partner-conditioned skills i.e., skills that are both distinct with diverse partner
behavior and consistent across partners showing similar behavior:

I(S(k1,j1);S(k2,j2)) = I(S(k1,j1);S(k2,j2);Z) + I(S(k1,j1);S(k2,j2) | Z, πp), (10)

where the first term captures skill-discriminative information, and the second term captures intra-
skill consistency across similar partner behaviors.

Direct computation of the MI objective in Equation (10) is generally intractable. Following prior
work van den Oord et al. (2018), we approximate it using a tractable lower bound implemented
via a contrastive objective over learned state embeddings ϕ(s). This approximation preserves the
discriminability of skills across heterogeneous partner behaviors while maintaining consistency for
similar partner behaviors, and can be directly interpreted as an intrinsic reward signal to shape skill
representations.

For each skill z, let the index set of its sub-trajectory views be Pz ≡ {(k, j) : τ (k,j)}. Positive pairs
are sampled from two distinct views (k1, j1), (k2, j2) ∈ Pz , while negative samples are drawn from
views of other skills, Nz ≡

⋃
z′ ̸=z Pz′ . We approximate MI using an InfoNCE-style contrastive

loss (Guo et al., 2022) over normalized embeddings ϕ(s), i.e., ∥ϕ(s)∥2 = 1, so that similarities are
measured on the unit hypersphere. For an anchor state s, with positive set Pz and negative set Nz ,
per-anchor InfoNCE loss is:

LInfoNCE = − 1

|Pz|
∑

s+∈Pz

log
exp(sim(ϕ(s), ϕ(s+))/τ)∑

s′∈Pz∪Nz
exp(sim(ϕ(s), ϕ(s′))/τ)

, (11)

where sim(·, ·) is the cosine similarity and τ > 0 is a temperature parameter.

By the InfoNCE bound van den Oord et al. (2018), maximizing this reward increases a variational
lower bound on the MI between the skill variable Z and the state embeddings ϕ(S):

I(ϕ(S);Z) ≥ log(N)− LInfoNCE, (12)

where N = |Nz| is the number of negatives. The tightness of this approximation depends on the
number of negative samples N and the total number of skills |Z|. Larger numbers of negatives and
more diverse skills increase the quality of the lower bound, providing a stronger learning signal.
This formulation ensures that the learned embeddings ϕ(s) capture both skill distinctiveness and
consistency across partner behaviors. The InfoNCE objective is applied over carefully constructed
positive and negative pairs. Positive pairs consist of sub-trajectories generated by the same skill
interacting with different partners, which encourages embeddings to be consistent across partner be-
haviors. Negative pairs come from sub-trajectories of other skills, ensuring embeddings are distinct
for behaviorally different skills. By maximizing InfoNCE, the learned embeddings ϕ(s) capture pat-
terns that are reproducible and conditioned on the partner, rather than arbitrary agent-centric state
differences. This ensures that the discovered skills reflect meaningful partner-adaptive dynamics.

4.3 CONTRASTIVE INTRINSIC REWARD

To facilitate the discovery of partner-conditioned skills, we derive an intrinsic reward by leveraging
the InfoNCE objective. Specifically, the per-anchor InfoNCE probability, which measures similarity
between states corresponding to the same skill relative to other skills, can be directly used as an
intrinsic reward signal for both high-level and low-level policies.

For each anchor state s ∈ Pz , we compute a contrastive intrinsic reward as

rint(s) =
1

|Pz|
∑

s+∈Pz

exp(sim(ϕ(s), ϕ(s+))/τ)∑
s′∈Pz∪Nz

exp(sim(ϕ(s), ϕ(s′))/τ)
, (13)

where ϕ(s) denotes a normalized state embedding (∥ϕ(s)∥2 = 1), sim(·, ·) is the cosine similarity,
and τ > 0 is a temperature parameter. This intrinsic reward encourages the policy to select skills that
are both discriminative across heterogeneous partner behaviors and consistent across sub-trajectory
views corresponding to partners with similar behaviors.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: The five standard Overcooked layouts (left to right): Cramped Room, Asymmetric Ad-
vantages, Coordination Ring, Counter Circuit and Forced Coordination.

4.4 OVERALL TRAINING OBJECTIVE

To effectively learn partner-adaptive skills, we integrate the intrinsic reward defined in Equation
(13) with the extrinsic environment reward in both high-level and low-level objectives mentioned in
Equations (4 and 5). For the high-level manager, the intrinsic reward is accumulated and normalized
over each skill segment [tk, tk+1 − 1]:

R̃Z(stk , zk) =
1

tk+1 − tk

tk+1−1∑
t=tk

(
(1− λ) r(st, at, a

p
t ) + λ rint(st)

)
, (14)

where λ ∈ [0, 1] controls the relative weighting of intrinsic and extrinsic rewards. The corresponding
high-level objective is

J̃hi = E

[
K−1∑
k=0

γtkR̃Z(stk , zk)

]
. (15)

In the early phase of training, the intrinsic reward dominates, promoting exploration of diverse skill
patterns and capturing variations in partner behaviors across different rollouts. As training pro-
gresses, the influence of the extrinsic reward gradually increases, guiding the high-level manager
to refine skill selection toward maximizing task returns while maintaining consistency and discrim-
inability across partner-conditioned interactions. For the low-level controller, the intrinsic reward is
applied at each timestep:

J̃lo = E

[
tk+1−1∑
t=tk

γt−tk
(
r(st, at, a

p
t ) + λ rint(st)

)]
. (16)

Initially, the intrinsic reward drives the low-level policy to produce diverse and disentangled action
distributions for each skill, capturing the variability in partner behaviors across different rollouts.
As training progresses, the extrinsic reward gradually increases in influence, aligning these action
distributions with task objectives while preserving the discriminability and consistency of behaviors
for partners with similar tendencies. Both high-level and low-level objectives are optimized with the
PPO algorithm, using the rewards defined in Equations 15 and 16. Detailed pseudocode describing
the rollout procedure and the policy optimization steps of PASD is provided in Appendix A.

5 EXPERIMENTS

5.1 EXPERIMENTAL DETAILS

Environment: Following existing works (Strouse et al., 2021; Loo et al., 2023; Yu et al., 2023;
Yang et al., 2023b), we adopt the Overcooked-AI Carroll et al. (2019) as our testbed. Overcooked-AI
is a two-player cooperative benchmark derived from the Overcooked game Games (2016), in which
agents collaboratively complete a soup preparation task. Agents must pick onions, place them in
the pot, wait for the soup to cook, and then deliver the completed soup to the serving station, with
each successful delivery yielding a reward of +20. The goal is to maximize team reward within

7
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Table 1: Total mean reward (Mean ± Std) across three versions of each evaluation partner (early,
intermediate, final checkpoint) and both starting positions.

Method Cramped Room Asym. Adv. Coord. Ring Counter Circuit Forced Coord.

FCP 137.7 ± 1.0 90.6 ± 1.0 83.9 ± 5.9 51.3 ± 5.0 36.7 ± 14.4
DIAYN 33.8 ± 6.4 1.5 ± 0.7 22.5 ± 6.3 1.2 ± 1.0 1.3 ± 0.0
HiPT 117.9 ± 4.4 86.2 ± 0.9 96.0 ± 1.3 38.1 ± 5.3 35.6 ± 13.0
PASD 165.8 ± 10.0 145.8 ± 9.6 101.3 ± 8.5 57.37 ± 2.9 46.87 ± 12.3

a fixed episode horizon. We evaluate across five standard layouts, Cramped Room, Asymmetric
Advantages, Coordination Ring, Forced Coordination, and Counter Circuit, illustrated in Figure 2.
These layouts present diverse coordination challenges and collectively provide a widely adopted
benchmark for studying partner-adaptive behaviors. Overcooked-AI is fully observable, making it a
suitable testbed where coordination challenges arise solely from partner behavior rather than partial
observability Yu et al. (2023); Yang et al. (2023b). For a detailed discussion of layout-specific
demands, see Appendix B.

Diverse Self-Play Partner Population: For effective coordination with novel partners and hu-
mans, the AI agent is trained with a diverse partner population, where each partner has a unique
play style and skill level. Following prior work Strouse et al. (2021); Lupu et al. (2021); Loo et al.
(2023), we construct a heterogeneous policy pool. The pool consists of 16 agents trained via self-
play with PPO, varying in play style and skill level. Diverse play styles are encouraged using a
negative Jensen–Shannon Divergence (Loo et al., 2023), and varying skill levels are included via
intermediate checkpoints (Strouse et al., 2021). During training, a partner is uniformly sampled
from the heterogeneous population each episode. For evaluation with novel AI partners, a separate
disjoint population of the same size is trained using the same procedure.

Baselines We compare PASD against standard baselines including FCP (Strouse et al., 2021),
DIAYN (Eysenbach et al., 2019), and HiPT (Loo et al., 2023). Each method is trained and evaluated
with the identical set of diverse partner populations introduced earlier. FCP trains the adaptive policy
directly with PPO, whereas DIAYN, HiPT, and PASD adopt HRL where high-level and low-level
policies are jointly optimized via the option-critic framework (Sutton et al., 1999). DIAYN uses a
two-stage process where skills are first acquired through intrinsic rewards and then fine-tuned for
task performance, while HiPT and PASD train both levels of the hierarchy in parallel.

Implementation Details: We train all methods for 107 steps using 30 parallel rollouts with a
horizon length of 400. For PASD, the weighting coefficient λ is linearly annealed from 1.0 to 0.05
during training. Both low-level and high-level policies share a backbone network that consists of
three convolution layers, two fully connected layers, and a recurrent LSTM layer. The network is
then split into separate heads for low-level action and value prediction, and for high-level skill and
value estimation. The discrete skill variable z is set to dimension 6 for all layouts except Forced
Coordination, where it is set to 5. Additional hyperparameter details are provided in Appendix D.

5.2 RESULTS

We organize our results into three evaluation categories based on partner type. First, the agent is
paired with a diverse self-play population (Section 5.1) to test adaptation to novel AI behaviors.
Second, we evaluate with human proxy models trained via behavior cloning on human–human tra-
jectories, providing a closer approximation of human collaboration. Third, we validate performance
through a controlled human-subject study to assess real human-AI coordination.

Evaluation with Self-Play Partner Population: We first evaluate all methods using the hetero-
geneous partner population, organized into three sets,early-stage, intermediate, and fully trained
policies, covering a spectrum of partner proficiency from beginner to advanced. This population
serves as a practical proxy for varied human collaborative behaviors (Strouse et al., 2021; Yu et al.,
2023). For each set, we report the mean episodic return across all partners and starting positions,
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(a) Cramped Room
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(b) Asymmetric Advantages
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(c) Coordination Ring
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(e) Forced Coordination

Figure 3: Average episodic return during training across 30 parallel rollout environments.

Table 2: Total mean reward across different layouts when paired with a Behaviour Cloning (BC)
partner.

Method Cramped Room Asym. Adv. Coord. Ring Counter Circuit Forced Coord.

FCP 118.75 80.00 79.38 38.13 30.75
DIAYN 40.00 0.00 26.25 1.25 6.30
HIPT 93.13 66.25 77.50 35.00 25.20
PASD 150.00 112.50 105.63 44.38 43.8

with overall performance summarized as mean ± standard deviation across the three sets (Table 1).
Performance varies with layout difficulty. DIAYN performs poorly due to spurious variations dis-
rupting skill learning. HiPT and FCP perform better but remain sensitive to redundant state infor-
mation. In contrast, PASD robustly captures partner-relevant behaviors, avoids spurious variations,
and achieves the highest returns across all layouts. Figures 3a–3e show average returns over 30
rollouts, illustrating that PASD converges faster and maintains stable performance across diverse
partner behaviors and coordination challenges.

Evaluation with Human Proxy Partner: We now turn our attention to evaluating all methods
with a human proxy partner trained on real human data. This proxy is obtained via behavior cloning
on publicly available human–human trajectories collected by Carroll et al. (Carroll et al., 2019). Fol-
lowing the same procedure, the model is trained to imitate human demonstrations and used as a fixed
partner during evaluation, providing a realistic approximation of human behavior under controlled
conditions. Results are reported in Table 2. Performance of all methods slightly drops compared to
evaluation with the self-play population, as behavior cloning with limited human data can produce
policies that favor a dominant action and occasionally stall without random perturbations, as noted
in (Carroll et al., 2019). Despite these challenges, PASD continues to achieve the highest returns,
highlighting its ability to generalize effectively to previously unseen human-like partners.

Human Subject Study: Real Human–AI Collaboration Evaluation To evaluate PASD in real
human–AI collaboration, we conducted a controlled human-subject study following Carroll et al.
(2019). We recruited 25 participants via Amazon Mechanical Turk (AMT), each completing two
episodes of 20 minutes: one paired with HiPT and one with PASD. The order of methods was
randomized to mitigate ordering effects. To limit session duration and reduce participant fatigue,
only HiPT and PASD were included, omitting other baselines. Participants who did not complete

9
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Table 3: Total mean reward (Mean ± Standard Deviation) achieved by human participants when
paired with HiPT and PASD across different Overcooked layouts.

Method Cramped Room Asym. Adv. Coord. Ring Counter Circuit Forced Coord.

HiPT 80.00± 16.34 136.36± 20.36 46.0± 12.36 40.00± 15.81 20± 0.0
PASD 118.18± 12.68 198.18± 19.41 60.0± 08.92 62.5± 10.95 35.0± 10.00

both episodes were excluded, leaving 19 valid participants. Trajectories and rewards were recorded
for all layouts and evaluation partners. Table 3 reports the mean ± standard deviation of total reward
across conditions. Across all layouts, PASD consistently achieved higher joint rewards with human
partners than HiPT, improving human–AI collaboration by 22–47%, demonstrating that partner-
conditioned skill discovery meaningfully enhances real-world coordination. The full experimental
setup is available at our anonymized GitHub repository 1.

(a) Hipt (b) Hipt

(c) PASD (d) PASD

Figure 4: Skill activation over the trajectory for HiPT and PASD in Cramped Room (Left) and
Coordination Ring (Right) layouts. Each colored block represents a distinct skill selected by the
agent at a given timestep.

Qualitative Analysis of Skill Disentanglement To illustrate how PASD (blue agent) adapts to
human behaviors, we conducted controlled sessions in the Cramped Room and Coordination Ring
layouts. Each session lasted 80 seconds ( 482 steps), simulating diverse gameplay for the human
agent. In the Cramped Room, humans demonstrated varying preferences, e.g., picking plates from
different sides or collecting soup in distinct sequences. The AI agent had to adapt by selecting the
appropriate skill to minimize collisions and coordinate effectively. Similarly, in Coordination Ring,
humans coordinated either clockwise or counter-clockwise, requiring agent adaptation to match the
chosen pattern. Figure 4 visualizes skill usage over entire trajectories for both HiPT and PASD.
PASD demonstrates distinct and stable skill activation corresponding to different human behaviors,
producing sequences of atomic actions aligned with intended behavior patterns. In contrast, HiPT
switches skills infrequently, often after completing entire tasks, indicating skill collapse or shortcut
learning, as it fails to capture behavior-specific action patterns. Full trajectory frames and animated
visualizations are available in the GitHub repository 1, illustrating how PASD adaptively selects
skills to accommodate diverse human strategies throughout the episode. These results highlight
PASD’s ability to disentangle skills across behavioral modes, enhancing human-AI coordination.
Quantitative analysis of skill variability and adaptation across partners is provided in Appendix C

6 CONCLUSION

This work presents PASD, a DHRL approach that introduces an intrinsic reward designed to enable
effective human-AI coordination. The reward leverages a contrastive objective that encourages skill
representations to be consistent across similar partners while remaining discriminative across diverse
partner strategies. By capturing patterns shaped by partner behaviors, PASD promotes behavioral
consistency and robustness, naturally mitigating shortcut learning that can arise from spurious in-
formation in the state space. Our experiments in Overcooked-AI demonstrate that PASD learns
transferable skills that generalize across a wide range of partners, providing a foundation for more
adaptive and efficient collaborative agents.

1 https://anonymous.4open.science/r/pasd-22495/
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A PASD – ROLLOUT AND POLICY UPDATE PROCEDURES

Algorithm 1 PASD — Rollout and Intrinsic Reward Computation

1: Input: Partner population Dp, high-level policy πhi(z|s), low-level policy πlo(a|s, z)
2: Parameters: Intrinsic reward weight λ, rollout horizon T , skill segment length L
3: Initialize empty rollout buffers Bhi,Blo
4: for each parallel rollout k = 1, . . . ,K do
5: Sample partner policy πp ∼ Dp

6: Reset environment s0 ∼ ρ0
7: Initialize t← 0
8: while t < T do
9: Sample skill zt ∼ πhi(z|st)

10: repeat
11: Sample low-level action at ∼ πlo(a|st, zt)
12: Sample partner action apt ∼ πp(a|st)
13: Step environment: st+1, rt ← EnvStep(st, at, a

p
t )

14: Store (st, zt, at, rt) in low-level buffer Blo
15: Sample termination bt ∼ β(zt, st+1)
16: t← t+ 1
17: until termination bt or t ≥ T
18: Compute high-level segment reward RZ(stk , zt) as sum of extrinsic rewards
19: Store (stk , zt, R

Z) in high-level buffer Bhi
20: end while
21: end for
22: Construct positive pairs Pz and negative pairs Nz from Bhi for each skill z
23: Compute contrastive intrinsic rewards rint(s) using InfoNCE (Eq. 13)
24: Combine intrinsic and extrinsic rewards using Equations : (14, 15 and 16)
25: Output: High-level buffer Bhi, low-level buffer Blo with combined rewards

Algorithm 2 PASD: Hierarchical Policy Update (High-level, Low-level, Termination)

1: Input: High-level buffer Bhi, low-level buffer Blo, high-level policy πhi, low-level policy πlo,
termination policy β

2: Parameters: PPO clipping ϵ, discount γ, GAE λGAE , learning rate α
3: for each gradient update iteration do
4: Compute high-level advantages Âh

t from Bhi using GAE
5: Compute low-level advantages Âl

t from Blo using GAE
6: Compute termination advantages Âβ

t from Bhi or Blo
7: Compute PPO ratio rht (θ) =

πhi,θ(zt|st)
πhi,θold (zt|st)

8: Compute clipped PPO loss with entropy: Lh = −E
[
min(rht Â

h
t , clip(rht , 1− ϵ, 1 + ϵ)Âh

t )
]

9: Compute PPO ratio rlt(θ) =
πlo,θ(at|st,zt)
πlo,θold (at|st,zt)

10: Compute clipped PPO loss with entropy: Ll = −E
[
min(rltÂ

l
t, clip(rlt, 1− ϵ, 1 + ϵ)Âl

t)
]

11: Compute PPO ratio rβt (θ) =
βθ(bt|st,zt)
βθold (bt|st,zt)

12: Compute clipped PPO loss with entropy: Lβ = −E
[
min(rβt Â

β
t , clip(rβt , 1− ϵ, 1 + ϵ)Âβ

t )
]

13: Update parameters θ of πhi, πlo, β using Lh + Ll + Lβ

14: end for
15: Return: Updated policies πhi, πlo, β
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B LAYOUT CHALLENGES AND THE NEED FOR ADAPTIVE SKILL LEARNING

Each Overcooked-AI layout presents unique coordination challenges requiring agents to adapt to
diverse partners with varying skill levels and play styles. In Cramped Room, collisions are fre-
quent due to limited space, necessitating adaptable turn-taking and collision avoidance. Asymmetric
Advantages features partners specializing in different roles, requiring flexible skill activation for
complementary behavior. Coordination Ring enforces a looped workflow, demanding alignment
with partners’ directional preferences. In Counter Circuit, interactions occur via counters, mak-
ing timing and item exchange strategies critical. Forced Coordination imposes physical separation,
emphasizing sequenced cooperation and dynamic routines.

In addition to the environment reward of +20 for each successful soup delivery, we incorporate
shaped rewards to facilitate effective coordination with diverse partners. Picking up or placing an
onion into a pot yields a small positive reward of +3, while a penalty of −20 is applied when the
partner delivers a soup. These rewards are used in all layouts except Forced Coordination, where
strict role asymmetry naturally enforces task specialization. By providing intermediate feedback,
shaped rewards guide the agent to engage in complementary sub-tasks and adapt its behavior to
align with the actions and strategies of different partners, promoting robust collaboration across all
layouts.

C ANALYSIS OF SKILL VARIABILITY AND ADAPTATION ACROSS PARTNERS

We analyze the coordination behavior of PASD and HIPT by quantifying skill usage in terms of
mean skill switches and mean skill entropy across partners (Figure 5). The number of skill switches
captures how frequently an agent changes its skill during an episode, while the entropy measures
the variability in skill selection. Higher switch counts indicate dynamic adaptation to partner ac-
tions, whereas higher entropy reflects diverse skill usage. Across these metrics, PASD consistently
outperforms HIPT. In the first three layouts, skill switches are relatively infrequent, indicating less
heterogeneity in the respective policy pool. The last two layouts show more frequent switches,
reflecting the increased diversity in the partner policy pool, which requires PASD to adapt more
dynamically. Figure 5b shows that entropy remains high across layouts, indicating that PASD ef-
fectively utilizes the full range of available skills rather than collapsing to a few, ensuring that each
skill contributes meaningfully to coordination. In contrast, HIPT demonstrates lower entropy across
layouts, indicating that its skill usage is more collapsed and it relies on a smaller subset of available
skills rather than leveraging the full skill set.
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Figure 5: Mean skill switches and mean skill entropy across evaluation population pool for PASD
and HIPT across different layouts.

D IMPLEMENTATION DETAILS

We use consistent training settings across all layouts for the PPO objective. Specifically, the entropy
loss coefficient is set to 0.01 for both high- and low-level policies and linearly decays to zero over
the course of training. The value function coefficient is fixed at 0.5, and the PPO clipping coefficient
is set to 0.05. A complete summary of general hyperparameters is provided in Table 4.
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Certain training parameters, such as the initial learning rate and decay schedule, are tailored to each
layout to account for differing coordination challenges. Table 5 summarizes these layout-specific
settings.

Table 4: Hyperparameters applied across all layouts.

Hyperparameter Value
Entropy coefficient 0.01→ 0 (linear decay)
Value function coefficient 0.5
Clipping coefficient 0.05
Optimizer Adam
Discount factor γ 0.99
GAE parameter 0.98
Batch size 64 per environment
Parallel environments 30

Table 5: Layout-specific training parameters. The learning rate decays linearly from the initial value
to the initial value divided by the decay ratio over training.

Layout Initial Learning Rate Decay Ratio

Cramped Room 1.0× 10−3 3
Asymmetric Advantages 1.0× 10−3 3
Coordination Ring 6.0× 10−4 1.5
Forced Coordination 8.0× 10−4 2
Counter Circuit 8.0× 10−4 3
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