
A Single-Loop Gradient Algorithm for Pessimistic
Bilevel Optimization via Smooth Approximation

Qichao Cao1

caoqc2024@mail.sustech.edu.cn
Shangzhi Zeng2,1

zengsz@sustech.edu.cn

Jin Zhang 1,2,3,∗

zhangj9@sustech.edu.cn

Abstract

Bilevel optimization has garnered significant attention in the machine learning
community recently, particularly regarding the development of efficient numer-
ical methods. While substantial progress has been made in developing efficient
algorithms for optimistic bilevel optimization, the study of methods for solving
Pessimistic Bilevel Optimization (PBO) remains relatively less explored, especially
the design of fully first-order, single-loop gradient-based algorithms. This paper
aims to bridge this research gap. We first propose a novel smooth approximation
to the PBO problem, using penalization and regularization techniques. Building
upon this approximation, we then propose SiPBA (Single-loop Pessimistic Bilevel
Algorithm), a new gradient-based method specifically designed for PBO which
avoids second-order derivative information or inner-loop iterations for subproblem
solving. We provide theoretical validation for the proposed smooth approximation
scheme and establish theoretical convergence for the algorithm SiPBA. Numeri-
cal experiments on synthetic examples and practical applications demonstrate the
effectiveness and efficiency of SiPBA.

1 Introduction

Bilevel optimization constitutes a hierarchical optimization problem formulated as follows:

min
x∈X

F (x, y) s.t. y ∈ S(x) := argmin
y′∈Y

f(x, y′),

where x ∈ Rn and y ∈ Rm represent the upper-level and lower-level decision variables, respectively,
and X ⊆ Rn and Y ⊆ Rm are closed convex sets. The functions F : Rn × Rm → R and
f : Rn × Rm → R are the upper-level and lower-level objective functions, respectively. Bilevel
optimization naturally models non-cooperative game between two players, often referred to as a
Stackelberg game [66]. When the lower-level problem in bilevel optimization admits multiple optimal
solutions for a given x, the corresponding decision variable y in the upper-level objective becomes
ambiguous. To resolve this, bilevel optimization is commonly formulated in two distinct settings:
Optimistic Bilevel Optimization (OBO) and Pessimistic Bilevel Optimization (PBO).

1Department of Mathematics, Southern University of Science and Technology, Shenzhen, China.
2National Center for Applied Mathematics Shenzhen, Southern University of Science and Technology,

Shenzhen, China.
3Detection Institute for Advanced Technology Longhua-Shenzhen (DIATLHSZ), Shenzhen, China.
*Corresponding Author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

In the OBO setting, it is assumed that the lower-level selects a solution y ∈ S(x) that is most
favorable to the upper-level’s objective F . The OBO formulation is thus:

min
x∈X

min
y∈Rm

F (x, y) s.t. y ∈ S(x),

Conversely, the PBO setting considers a cautious or adversarial scenario where the lower-level is
assumed to choose a solution y ∈ S(x) that is least favorable to the upper-level. The PBO formulation
is:

min
x∈X

max
y∈Rm

F (x, y) s.t. y ∈ S(x),

Therefore, OBO models scenarios predicated on cooperative or aligned lower-level responses, whereas
PBO is essential when robustness against worst-case outcomes, often encountered under uncertainty
or in adversarial contexts, is required.

In recent years, bilevel optimization has garnered substantial interest within the machine learning
community, finding applications in areas such as hyperparameter optimization [25], adversarial
learning [72], reinforcement learning [75], and meta-learning [28], among others, where first-order
gradient-based methods are preferred for their efficiency and scalability[15, 41, 63].

Much of the existing bilevel research focuses on the OBO case, for which numerous fully first-
order gradient-based algorithms suitable for large-scale machine learning tasks have been developed
[38, 42, 45, 61], often by reformulating the problem using Karush-Kuhn-Tucker (KKT) conditions or
through value-function-based constraints. While OBO benefits from a well-established algorithmic
toolkit, PBO remains comparatively underexplored from an algorithmic standpoint. PBO offers a
robust framework for leaders concerned with worst-case follower responses and a growing body of
work has explored the potential of PBO in various machine learning applications such as adversarial
learning [16, 13], contextual optimization [17, 36] and hyperparameter optimization [64]. Outside the
machine learning domain, PBO has found applications in many other practical scenarios, including
but not limited to demand response management[37], rank pricing and second-best toll pricing [18, 9],
production-distribution planning [74], and gene knockout model[71]. Yet, the inherent max-structure
at the upper level of PBO creates a more complex, three-level-like structure (min-max-min), making
the direct application of gradient-based techniques developed for OBO challenging. Although several
PBO single-level reformulations have been proposed [67, 71, 11] , their intricate structures continue
to pose difficulties for the development of fully first-order gradient-based solution methods. Recently,
[31] proposed AdaProx, a gradient-based method for PBO. This AdaProx method employs a double-
loop procedure and requires second-order derivative information. This motivates our central research
question:

Can we design a fully first-order single-loop gradient-based algorithm for PBO?

This paper demonstrates that the answer is affirmative. We approach PBO by reformulating it as the
minimization of a value function:

min
x∈X

ϕ(x), where ϕ(x) := max
y∈Rm

{F (x, y) s.t. y ∈ S(x)} . (1)

As indicated by the formulation in (1), the PBO can be solved by minimizing the function ϕ(x).
However, ϕ(x) is the value function of a maximization problem whose feasible region depends on
the solution set of another optimization problem. Consequently, ϕ(x) is generally non-smooth [32],
and evaluating its value and gradient (or subgradient) poses significant computational challenges.
The non-smoothness of ϕ(x) constitutes a primary challenge in solving PBO, rendering the direct
minimization of ϕ(x) difficult.

To surmount the challenge posed by the non-smoothness of ϕ(x), we introduce a smooth approxi-
mation of ϕ(x) by employing penalization and regularization techniques. This transforms the PBO
into a tractable, smooth optimization problem, enabling the application of efficient gradient-based
methods. However, calculating the gradient of this smooth approximation function requires solving an
associated minimax subproblem to find its saddle point, which can be computationally demanding and
complicate the implementation of gradient-based methods. To address this complexity, we propose
a one-step gradient ascent-descent update strategy to obtain an inexact saddle point solution. This
inexact solution is then used to construct an inexact gradient for the minimization of the smoothed
objective. Through this approach, we propose SiPBA (Single-loop Pessimistic Bilevel Algorithm), a
novel fully first-order single-loop gradient-based algorithm designed to solve PBO problem (1).

2

1.1 Contribution

This paper presents the following key contributions to the study of PBO problem:

New Smooth Approximation for PBO: We introduce a novel smooth approximation for PBO. This
is achieved by constructing a continuously differentiable surrogate for the potentially non-smooth
value function ϕ(x), using penalization and regularization techniques. Based on this, we formulate
a smooth approximation problem corresponding to the original PBO. The validity of this smooth
approximation is rigorously established by demonstrating the asymptotic convergence of the solutions
of the smoothed problem to those of the original PBO. These results are detailed in Section 2.

Single-Loop Algorithm (SiPBA) and Theoretical Guarantees: Building upon the proposed smooth
approximation, we develop SiPBA (Single-loop Pessimistic Bilevel Algorithm). SiPBA is a gradient-
based algorithm designed for solving PBO problems, which avoids the computation of second-order
derivatives and eliminates the need for iterative inner-loop procedures to solve subproblems (Section
3). We provide a rigorous convergence analysis of SiPBA in Section 4. This analysis includes the
derivation of non-asymptotic convergence rates for relevant error metrics and establishes guarantees
for achieving a relaxed stationarity condition for the iterates generated by the algorithm.

Empirical Validation: The practical effectiveness and computational efficiency of the proposed
SiPBA algorithm are validated through numerical experiments, presented in Section 5. We evaluate
SiPBA across synthetic problems, email spam classification, and hyper-representation learning. The
results provide empirical evidence supporting the competitive performance of SiPBA.

1.2 Related work

Optimistic Bilevel Optimization: OBO has been extensively studied, with surveys detailing its
theory, algorithms, and applications [19, 22, 23]. A common approach for solving OBO is to reduce
it to a single-level problem, using Karush-Kuhn-Tucker (KKT) conditions, leading to Mathematical
Programs with Complementarity Constraints (MPCC) [4, 51], or through value-function-based
inequality constraints [70, 57]. Approximating the lower-level solution with a finite trajectory is
another strategy [53, 26]. These approaches have yielded scalable and efficient algorithms suitable
for large-scale machine learning tasks [58, 27, 48, 46, 44, 62, 33, 7, 49, 35, 61, 38, 42, 50, 39].
However, the max-structure at the upper level of PBO creates a more complex, three-level-like
structure (min-max-min), hindering the direct application of OBO algorithms to PBO.

Pessimistic Bilevel Optimization: PBO has been surveyed in [43, 23]. Theoretical studies include
[1], which investigates sufficient conditions for the existence of optimal solutions, and [47], which
studies properties of approximate solutions. Optimality conditions for PBO have been explored,
including KKT-type conditions for smooth and non-smooth cases [20, 21]. [8] studies the relationship
between PBO and its MPCC reformulation. For PBO algorithms, [2, 73] propose penalty methods
for solving weak linear PBO problems. [67] introduces a semi-infinite programming reformulation
of PBO. [40] reformulates PBO as an OBO problem with a two-follower Nash game, solving it
as an MPCC. [71] transforms PBO into a minimax problem with coupled constraints, proposing
methods for the linear case. More recently, [11, 12] explores relaxation methods for solving PBO’s
KKT conditions. [31] combines the lower-level value function with the KKT conditions of the
upper-level max problem, resulting in a constrained minimization problem solved by a gradient-
based method. Several heuristic algorithms have also been proposed, though without convergence
guarantees [5, 3]. Recently, gradient-based algorithms for minimax bilevel optimization have been
developed [30, 34, 68]. However, these problems differ from PBO in that their max structure is on
the upper-level variable, not the lower-level variable, making these algorithms inapplicable to PBO.
To our knowledge, fully first-order, single-loop gradient-based algorithms for solving PBO remain
limited.

2 Smooth approximation of PBO

Throughout this paper, we make the following standing assumptions:

Assumption 1 The upper-level objective function F (x, y) is continuously differentiable, and its
gradient ∇F (x, y) is Lipschitz continuous on X × Y . For any fixed x ∈ X , F (x, y) is µ-strongly
concave with respect to y on Y for some µ > 0.

3

Assumption 2 The lower-level objective function f(x, y) is continuously differentiable, and and its
gradient ∇f(x, y) is Lipschitz continuous on X × Y . For any fixed x ∈ X , f(x, y) is convex with
respect to y on Y . Furthermore, S(x) is nonempty for any x ∈ X . For any bounded set B ⊆ X ,
there exists a bounded set D such that S(x) ∩D ̸= ∅ for every x ∈ B.

In this section, we introduce a smooth approximation for ϕ(x), leading to a smooth approximation of
the PBO problem. All proofs for the results presented in this section are provided in Appendix B.

2.1 Smooth approximation of ϕ(x)

To construct a smooth approximation of ϕ(x), we first consider an equivalent reformulation of ϕ(x)
as the value function of a constrained minimax problem:

ϕ(x) = min
z∈Y

max
y∈Y

{F (x, y) s.t. f(x, y) ≤ f(x, z)} . (2)

This reformulation was explored in [71] as an application of the value function approach for designing
numerical methods for PBO problem. The equality in (2) is justified by [71, Lemmas 1, 2]; for
completeness, a proof is provided in Appendix B.1.

Next, we use this constrained minimax formulation to develop a smooth approximation of ϕ(x). To
address the nonsmoothness introduced by the constraint in (2), we consider a penalized approximation:

min
z∈Y

max
y∈Y

F (x, y)− ρ(f(x, y)− f(x, z)),

where ρ > 0 is a penalty parameter. Under the stated assumptions, this minimax problem is convex
in z and concave in y, making it computationally tractable. However, the potential non-uniqueness
of the optimal z, can result in the value function of this penalized problem being nonsmooth with
respect to x. To ensure smoothness and well-posedness, we introduce a regularization term for z and
a coupling term ⟨y, z⟩, leading to the following regularized objective function:

ψρ,σ(x, y, z) := F (x, y)− ρ(f(x, y)− f(x, z)) +
σ

2
∥z∥2 − σ⟨y, z⟩, (3)

where σ > 0 is a regularization parameter. This function ψρ,σ(x, y, z) is designed to be strongly
convex in z and strongly concave in y. Based on this, we propose the approximation for ϕ(x) as:

ϕρ,σ(x) := min
z∈Y

max
y∈Y

ψρ,σ(x, y, z). (4)

The strong convexity-concavity of ψρ,σ ensures that ϕρ,σ(x) is well defined for any x ∈
X . Furthermore, it guarantees the existence and uniqueness of a saddle point, denoted by
(y∗ρ,σ(x), z

∗
ρ,σ(x)), and allows the interchange of minimization and maximization operators, i.e.,

ϕρ,σ(x) = minz∈Y maxy∈Y ψρ,σ(x, y, z) = maxy∈Y minz∈Y ψρ,σ(x, y, z).

It is important to highlight the role of the coupling term ⟨y, z⟩ in (3), introduced alongside the
regularization term σ

2 ∥z∥
2. This coupling term is crucial for establishing Lemma 2.2, which is the

foundation of the asymptotic convergence of the proposed approximation ϕρ,σ(x) to ϕ(x), and of the
saddle point (y∗ρ,σ(x), z

∗
ρ,σ(x)) as established in Theorems 2.5 and 2.6, respectively.

We now establish a key smoothness property of ϕρ,σ(x): its differentiability, and provide an explicit
formula for its gradient.

Theorem 2.1 Let ρ, σ > 0 be given constants. Then, for any x ∈ X , ϕρ,σ(x) is differentiable. Its
gradient is given by:

∇ϕρ,σ(x) = ∇xF (x, y
∗
ρ,σ(x))− ρ∇xf(x, y

∗
ρ,σ(x)) + ρ∇xf(x, z

∗
ρ,σ(x)), (5)

where (y∗ρ,σ(x), z
∗
ρ,σ(x)) is the unique saddle point for the minimax problem defining ϕρ,σ(x) in (4).

2.2 Asymptotic convergence of the approximation

Using the smooth approximation function ϕρ,σ(x), we formulate the corresponding smoothed opti-
mization problem intended to approximate the original PBO (1):

min
x∈X

ϕρ,σ(x). (6)

4

This subsection validates the use of (6) by establishing the asymptotic convergence properties of
ϕρ,σ(x) to ϕ(x), and, consequently, the convergence of the solutions of (6) to those of (1) as ρ→ ∞
and σ → 0. We begin by establishing a relationship between ϕρ,σ(x) and ϕ(x) in the limit.

Lemma 2.2 Let {ρk} and {σk} be sequences such that ρk → ∞ and σk → 0. Then, for any x ∈ X ,
it holds that:

lim sup
k→∞

ϕρk,σk
(x) ≤ ϕ(x). (7)

Furthermore, considering the optimal values, we have:

lim sup
k→∞

(
inf
x∈X

ϕρk,σk
(x)

)
≤ inf

x∈X
ϕ(x). (8)

Lemma 2.2 provides an upper bound on the limit of the approximate values. Building upon this, we
can demonstrate the convergence of the optimal values under mild conditions.

Proposition 2.3 Let {ρk} and {σk} be sequences such that ρk → ∞ and σk → 0 as k → ∞. If
either X or Y is bounded, then the optimal values converge:

lim
k→∞

(
inf
x∈X

ϕρk,σk
(x)

)
= inf

x∈X
ϕ(x)

Establishing the convergence of optimal solutions (minimizers) requires additional structure related to
the continuity properties of ϕ(x). To this end, we introduce the assumption of lower semi-continuity.

Assumption 3 ϕ(x) is lower semi-continuous (l.s.c.) on X . That is, for any sequence {xk} ⊂ X
such that xk → x̄ ∈ X as k → ∞, it holds that, ϕ(x̄) ≤ lim infk→∞ ϕ(xk).

Lower semi-continuity is equivalent to the closedness of the function’s epigraph and its level sets,
and it guarantees the existence of a minimizer for ϕ(x) over a compact set X (see, e.g., [60, Theorem
1.9]). Sufficient conditions for Assumption 3, such as the inner semi-continuity of the lower-level
solution map S(x), are discussed in Appendix B.5. Under this assumption, we can establish the
following result for epi-convergence.

Lemma 2.4 Assume ϕ(x) is lower semi-continuous on X . Let {ρk} and {σk} be sequences such
that ρk → ∞ and σk → 0 as k → ∞. Then, for any sequence {xk} ⊂ X converging to x̄, we have:

lim inf
k→∞

ϕρk,σk
(xk) ≥ ϕ(x̄). (9)

Conditions (7) (applied with a constant sequence xk = x) and (9) together imply the epi-convergence
of the sequence of functions {ϕρk,σk

} to ϕ on X as k → ∞ (see, e.g., [60, Proposition 7.2]). This
signifies that the epigraph of ϕρk,σk

(x) converges, in the set-theoretic sense, to the epigraph of ϕ(x).
Leveraging this epi-convergence property, and employing results such as [14, Proposition 4.6] or [60,
Theorem 7.31], we can establish the subsequential convergence of minimizers of problem (6).

Theorem 2.5 Assume ϕ(x) is lower semi-continuous on X . Let {ρk} and {σk} be sequences such
that ρk → ∞ and σk → 0 as k → ∞. Let xk ∈ argminx∈Xϕρk,σk

(x). Then, any accumulation
point x̄ of the sequence {xk} is an optimal solution to the original PBO (1), i.e., x̄ ∈ argminx∈Xϕ(x).

In the following, we characterize the asymptotic behavior of the saddle point (y∗ρ,σ(x), z
∗
ρ,σ(x)) as

ρ → ∞ and σ → 0, and show that both components converge to the solution of the maximization
problem that defines the value function ϕ(x) in (1).

Theorem 2.6 Assume ϕ(x) is lower semi-continuous on X . Let {ρk} and {σk} be sequences such
that ρk → ∞ and σk → 0 as k → ∞ and let {xk} be a sequence such that xk ∈ X and xk → x̄ as
k → ∞. Then, we have:

lim
k→∞

y∗ρk,σk
(xk) = lim

k→∞
z∗ρk,σk

(xk) = y∗(x̄), (10)

where y∗(x̄) := argmaxy∈S(x̄) F (x̄, y).

5

3 Single-loop gradient-based algorithm

In this section, we introduce the Single-loop Pessimistic Bilevel Algorithm (SiPBA), a novel single-
loop gradient-based method designed to solve the PBO problem (1). The foundation of our approach
is the smooth approximation problem (6), minx∈X ϕρ,σ(x), developed in the previous section.

Owing to the continuous differentiability of the function ϕρ,σ(x), gradient-based methods can
be employed for solving it. However, as established in Theorem 2.1, the computation of the
gradient ∇ϕρ,σ(x) necessitates the saddle point solution, denoted (y∗ρ,σ(x), z

∗
ρ,σ(x)), of the minimax

subproblem minz∈Y maxy∈Y ψρ,σ(x, y, z). Although this minimax problem is strongly convex in z
and strongly concave in y, finding its exact saddle point solution can be computationally expensive.

To mitigate this challenge, we propose constructing an inexact gradient at each iteration k for
updating xk. Specifically, iterates (yk, zk) are introduced to approximate the the exact saddle point
solution to the minimax subproblem. At iteration k, given parameters ρk, σk > 0 and the current
iterate xk, a single projected gradient ascent-descent step is applied to the minimax subproblem
minz∈Y maxy∈Y ψρk,σk

(xk, y, z) to update (yk, zk). The update rules are:

yk+1 = ProjY
(
yk + βkd

k
y

)
, zk+1 = ProjY

(
zk − βkd

k
z

)
,

where βk > 0 is the step size, ProjY represents the Euclidean projection onto to set Y , and the
update directions dky and dkz are defined as:

dky = ∇yF (x
k, yk)− ρk∇yf(x

k, yk)− σkz
k, dkz = ρk∇yf(x

k, zk) + σk(z
k − yk). (11)

Subsequently, the newly updated iterates (yk+1, zk+1) are used in place of the exact saddle point
solution (y∗ρk,σk

(xk), z∗ρk,σk
(xk)) within the formula for ∇ϕρk,σk

(xk) (given in (5)). This yields an
inexact gradient, which serves as the update direction dkx for the iterate xk:

dkx = ∇xF (x
k, yk+1)− ρk

(
∇xf(x

k, yk+1)−∇xf(x
k, zk+1)

)
. (12)

The iterate xk is then updated as:

xk+1 = ProjX
(
xk − αkd

k
x

)
,

where αk > 0 is the step size.

Furthermore, the parameters ρk and σk are updated throughout the iterative process, specifically
by ensuring ρk → ∞ and σk → 0 as k → ∞. The precise update strategies for selecting these
parameters, along with the step sizes αk and βk, are detailed in Theorem 4.2 presented in Section 4.

Based on the preceding components, we now formally present the Single-loop Pessimistic Bilevel
Algorithm (SiPBA) for solving the PBO problem (1) in Algorithm 1. In many practical applications
where projections onto X and Y are computationally efficient, SiPBA offers the significant advantage
of a single-loop structure, making it straightforward to implement.

Algorithm 1: Single-loop Pessimistic Bilevel Algorithm (SiPBA)

Input: Initial points (x0, y0, z0) ∈ X × Y × Y , stepsizes αk, βk > 0, parameters ρk, σk > 0
for k = 0, 1, . . . ,K − 1 do

calculate dky and dkz as in (11) and update

yk+1 = ProjY
(
yk + βkd

k
y

)
, zk+1 = ProjY

(
zk − βkd

k
z

)
;

calculate dkx as in (12) and update

xk+1 = ProjX
(
xk − αkd

k
x

)
.

4 Convergence analysis

This section establishes the convergence properties of the proposed SiPBA. All proofs for the results
presented herein are provided in Appendix C.

Throughout this section, we introduce an additional assumption regarding the boundedness of X .

6

Assumption 4 The set X is compact.

To streamline the notation in this section, given the sequences ρk and σk, we adopt the following
shorthand: ϕk(x), ψk(x, y, z), y∗k(x) and z∗k(x) will denote ϕρk,σk

(x), ψρk,σk
(x, y, z), y∗ρk,σk

(x) and
z∗ρk,σk

(x), respectively. Furthermore, let u := (y, z), uk := (yk, zk) and u∗k(x) = (y∗k(x), z
∗
k(x)).

Let LF and Lf denote the Lipschitz constants of ∇F (x, y) and ∇f(x, y) on X × Y , respectively.

To facilitate the convergence analysis of SiPBA, we introduce a merit function Vk incorporating
dynamic positive coefficients ak > 0 and bk > 0:

Vk = ak(ϕk(x
k)− ϕ) + bk∥uk − u∗k(x

k)∥2, (13)

where ϕ represents a uniform lower bound for ϕk(xk), such that ϕk(xk) ≥ ϕ for all k. The existence
of such a lower bound is formally established in Lemma C.8 in the Appendix, under the condition
that ϕ(x) is bounded below on X . Consequently, as ak > 0, bk > 0, ϕk(xk) ≥ ϕ, and the squared
norm term is inherently nonnegative, Vk is always nonnegative.

Through a careful selection of the parameters ρk, σk, step sizes αk, βk, and merit function coefficients
ak, bk, we establish the following descent property for the merit function Vk.

Proposition 4.1 Let {(xk, yk, zk)} be the sequence generated by SiPBA(Algorithm 1) with parame-
ters selected as:

αk = α0k
−s, βk = β0k

−2p−q, σk = σ0k
−q, ρk = ρ0k

p, (14)
with α0, β0, σ0, ρ0, s, p, q > 0. Assume that s > t+ 4p+ 2q, t > 4p+ 4q and p, q < 1. If β0/σ0 is
sufficiently small, then for all sufficiently large k, the following inequality holds:

Vk+1 − Vk ≤ − ak
4αk

∥xk+1 − xk∥2 − 1

4
bkβkσ̄k∥uk − u∗k(x

k)∥2 + ζk, (15)

where Vk is defined in (13) with ak = k−s, bk = k−t, σ̄k = min{σk, µ}, and {ζk} is a summable
sequence, i.e.,

∑∞
k=0 ζk <∞.

Using this descent property of Vk, we establish the following convergence result and derive non-
asymptotic convergence rates for the error terms ∥xk+1 − xk∥/αk and ∥uk − u∗k(x

k)∥.

Theorem 4.2 Let {(xk, yk, zk)} be the sequence generated by SiPBA(Algorithm 1) with parameters
selected as in (14). Suppose that the function ϕ(x) is bounded below on the set X . Assume further
that 0 < s < 1/2, 0 < p, q < 1 and 8p+ 8q ≤ s. If β0/σ0 is sufficiently small, then the following
hold:

min
0<k<K

1

α2
k

∥xk+1 − xk∥2 = O(1/K1−2s), and min
0<k<K

∥uk − u∗k(x
k)∥2 = O(1/K1−6p−7q).

Moreover,
lim
k→∞

∥xk − ProjX
(
xk − αk∇ϕk(xk)

)
∥/αk = 0, and lim

k→∞
∥uk − u∗k(x

k)∥ = 0.

Based on Theorem 4.2, a practical parameter selection strategy for SiPBA is provided in Appendix A.4.
Furthermore, we can establish a modified stationarity result for the iterates xk generated by SiPBA in
terms of the ϵ-subdifferential (cf. [55, Theorem 1.26]).

Corollary 4.3 Assume ϕ(x) is lower semi-continuous on X . Let {(xk, yk, zk)} be the sequence
generated by SiPBA(Algorithm 1) with parameters chosen as specified in Theorem 4.2. Suppose that
the function ϕ(x) is bounded below on the set X . If β0/σ0 is sufficiently small, then for any ϵ > 0
and ϵ̃ > 0, there exists an integer K0 > 0 such that for all k ≥ K0, there exists δk > 0 for which the
following holds:

ϕ(x) + ϵ∥x− xk∥ ≥ ϕ(xk)− ϵ̃, ∀x ∈ Bδk(x
k) ∩X.

5 Numerical experiments

To evaluate the performance of SiPBA, we conducted comprehensive validation through both synthetic
examples and real-world applications. All computational experiments were performed on a server
provisioned with dual Intel Xeon Gold 5218R CPUs (a total of 40 cores/80 threads, with 2.1-4.0
GHz) and an NVIDIA H100 GPU. Detailed information regarding the specific implementation of
algorithms, along with the configurations for each experimental setup, is available in Appendix A.

7

5.1 Synthetic example

To empirically demonstrate the performance of SiPBA, we consider the following synthetic PBO:

min
x∈[0.1,10]n

max
y∈Rn

1

n
∥x− e∥2 − ∥y − e∥2, s.t. y ∈ argmin

y′∈[1
2
√

n
,∞)n

∥∥⟨e, y′⟩ − ∥x∥
∥∥2. (16)

where e denotes the all-ones vector of appropriate dimension. For n ≥ 2, it can be shown that the
unique optimal solution is given by (x∗, y∗) = (e/2, e/(2

√
n)). The performance is assessed by the

relative error, ϵrel = (∥xk − x∗∥2 + ∥yk − y∗∥2)/(∥x0 − x∗∥2 + ∥y0 − y∗∥2). For all experiments
in this subsection, the results are averaged over 10 independent runs, each initialized from a distinct,
randomly generated starting point. The initial point (x0, y0) is generated by sampling each component
of x0 from a uniform distribution U [0.1, 10] and each component of y0 from U [1/(2

√
n), 10].

(a) Convergence curve (b) Time and Iter. v.s. Dimensions

Figure 1: (a): Convergence curves of SiPBA, AdaProx-PD and AdaProx-SG on (16) with n = 100;
(b): Iterations and runtime required for SiPBA on (16) for varying problem dimensions n.

Table 1: Performance comparison of the SiPBA, AdaProx-PD, AdaProx-SG, Scholtes-C, and Scholtes-
D with n = 100.

SiPBA AdaProx-PD AdaProx-SG Scholtes-C Scholtes-D
Min. (ϵrel) 1.22× 10−6 1.79× 10−7 3.80× 10−6 1.12× 10−5 9.60× 10−5

Max. (ϵrel) 1.45× 10−6 1.53× 10−5 1.02× 10−4 0.10 1.06
Valid Runs 10/10 10/10 9/10 1/10 1/10

Ave Time (s) 1.03 87.44 4.07 23.12 23.81

We compare SiPBA against two other gradient-based methods—AdaProx-PD and AdaProx-SG
[31]—as well as two MPCC-based approaches— Compact Scholtes (Scholtes-C) and Detailed
Scholtes (Scholtes-D) relaxation method [12]. SiPBA, AdaProx-PD, and AdaProx-SG are run for
20,000 iterations, while Scholtes-C and Scholtes-D are run for 10 outer iterations (as they converge
within this range). We report the minimum and maximum relative errors, the number of successful
runs achieving the tolerance ϵrel < 10−4 (Valid Runs), and the average runtime to reach this tolerance
for those valid runs (Ave. Time). Figure 1(a) shows the convergence curve of the gradient-based
algorithms and Table 1 summarizes the final performance metrics of all the methods. We further
evaluate SiPBA’s robustness to hyperparameters (stepsizes α0, β0 and update factors p, q, s) and its
scalability by measuring runtime and iterations required to achieve the tolerance, ϵrel < 10−4, across
varying hyperparameters and problem dimensions, with results shown in Table 2 and Figure 1 (b).
All the results indicate the consistent performance and computational efficiency of SiPBA.

Table 2: Ablation analysis for SiPBA on (16) with n = 100.
α0 β0 p q s Time (s)

0.1 0.001 0.001 0.001 0.1 1.0±0.1
1 0.001 0.001 0.001 0.1 0.1±0.0

0.01 0.001 0.001 0.001 0.1 14.5±1.5
0.1 0.01 0.001 0.001 0.1 0.5±0.1
0.1 0.0001 0.001 0.001 0.1 16.4±3.1
0.1 0.001 0.01 0.001 0.1 1.4±0.3

α0 β0 p q s Time (s)
0.1 0.001 0.0001 0.001 0.1 1.0±0.1
0.1 0.001 0.001 0.01 0.1 1.2±0.1
0.1 0.001 0.001 0.0001 0.1 1.1±0.2
0.1 0.001 0.001 0.001 0.3 5.0±0.2
0.1 0.001 0.001 0.001 0.016 0.8±0.1
0.1 0.001 0.01 0.01 0.16 1.9±0.3

5.2 Spam classification

Spam classification is challenging due to adversarial dynamics and poor cross-domain generalization.
We consider the PBO model for spam classification tasks, as proposed by [16]:

min
w∈Rn

max
x̂

l(w, x̂, y) + λ1Reg(w) s.t. x̂ ∈ argmin
x′∈X

l′(w, x′) + λ2∥φ(x′)− φ(x)∥2, (17)

8

where w denotes the classifier parameters, (x, y) represents vectorized training data, l (resp. l′)
corresponds to the classifier (resp. adversarial generator) loss, Reg(·) denotes the regularization term,
and φ(·) characterizes the feature of data.

We conduct a two-part empirical comparison. First, we compare the PBO model (17) trained using
SiPBA (with φ(x) as the top k principal components) to the same model trained using the SQP
method with φ(x) = x, as proposed in [16]. Second, we compare the SiPBA-trained PBO model
against a standard single-level model, minw l(w, x, y) + λ1Reg(w), trained using the scikit-learn
library [59]. We use either hinge loss or cross-entropy for both l and l′, and refer to the resulting
methods as SiPBA-Hinge/CE, SQP-Hinge/CE, and Single-Hinge/CE.

Experiments are conducted using four standard spam datasets: TREC2006 [56], TREC2007 [52],
EnronSpam [54], and LingSpam [6]. The average results over ten independent runs are summarized
in Table 3, which indicate that the PBO model (either trained with SQP or SiPBA) exhibits superior
cross-domain performance compared to the single-level models. Moreover, the SiPBA-trained models
achieve the best overall accuracy and F1 score.
Table 3: Accuracy (Acc) and F1 score (F1) on four spam corpora, training on TREC06, TREC07,
EnronSpam or LingSpam.

Train Set Model Test Set(Acc/F1) Ave(Acc/F1)
TREC06 TREC07 EnronSpam LingSpam

TREC06

SiPBA-Hinge 96.4/94.7 87.3/81.0 70.6/70.2 87.6/92.7 85.5/84.7
SiPBA-CE 94.5/92.5 79.5/73.0 70.9/71.8 87.6/92.8 83.1/82.5
SQP-Hinge 93.1/90.0 89.2/83.2 69.0/66.7 89.0/93.4 85.1/83.3

SQP-CE 93.6/91.3 78.9/72.4 70.7/71.4 87.2/92.6 82.6/81.9
Single-Hinge 95.4/93.1 89.3/82.8 63.9/46.5 75.5/82.5 81.0/76.2

Single-CE 93.8/90.4 88.5/79.6 56.9/24.1 55.1/62.6 73.6/64.2

TREC07

SiPBA-Hinge 68.9/16.8 93.7/89.7 57.0/33.7 50.5/57.6 67.5/49.5
SiPBA-CE 71.7/56.9 98.1/97.2 68.3/68.8 64.6/75.5 75.7/74.6
SQP-Hinge 68.9/17.2 95.3/92.5 55.0/21.0 29.9/28.1 62.3/39.7

SQP-CE 71.3/56.9 97.7/96.6 68.4/69.7 70.1/80.5 76.9/75.9
Single-Hinge 65.4/1.9 97.7/96.4 50.9/0.2 16.6/0.3 57.7/24.7

Single-CE 66.4/3.4 95.7/93.0 51.0/0.8 17.3/1.8 57.6/24.8

EnronSpam

SiPBA-Hinge 75.8/61.8 72.1/28.0 95.9/95.8 59.6/67.4 75.9/63.3
SiPBA-CE 76.3/62.8 74.0/34.4 95.2/95.0 64.0/72.0 77.4/66.1
SQP-Hinge 77.5/61.7 70.5/22.8 96.1/96.0 52.3/59.3 74.1/60.0

SQP-CE 76.0/62.6 73.4/32.9 94.9/94.8 63.0/71.0 76.8/65.3
Single-Hinge 76.8/56.0 69.3/15.0 95.8/95.6 47.2/52.3 72.3/54.7

Single-CE 76.4/55.4 70.0/19.2 95.6/95.3 43.1/46.9 71.3/54.2

LingSpam

SiPBA-Hinge 63.4/59.1 66.2/51.2 71.1/65.4 99.4/99.6 75.0/68.8
SiPBA-CE 71.8/48.5 69.0/27.6 59.1/34.3 91.8/94.8 72.9/51.3
SQP-Hinge 42.5/53.8 45.3/52.0 72.5/65.8 98.2/99.0 64.6/67.7

SQP-CE 72.0/49.5 68.9/26.2 58.9/33.9 91.9/94.8 72.9/51.1
Single-Hinge 37.2/51.9 38.6/50.6 56.7/69.0 95.7/97.5 57.1/67.3

Single-CE 34.5/51.0 34.0/50.1 51.3/66.8 91.4/95.1 52.8/65.8

5.3 Hyper-representation

Hyper-representation[29, 27] aim to learn an effective representation of the input data for lower-level
classifiers, where PBO model was used to handle the potential multiplicity of optimal solutions in the
lower-level problem and robust learn the representation [31]. In this experiment, we further explore
the potential of the PBO model and compare it with optimistic models.

5.3.1 Linear hyper-representation on synthetic data

We begin with a synthetic linear hyper-representation task, which is formulated as:

min
H∈Rn×p

max
w

1

m1
∥XT

valHw − yval∥2, s.t. w ∈ argmin
w′∈Rp

1

m2
∥XT

trainHw
′ − ytrain∥2, (18)

where Xval ∈ Rn×m1 and Xtrain ∈ Rn×m2 are the validation and training feature matrices, and
yval ∈ Rm1 ,ytrain ∈ Rm2 are the corresponding response vectors. The synthetic data is generated as
in [29], with feature matrices Xval,Xtrain,Xtest and ground-truth matrices Hreal and vectors wreal

sampled randomly. The response vectors are formed using the linear model y(·) = X⊤
(·)Hrealwreal,

with Gaussian noise ϵ ∼ N (0, a2) added to both X(·) and y(·) for train and valid data to simulate
noise.

9

To evaluate solver efficiency and formulation effectiveness, we conduct a two-part comparison. First,
we compare the SiPBA algorithm with PBO algorithms AdaProx-PD and AdaProx-SG. Second,
we assess the impact of the bilevel formulation by comparing the pessimistic model (18) (solved
by SiPBA) with its optimistic variant (solved by AID-FP , AID-CG [29] and PZOBO [62]), which
replaces max

w
with min

w
in the upper level. To assess the robustness of each method under varying

levels of noise, we conduct experiments with moderate (a = 0.1) and severe (a = 1) perturbations.
The performance is measured by test loss, averaged over 10 random seeds. Results in Figure 2
demonstrate the stability and efficiency of SiPBA.

Figure 2: Test loss v.s. time in Hyper-representation with varying dimensions and noise levels.

5.3.2 Deep hyper-representation on MNIST and FashionMNIST

To further assess the practical effectiveness of the pessimistic model, we conduct a more complicated
deep hyper-representation experiment on real-world classification tasks. The problem is formulated
as:

min
θ∈Θ

max
w

1

m1
∥f(Xval, θ)w − yval∥2, s.t. w ∈ argmin

w′∈W

1

m2
∥f(Xtrain, θ)w

′ − ytrain∥2, (19)

where f(·, θ) represents a neural network parameterized by θ, and w corresponds to a linear layer.

We adopt the LeNet-5 architecture [62] as the feature extractor f(·, θ) and evaluate performance on
the MNIST and FashionMNIST datasets. Each dataset is randomly split into 50,000 training samples,
10,000 validation samples, and 10,000 test samples, with performance evaluated by test accuracy. We
compare the pessimistic formulation (19), trained with SiPBA, to its optimistic variant (replacing
max
w

with min
w

in the upper level) trained with AID-FP, AID-CG [29], and PZOBO [62]. Mean results
over ten runs are shown in Figure 3, which shows that SiPBA achieves the highest test accuracy.

Figure 3: Hyper-representation on MNIST and FashionMNIST.

6 Conclusions and future work

This paper introduces a novel smooth approximation for PBO, which underpins the development of
SiPBA, an efficient new gradient-based PBO algorithm. SiPBA avoids computationally expensive
second-order derivatives and the need for iterative inner-loop procedures to solve subproblems.

The current study is confined to deterministic PBO problems. However, a significant number
of practical applications feature PBO problems within stochastic settings. Extending the SiPBA
methodology to effectively address these stochastic PBO problems presents a crucial and promising
direction for future research. We hope this research stimulates further algorithmic development for
stochastic PBO.

10

Acknowledgements

Authors listed in alphabetical order. This work was supported by National Key R&D Program of
China (2023YFA1011400), National Natural Science Foundation of China (12222106, 12326605),
Guangdong Basic and Applied Basic Research Foundation (No. 2022B1515020082), the Longhua
District Science and Innovation Commission Project Grants of Shenzhen (No. 20250113G43468522)
and Natural Science Foundation of Shenzhen (No. 20250530150024003).

References
[1] A. Aboussoror and P. Loridan. Existence of solutions to two-level optimization problems

with nonunique lower-level solutions. Journal of Mathematical Analysis and Applications,
254(2):348–357, 2001.

[2] A. Aboussoror and A. Mansouri. Weak linear bilevel programming problems: existence of
solutions via a penalty method. Journal of Mathematical Analysis and Applications, 304(1):399–
408, 2005.

[3] E. Alekseeva, Y. Kochetov, and E.-G. Talbi. A matheuristic for the discrete bilevel problem
with multiple objectives at the lower level. International Transactions in Operational Research,
24(5):959–981, 2017.

[4] G. B. Allende and G. Still. Solving bilevel programs with the KKT-approach. Mathematical
Programming, 138:309–332, 2013.

[5] M. J. Alves and C. H. Antunes. A semivectorial bilevel programming approach to optimize
electricity dynamic time-of-use retail pricing. Computers & Operations Research, 92:130–144,
2018.

[6] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, G. Paliouras, and C. D. Spyropoulos. An
evaluation of naive Bayesian anti-spam filtering. In Workshop on Machine Learning in the New
Information Age, 2000.

[7] M. Arbel and J. Mairal. Amortized implicit differentiation for stochastic bilevel optimization.
In International Conference on Learning Representations, 2022.

[8] D. Aussel and A. Svensson. Is pessimistic bilevel programming a special case of a mathematical
program with complementarity constraints? Journal of Optimization Theory and Applications,
181:504–520, 2019.

[9] X. Ban, S. Lu, M. Ferris, and H. X. Liu. Risk averse second best toll pricing. In Transportation
and Traffic Theory 2009: Golden Jubilee: Papers selected for presentation at ISTTT18, a peer
reviewed series since 1959, pages 197–218. Springer, 2009.

[10] A. Beck. First-order methods in optimization. SIAM, 2017.

[11] I. Benchouk, L. O. Jolaoso, K. Nachi, and A. B. Zemkoho. Relaxation methods for pessimistic
bilevel optimization. arXiv preprint arXiv:2412.11416, 2024.

[12] I. Benchouk, L. O. Jolaoso, K. Nachi, and A. B. Zemkoho. Scholtes relaxation method for
pessimistic bilevel optimization. Set-Valued and Variational Analysis, 33(2):10, 2025.

[13] D. Benfield, S. Coniglio, M. Kunc, P. T. Vuong, and A. Zemkoho. Classification under strategic
adversary manipulation using pessimistic bilevel optimisation. arXiv preprint arXiv:2410.20284,
2024.

[14] J. F. Bonnans and A. Shapiro. Perturbation analysis of optimization problems. Springer, 2013.

[15] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning.
SIAM Review, 60(2):223–311, 2018.

[16] M. Brückner and T. Scheffer. Stackelberg games for adversarial prediction problems. In
International Conference on Knowledge Discovery and Data Mining, 2011.

11

[17] V. Bucarey, S. Calderón, G. Muñoz, and F. Semet. Decision-focused predictions via pessimistic
bilevel optimization: A computational study. In Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, 2024.

[18] H. I. Calvete, C. Galé, A. Hernández, and J. A. Iranzo. A novel approach to pessimistic bilevel
problems. an application to the rank pricing problem with ties. Optimization, pages 1–34, 2024.

[19] B. Colson, P. Marcotte, and G. Savard. An overview of bilevel optimization. Annals of
Operations Research, 153:235–256, 2007.

[20] S. Dempe, B. S. Mordukhovich, and A. B. Zemkoho. Necessary optimality conditions in
pessimistic bilevel programming. Optimization, 63(4):505–533, 2014.

[21] S. Dempe, B. S. Mordukhovich, and A. B. Zemkoho. Two-level value function approach to
non-smooth optimistic and pessimistic bilevel programs. Optimization, 68(2-3):433–455, 2019.

[22] S. Dempe and A. B. Zemkoho. The bilevel programming problem: reformulations, constraint
qualifications and optimality conditions. Mathematical Programming, 138:447–473, 2013.

[23] S. Dempe and A. B. Zemkoho. Bilevel optimization. In Springer Optimization and its Applica-
tions, volume 161. Springer, 2020.

[24] F. Facchinei and J.-S. Pang. Finite-dimensional variational inequalities and complementarity
problems. Springer, 2003.

[25] L. Franceschi, M. Donini, P. Frasconi, and M. Pontil. A bridge between hyperparameter
optimization and learning-to-learn. In Advances in Neural Information Processing Systems,
2017.

[26] L. Franceschi, M. Donini, P. Frasconi, and M. Pontil. Forward and reverse gradient-based
hyperparameter optimization. In International Conference on Machine Learning, 2017.

[27] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil. Bilevel programming for
hyperparameter optimization and meta-learning. In International Conference on Machine
Learning, 2018.

[28] K. Gao and O. Sener. Modeling and optimization trade-off in meta-learning. In Advances in
Neural Information Processing Systems, volume 33, pages 11154–11165, 2020.

[29] R. Grazzi, L. Franceschi, M. Pontil, and S. Salzo. On the iteration complexity of hypergradient
computation. In International Conference on Machine Learning, 2020.

[30] A. Gu, S. Lu, P. Ram, and L. Weng. Nonconvex min-max bilevel optimization for task robust
meta learning. In International Conference on Machine Learning, 2021.

[31] Z. Guan, D. Sow, S. Lin, and Y. Liang. Adaprox: A novel method for bilevel optimization under
pessimistic framework. In Conference on Parsimony and Learning, 2025.

[32] L. Guo, J. J. Ye, and J. Zhang. Sensitivity analysis of the maximal value function with
applications in nonconvex minimax programs. Mathematics of Operations Research, 49(1):536–
556, 2024.

[33] M. Hong, H.-T. Wai, Z. Wang, and Z. Yang. A two-timescale stochastic algorithm framework
for bilevel optimization: Complexity analysis and application to actor-critic. SIAM Journal on
Optimization, 33(1):147–180, 2023.

[34] Q. Hu, B. Wang, and T. Yang. A stochastic momentum method for min-max bilevel optimization.
In Workshop on Optimization for Machine Learning, 2021.

[35] K. Ji, J. Yang, and Y. Liang. Bilevel optimization: Convergence analysis and enhanced design.
In International Conference on Machine Learning, 2021.

[36] D. Jiménez, B. K. Pagnoncelli, and H. Yaman. Pessimistic bilevel optimization approach for
decision-focused learning. arXiv preprint arXiv:2501.16826, 2025.

12

[37] T. Kis, A. Kovács, and C. Mészáros. On optimistic and pessimistic bilevel optimization models
for demand response management. Energies, 14(8):2095, 2021.

[38] J. Kwon, D. Kwon, S. J. Wright, and R. D. Nowak. A fully first-order method for stochastic
bilevel optimization. In International Conference on Machine Learning, 2023.

[39] J. Kwon, D. Kwon, S. J. Wright, and R. D. Nowak. On penalty methods for nonconvex bilevel
optimization and first-order stochastic approximation. In International Conference on Learning
Representations, 2024.

[40] L. Lampariello, S. Sagratella, and O. Stein. The standard pessimistic bilevel problem. SIAM
Journal on Optimization, 29(2):1634–1656, 2019.

[41] Z. Lin, H. Li, and C. Fang. Accelerated Optimization for Machine Learning. Springer, 2020.

[42] B. Liu, M. Ye, S. J. Wright, P. Stone, and Q. Liu. Bome! bilevel optimization made easy: A
simple first-order approach. In Advances in Neural Information Processing Systems, 2022.

[43] J. Liu, Y. Fan, Z. Chen, and Y. Zheng. Pessimistic bilevel optimization: A survey. International
Journal of Computational Intelligence Systems, 11(1):725–736, 2018.

[44] R. Liu, Y. Liu, S. Zeng, and J. Zhang. Towards gradient-based bilevel optimization with
non-convex followers and beyond. In Advances in Neural Information Processing Systems,
2021.

[45] R. Liu, Z. Liu, W. Yao, S. Zeng, and J. Zhang. Moreau envelope for nonconvex bi-level
optimization: A single-loop and hessian-free solution strategy. In International Conference on
Machine Learning, 2024.

[46] R. Liu, P. Mu, X. Yuan, S. Zeng, and J. Zhang. A generic first-order algorithmic framework for
bi-level programming beyond lower-level singleton. In International Conference on Machine
Learning, 2020.

[47] P. Loridan and J. Morgan. Approximate solutions for two-level optimization problems. In
French-German Conference on Optimization. Springer, 1988.

[48] J. Lorraine, P. Vicol, and D. Duvenaud. Optimizing millions of hyperparameters by implicit
differentiation. In International Conference on Artificial Intelligence and Statistics, 2020.

[49] S. Lu. Slm: A smoothed first-order lagrangian method for structured constrained nonconvex
optimization. In Advances in Neural Information Processing Systems, 2023.

[50] Z. Lu and S. Mei. First-order penalty methods for bilevel optimization. SIAM Journal on
Optimization, 34(2):1937–1969, 2024.

[51] Z.-Q. Luo, J.-S. Pang, and D. Ralph. Mathematical programs with equilibrium constraints.
Cambridge University Press, 1996.

[52] C. Macdonald, I. Ounis, and I. Soboroff. Overview of the TREC 2007 blog track. In Text
REtrieval Conference, 2007.

[53] D. Maclaurin, D. Duvenaud, and R. P. Adams. Gradient-based hyperparameter optimization
through reversible learning. In International conference on Machine Learning, 2015.

[54] V. Metsis, I. Androutsopoulos, and G. Paliouras. Spam filtering with naive Bayes-which naive
Bayes? In CEAS, volume 17, pages 28–69. Mountain View, CA, 2006.

[55] B. S. Mordukhovich. Variational Analysis and Applications. Springer, 2018.

[56] I. Ounis, C. Macdonald, and I. Soboroff. Overview of the TREC 2006 blog track. In Text
REtrieval Conference, 2006.

[57] J. V. Outrata. On the numerical solution of a class of stackelberg problems. Zeitschrift für
Operations Research, 34(4):255–277, 1990.

13

[58] F. Pedregosa. Hyperparameter optimization with approximate gradient. In International
Conference on Machine Learning, 2016.

[59] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, and V. Dubourg. Scikit-learn: Machine learning in python. the
Journal of Machine Learning Research, 12:2825–2830, 2011.

[60] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis, volume 317. Springer, 2009.

[61] H. Shen and T. Chen. On penalty-based bilevel gradient descent method. In International
Conference on Machine Learning, 2023.

[62] D. Sow, K. Ji, and Y. Liang. On the convergence theory for hessian-free bilevel algorithms. In
Advances in Neural Information Processing Systems, 2022.

[63] S. Sra, S. Nowozin, and S. J. Wright. Optimization for Machine Learning. MIT Press, 2011.

[64] M. A. Ustun, L. Xu, B. Zeng, and X. Qian. Hyperparameter tuning through pessimistic bilevel
optimization. arXiv preprint arXiv:2412.03666, 2024.

[65] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, et al. Scipy 1.0: fundamental algorithms for scientific
computing in python. Nature methods, 17(3):261–272, 2020.

[66] H. von. Stackelberg. The Theory of the Market Economy. Oxford University Press, 1952.

[67] W. Wiesemann, A. Tsoukalas, P.-M. Kleniati, and B. Rustem. Pessimistic bilevel optimization.
SIAM Journal on Optimization, 23(1):353–380, 2013.

[68] Y. Yang, Z. Si, S. Lyu, and K. Ji. First-order minimax bilevel optimization. In Advances in
Neural Information Processing Systems, 2024.

[69] W. Yao, C. Yu, S. Zeng, and J. Zhang. Constrained bi-level optimization: Proximal lagrangian
value function approach and hessian-free algorithm. In International Conference on Learning
Representations, 2024.

[70] J. J. Ye and D. L. Zhu. Optimality conditions for bilevel programming problems. Optimization,
33(1):9–27, 1995.

[71] B. Zeng. A practical scheme to compute the pessimistic bilevel optimization problem. INFORMS
Journal on Computing, 32(4):1128–1142, 2020.

[72] Y. Zhang, G. Zhang, P. Khanduri, M. Hong, S. Chang, and S. Liu. Revisiting and advancing
fast adversarial training through the lens of bi-level optimization. In International Conference
on Machine Learning, 2022.

[73] Y. Zheng, Z. Wan, K. Sun, and T. Zhang. An exact penalty method for weak linear bilevel
programming problem. Journal of Applied Mathematics and Computing, 42(1):41–49, 2013.

[74] Y. Zheng, G. Zhang, J. Han, and J. Lu. Pessimistic bilevel optimization model for risk-averse
production-distribution planning. Information Sciences, 372:677–689, 2016.

[75] Z. Zheng and S. Gu. Safe multi-agent reinforcement learning with bilevel optimization in
autonomous driving. IEEE Transactions on Artificial Intelligence, 6(4):829–842, 2025.

14

A Numerical experiment

In this section, we provide the specific description of experiments in Section 5. All experiments
were conducted on CPUs except for the spam classification task, which utilized an NVIDIA H100
GPU. The primary compute node features dual Intel Xeon Gold 5218R processors operating at
2.1GHz base frequency (4.0GHz turbo boost), featuring 40 physical cores (80 logical threads) with a
three-tier cache architecture: 1.3MB L1, 40MB L2, and 55MB L3 shared cache. The NUMA-based
memory architecture partitions resources across two distinct domains, with hardware support for
AVX-512 vector instructions and VT-x virtualization. Security mitigations against Spectre/Meltdown
vulnerabilities were implemented through combined microcode patches and kernel-level protections.

A.1 Synthetic example

For the problem 5.1, we can get the value function by simple calculation:

ϕp(x) =
1

n
∥x− e∥2 − ∥y∗(x)− e∥2, where y∗(x) :=

{
∥x∥e
n , ∥x∥ >

√
n
2 ,

e
2
√
n
, ∥x∥ ≤

√
n
2 ,

(20)

which implies that (x∗, y∗) =
(

e
2 ,

e
2
√
n

)
. Except for the stability tests of the initial step sizes reported

in Table 2, we fix the hyper-parameters as

p = 0.001, q = 0.001, s = 0.1, α0 = 0.1, β0 = 0.001 ρ0 = 10, σ0 = 0.01. (21)

For the implementation of AdaProx-PD, we first fix ξ = 0.001, σ = 0.001, γt = t, θt = γt+1/γt,
2/(Lg + 2α) = 1/τt and set τt = tτ0, ηt = η0/t, K = 100, and N = min{log(1/ϵ), 200},
T = min{1/

√
ϵ, 200}. Then we perform a grid search for

1/η0, 1/τ0, ξ ∈ {0.1, 0.01, 0.001, 0.0001}, σ, β ∈ {0.1, 0.01, 0.001}.

However, none of these yielded satisfactory convergence. We thus fixed parameters across iterations,
set K = 100, T = 200, N = 10, θ = 1, 2/(Lg + 2α) = 1/τ , and conducted a grid search to find a
best parameter to get lowest loss, where the grid is set as follows:

1/η, 1/τ, ξ ∈ {0.1, 0.01, 0.001, 0.0001}, σ, β ∈ {0.1, 0.01, 0.001}.

As a result, we have 1/τ = 0.001, 1/η = 0.001, σ = 0.001, ξ = 0.1 and β = 0.001 for AdaProx-PD.

For the implementation of AdaProx-SG, we fix γt = t, θt = γt+1/γt, 2/(Lg + 2α) = 1/γt and
K = 100, and N = min{log(1/ϵ), 200}, T = min{1/ϵ, 200}. Then we perform a grid search for

1/γ0, ξ ∈ {0.1, 0.01, 0.001, 0.0001}, σ, β ∈ {0.1, 0.01, 0.001}.

As a result, we have 1/γ0 = 0.1, σ = 0.001, ξ = 0.1 and β = 0.1 for AdaProx-SG.

For the implementation of the Compact Scholtes and Detailed Scholtes relaxation method in [12],
we utilize the fsolve solver from the SciPy library [65]. In each outer iteration, the value of tk+1 is
updated as tk+1 = 0.1tk with t0 = 1 and fix ϵ = tk.

A.2 Spam classification

Spam classification remains a critical challenge in machine learning due to adversarial dynamics:
spammers adapt their strategies in response to deployed classifiers, while models trained on specific
datasets often exhibit poor cross-domain generalization. In this paper, we extend the pessimistic
bilevel model for Spam classification in [16]:

min
w∈Rn

max
x̂

l(w, x̂, y) + λ1Reg(w) s.t. x̂ ∈ argmin
x′∈X

l′(w, x′) + λ2∥φ(x′)− φ(x)∥2, (22)

where w denotes the classifier parameters, (x, y) represents vectorized training data, l (resp. l′)
corresponds to the classifier (resp. adversarial generator) loss, Reg(·) denotes the regularization term,
and ϕ(·) characterizes the feature of data. This framework explicitly models spammer adaptations
through adversarial samples x̂, enhancing classifier robustness against evolving threats.

We evaluate our model on four benchmark datasets:

15

• TREC06 (37,822 emails; 24,912 spam / 12,910 ham): https://plg.uwaterloo.ca/
cgi-bin/cgiwrap/gvcormac/foo06

• TREC07 (75,419 emails; 50,199 spam / 25,220 ham): https://plg.uwaterloo.ca/
cgi-bin/cgiwrap/gvcormac/foo07

• EnronSpam (33,715 emails; 16,545 spam / 17,170 ham): https://www.cs.cmu.edu/
~enron/

• LingSpam (2,893 emails; 481 spam / 2,412 ham): https://www.aueb.gr/users/ion/
data/lingspam_public.tar.gz

The text was vectorized using a TfidfVectorizer that removed English stop words, retained only terms
appearing in at least five documents, and limited the feature space to the top 9000 most informative
terms. We represent the resulting vectors as the variable x and train the model in the vectorized space.
To simulate the real world situation, we assume that email authors always aim to have their messages
classified as ham; accordingly, we define l′ as the loss incurred when an email is classified as spam,
using the same formulation (cross-entropy or hinge) as l. The specific definition of l and l′ used in
our experiment is given by

PBO-Hinge :

{
l(w, x, y) = 1

n

∑n
i=1 max{0, 1− w⊤xiyi},

l′(w, x) = 1
n

∑n
i=1 max{0, 1− w⊤xi},

PBO-CE:
{
l(w, x, y) = CrossEntropy(w⊤x, y+1

2),

l′(w, x) = CrossEntropy(w⊤x, 1).

where xi denotes the input data, yi ∈ {−1, 1} denotes the label (-1 for spam
and 1 for non-spam) and CrossEntropy is defined by CrossEntropy(w⊤x, y) =
−
(
y log(σ(w⊤x)) + (1− y) log(1− σ(w⊤x))

)
and σ(z) = 1/(1 + e−z) is the Sigmoid

function. The function ϕ is defined as
φ(x) := xPk,

where the matrix Pk consists of the top k principal components obtained from the principal component
decomposition of the sample matrix. This choice is motivated by the assumption that meaningful
information in emails is primarily captured by the principal components, and modifications made by
spammers generally do not alter this core content. Therefore, we penalize changes along the principal
components to enforce robustness against adversarial modifications. In this experiment, we always
set k = 100, λ1 = 0.01, λ2 = 0.1 for SiPBA.

For the implementation of SiPBA, we fix ρ0 = 10, σ0 = 10−6, p = 0.01, q = 0.01 and s = 0.16,
and we set the hyperparameter as follows:

TREC06:
{
α0 = 0.03, β0 = 10−6, for PBO-Hinge,
α0 = 0.1, β0 = 10−4, for PBO-CE,

TREC07:
{
α0 = 0.1, β0 = 10−2 for PBO-Hinge,
α0 = 0.05, β0 = 10−4, for PBO-CE,

EnronSpam:
{
α0 = 0.02, β0 = 10−7, for PBO-Hinge,
α0 = 0.01, β0 = 10−7, for PBO-CE,

LingSpam:
{
α0 = 0.02, β0 = 5× 10−5 for PBO-Hinge,
α0 = 0.05, β0 = 10−7, for PBO-CE.

For the implementation of SQP-Hinge and SQP-CE, we set φ(x) := x (to ensure the lower level can
be uniquely solved) and λ1 = 0.01, λ2 = 0.001 and solve the problem using the trust-constr method
from the scipy.optimize solver [65].

For the implementation of Single-Hinge and Single-CE, we use SVC and Logistic Regression from
scikit-learn [59] with default setting and max_iter = 10000.

A.3 Hyper-representation

In the linear hyper-representation on synthetic data, we follow the data generation procedure of
[62]. Specifically, we generate the ground-truth matrix Hreal ∈ Rp×d, the vector wreal ∈ Rd, and

16

https://plg.uwaterloo.ca/cgi-bin/cgiwrap/gvcormac/foo06
https://plg.uwaterloo.ca/cgi-bin/cgiwrap/gvcormac/foo06
https://plg.uwaterloo.ca/cgi-bin/cgiwrap/gvcormac/foo07
https://plg.uwaterloo.ca/cgi-bin/cgiwrap/gvcormac/foo07
https://www.cs.cmu.edu/~enron/
https://www.cs.cmu.edu/~enron/
https://www.aueb.gr/users/ion/data/lingspam_public.tar.gz
https://www.aueb.gr/users/ion/data/lingspam_public.tar.gz

the inputs Xtrain, Xval, Xtest by sampling each entry independently from the standard normal
distribution N (0, 1). We then generate the train, valid and test data by y(·) = X⊤

(·)H w. Finally, we
add ϵ ∼ N (0, a2) with a = 0.1 and a = 1 to Xval,Xtrain and yval,ytrain to simulate the noise
condition. The parameters of the algorithms are initialized as

• For SiPBA, we set p = 0.01, q = 0.01, s = 0.16, ρ0 = 10, σ0 = 10−4. And the stepsize is
set as α0 = 5 × 10−4, β0 = 5 × 10−4 for m = 500, a = 0.1 and α0 = 10−4, β0 = 10−4

for the remaining senarios.
• For AdaProx-PD, we set K = 100, T = 20, N = 10, θ = 1, 2/(Lg + 2α) = 1/τ and
σ = 0.1, ξ = 0.001 and β = 0.001. And the stepsize is setted as τ = η = 104, 2× 104, 2×
104, 5× 104 for the four senarios in Figure 2.

• For AdaProx-SG, we set K = 100, T = min{20, 1/ϵ}, N = min{10, log(1/ϵ)}, 2/(Lg +
2α) = 1/γ , σ = 0.001, ξ = 0.001, β = 0.001 and γ0 = 104.

• For AID-FP, AID-CG and PZOBO, we keep the setting as presented in https://github.
com/sowmaster/esjacobians/tree/master, except that the inner learning rate is set
as 0.0001 as we found it’s more stable for these algorithms.

For the classification tasks on MNIST and FashionMNIST, we split the dataset into 50,000 training
samples, 10,000 validation samples, and 10,000 test samples. Both the upper and lower levels are
trained using the LeNet architecture, following the setting in [62]. During each training iteration, we
randomly select 256 samples to compute the loss and gradients. The parameters of the algorithms are
initialized as follows:

• For SiPBA, we set p = 0.01, q = 0.01, s = 0.16, ρ0 = 10, α0 = 0.01, β0 = 0.01 and
σ0 = 0.1.

• For PZOBO, we adopt the implementations from https://github.com/sowmaster/
esjacobians/tree/master and set number of inner iterations T = 30 for training on
FashionMNIST to ensure proper convergence.

• For AID-CG, we set the learning rate to lr = 0.001(0.0005) and the number of inner
iterations to T = 10 (50) for training on MNIST (FashionMNIST).

• For AID-FP, we set lr = 0.001 and T = 20(30) for training on MNIST (FashionMNIST) .

A.4 Parameter Selection

The implementation of SiPBA includes seven parameters, namely α0, β0, σ0, ρ0, p, q, s. The parame-
ters s, p, and q collectively govern the fundamental trade-off between value function approximation
accuracy and iterative step size selection. The parameter p controls the growth rate of the penalty
coefficient ρk = ρ0k

p, while q determines the decay rate of the regularization coefficient σk = σ0k
−q .

Larger values of p and q yield faster convergence of the approximate value function ϕρk,σk
(x) to the

true objective. The parameter s regulates the step size decay rate αk = α0k
−s for the primal iterates

xk.

The theoretical requirement s ≥ 8p+ 8q reveals an essential trade-off: choosing larger values for p
and q accelerates the value function approximation but necessitates a larger s, resulting in smaller
step sizes αk that slows down the convergence rate of xk. Conversely, smaller p and q permit more
aggressive step sizes through reduced s, but at the cost of slower convergence of the approximate
objective ϕρk,σk

(x) to the true value function, potentially degrading overall algorithmic performance.

We provide practical guidelines for parameter selection here. Specifically, the update rules are given
by:

αk = α0k
−8p−8q, βk = β0k

−2p−q, ρk = ρ0k
−p, σk = σ0k

−q,

with default settings p = q = 0.01 and ρ0 = 10. Therefore, tuning is only required for the three
scalar parameters: α0, β0, and σ0.

B Proofs for Section 2

This section provides the proofs for the theoretical results established in Section 2.

17

https://github.com/sowmaster/esjacobians/tree/master
https://github.com/sowmaster/esjacobians/tree/master
https://github.com/sowmaster/esjacobians/tree/master
https://github.com/sowmaster/esjacobians/tree/master

B.1 Equivalent minimax reformulation of ϕ(x)

Lemma B.1 Consider the function

ϕ(x) := max
y

{F (x, y) s.t. y ∈ S(x)} ,

where
S(x) := argminy′∈Y f(x, y

′).

Then, for any x ∈ X , we have the following equivalent minimax reformulation:

ϕ(x) = min
z∈Y

max
y∈Y

{F (x, y) s.t. f(x, y) ≤ f(x, z)} .

Proof. Let x ∈ X be an arbitrary point. The assumptions that S(x) is nonempty, and F (x, y) is
µ-strongly concave with respect to y, and using the fact that S(x) is closed, we conclude that there
exists some y∗ ∈ S(x) such that ϕ(x) = F (x, y∗).

For any z ∈ Y , since y∗ ∈ S(x), it follows that

f(x, y∗) ≤ f(x, z).

Therefore, we have

ϕ(x) = F (x, y∗) ≤ max
y∈Y

{F (x, y) s.t. f(x, y) ≤ f(x, z)} .

Taking the minimum over all z ∈ Y , we obtain

ϕ(x) = F (x, y∗) ≤ min
z∈Y

max
y∈Y

{F (x, y) s.t. f(x, y) ≤ f(x, z)} .

Next, we establish the reverse inequality. Consider the specific choice z = y∗, since y∗ ∈ S(x), we
have

max
y∈Y

{F (x, y) s.t. f(x, y) ≤ f(x, y∗)} = max
y∈Y

{F (x, y) s.t. y ∈ S(x)} = ϕ(x).

Thus, we conclude that

min
z∈Y

max
y∈Y

{F (x, y) s.t. f(x, y) ≤ f(x, z)} ≤ ϕ(x).

This completes the proof. □

B.2 Proof for Theorem 2.1

The proof strategy is analogous to that employed in [69, Lemma A.1]. We proceed by first analyzing
an auxiliary function and then leveraging its properties to establish the differentiability of ϕρ,σ(x).

Let us define an auxiliary function h(x, z) as:

h(x, z) := max
y∈Y

ψρ,σ(x, y, z) = −min
y∈Y

−ψρ,σ(x, y, z).

By assumption, ψρ,σ(x, y, z) is continuous differentiable on X × Y × Y , and −ψρ,σ(x, y, z) is
µ-strongly convex with respect to y for any (x, z) ∈ X × Y .

The µ-strongly convexity of −ψρ,σ(x, y, z) with respect to y ensures the uniqueness of the minimizer
of miny∈Y −ψρ,σ(x, y, z) (equivalently, the maximizer of maxy∈Y ψρ,σ(x, y, z)). Let us denote
this unique maximizer as ŷ∗(x, z). Furthermore, it can be shown that −ψρ,σ(x, ·, z) satisfies the
inf-compactness condition as stated in [14, Theorem 4.13] on any point (x̄, z̄) ∈ X × Y . Specifically,
for any (x̄, z̄) ∈ X × Y , there exists a constant c ∈ R, a compact set B ⊂ Rm, and a neighborhood
W of (x̄, z̄) such that the level set {y ∈ Y | − ψρ,σ(x, y, z) ≤ c} is nonempty and contained in B
for all (x, z) ∈W .

Given that ψρ,σ(x, y, z) is continuously differentiable, ŷ∗(x, z) is unique, and the inf-compactness
condition holds, we can apply [14, Theorem 4.13, Remark 4.14]. This theorem implies that h(x, z) is
differentiable on X × Y , and its gradient is given by:

∇h(x, z) = (∇xψρ,σ(x, ŷ
∗(x, z), z),∇zψρ,σ(x, ŷ

∗(x, z), z)) . (23)

18

The strong concavity of ψρ,σ(x, y, z) in y and the continuous differentiability of ψρ,σ imply that
ŷ∗(x, z) is continuous on X × Y . Since ∇xψρ,σ and ∇zψρ,σ are continuous by assumption, and
ŷ∗(x, z) is continuous, it follows from (23) that ∇h(x, z) is continuous on X × Y . Thus, h(x, z) is
continuously differentiable on X × Y .

The function ϕρ,σ(x) can be expressed using h(x, z) as:

ϕρ,σ(x) = min
z∈Y

h(x, z). (24)

We are given that ψρ,σ(x, y, z) is σ-strongly convex with respect to z for any fixed (x, y) ∈ X × Y .
Since h(x, z) := maxy∈Y ψρ,σ(x, y, z), and the maximum of a set of functions preserves strong
convexity (see, e.g., [10, Theorem 2.16]), it can be shown that h(x, z) is σ-strongly convex with
respect to z for any fixed x ∈ X . The σ-strong convexity of h(x, z) with respect to z ensures the
uniqueness of the minimizer z∗ρ,σ(x) = argminz∈Y h(x, z). This strong convexity, combined with
the established continuous differentiability (and thus continuity) of h(x, z), ensures that h(x, z)
satisfies the inf-compactness condition for z for any x ∈ X . Furthermore, z∗ρ,σ(x) is continuous on
X .

We can again apply [14, Theorem 4.13, Remark 4.14] to ϕρ,σ(x) = minz∈Y h(x, z). The conditions
are met: h(x, z) is continuously differentiable (as shown above), and z∗ρ,σ(x) is unique. Therefore,
ϕρ,σ(x) is differentiable on X , and its gradient is given by:

∇ϕρ,σ(x) = ∇xh(x, z
∗) = ∇xψρ,σ(x, ŷ

∗(x, z∗), z∗),

where z∗ denotes z∗ρ,σ(x). Since ∇xψρ,σ(x, y, z) is continuous onX×Y ×Y , ŷ∗(x, z) is continuous
on X × Y and z∗ρ,σ(x) is continuous on X , the composite function ∇ϕρ,σ(x) is continuous on X .
Thus, ϕρ,σ(x) is continuously differentiable.

Additionally, because ψρ,σ(x, y, z) is strongly concave in y and strongly convex in z for any x ∈ X ,
and because minz∈Y maxy∈Y ψρ,σ(x, y, z) = maxy∈Y minz∈Y ψρ,σ(x, y, z) for any x ∈ X , it
follows that ŷ∗(x, z∗) = y∗ρ,σ(x) for any x ∈ X . Thus, the desired conclusion is obtained.

B.3 Proof for Lemma 2.2

Before presenting the proof for Lemma 2.2, we first establish some auxiliary results. Throughout this
subsection, given sequences {ρk} and {σk}, we will use the shorthand notations ϕk(x), ψk(x, y, z),
y∗k(x) and z∗k(x) to denote ϕρk,σk

(x), ψρk,σk
(x, y, z), y∗ρk,σk

(x) and z∗ρk,σk
(x), respectively, for

notational brevity.

First, we establish a uniform boundedness property for the saddle point components y∗k(x) and z∗k(x).

Lemma B.2 Let {ρk} and {σk} be sequences such that ρk → ∞ and σk → 0 as k → ∞. Let
B ⊂ X be a compact set. Then, there exists a constant M > 0 such that for all k and all x ∈ B,

∥y∗k(x)∥ ≤M, and ∥z∗k(x)∥ ≤M,

where (y∗k(x), z
∗
k(x)) is the unique saddle point of the minimax problem

minz∈Y maxy∈Y ψρk,σk
(x, y, z).

Proof. The proof proceeds in two parts, establishing the boundedness of {y∗k(x)} and {z∗k(x)}
separately, both by contradiction.

Suppose, for the sake of contradiction, that {y∗k(x)} is not uniformly bounded. Then there exists a
sequence {xk} ⊂ B such that ∥y∗k(xk)∥ → ∞ as k → ∞.

By Assumption 2, for each xk ∈ B, there exits ŷk, ẑk such that ŷk = ẑk ∈ S(xk) ∩ D, where
D ⊂ Y is a compact set. Thus, the sequences {ŷk} and {ẑk} are uniformly bounded. Since F (x, y)
is continuous differentiable on X × Y and is µ-strongly concave in y for any x ∈ X , and σk → 0,
we have

lim
k→∞

F (xk, y
∗
k(xk)) +

σk
2
∥ẑk∥2 − σk⟨y∗k(xk), ẑk⟩ = −∞. (25)

19

Next, since ẑk ∈ S(xk), we know that f(xk, y∗k(xk)) ≥ f(xk, ẑk). Given ρk > 0, it follows that:

ψk(xk, y
∗
k(xk), ẑk)

= F (xk, y
∗
k(xk))− ρk(f(xk, y

∗
k(xk))− f(xk, ẑk)) +

σk
2
∥ẑk∥2 − σk⟨y∗k(xk), ẑk⟩

≤ F (xk, y
∗
k(xk)) +

σk
2
∥ẑk∥2 − σk⟨y∗k(xk), ẑk⟩.

From (25), we deduce:
lim
k→∞

ψk(xk, y
∗
k(xk), ẑk) = −∞. (26)

By the saddle point property of (y∗k(xk), z
∗
k(xk)):

ψk(xk, y
∗
k(xk), ẑk) ≥ ψk(xk, y

∗
k(xk), z

∗
k(xk)) ≥ ψk(xk, ŷk, z

∗
k(xk)).

Combining this with (26) yields:

lim
k→∞

ψk(xk, ŷk, z
∗
k(xk)) = −∞. (27)

Since ŷk ∈ S(xk), we have f(xk, z∗k(xk)) ≥ f(xk, ŷk). Thus:

ψk(xk, ŷk, z
∗
k(xk)) = F (xk, ŷk)− ρk(f(xk, ŷk)− f(xk, z

∗
k(xk)) +

σk
2
∥z∗k(xk)∥2 − σk⟨ŷk, z∗k(xk)⟩

≥ F (xk, ŷk) +
σk
2
∥z∗k(xk)∥2 − σk⟨ŷk, z∗k(xk)⟩

= F (xk, ŷk) +
σk
2
∥z∗k(xk)− ŷk∥2 −

σk
2
∥ŷk∥2

≥ F (xk, ŷk)−
σk
2
∥ŷk∥2.

Since {xk} and {ŷk} are bounded, and F (x, y) is continuous on X × Y , F (xk, ŷk) − σk

2 ∥ŷk∥2
is bounded. As σk → 0, the term F (xk, ŷk) − σk

2 ∥ŷk∥2 is bounded below. This contradicts (27).
Therefore, our initial assumption was false, and there must exist M > 0 such that ∥y∗k(x)∥ ≤M for
all k and x ∈ B.

Next, we show that there exists M > 0 such that ∥z∗k(x)∥ ≤ M for any k and x ∈ B. Suppose,
for the sake of contradiction, that {z∗k(x)} is not uniformly bounded. Then there exists sequence
{xk} ⊂ B such that ∥z∗k(xk)∥ → ∞ as k → ∞. By Assumption 2, for each xk, there exists
ẑk ∈ S(xk) ∩D for a compact set D, so {ẑk} is bounded.

From the saddle point property, z∗k(xk) minimizes ψk(xk, y
∗
k(xk), z) over z ∈ Y . Thus:

ψk(xk, y
∗
k(xk), z

∗
k(xk)) ≤ ψk(xk, y

∗
k(xk).ẑk)

Expanding this inequality, simplifying and rearranging terms:

ρkf(xk, z
∗
k(xk)) +

σk
2
∥z∗k(xk)− y∗k(xk)∥2 ≤ ρkf(xk, ẑk) +

σk
2
∥ẑk − y∗k(xk)∥2.

Combining the above inequality with the fact that f(xk, z∗k(xk)) ≥ f(xk, ẑk) yields that:

∥z∗k(xk)−y∗k(xk)∥2 ≤ 2ρk
σk

(f(xk, ẑk)− f(xk, z
∗
k(xk)))+∥ẑk−y∗k(xk)∥2 ≤ ∥ẑk−y∗k(xk)∥2. (28)

The right-hand side of (28) is bounded because {ẑk} and {y∗k(xk)} are bounded. However, since
∥z∗k(xk)∥ → ∞ and {y∗k(xk)} is bounded, the left-hand side ∥z∗k(xk) − y∗k(xk)∥2 → ∞. This
presents a contradiction. Thus, our assumption was false, and there exists M > 0 such that for any k
and x ∈ B, ∥z∗k(x)∥ ≤M . □

Next, we demonstrate that accumulation points of {y∗ρk,σk
(x)} belong to the solution set S(x̄) when

xk → x̄.

Lemma B.3 Let {ρk} and {σk} be sequences such that ρk → ∞ and σk → 0 as k → ∞. Then, for
any sequence {xk} ⊂ X such that xk → x̄ ∈ X as k → ∞, we have

lim
k→∞

f(xk, y
∗
k(xk)) ≤ min

y∈Y
f(x̄, y). (29)

Consequently, for any accumulation point ȳ of sequence {y∗k(xk)}, we have ȳ ∈ S(x̄).

20

Proof. Let ŷ be an arbitrary point in S(x̄). From the saddle point property, y∗k(xk) maximizes
ψk(xk, y, z

∗
k(xk)) over y ∈ Y . Thus:

ψk(xk, y
∗
k(xk), z

∗
k(xk)) ≥ ψk(xk, ŷ, z

∗
k(xk)).

Expanding this inequality:

F (xk, y
∗
k(xk))−ρkf(xk, y∗k(xk))−σk⟨y∗k(xk), z∗k(xk)⟩ ≥ F (xk, ŷ)−ρkf(xk, ŷ)−σk⟨ŷ, z∗k(xk)⟩.

Rearranging this inequality to isolate terms involving f , and since ρk > 0, we can divide by ρk:

f(xk, y
∗
k(xk))− f(xk, ŷ) ≤

1

ρk
(F (xk, y

∗
k(xk))− F (xk, ŷ)) +

σk
ρk

∥y∗k(xk)− ŷ∥∥z∗k(xk)∥.

By Lemma B.2, {y∗k(xk)} and {z∗k(xk)} are uniformly bounded. Since F (x, y) is continuous on
X × Y and {xk} converges, F (xk, y∗k(xk)) and F (xk, ŷ) are bounded. Given ρk → ∞ and σk → 0,
the entire right-hand side of the inequality converges to 0 as k → ∞. Therefore, by taking k → ∞ in
the above inequality, and since f(x, y) is continuous on X × Y , we have

lim sup
k→∞

f(xk, y
∗
k(xk)) ≤ lim

k→∞
f(xk, ŷ) = min

y∈Y
f(x̄, y).

This concludes the proof. □

proof of Lemma 2.2. We prove the first statement (i.e., lim sup
k→∞

ϕk(x̄) ≤ ϕ(x̄)) by contradiction.

Suppose there exist x̄ ∈ X and δ > 0 such that

lim sup
k→∞

ϕk(x̄) > ϕ(x̄) + δ.

Then, by properties of lim sup, there exists a subsequence (which we re-index by k for simplicity)
such that

lim
k→∞

ϕk(x̄) > ϕ(x̄) + δ.

Recall that (y∗k(x̄), z
∗
k(x̄)) is the saddle point for the minimax problem minz∈Y maxy∈Y ψk(x̄, y, z).

Thus, ϕk(x̄) = ψk(x̄, y
∗
k(x̄), z

∗
k(x̄)). Expanding ψk, we have:

F (x̄, y∗k(x̄))− ρk(f(x̄, y∗k(x̄))− f(x̄, z∗k(x̄))+
σk
2
∥z∗k(x̄)∥2−σk⟨y∗k(x̄), z∗k(x̄)⟩ ≥ ϕ(x̄)+ δ. (30)

By Lemma B.2, {y∗k(x̄)} is bounded. Thus, we can extract a further subsequence (again re-indexed
by k) such that y∗k(x̄) → ȳ for some ȳ ∈ Y . By Lemma B.3, this implies ȳ ∈ S(x̄).
From the saddle point property, z∗k(x̄) minimizes ψk(x̄, y

∗
k(x̄), z) over z ∈ Y . Therefore,

ψk(x̄, y
∗
k(x̄), z

∗
k(x̄)) ≤ ψk(x̄, y

∗
k(x̄), y

∗
k(x̄)).

Expanding this:

ρkf(x̄, z
∗
k(x̄)) +

σk
2
∥z∗k(x̄)∥2 − σk⟨y∗k(x̄), z∗k(x̄)⟩ ≤ ρkf(x̄, y

∗
k(x̄))−

σk
2
∥y∗k(x̄)∥2.

Rearranging:
ρk (f(x̄, z

∗
k(x̄))− f(x̄, y∗k(x̄))) +

σk
2
∥z∗k(x̄)− y∗k(x̄)∥2 ≤ 0.

Combing this with (30) yields that

F (x̄, y∗k(x̄))−
σk
2
∥y∗k(x̄)∥2 ≥ ϕ(x̄) + δ.

Taking k → ∞ in the above inequality, since F (x, y) is continuous on X × Y , {y∗k(x̄)} is bounded
and σk → 0, we have

F (x̄, ȳ) ≥ ϕ(x̄) + δ.

However, since ȳ ∈ S(x̄), by the definition ϕ(x̄) = maxy∈S(x̄) F (x̄, y), we must have F (x̄, ȳ) ≤
ϕ(x̄). This leads to ϕ(x̄) ≥ F (x̄, ȳ) ≥ ϕ(x̄) + δ. Since δ > 0, this is a contradiction. Therefore, the
initial assumption was false, and we must have

lim sup
k→∞

ϕk(x) ≤ ϕ(x), ∀x ∈ X.

The second conclusion then follows from this result and the Proposition 7.30 in [60]. □

21

B.4 Proof for Proposition 2.3

For any given x ∈ X , Assumption 2 ensures that the set S(x) is nonempty and closed. Combined
with the µ-strong concavity of F (x, y) with respect to y, this guarantees the existence of a unique
maximizer y∗(x) ∈ S(x) such that ϕ(x) = F (x, y∗), i.e., y∗(x) = argmaxy∈S(x) F (x, y).

We first establish a uniform boundedness property for y∗(x) when x is restricted to a compact set.

Lemma B.4 Let B be a compact set in X . Then, there exists a constant M > 0 such that for any
x ∈ B,

∥y∗(x)∥ ≤M,

where y∗(x) = argmaxy∈S(x) F (x, y).

Proof. Suppose, for the sake of contradiction, that such a uniform bound M does not exist. Then
there must exist a sequence {xk} ⊂ B such that ∥y∗(xk)∥ → ∞ as k → ∞. According to
Assumption 2, for each xk, there exists an element yk ∈ S(xk) ∩D, where D is a specified compact
set. Consequently, the sequence {yk} is uniformly bounded.

Because F (x, y) is continuous differentiable on X×Y and is µ-strongly concave in y for any x ∈ X ,
∥y∗(xk)∥ → ∞ leading to:

lim
k→∞

F (xk, y
∗(xk)) = −∞. (31)

By the definition of y∗(xk) as the maximizer of maxy∈S(xk) F (xk, y), and since yk ∈ S(xk) ∩D,
we have:

F (xk, y
∗(xk)) ≥ F (xk, yk).

Given that (xk, y∗(xk)) → −∞ from (31), it must also hold that:
lim
k→∞

F (xk, yk) = −∞.

However, since both {xk} and {yk} are bounded, and F (x, y) is continuous on X × Y , the sequence
{F (xk, yk)} must be bounded below. This contradicts the finding that F (xk, yk) → −∞. Thus, our
initial assumption must be false, and we get the conclusion. □

Next, we establish an inequality relating ϕρ,σ(x) and ϕ(x).

Lemma B.5 Let ρ, σ > 0 be given constants. Then, for any x ∈ X ,

ϕρ,σ(x) ≥ ϕ(x)− σ

2
∥y∗(x)∥2,

where y∗(x) = argmaxy∈S(x) F (x, y).

Proof. For notational brevity within this proof, let y∗ denote y∗(x). Because ψρ,σ(x, y, z) is strongly
concave in y and strongly convex in z, we have:

ϕρ,σ(x) = min
z∈Y

max
y∈Y

ψρ,σ(x, y, z) = max
y∈Y

min
z∈Y

ψρ,σ(x, y, z).

From the max-min formulation, it follows that for any specific choice of y, such as y = y∗,
ϕρ,σ(x) ≥ min

z∈Y
ψρ,σ(x, y

∗, z). (32)

Since
ψρ,σ(x, y

∗, z) = F (x, y∗)− ρf(x, y∗) + ρf(x, z) +
σ

2
∥z∥2 − σ⟨y∗, z⟩,

to find minz∈Y ψρ,σ(x, y
∗, z), we can minimize the terms dependent on z:

argmin
z∈Y

ψρ,σ(x, y
∗, z) = argmin

z∈Y

{
ρf(x, z) +

σ

2
∥z − y∗∥2

}
.

Since y∗ ∈ S(x), it follows that
argmin

z∈Y
ψρ,σ(x, y

∗, z) = {y∗}.

Substituting z = y∗ into ψρ,σ(x, y
∗, z):

min
z∈Y

ψρ,σ(x, y
∗, z) = ψρ,σ(x, y

∗, y∗) = F (x, y∗)− σ

2
∥y∗∥2 = ϕ(x)− σ

2
∥y∗∥2.

Combining this with (32), the conclusion follows. □

22

Now, we are ready to provide the proof for Proposition 2.3.

Proof of Proposition 2.3. For any ϵ > 0 and for each k, by the definition of infimum, there exists an
xk ∈ X such that

ϕρk,σk
(xk) ≤ inf

x∈X
ϕρk,σk

(x) + ϵ. (33)

Applying Lemma B.5 to ϕρk,σk
(xk):

ϕρk,σk
(xk) ≥ ϕ(xk)−

σk
2
∥y∗(xk)∥2 ≥ inf

x∈X
ϕ(x)− σk

2
∥y∗(xk)∥2. (34)

If Y is bounded, we have that sequence {y∗(xk)} is bounded. Alternatively, if X is bounded, Lemma
B.4, establishes that {y∗(xk)} is bounded. Under either condition, since σk → 0 as k → ∞:

lim
k→∞

σk
2
∥y∗(xk)∥2 = 0.

Combining this with (33) and (34):

inf
x∈X

ϕ(x) ≤ lim inf
k→∞

(
inf
x∈X

ϕρk,σk
(x)

)
+ ϵ.

Since ϵ > 0 was arbitrary, we can let ϵ→ 0, yielding:

inf
x∈X

ϕ(x) ≤ lim inf
k→∞

(
inf
x∈X

ϕρk,σk
(x)

)
.

Then the conclusion follows by combining the above inequality with Lemma 2.2. □

B.5 Lower semi-continuity of ϕ(x)

In this part, we demonstrate that the inner semi-continuity of the lower-level solution set mapping
S(x) serves as a sufficient condition for the lower semi-continuity of the value function ϕ(x).

We begin by recalling the relevant definitions.

Definition B.6 A function ϕ(x) : Rn → R ∪ {∞} is lower semi-continuous (l.s.c.) at x̄ if for any
sequence {xk} such that xk → x̄ as k → ∞, it holds that

ϕ(x̄) ≤ lim inf
k→∞

ϕ(xk).

Definition B.7 A set-valued function S(x) : Rn ⇒ Rm is inner semi-continuous at x̄ if S(x̄) ⊆
lim inf
x→x̄

S(x), where lim inf
x→x̄

S(x) := {y | ∀xk → x̄, ∃yk ∈ S(xk), s.t. yk → y}.

Lemma B.8 If S(x) is inner semi-continuous at x̄ ∈ X , then ϕ(x) is lower semi-continuous at x̄.

Proof. Let {xk} be an arbitrary sequence such that xk → x̄ as k → ∞. If ϕ(x̄) = −∞, the
inequality hods trivially. Assume ϕ(x̄) > −∞. For any ϵ > 0, by the definition of supremum, there
exists an element yϵ ∈ S(x̄) such that

F (x̄, yϵ) ≥ ϕ(x̄)− ϵ.

Since S(x) is inner semi-continuous at x̄, there exists a sequence {yk} such that yk ∈ S(xk) for each
k, and

lim
k→∞

yk = yϵ.

Then, by the continuity of F (x, y) and the fact that F (xk, yk) ≤ ϕ(xk), we have:

ϕ(x̄)− ϵ ≤ F (x̄, yϵ) = lim
k→∞

F (xk, yk) ≤ lim inf
k→∞

ϕ(xk). (35)

Since this inequality holds for any arbitrary ϵ > 0, we can let ϵ→ 0 to conclude:

ϕ(x̄) ≤ lim inf
k→∞

ϕ(xk).

□

23

B.6 Proof for Lemma 2.4

Proof of Lemma 2.4. From Lemma B.5, for each k, we have the inequality:

ϕρk,σk
(xk) ≥ ϕ(xk)−

σk
2
∥y∗(xk)∥2, (36)

where y∗(x) = argmaxy∈S(x) F (x, y). Since the sequence {xk} converges to x̄, it is bounded. By
Lemma B.4, the sequence {y∗(xk)} is uniformly bounded. Given that σk → 0 as k → ∞ and
{y∗(xk)} is bounded, it follows that

lim
k→∞

σk
2
∥y∗(xk)∥2 = 0.

Combing with (36), we obtain

lim inf
k→∞

ϕ(xk) ≤ lim inf
k→∞

ϕρk,σk
(xk).

Thus, by the lower semi-continuity of ϕ(x) at x̄, we conclude that:

ϕ(x̄) ≤ lim inf
k→∞

ϕ(xk) ≤ lim inf
k→∞

ϕρk,σk
(xk). (37)

This completes the proof. □

B.7 Proof for Theorem 2.6

Proof for Theorem 2.6. Since {xk} is bounded, Lemmas B.2 and B.4 imply that the sequences
{y∗(xk)} and {(y∗k(xk), z∗k(xk))} are also bounded.

First, we show that S(x) is outer semi-continuous on X .

Let {(xj , yj)} be an arbitrary sequence such that xj ∈ X , yj ∈ S(xj) and (xj , yj) → (x̃, ỹ) as
j → ∞. Since yj ∈ S(xj), we have

f(xj , yj) ≤ f(xj , y
∗(x̃)).

Taking the limit as j → ∞ and using the continuity of f on X × Y , we obtain

f(x̃, ỹ) ≤ f(x̃, y∗(x̃)) = min
y∈Y

f(x̃, y).

Hence, ỹ ∈ S(x̃), which shows that S(x) is outer semi-continuous on X .

Next, we establish that
lim
k→∞

y∗(xk) = y∗(x̄).

Let {y∗(xj)} be any subsequence of {y∗(xk)} such that y∗j → ȳ as j → ∞. By assumption, xj → x̄.
From the outer semi-continuity of S(x) established above, it follows that ȳ ∈ S(x̄). Moreover, by
definition ϕ(xj) = F (xj , y

∗(xj)) and ϕ(x̄) = F (x̄, y∗(x̄)). Using the continuity of F on X × Y
and the lower semi-continuity of ϕ, we obtain

F (x̄, ȳ) = lim
j→∞

F (xj , y
∗(xj)) = lim

j→∞
ϕ(xj) ≥ ϕ(x̄) = F (x̄, y∗(x̄)).

Since ȳ ∈ S(x̄), the above inequality implies that ȳ ∈ argmaxy∈S(x̄) F (x̄, y). Because S(x̄) is
convex, and F (x̄, y) is strongly concave in y, this maximizer is unique, so ȳ = y∗(x̄). Hence any
accumulation point of sequence {y∗(xk)} equals y∗(x̄). Since {y∗(xk)} is bounded, we conclude
that limk→∞ y∗(xk) = y∗(x̄).

Third, we show that
lim
k→∞

y∗k(xk) = y∗(x̄).

Let {y∗j (xj)} be any subsequence of {y∗k(xk)} such that y∗j (xj) → ȳ as j → ∞. By Lemma B.3,
we have ȳ ∈ S(x̄). Since y∗j (xj) maximizes ψj(xj , y, z

∗
j (xj)) over y ∈ Y , it follows that

ψj(xj , y
∗
j (xj), z

∗
j (xj)) ≥ ψj(xj , y

∗(xj), z
∗
j (xj)).

24

Expanding both sides gives

F (xj , y
∗
j (xj))− F (xj , y

∗(xj)) ≥ ρj
(
f(xj , y

∗
j (xj))− f(xj , y

∗(xj))
)

+ σj
(
⟨y∗j (xj), z∗j (xj)⟩ − ⟨y∗(xj), z∗j (xj)⟩

)
.

Since y∗(xj) ∈ S(xj), we have f(xj , y∗j (xj))− f(xj , y
∗(xj)) ≥ 0 and thus

F (xj , y
∗
j (xj))− F (xj , y

∗(xj)) ≥ σj
(
⟨y∗j (xj), z∗j (xj)⟩ − ⟨y∗(xj), z∗j (xj)⟩

)
Taking the limit as j → ∞ and using the continuity of F , together with limk→∞ y∗(xk) = y∗(x̄),
yields

F (x̄, ȳ)− F (x̄, y∗(x̄)) ≥ 0.

Since ȳ ∈ S(x̄), this implies that ȳ ∈ argmaxy∈S(x̄) F (x̄, y). Since S(x̄) is convex, and F (x̄, y)
is strongly concave in y, we must have ȳ = y∗(x̄). Therefore, all accumulation points of {y∗k(xk)}
equal y∗(x̄). Then, the boundedness of {y∗k(xk)} implies that limk→∞ y∗k(xk) = y∗(x̄).

Finally, we show that
lim
k→∞

z∗k(xk) = y∗(x̄).

Since z∗k(xk) minimizes ψk(xk, y
∗
k(xk), z) over z ∈ Y , we have

ψk(xk, y
∗
k(xk), z

∗
k(xk)) ≤ ψk(xk, y

∗
k(xk), y

∗(xk)).

Expanding this inequality gives

ρkf(xk, z
∗
k(xk)) +

σk
2
∥z∗k(xk)∥2 − σk⟨y∗k(xk), z∗k(xk)⟩

≤ ρkf(xk, y
∗(xk)) +

σk
2
∥y∗(xk)∥2 − σk⟨y∗k(xk), y∗(xk)⟩.

Rearranging terms yields

ρk (f(xk, z
∗
k(xk))− f(xk, y

∗(xk))) +
σk
2
∥z∗k(xk)− y∗k(xk)∥2 ≤ σk

2
∥y∗(xk)− y∗k(xk)∥2.

Since y∗(xk) ∈ S(xk), it follows that f(xk, z∗k(xk))− f(xk, y
∗(xk) ≥ 0 and hence

∥z∗k(xk)− y∗k(xk)∥2 ≤ ∥y∗(xk)− y∗k(xk)∥2.

Because limk→∞ y∗(xk) = y∗(x̄) = limk→∞ y∗k(xk), we have

lim
k→∞

∥y∗(xk)− y∗k(xk)∥ = 0.

Taking k → ∞ in the above inequality yields

lim
k→∞

∥z∗k(xk)− y∗k(xk)∥ = 0,

and consequently,
lim
k→∞

z∗k(xk) = lim
k→∞

y∗k(xk) = y∗(x̄).

This completes the proof.

□

C Proof for Section 4

Throughout this part, we assume Assumption 4, which states that X is a bounded set.

Given sequences ρk and σk, for notational conciseness, we employ the shorthand notations ϕk(x),
ψk(x, y, z), y∗k(x) and z∗k(x) to denote ϕρk,σk

(x), ψρk,σk
(x, y, z), y∗ρk,σk

(x) and z∗ρk,σk
(x), re-

spectively. We use u to denote the pair u := (y, z), and correspondingly, uk := (yk, zk) and
u∗k(x) = (y∗k(x), z

∗
k(x)). The symbols NX(x), NY (y) and NY×Y (x, y) denote the normal cones to

the sets X , Y and Y × Y at x, y and (x, y), respectively.

Let LF and Lf denote the Lipschitz constants of ∇F (x, y) and ∇f(x, y) on X × Y , respectively.

25

Consider the sequences {ρk} and {σk} such that ρk → ∞ and σk → 0 as k → ∞. As established
in Lemma B.2, the quantity My := supk,x∈X max{∥y∗k(x)∥, ∥z∗k(x)∥} is finite. This implies that
the collections of points {y∗k(x)} and {z∗k(x)} are bounded. Given that X is bounded, and f and its
gradient ∇f are assumed to be continuous on X × Y , the continuity over this effectively bounded
domain of evaluation ensures that the suprema Mf := supk,x∈X max{|f(x, y∗k(x))|, |f(x, z∗k(x))|}
and M∇f := supk,x∈X max{∥∇f(x, y∗k(x))∥, ∥∇f(x, z∗k(x))∥} are also finite.

With given sequences {ρk} and {σk}, for each k, we define the operator Tk : Rn+2m → R2m as

Tk(x, y, z) := (−∇yψk(x, y, z),∇zψk(x, y, z)) .

By assumption, for any fixed x ∈ X , the function ψk(x, y, z) is σk-strongly convex in z and µ-
strongly concave in y. Consequently, invoking [60, Theorem 12.17 and Exercise 12.59], it follows
that for a fixed x ∈ X , the operator Tk(x, ·, ·) exhibits strong monotonicity with respect to (y, z):

⟨Tk(x, u)− Tk(x, u
′), u− u′⟩ ≥ µ∥y − y′∥2 + σk∥z − z′∥2, ∀u, u′ ∈ Y × Y. (38)

Furthermore, under the assumption that the gradients of F and f are Lipschitz continuous, the
operator Tk(x, ·, ·) is also Lipschitz continuous with respect to (y, z) for any fixed x ∈ X:

∥Tk(x, u)− Tk(x, u
′)∥ ≤ max {(LF + ρkLf + σk) , (ρkLf + 2σk)} ∥u− u′∥, ∀u, u′ ∈ Y × Y.

(39)

C.1 Auxiliary Lemmas

To establish the convergence properties of SiPBA(Algorithm 1), we first introduce several auxiliary
lemmas pertaining to the behavior of the iterative sequence. The following lemma demonstrates a
contraction property for the sequence uk := (yk, zk).

Lemma C.1 Let {ρk} and {σk} be sequences such that ρk, σk > 0. Define σ̄k = min{σk, µ}. Sup-
pose the step-size sequence {βk} satisfies 0 < βk <

σ̄k

(LF+ρkLf+2σk)2
for each k. Let {(xk, yk, zk)}

be the sequence generated by SiPBA(Algorithm 1). Then, the iterate uk and uk+1 satisfy:

∥uk+1 − u∗k(x
k)∥2 ≤ (1− σ̄kβk)∥uk − u∗k(x

k)∥2. (40)

Proof. The update rule for uk+1 can be expressed in the compact form:

uk+1 = ProjY×Y

(
uk − βkT (x

k, uk)
)
.

Recall that u∗k(x
k) = (y∗k(x

k), z∗k(x
k)) is is the unique saddle point of the minimax problem

minz∈Y maxy∈Y ψk(x
k, y, z). From the first-order optimality conditions, u∗k(x

k) satisfies:

0 ∈ Tk(x
k, u∗k(x

k)) +NY×Y (u
∗
k(x

k)),

which implies
u∗k(x

k) = ProjY×Y

(
u∗k(x

k)− βkT (x
k, u∗k(x

k))
)
.

Utilizing the non-expansiveness of the projection operator, the strongly monotonicity of Tk in
(38) and its Lipschitz continuity with respect to u in (39), we can apply standard results from
the analysis of projected fixed-point iterations [24, Theorem 12.1.2]. If the step size βk ∈
(0, 2min{σk, µ}/ (LF + ρkLf + 2σk)

2
), then:

∥uk+1 − u∗k(x
k)∥2 ≤ (1 + (LF + ρkLf + 2σk)

2β2
k − 2βk min{σk, µ})∥uk − u∗k(x

k)∥2.

Thus, when 0 < βk <
min{σk,µ}

(LF+ρkLf+2σk)2
, it holds that

∥uk+1 − u∗k(x
k)∥2 ≤ (1− βk min{σk, µ})∥uk − u∗k(x

k)∥2.

□

The subsequent lemma is dedicated to establishing the Lipschitz continuity of u∗k(x).

26

Lemma C.2 Let {ρk} and {σk} be sequences such that ρk, σk > 0. Define σ̄k = min{σk, µ}. Then,
for any x, x′ ∈ X , the corresponding saddle points u∗k(x) and u∗k(x

′) satisfy:

∥u∗k(x′)− u∗k(x)∥ ≤ LF + 2ρkLf

σ̄k
∥x′ − x∥. (41)

Proof. Because u∗k(x) = (y∗k(x), z
∗
k(x)) and u∗k(x

′) = (y∗k(x
′), z∗k(x

′)) are saddle points to the
minimax problem minz∈Y maxy∈Y ψk(x, y, z), and minz∈Y maxy∈Y ψk(x

′, y, z), respectively. Ac-
cording to the first-order optimality conditions, these saddle points must satisfy:

0 ∈ Tk(x, u
∗
k(x)) +NY×Y (u

∗
k(x)), (42)

and
0 ∈ Tk(x

′, u∗k(x
′)) +NY×Y (u

∗
k(x

′)).

Next, we analyze the Lipschitz continuity of Tk(x, u) with respect to x. The first component
difference is

−∇yψk(x
′, u∗k(x

′)) +∇yψk(x, u
∗
k(x

′))

= −∇yF (x
′, y∗k(x

′)) +∇yF (x, y
∗
k(x

′)) + ρk (∇yf(x
′, y∗k(x

′))−∇yf(x, y
∗
k(x

′))) .

And the second component difference is

∇zψk(x
′, u∗k(x

′))−∇zψk(x, u
∗
k(x

′)) = ρk (∇yf(x
′, z∗k(x

′))−∇yf(x, z
∗
k(x

′))) .

Thus, we obtain

∥Tk(x′, u∗k(x′))− Tk(x, u
∗
k(x

′))∥ ≤ LF ∥x′ − x∥+ 2ρkLf∥x′ − x∥. (43)

Next, we use the fact that

Tk(x, u
∗
k(x

′))− Tk(x
′, u∗k(x

′)) ∈ Tk(x, u
∗
k(x

′)) +NY×Y (u
∗
k(x

′)).

and apply the strongly monotonicity of Tk from (38), along with the monotonicity of the normal cone
NY×Y and (45). This leads to the following inequality:

µ∥y∗k(x′)− y∗k(x)∥2 + σk∥z∗k(x′)− z∗k(x)∥2

≤⟨Tk(x, u∗k(x′))− Tk(x
′, u∗k(x

′)), u∗k(x
′)− u∗k(x)⟩

≤ ∥Tk(x, u∗k(x′))− Tk(x
′, u∗k(x

′))∥∥u∗k(x′)− u∗k(x)∥.

By substituting the bound from (43) into the above inequality, we obtain

min{σk, µ}∥u∗k(x′)− u∗k(x)∥ ≤ LF ∥x′ − x∥+ 2ρkLf∥x′ − x∥.

This completes the proof.

□

Lemma C.3 Let {ρk} and {σk} be sequences such that ρk+1 ≥ ρk > 0, σk ≥ σk+1 > 0. Define
σ̄k = min{σk, µ}. Then, for any fixed x ∈ X , we have

∥u∗k+1(x)− u∗k(x)∥ ≤ 2(ρk+1 − ρk)

σ̄k
M∇f +

3(σk − σk+1)

σ̄k
My. (44)

Proof. Because u∗k(x) = (y∗k(x), z
∗
k(x)) and u∗k+1(x) = (y∗k+1(x), z

∗
k+1(x)) are saddle points to the

minimax problem minz∈Y maxy∈Y ψk(x, y, z), and minz∈Y maxy∈Y ψk+1(x, y, z), respectively.
According to the first-order optimality conditions, these saddle points satisfy:

0 ∈ Tk(x, u
∗
k(x)) +NY×Y (u

∗
k(x)), (45)

and
0 ∈ Tk+1(x, u

∗
k+1(x)) +NY×Y (u

∗
k+1(x)).

Next, we expand the differences between the gradients of ψk and ψk+1 at u∗k+1(x):

−∇yψk+1(x, u
∗
k+1(x)) +∇yψk(x, u

∗
k+1(x))

= (ρk+1 − ρk)∇yf(x, y
∗
k+1(x)) + (σk+1 − σk)z

∗
k+1(x),

27

and
∇zψk+1(x, u

∗
k+1(x))−∇zψk(x, u

∗
k+1(x))

= (ρk+1 − ρk)∇yf(x, z
∗
k+1(x)) + (σk+1 − σk)

(
z∗k+1(x)− y∗k+1(x)

)
.

Thus, we have the following bound for the difference between the operators Tk and Tk+1:

∥Tk+1(x, u
∗
k+1(x))− Tk(x, u

∗
k+1(x))∥ ≤ 2(ρk+1 − ρk)M∇f + 3(σk − σk+1)My. (46)

Now, using the fact that

Tk(x, u
∗
k+1(x))− Tk+1(x, u

∗
k+1(x)) ∈ Tk(x, u

∗
k+1(x)) +NY×Y (u

∗
k+1(x)),

and combining this with the strongly monotonicity of Tk from (38), the monotonicity of the normal
cone NY×Y and (45), we get

µ∥y∗k+1(x)− y∗k(x)∥2 + σk∥z∗k+1(x)− z∗k(x)∥2

≤⟨Tk+1(x, u
∗
k+1(x))− Tk(x, u

∗
k+1(x)), u

∗
k(x)− u∗k+1(x)⟩

≤ ∥Tk+1(x, u
∗
k+1(x))− Tk(x, u

∗
k+1(x))∥∥u∗k+1(x)− u∗k(x)∥.

By substituting the bound from (46) into this inequality, we obtain

min{σk, µ}∥u∗k+1(x)− u∗k(x)∥ ≤ 2(ρk+1 − ρk)M∇f + 3(σk − σk+1)My.

This completes the proof. □

Lemma C.4 Let {ρk} and {σk} be sequences such that ρk, σk > 0. Define σ̄k = min{σk, µ}. Then,
for any x, x′ ∈ X , we have

∥∇ϕk(x′)−∇ϕk(x)∥ ≤ Lϕk
∥x′ − x∥, (47)

where Lϕk
:=

(LF+2ρkLf)(LF+2ρkLf+σ̄k)
σ̄k

.

Proof. From the expression for ∇ϕk(x) given in Theorem 2.1, we have the following:

∥∇ϕk(x)−∇ϕk(x′)∥ = ∥∇xψk(x, u
∗
k(x))−∇xϕk(x

′, u∗k(x
′))∥

≤ ∥∇xF (x, y
∗
k(x))−∇xF (x

′, y∗k(x
′))∥

+ ρk∥∇xf(x, y
∗
k(x))−∇xf(x

′, y∗k(x
′))∥

+ ρk∥∇xf(x, y
∗
k(x))−∇xf(x

′, y∗k(x
′))∥

≤ (LF + ρkLf)(∥x− x′∥+ ∥y∗k(x)− y∗k(x
′)∥)

+ ρkLf (∥x− x′∥+ ∥z∗k(x)− z∗k(x
′)∥)

≤ (LF + 2ρkLf)(∥x− x′∥+ ∥u∗k(x)− u∗k(x
′)∥)

≤ (LF + 2ρkLf)(LF + 2ρkLf + σ̄k)

σ̄k
∥x− x′∥

(48)

where the final inequality follows from Lemma C.2.

□

By synthesizing the results from Lemmas C.1-C.4, the following lemma characterizes the evolution
of the squared norm of the tracking error, ∥uk − u∗k(x

k)∥2.

Lemma C.5 Let {ρk} and {σk} be sequences such that ρk+1 ≥ ρk > 0, σk ≥ σk+1 > 0. Define
σ̄k = min{σk, µ}. Suppose the step-size sequence {βk} satisfies 0 < βk <

σ̄k

(LF+ρkLf+2σk)2
for

each k. Let {(xk, yk, zk)} be the sequence generated by SiPBA (Algorithm 1). Then, the following
inequality holds:

∥uk+1 − u∗k+1(x
k+1)∥2 − ∥uk − u∗k(x

k)∥2

≤− 1

2
βkσ̄k∥uk − u∗k(x

k)∥2 + 2(1 +
2

βkσ̄k
)
(LF + 2ρkLf)

2

σ̄2
k

∥xk+1 − xk∥2

+ 2(1 +
2

βkσ̄k
)

(
8(ρk+1 − ρk)

2

σ̄2
k

M2
∇f +

18(σk − σk+1)
2

σ̄2
k

M2
y

)
.

(49)

28

Proof. Using the Cauchy-Schwarz inequality for any δ > 0, we obtain the following:

∥uk+1 − u∗k+1(x
k+1)∥2

≤(1 + δ)∥uk+1 − u∗k(x
k)∥2 + (1 +

1

δ
)∥u∗k+1(x

k+1)− u∗k(x
k)∥2

≤(1 + δ)∥uk+1 − u∗k(x
k)∥2 + 2(1 +

1

δ
)∥u∗k(xk+1)− u∗k(x

k)∥2

+ 2(1 +
1

δ
)∥u∗k+1(x

k+1)− u∗k(x
k+1)∥2.

(50)

Next, take δ = 1
2βkσ̄k in the above inequality. By applying Lemma C.1, we obtain the following

bound:

(1 + δ)∥uk+1 − u∗k(x
k)∥2 ≤ (1− 1

2
βkσ̄k)∥uk − u∗k(x

k)∥2.

Using Lemma C.2, we can further bound the second term as follows:

2(1 +
1

δ
)∥u∗k(xk+1)− u∗k(x

k)∥2 ≤ 2(1 +
2

βkσ̄k
)
(LF + 2ρkLf)

2

σ̄2
k

∥xk+1 − xk∥2.

Next, applying Lemma C.3 with x = xk+1, we obtain

2(1 +
1

δ
)∥u∗k+1(x

k+1)− u∗k(x
k+1)∥2

≤2(1 +
2

βkσ̄k
)

(
8(ρk+1 − ρk)

2

σ̄2
k

M2
∇f +

18(σk − σk+1)
2

σ̄2
k

M2
y

)
.

Finally, combining the above three inequalities with (50), we arrive at the desired inequality.

□

Lemma C.6 Let {ρk} and {σk} be sequences such that ρk+1 ≥ ρk > 0, σk ≥ σk+1 > 0. Then, for
any x ∈ X , we have

ϕk+1(x)− ϕk(x) ≤ (σk − σk+1)
M2

y

2
+ 2 (ρk+1 − ρk)Mf . (51)

Proof. We begin with the expression for ϕk+1(x) as follows:

ϕk+1(x) = min
z∈Y

max
y∈Y

ψk+1(x, y, z).

This leads to the inequality

ϕk+1(x) = min
z∈Y

ψk+1(x, y
∗
k+1(x), z)

≤ψk+1(x, y
∗
k+1(x), z

∗
k(x))

=F (x, y∗k+1(x))− ρk+1(f(x, y
∗
k+1(x))− f(x, z∗k(x))

+
σk+1

2
∥y∗k+1(x)− z∗k(x)∥2 −

σk+1

2
∥y∗k+1(x)∥2

≤F (x, y∗k+1(x))− ρk(f(x, y
∗
k+1(x))− f(x, z∗k(x))

+
σk
2
∥y∗k+1(x)− z∗k(x)∥2 −

σk
2
∥y∗k+1(x)∥2 +

σk − σk+1

2
∥y∗k+1(x)∥2

+ (ρk − ρk+1) (f(x, y
∗
k+1(x))− f(x, z∗k(x))

≤ max
y∈Y

{
F (x, y)− ρk(f(x, y)− f(x, z∗k(x)) +

σk
2
∥y − z∗k(x)∥2 −

σk
2
∥y∥2

}
+
σk − σk+1

2
∥y∗k+1(x)∥2 + (ρk − ρk+1) (f(x, y

∗
k+1(x))− f(x, z∗k(x))

≤ max
y∈Y

ψk(x, y, z
∗
k(x)) +

σk − σk+1

2
M2

y + 2 (ρk+1 − ρk)Mf .

This completes the proof, as the final inequality is derived from the fact that ϕk(x) =
maxy∈Y ψk(x, y, z

∗
k(x)). □

29

The subsequent lemma characterizes the descent property of the value function ϕk(xk) across
iterations.

Lemma C.7 Let {ρk} and {σk} be sequences such that ρk+1 ≥ ρk > 0, σk ≥ σk+1 > 0. Define
σ̄k = min{σk, µ}. Suppose the step-size sequence {βk} satisfies 0 < βk <

σ̄k

(LF+ρkLf+2σk)2
for

each k. Let {(xk, yk, zk)} be the sequence generated by SiPBA (Algorithm 1). Then, we have

ϕk+1(x
k+1)− ϕk(x

k) +

(
1

2αk
− Lϕk

2

)
∥xk+1 − xk∥2

≤ αk

2
(LF + 2ρkLf)

2(1− σ̄kβk)∥uk − u∗k(x
k)∥2 + (σk − σk+1)

M2
y

2
+ 2 (ρk+1 − ρk)Mf ,

(52)
where Lϕk

:=
(LF+2ρkLf)(LF+2ρkLf+σ̄k)

σ̄k
.

Proof. We decompose the total difference as follows:

ϕk+1(x
k+1)− ϕk(x

k) = ϕk+1(x
k+1)− ϕk(x

k+1) + ϕk(x
k+1)− ϕk(x

k). (53)

For the first term, applying Lemma C.6 with x = xk+1:

ϕk+1(x
k+1)− ϕk(x

k+1) ≤ (σk − σk+1)
M2

y

2
+ 2 (ρk+1 − ρk)Mf . (54)

For the second term, ϕk(xk+1)−ϕk(xk), we use the Lϕk
-Lipschitz continuity of ∇ϕk(x) established

in Lemma C.4. A standard descent inequality (cf. [10, Lemma 5.7] for smooth functions) states:

ϕk(x
k+1)− ϕk(x

k) ≤ ⟨∇ϕk(xk), xk+1 − xk⟩+ Lϕk

2
∥xk+1 − xk∥2. (55)

Next, applying the update rule for xk+1, we get

1

αk
∥xk+1 − xk∥2 ≤ ⟨−∇xψk(x

k, yk+1, zk+1), xk+1 − xk⟩.

By combining this inequality with the previous one, and using the formula for ∇ϕk(xk) given in
Theorem 2.1, we obtain

ϕk(x
k+1)− ϕk(x

k) +

(
1

αk
− Lϕk

2

)
∥xk+1 − xk∥2

≤⟨∇xψk(x
k, y∗k(x

k), z∗k(x
k))−∇xψk(x

k, yk+1, zk+1), xk+1 − xk⟩
≤

(
(LF + ρkLf)∥yk+1 − y∗k(x

k)∥+ ρkLf∥zk+1 − z∗k(x
k)∥

)
∥xk+1 − xk∥

≤ αk

2
(LF + 2ρkLf)

2∥uk+1 − u∗k(x
k)∥2 + 1

2αk
∥xk+1 − xk∥2

≤ αk

2
(LF + 2ρkLf)

2(1− σ̄kβk)∥uk − u∗k(x
k)∥2 + 1

2αk
∥xk+1 − xk∥2,

(56)

where the last inequality follows from Lemma C.1. The conclusion follows by combining the above
inequality with (55) and (54).

□

Lemma C.8 Let {ρk} and {σk} be sequences such that ρk > 0, σk > 0 and σk → 0 as k → ∞.
Furthermore, assume that ϕ(x) is bounded below on X , i.e., infx∈X ϕ(x) > −∞. Then, there exists
a constant ϕ such that, for any {xk} ⊂ X , we have

ϕk(x
k) ≥ ϕ.

Proof. According to Lemma B.5, for any k, the following inequality holds:

ϕk(x
k) ≥ ϕ(xk)− σk

2
∥y∗(xk)∥2 ≥ inf

x∈X
ϕ(x)− σk

2
∥y∗(xk)∥2, (57)

30

where y∗(x) = argmaxy∈S(x) F (x, y).

Next, by Lemma B.4, we have that there exists My∗ > 0 such that for all k,

∥y∗(xk)∥ ≤My∗ .

Thus, we can bound the second term in the inequality:

ϕk(x
k) ≥ inf

x∈X
ϕ(x)− σk

2
M2

y∗ ,

Taking the limit as k → ∞ and using the fact that σk → 0, we obtain

lim inf
k→∞

ϕk(x
k) ≥ inf

x∈X
ϕ(x),

and then the conclusion follows. □

C.2 Proof for Proposition 4.1

Proof of Proposition 4.1 . Given βk = β0k
−2p−q , and σk = σ0k

−q , the constant ratio β0/σ0 can be
chosen sufficiently small to ensure that for all k ≥ 1, the following inequality holds:

0 < βk <
σ̄k

(LF + ρkLf + 2σk)2
.

Recall the merit function,

Vk = ak(ϕk(x
k)− ϕ) + bk∥uk − u∗k(x

k)∥2.
Applying Lemmas C.7 and C.5, specifically equations (52) and (49), and using the facts that ak+1 ≤
ak and bk+1 ≤ bk, we obtain:

Vk+1 − Vk

= ak+1(ϕk+1(x
k+1)− ϕ)− ak(ϕk(x

k)− ϕ) + bk+1∥uk+1 − u∗k+1(x
k+1)∥2 − bk∥uk − u∗k(x

k)∥2

≤ ak(ϕk+1(x
k+1)− ϕk(x

k)) + bk(∥uk+1 − u∗k+1(x
k+1)∥2 − ∥uk − u∗k(x

k)∥2)

≤ −ak
(

1

2αk
− Lϕk

2

)
∥xk+1 − xk∥2 + ak

αk

2
(LF + 2ρkLf)

2(1− σ̄kβk)∥uk − u∗k(x
k)∥2

+ ak (σk − σk+1)
M2

y

2
+ 2ak (ρk+1 − ρk)Mf

− 1

2
bkβkσ̄k∥uk − u∗k(x

k)∥2 + 2bk(1 +
2

βkσ̄k
)
(LF + 2ρkLf)

2

σ̄2
k

∥xk+1 − xk∥2

+ 2bk(1 +
2

βkσ̄k
)

(
8(ρk+1 − ρk)

2

σ̄2
k

M2
∇f +

18(σk − σk+1)
2

σ̄2
k

M2
y

)
.

(58)

The parameters are set according to the schedules: αk = α0k
−s, βk = β0k

−2p−q, bk = k−t,
σk = σ0k

−q and ρk = ρ0k
p. We have that

bkβkσk = β0σ0k
−2p−2q−t.

Since s > t+ 4p+ 2q, it follows for sufficiently large k that

αk(LF + 2ρkLf)
2 <

1

2
bkβkσ̄k.

Therefore,
αk

2
(LF + 2ρkLf)

2(1− σ̄kβk)∥uk − u∗k(x
k)∥2 − 1

2
bkβkσ̄k∥uk − u∗k(x

k)∥2

< − 1

4
bkβkσ̄k∥uk − u∗k(x

k)∥2

Furthermore, since ak = k−s, bk = k−t, σk = σ0k
−q and ρk = ρ0k

p, we find that there exists
C > 0 such that

bk
ak

(1 +
2

βkσ̄k
)
(LF + 2ρkLf)

2

σ̄2
k

≤ Cks−t+4p+4q,

31

and

Lϕk
=

(LF + 2ρkLf)(LF + 2ρkLf + σ̄k)

σ̄k
≤ Ck2p+q.

Given that αk = α0k
−s, t > 4p+4q and s > t+4p+2q > 2p+ q, we conclude that for sufficiently

large k:
1

2αk
− Lϕk

2
− 2bk

ak
(1 +

2

βkσ̄k
)
(LF + 2ρkLf)

2

σ̄2
k

>
1

4αk
.

Substituting this and the earlier bound into (58), we deduce that for large k:

Vk+1 − Vk ≤ − ak
4αk

∥xk+1 − xk∥2 − 1

4
bkβkσ̄k∥uk − u∗k(x

k)∥2

+ ak (σk − σk+1)
M2

y

2
+ 2ak (ρk+1 − ρk)Mf

+ 2bk(1 +
2

βkσ̄k
)

(
8(ρk+1 − ρk)

2

σ̄2
k

M2
∇f +

18(σk − σk+1)
2

σ̄2
k

M2
y

)
.

(59)

Next, we show that the sum of the positive terms on the right-hand side of (59) is bounded. Since
ak = k−s ≤ 1 and σk = σ0k

−q , we have

∞∑
k=1

ak (σk − σk+1) ≤
∞∑
k=1

(σk − σk+1) ≤ σ0.

With ak = k−s, ρk = ρ0k
p and s > 2p+ q, there exits C > 0 such that

ak (ρk+1 − ρk) ≤ Ck−2p−q((k + 1)p − kp) ≤ Ck−p−q p

k
≤ pCk−p−q−1,

which implies
∞∑
k=1

2ak (ρk+1 − ρk)Mf <∞.

Regarding the remaining terms, since βk = β0k
−2p−q, bk = k−t, σk = σ0k

−q, ρk = ρ0k
p and

t > 4p+ 4q, there exists C > 0 such that

bk(1 +
2

βkσ̄k
)
(ρk+1 − ρk)

2

σ̄2
k

≤ Ck−t+2p+4q((k + 1)p − kp)2

≤ Ck−t+4p+4q p
2

k2

≤ p2Ck−t+4p+4q−2.

Thus, the sum
∞∑
k=1

2bk(1 +
2

βkσ̄k
)
8(ρk+1 − ρk)

2

σ̄2
k

M2
∇f <∞.

Similarly, there exists C > 0 such that

2bk(1 +
2

βkσ̄k
)
18(σk − σk+1)

2

σ̄2
k

≤ Ck−t+2p+2q−2.

Since t > 2p+ 2q, the sum

∞∑
k=1

2bk(1 +
2

βkσ̄k
)
18(σk − σk+1)

2

σ̄2
k

M2
y <∞.

This completes the proof. □

32

C.3 Proof for Theorem 4.2

Proof of Theorem 4.2. The conditions s ≥ 8p + 8q and t = 4p + 5q are chosen to satisfy the
requirements of Proposition 4.1. From Proposition 4.1, and noting that Vk ≥ 0 for all k, we have the
following summations:

∞∑
k=1

ak
αk

∥xk+1 − xk∥2 +
∞∑
k=1

bkβkσ̄k∥uk − u∗k(x
k)∥2 <∞.

Rewriting the first sum, we have:
∞∑
k=1

akαk
1

α2
k

∥xk+1 − xk∥2 +
∞∑
k=1

bkβkσ̄k∥uk − u∗k(x
k)∥2 <∞. (60)

Since the terms in these convergent series are non-negative, it follows that for any K > 0:

min
0<k<K

akαk
1

α2
k

∥xk+1 − xk∥2 = O(1/K), and min
0<k<K

bkβkσ̄k∥uk − u∗k(x
k)∥2 = O(1/K).

The parameter schedules are αk = α0k
−s, βk = β0k

−2p−q , ak = k−s, bk = k−4p−5q , σk = σ0k
−q

and ρk = ρ0k
p. We have

akαk = α0k
−2s, and bkβkσ̄k = β0σ0k

−6p−7q.

Under the conditions s < 1/2 and 6p+ 7q < 1, we we deduce the convergence rates:

min
0<k<K

1

α2
k

∥xk+1 − xk∥2 = O(1/K1−2s),

and
min

0<k<K
∥uk − u∗k(x

k)∥2 = O(1/K1−6p−7q).

Furthermore, the summability in (60) implies

lim
k→∞

∥xk+1 − xk∥/αk = lim
k→∞

∥uk − u∗k(x
k)∥ = 0.

From Theorem 2.1, we have

∥PX (xk − αk∇ϕk(xk)− PX (xk − αkdxk
)∥

≤ αk∥∇ϕk(xk)− dxk
)∥

= αk∥∇xψk(x
k, y∗k(x

k), z∗k(x
k))−∇xψk(x

k, yk+1, zk+1)∥
≤ αk(LF + 2ρkLf)∥uk+1 − u∗k(x

k)∥
≤ αk(LF + 2ρkLf)∥uk − u∗k(x

k)∥,

where the first inequality follows from the nonexpansiveness of the projection operator PX , and
the last inequality follows from Lemma C.1. Since ∥uk − u∗k(x

k)∥ → 0 as k → ∞, and αkρk =
α0ρ0k

−s+p → 0 as k → ∞, it follows that

lim
k→∞

∥PX (xk − αk∇ϕk(xk)− PX (xk − αkdxk
)∥ = 0.

Furthermore, we have previously shown that:

lim
k→∞

1

αk
∥xk − PX (xk − αkdxk

)∥ = lim
k→∞

1

αk
∥xk − xk+1∥ = 0.

Combining this with the convergence of the projected gradients yields:

lim
k→∞

1

αk
∥xk − PX (xk − αk∇ϕk(xk)∥ = 0.

This completes the proof of stationarity. □

33

C.4 Proof for Corollary 4.3

We first establish the following auxiliary result.

Lemma C.9 Assume ϕ(x) is lower semi-continuous on X . Let {ρk} and {σk} be sequences such
that ρk → ∞ and σk → 0. Then, for any ϵ > 0, there exists K > 0 such that for all k ≥ K,

ϕk(x) ≤ ϕ(x) + ϵ, ∀x ∈ X. (61)

Proof. Assume, for the sake of contradiction, that the statement is false. Then there exists an ϵ0 > 0
and sequence {xk} ⊂ X such that

lim
k→∞

ϕk(xk) > ϕ(xk) + ϵ0.

Since X is compact, by passing to a further subsequence if necessary, we can assume
xk → x̄ ∈ X . Recall that (y∗k(xk), z

∗
k(xk)) is the saddle point of the minimax problem

minz∈Y maxy∈Y ψk(xk, y, z). Thus, ϕk(xk) = ψk(xk, y
∗
k(xk), z

∗
k(xk)) and by the definition of

ψk, we have

F (xk, y
∗
k(xk))− ρk(f(xk, y

∗
k(xk))− f(xk, z

∗
k(xk)) +

σk
2
∥z∗k(xk)∥2 − σk⟨y∗k(xk), z∗k(xk)⟩

≥ϕ(xk) + ϵ.
(62)

By Lemma B.2, the sequence {y∗k(xk)} is bounded. Thus, by passing to another subsequence if
necessary, we can assume y∗k(xk) → ȳ for some ȳ ∈ Y . It follows from Lemma B.3 that ȳ ∈ S(x̄).
Since z∗k(xk) is a minimizer of ψk(xk, y

∗(xk), z) over z ∈ Y , we have

ψk(xk, y
∗
k(xk), z

∗
k(xk)) ≤ ψk(xk, y

∗
k(xk), y

∗
k(xk)).

Substituting the definition of ψk, this yields:

ρkf(xk, z
∗
k(x̄)) +

σk
2
∥z∗k(xk)∥2 − σk⟨y∗k(xk), z∗k(xk)⟩ ≤ ρkf(xk, y

∗
k(xk))−

σk
2
∥y∗k(xk)∥2.

This simplifies to:

ρk (f(x̄, z
∗
k(xk))− f(x̄, y∗k(xk))) +

σk
2
∥z∗k(xk)− y∗k(xk)∥2 ≤ 0.

Combining this with (62), we have

F (xk, y
∗
k(xk)) ≥ ϕ(xk) + ϵ.

Taking the limit as k → ∞, continuity of F (x, y) and lower semicontinuity of ϕ(x) yield

F (x̄, ȳ) ≥ ϕ(x̄) + ϵ.

However, since ȳ ∈ S(x̄), we must have

ϕ(x̄) ≥ F (x̄, ȳ),

leading to a contradiction. Thus, the claim follows. □

Proof of Corollary 4.3. From Theorem 4.2, we have the stationarity condition:

lim
k→∞

1

αk
∥xk − PX (xk − αk∇ϕk(xk)∥ = 0.

This condition, together with the Lipschitz continuity of ∇ϕk established in Lemma C.4, implies that
xk is an approximate stationary point for ϕk. Standard arguments then show that for any ϵ > 0, there
exists K > 0 such that for all k ≥ K, there is a δk > 0 such that

ϕk(x) ≥ ϕk(x
k)− ϵ∥x− xk∥, ∀x ∈ Bδk(x

k) ∩X.

According to Lemma B.5, for each k:

ϕk(x
k) ≥ ϕ(xk)− σk

2
∥y∗(xk)∥2 (63)

34

where y∗(x) = argmaxy∈S(x) F (x, y). By Lemma B.4, there exists My∗ > 0 such that for any k,

∥y∗(xk)∥ ≤My∗ .

Since σk → 0 as k → ∞, we can obtain from (63) that for any ϵ > 0, there exists K > 0 such that
for each k ≥ K,

ϕk(x
k) ≥ ϕ(xk)− ϵ.

Furthermore, by Lemma C.9, for any ϵ > 0, there exists K > 0 such that for any k ≥ K,

ϕk(x) ≤ ϕ(x) + ϵ, ∀x ∈ X.

Combining these inequalities yields that for any ϵ > 0 and ϵ̃ > 0, we can find K > 0 such that for
each k ≥ K, there exists δk > 0 such that

ϕ(x) ≥ ϕ(xk)− ϵ∥x− xk∥ − ϵ, ∀x ∈ Bδk(x
k) ∩X,

completing the proof. □

35

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The proposed algorithm and theoretical analysis are presented in Section 2,3
and 4. Experimental results are illustrated in Section 5. Detailed proofs of results and
experiment settings are provided in the appendix.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this work are discussed in the final section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

36

Answer: [Yes]
Justification: The assumptions required for all Lemmas, Propositions, and Theorems are
stated first in the main paper, and the complete proofs are provided in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The detailed descriptions of the experimental setup, the experimental parame-
ters and implementation methods are provided in Section 5 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

37

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will uploade the code to the supplemental material and provide detailed
instructions on how to run the code to ensure the reproducibility of the experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental settings, including dataset descriptions, data splitting methods,
hyperparameter choices, and the implementation of algorithms, are clearly explained in
Section 5 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars using standard statistical metrics. All experimental
results are based on multiple repetitions of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

38

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We wrote this in the beginning of Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the code of ethics carefully and done our best to conform.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on theoretical and algorithmic problem in machine learning
and is not like to a significant impact on society.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

39

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our experiments only used small classification models, without the risk of
misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the relevant papers providing the algorithms, code and dataset
used in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

40

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: There are no new assets for this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not contain any studies involving human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not contain any studies involving human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

41

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core research of this paper is not related to LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

42

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Contribution
	Related work

	Smooth approximation of PBO
	Smooth approximation of (x)
	Asymptotic convergence of the approximation

	Single-loop gradient-based algorithm
	Convergence analysis
	Numerical experiments
	Synthetic example
	Spam classification
	Hyper-representation
	Linear hyper-representation on synthetic data
	Deep hyper-representation on MNIST and FashionMNIST

	Conclusions and future work
	Numerical experiment
	Synthetic example
	Spam classification
	Hyper-representation
	Parameter Selection

	Proofs for Section 2
	Equivalent minimax reformulation of (x)
	Proof for Theorem 2.1
	Proof for Lemma 2.2
	Proof for Proposition 2.3
	Lower semi-continuity of (x)
	Proof for Lemma 2.4
	Proof for Theorem 2.6

	Proof for Section 4
	Auxiliary Lemmas
	Proof for Proposition 4.1
	Proof for Theorem 4.2
	Proof for Corollary 4.3

