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Abstract001

Tables are extensively utilized to represent and002
store data, however, they often lack explicit se-003
mantics necessary for machine interpretation004
of their contents. Semantic table interpreta-005
tion is essential for integrating structured data006
with knowledge graphs, yet existing methods007
face challenges with Russian-language tables008
due to limited labeled data and linguistic pe-009
culiarities. This paper introduces a contrastive010
learning approach to minimize reliance on man-011
ual labeling and enhance the accuracy of col-012
umn annotation for rare semantic types. The013
proposed method adapts contrastive learning014
for tabular data through augmentations and015
employs a distilled multilingual BERT model016
trained on the unlabeled RWT corpus (com-017
prising 7.4 million columns). The resulting018
table representations are incorporated into the019
RuTaBERT pipeline, reducing computational020
overhead. Experimental results demonstrate a021
micro-F1 score of 97% and a macro-F1 score022
of 92%, surpassing several baseline approaches.023
These findings emphasize the efficiency of the024
proposed method in addressing data sparsity025
and handling unique features of the Russian026
language. The results further confirm that con-027
trastive learning effectively captures semantic028
similarities among columns without explicit su-029
pervision, which is particularly vital for rare030
data types.031

1 Introduction032

Tabular data are one of the key formats for pre-033

senting structured information in various domains,034

ranging from scientific research to business analyt-035

ics. It is widely used in relational databases, spread-036

sheets, web resources, and documents, making its037

processing critically important for automating data038

analysis. However, tables typically lack explicit039

semantics necessary for machine interpretation of040

their content. Therefore, the semantic interpreta-041

tion of tables, especially in non-English languages,042

remains a challenging task (Gilbert Badaro, 2023; 043

Jixiong Liu and Monnin, 2023). The primary chal- 044

lenges are associated with mapping individual table 045

elements (columns, rows, cells) to concepts from 046

knowledge graphs such as DBpedia or Wikidata, 047

as well as handling the structural and linguistic 048

diversity of data. 049

Russian-language tables pose a particular chal- 050

lenge due to the limited availability of special- 051

ized tools and annotated datasets. Most modern 052

methods, particularly those based on pretrained 053

language models like BERT (Xiang Deng and 054

Yu, 2020; Jonathan Herzig and Eisenschlos, 2020; 055

Pengcheng Yin and Riedel, 2020; Hiroshi Iida and 056

Iyyer, 2021; Zhiruo Wang and Zhang, 2021; Yoshi- 057

hiko Suhara and Tan, 2022), require vast amounts 058

of labeled data, which are often unavailable or im- 059

balanced for the Russian language. Moreover, ex- 060

isting solutions developed for English do not adapt 061

well to other languages due to differences in tok- 062

enization and contextual semantics. 063

In this paper, we propose a novel approach for 064

column type annotation in Russian-language tables 065

based on contrastive learning. This approach ef- 066

fectively leverages unlabeled tabular data to train 067

robust vector representations, reducing the reliance 068

on manual annotation. Our contributions include: 069

1. Adaptation of contrastive learning for Russian- 070

language tabular data using augmentations 071

such as cell deletion and rearrangement. 072

2. Utilization of the distilled multilingual model 073

DistilBERT, which balances performance and 074

computational costs. 075

3. Integration of pre-trained tabular represen- 076

tations into an existing annotation pipeline 077

based on the RuTaBERT framework, demon- 078

strating the flexibility of the approach. 079

4. Experiments on the large Russian-language 080

dataset, RWT-RuTaBERT, showed that the 081
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proposed approach outperforms certain base-082

line solutions, confirming its effectiveness un-083

der conditions of data sparsity and linguistic084

specificity.085

The paper is organized as follows: Section 2086

reviews the current state of research on seman-087

tic table interpretation. Section 3 describes the088

proposed approach for column type annotation in089

Russian-language tables, including data prepara-090

tion, model architecture, and training algorithm.091

Section 4 presents experimental evaluations of the092

proposed approach’s performance. Finally, Section093

5 discusses the obtained results and outlines plans094

for future work.095

2 Related works096

Semantic table interpretation (STI) refers to the097

process of recognizing and linking tabular data to098

concepts from a target knowledge graph, ontology,099

or external vocabulary (e.g., DBpedia, Wikidata,100

Yago, Freebase, WordNet) (Jixiong Liu and Mon-101

nin, 2023; Zhang and Balog, 2020). One of the102

core tasks of STI is column type annotation, which103

involves mapping table columns to semantic types104

(classes and properties) from the target knowledge105

graph.106

Over the past few years, existing methods and107

models have leveraged advances in deep machine108

learning, formulating the column type annotation109

task as a multi-class classification problem. For110

instance, (Madelon Hulsebos and Hidalgo, 2019)111

employed neural networks and various extracted112

feature groups, such as word and character embed-113

dings, as well as global column statistics. The study114

by (Dan Zhang and Tan, 2020) incorporated analy-115

sis of local (intra-table) context (adjacent columns116

relative to the target column), while (Daheng Wang117

and Jiang, 2021) further added inter-table context to118

improve predictions. However, particular interest119

lies in works utilizing pre-trained language mod-120

els based on the Transformer architecture. Trans-121

former blocks employ an attention mechanism, en-122

abling the model to generate useful contextualized123

embeddings for structural components of tabular124

data, such as cells, columns, or rows. Additionally,125

language models pre-trained on large-scale text126

corpora can encode semantics from the training127

text into model parameters, making fine-tuning on128

specific downstream tasks highly efficient. Exam-129

ples of such works include models like TURL (Xi-130

ang Deng and Yu, 2020), TaPas (Jonathan Herzig131
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Figure 1: An example of data sparsity issue in the Viznet
dataset.

and Eisenschlos, 2020), TaBERT (Pengcheng Yin 132

and Riedel, 2020), TABBIE (Hiroshi Iida and Iyyer, 133

2021), TUTA (Zhiruo Wang and Zhang, 2021), and 134

Doduo (Yoshihiko Suhara and Tan, 2022). 135

Existing solutions in this area achieve high per- 136

formance due to the availability of large labeled 137

training datasets. Specifically, English-language 138

datasets may include hundreds of thousands of 139

labeled columns (e.g., VizNet-Sato (Dan Zhang 140

and Tan, 2020) ∼ 100,000, WikiTables-TURL (Xi- 141

ang Deng and Yu, 2020) ∼ 600,000), while the 142

Russian-language tabular dataset RWT-RuTaBERT 143

contains over 1.4 million columns. Creating such 144

datasets is a labor-intensive process requiring sig- 145

nificant time and resources. Moreover, existing 146

table datasets often suffer from data sparsity, man- 147

ifested in a highly imbalanced distribution of se- 148

mantic types (known as a "long-tail distribution"). 149

For instance, some semantic types correspond to 150

hundreds of thousands of columns, while others are 151

associated with only a few dozen. As a result, mod- 152

els struggle to capture sufficient signals for minor- 153

ity (rare) semantic types (e.g., "athlete", "mountain 154

range" or "insurance company"), even in super- 155

vised settings. Figure 1 illustrates this issue with a 156

distribution chart of the 20 most frequent semantic 157

types in the VizNet-Sato dataset. Figure 2 shows 158

the same issue for the RWT-RuTaBERT dataset. 159

It should also be noted that current methods 160

based on pre-trained language models are not uni- 161

versally applicable. There is a gap between the 162

effectiveness of existing solutions on test cases and 163

their practical applicability, particularly for tables 164

in non-English languages and with varying struc- 165

tural layouts. 166
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Figure 2: An example of data sparsity issue in the RWT-
RuTaBERT dataset.

To enhance general table understanding and ad-167

dress various tabular tasks, recent works have em-168

ployed large language models, which often outper-169

form pre-trained models like BERT. These models170

are also more robust to unseen examples due to171

specific effects arising from their scale and train-172

ing on vast text corpora. Examples include models173

such as Table-GPT (Peng Li and Chaudhuri, 2024),174

TableLlama (Tianshu Zhang and Sun, 2024), and175

approaches in (Korini and Bizer, 2024). However,176

a major drawback of such solutions is their require-177

ment for substantial computational resources, hin-178

dering practical use.179

To address the aforementioned challenges, we180

propose the use of self-supervised learning meth-181

ods, specifically contrastive learning, to derive tabu-182

lar representations from a large corpus of unlabeled183

tabular data. These representations can be used for184

determining relatedness between two tables (via185

cosine embedding similarity) and for fine-tuning186

with limited labeled data for specific downstream187

tasks.188

3 Proposed approach189

3.1 Problem statement190

A table is a two-dimensional data structure com-191

posed of rows and columns. Table cells may con-192

tain textual data, numerical values, dates, times, etc.193

Tables can be categorized into three types based on194

the structure of information:195

1. Highly structured (relational database tables);196

2. Semi-structured (spreadsheets created in spe-197

cialized software, e.g., MS Excel);198

3. Unstructured (table images in PDF docu- 199

ments). 200

Tables can also be classified into three main 201

groups based on orientation: 202

1. Vertical – tables where data is arranged in 203

vertical columns (i.e., top to bottom); 204

2. Horizontal – tables where data is arranged in 205

horizontal lines (i.e., left to right); 206

3. Matrix – tables where each entry is indexed 207

by row and column key(s). 208

This work focuses solely on vertical, highly 209

structured, and semi-structured tables. The formal 210

description of an input table can be represented as: 211

T = {c1, ..., cn} , ci = {v1, ..., vm} , i ∈ 1, n (1) 212

where T is a vertical table; ci is an i-column; vj 213

is an j-cell of an i-column with j ∈ 1,m. 214

Our goal is to predict the column type, i.e., clas- 215

sify each column by its semantic type, such as 216

"Book", "Writer", "Genre" or "Publication Date" 217

rather than standard data types like string, integer, 218

or datetime. The proposed approach involves using 219

170 distinct semantic types derived from selected 220

classes and properties (value properties and object 221

properties) from the general-purpose knowledge 222

graph DBpedia1. Only Russian labels for these 223

types (via language tags) were used, as the ap- 224

proach targets the annotation of Russian-language 225

tables. Formally, this task can be described as: 226

P (ci) ∈ KGst,KGst = {st1, ..., st170} , (2) 227

where P (ci) is a predicted semantic type for a 228

i-column; KGst is a set of all semantic types with 229

a cardinality of 170 in this case. 230

An example of solving the column annotation 231

task for an input table is shown in Figure 3. 232

The core idea of the approach is to develop an 233

encoder for robust tabular representations based on 234

contrastive learning, which can then be applied to 235

downstream tasks, specifically semantic annotation 236

of columns in Russian-language tables. The gen- 237

eral schema of the proposed approach is presented 238

in Figure 4. 239

1https://www.dbpedia.org/

3

https://www.dbpedia.org/


Figure 3: An example of the CTA task.

3.2 Dataset Description240

The pre-trained table encoder is trained on a vast241

amount of tabular data that does not require manual242

annotation. The large-scale Russian Web Tables243

(RWT) corpus (Platon E. Fedorov and Chernishev,244

2023) is used as the source dataset. This dataset245

represents a snapshot of tables from the Russian246

Wikipedia as of September 13, 2021. Key statistics247

for the RWT corpus are provided in Table 1.248

Statistics Value
Number of tables 1 266 731
Number of columns 7 419 771
Number of cells 99 638 194
Average number of cells per table 81.78
Set size 17 GB
Percentage of almost empty columns 6%
Average number of cells per column 13.42
Percentage of numeric columns 17%

Table 1: Statistics of the RWT table corpus.

During the initial data preprocessing stage, ver-249

tical tables were selected from the original RWT250

corpus. Each column from such a table is repre-251

sented as a data string using the cell delimiter "«".252

Subsequent data cleaning was performed using253

the following operations:254

• Filtering out empty columns.255

• Removing parser metadata wrapping text us-256

ing regular expressions.257

• Removing links to Wikipedia articles.258

• Removing special characters (e.g., "@", "&",259

"?", and "!").260

• Removing empty cells within columns.261

• Removing columns with fewer than three262

cells, as such columns become unrepresen-263

tative after cell deletion augmentations.264

As a result of these cleaning operations, an unla- 265

beled dataset of Russian-language tabular data con- 266

sisting of 4,656,668 columns was obtained. This 267

preprocessing was automated using a specialized 268

tool, LoReTA. 269

3.3 Training Algorithm 270

Contrastive learning is a self-supervised learning 271

technique designed to obtain informative embed- 272

dings. It involves maximizing a consistency metric, 273

in our case cosine similarity, between positive pairs 274

(data instances) while minimizing this metric be- 275

tween negative pairs. Contrastive learning enables 276

effective training on unlabeled data corpora. 277

In this work, we adapt the contrastive learning 278

concept proposed in (Ting Chen and Hinton, 2020) 279

for tabular data. The contrastive learning algorithm 280

for tabular data is illustrated in Figure 5. 281

The main idea is to construct two augmentations 282

for each column in a batch during training. Col- 283

umn embeddings are generated for the resulting 284

augmentations using an encoder model. Represen- 285

tations of augmentations derived from the same 286

column are considered a positive pair, and our goal 287

is to maximize the cosine similarity metric for this 288

pair. Conversely, representations of augmentations 289

derived from different columns are considered neg- 290

ative pairs, for which the task is to minimize the 291

cosine similarity metric. 292

3.3.1 Data Augmentation 293

Data augmentation refers to a technique for artifi- 294

cially increasing the size of a training dataset by 295

applying transformations to the original data. This 296

technique is widely used in scenarios with limited 297

or no labeled data to enhance the model’s gener- 298

alization ability. In contrastive learning, augmen- 299

tations play a critical role in forming semantically 300

consistent positive pairs. 301

Common augmentations for tabular data include: 302

• Random cell deletion. 303

• Deletion/rearrangement/replacement of to- 304

kens in a cell. 305

• Row sampling (e.g., 50% of rows). 306

• Cell rearrangement within a table row. 307

• Column deletion. 308

• Column rearrangement within a table. 309
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Figure 4: General scheme of the proposed approach.

Currently, there is no research identifying the310

most effective augmentations for forming semanti-311

cally consistent pairs in the context of tabular data312

processing. Therefore, in this work, we selected313

two augmentations deemed most promising: ran-314

dom cell deletion and cell rearrangement within a315

column. For random cell deletion, 10% of all cells316

in a column are removed.317

3.3.2 Contrastive Loss318

Contrastive loss functions are widely used in rep-319

resentation learning tasks, as they enable models320

to better distinguish internal data structures and,321

consequently, extract more useful representations.322

A contrastive loss function aims to maximize agree-323

ment between positive pairs and minimize agree-324

ment between negative pairs in the vector space.325

There are several variations of contrastive loss326

functions. In this work, we adopt the NT-Xent327

loss (Normalized Temperature Cross-Entropy Loss)328

used in (Ting Chen and Hinton, 2020), defined as:329

L =
1

2N
∗

N∑
k=1

[l(2k − 1, 2k), (2k, 2k − 1)],

l(i, j) = −log
exp(si,j/τ)∑2N

k=1 1k ̸=i ∗ exp(si,k/τ)
,

si,j =
zi ∗ zj

||zi|| ∗ ||zj ||

(3)330

where 1[k ̸=i] is 1 if k ̸= i, otherwise 0; τ is the331

temperature parameter; and s is cosine similarity.332

3.4 Model Architecture333

Currently, Transformer-based models are central to334

natural language processing tasks. These models335

are versatile tools for text processing due to their336

ability to capture contextual dependencies between337

words in sequences and to train on unlabeled or338

partially labeled data. They achieve this efficiently 339

through high parallelism, making them preferable 340

for training on large datasets. 341

According to (Ting Chen and Hinton, 2020), two 342

critical hyperparameters in contrastive learning are 343

batch size and the number of epochs. Larger batch 344

sizes and more epochs result in more representa- 345

tive embeddings, leading to better performance on 346

downstream tasks during fine-tuning. 347

Based on this, the distilled multilingual BERT 348

model2 was chosen as the base encoder. This model 349

was trained on Wikipedia articles in 104 different 350

languages. Unlike the base version3, it consists 351

of only 6 layers (half the number of the base ver- 352

sion) and 12 attention heads. It has 134 million 353

parameters (compared to 177 million in the base 354

version). 355

Model distillation is a technique in machine 356

learning where knowledge is transferred from a 357

more complex model (teacher) to a more compact 358

one (student) while maintaining prediction quality. 359

This technique, combined with reducing the tok- 360

enizer’s maximum sequence length to 256 tokens, 361

enabled training with a batch size of 800, which is 362

25 times larger than that of a comparable state-of- 363

the-art English-language solution (Miao and Wang, 364

2023). 365

Research in (Ting Chen and Hinton, 2020) ex- 366

plored the use of projecting the encoder’s output 367

layer into a latent space for calculating the con- 368

trastive loss. Results indicate that applying a non- 369

linear projection during training positively impacts 370

representation quality. Thus, in this work, a two- 371

layer perceptron (MLP) is used after the encoder’s 372

output layer to project into a 128-dimensional la- 373

2https://huggingface.co/distilbert/
distilbert-base-multilingual-cased

3https://huggingface.co/google-bert/
bert-base-multilingual-cased
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Figure 5: Contrastive learning algorithm for tabular data.

tent space where the contrastive loss is computed374

using the aforementioned formula.375

4 Experimental Evaluation and376

Discussion377

All experiments were conducted on a graphics clus-378

ter. The cluster configuration includes two 16-core379

Intel Xeon Gold 6326 "Ice Lake" 2.9 GHz proces-380

sors, four NVIDIA A100 80 GB PCIe GPUs, and381

2 TB of DDR4-3200 RAM.382

4.1 Contrastive Learning Setup383

The approach was implemented in Python using the384

PyTorch and Transformers libraries. The AdamW385

optimizer (lr = 5e-5, eps = 1e-6) was chosen for386

gradient descent. To accelerate convergence, co-387

sine annealing was applied to dynamically reduce388

the learning rate. The temperature parameter, a389

hyperparameter of the contrastive loss function,390

was set to 0.1, as this value was found to be op-391

timal in (Ting Chen and Hinton, 2020). Under392

these settings, the pre-trained encoder model was393

trained for 100 epochs on 4 NVIDIA A100 GPUs394

using the Distributed-Data-Parallel technology of395

the PyTorch framework. Training lasted 9 days, 9396

hours, and 53 minutes. GPU memory consumption397

amounted to 290 GB.398

4.2 Setup for Semantic Column Annotation399

Model400

In this work, semantic interpretation (annotation)401

of table columns was selected as the downstream402

task. Previously, the RuTaBERT framework was403

proposed for this task, based on fine-tuning a pre- 404

trained multilingual BERT model using the spe- 405

cially prepared RWT-RuTaBERT dataset. This 406

dataset contains approximately 1.56 million labeled 407

columns. The core idea is to utilize the existing 408

pipeline of this framework, replacing the standard 409

BERT model with a specialized pre-trained table 410

encoder. The RWT-RuTaBERT dataset, with all 411

standard settings, was used for training. The valida- 412

tion set comprised 5% of the total training subset. 413

The technique of neighboring column serialization 414

was used to decompose column values into token 415

sequences. 416

According to (Ting Chen and Hinton, 2020), 417

the projection layer is trained to be invariant to 418

data transformations, potentially losing informa- 419

tion useful for downstream tasks. Therefore, for 420

further fine-tuning of the table encoder, the output 421

from the first linear layer of the projection with a 422

LeakyReLU activation function was used. Standard 423

training settings defined in the RuTaBERT frame- 424

work were applied. The model was fine-tuned for 425

30 epochs with a batch size of 32 on the RWT- 426

RuTaBERT dataset using 2 NVIDIA A100 GPUs. 427

Training lasted 2 days, 20 hours, and 15 minutes, 428

with GPU memory consumption of 9.9 GB. Ad- 429

ditionally, a model with a batch size of 256 was 430

trained with all other hyperparameters unchanged. 431

Under these settings, training took 4 days, 3 hours, 432

and 1 minute, with GPU memory consumption of 433

52 GB. 434
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4.3 Evaluation Metrics435

The primary metrics for evaluating the performance436

of the proposed approach are averaged F1 scores, as437

the task involves multiclass classification. Specif-438

ically, micro F1, macro F1, and weighted F1 are439

used due to the imbalance in the RWT-RuTaBERT440

dataset.441

Micro F1 is calculated across the entire confu-442

sion matrix and is defined as follows:443

microF1 = 2
MicroPrecision ∗MicroRecall

MicroPrecision+MicroRecall
(4)444

Macro F1 is the average F1 score for each seman-445

tic type (class), treating all classes equally without446

accounting for class imbalance. It is calculated as447

follows:448

macroF1 =
1

N
∗

N∑
i=1

F1i (5)449

where N is the number of semantic types (classes),450

F1i is the F1 for the i-th class.451

The weighted F-measure is calculated for each452

class and then aggregated as a weighted average,453

taking into account the number of instances for454

each class. Unlike the micro F1, this metric consid-455

ers the class imbalance. The weighted F-measure456

is computed using the following formula:457

weightedF1 =

C∑
i=1

[wi ∗ F1i], wi =
ni

N
(6)458

where C is the number of classes, ni is the num-459

ber of samples in the i-th class, N is the number of460

samples and F1i is the F1 score for the i-th class.461

4.4 Results and Discussion462

The results of the experimental evaluation are pre-463

sented in Table 2. A comparison of the perfor-464

mance of the proposed approach with several base-465

line solutions is provided.466

Firstly, a pre-trained language model, RuBERT4,467

which specializes in processing the Russian lan-468

guage, was selected. One of the transfer learning469

techniques was applied, where the weights of the470

encoder layers remained unchanged during train-471

ing. Thus, during fine-tuning of RuBERT on the472

RWT-RuTaBERT dataset, only the parameters of473

the classification layer were adjusted.474

4https://huggingface.co/DeepPavlov/
rubert-base-cased

Model micro macro weighted
F1 F1 F1

Doduo 0.140 0.040 –
RuBERT-ft 0.610 0.410 0.590
Doduo-ft 0.962 0.890 0.960
RuTaBERT 0.964 0.900 0.963
CoLeM-bs32 0.969 0.910 0.969
CoLeM-bs256 0.974 0.924 0.974

Table 2: Results of experimental evaluation on the RWT-
RuTaBERT dataset.

Secondly, the state-of-the-art framework Doduo 475

(Yoshihiko Suhara and Tan, 2022) was chosen, 476

which is a leading solution for the task of semantic 477

annotation of columns and relationships between 478

them. In this case, transfer learning was also ap- 479

plied by freezing the transformer layers and fine- 480

tuning only the final linear classifier layer. Ad- 481

ditionally, a full fine-tuning of the multilingual 482

BERT model was performed following the Doduo 483

approach on the RWT-RuTaBERT dataset (Fine- 484

tuned Doduo). 485

Thirdly, the original RuTaBERT approach was 486

considered. 487

The obtained evaluation results demonstrated 488

that the proposed approach outperformed all base- 489

line solutions in both training configurations (batch 490

sizes of 32 and 256). Specifically, the experiment 491

showed that while the RuBERT model is tailored 492

for processing the Russian language, it is not di- 493

rectly suited for tabular tasks, which proved chal- 494

lenging for this model. Consequently, existing 495

Russian-language models cannot be effectively ap- 496

plied to the task of semantic column annotation. 497

The Doduo model, trained using transfer learn- 498

ing techniques, exhibited relatively low evaluation 499

results. This is attributed to the fact that the model 500

was trained on tabular data exclusively in English. 501

Notably, the tokenizer of this model lacks sufficient 502

Russian-language tokens. As a result, it can be con- 503

cluded that a model trained on English data cannot 504

be directly applied to another language, such as 505

Russian, without modifying the base encoder to 506

accommodate the target language. 507

Meanwhile, the fine-tuned multilingual encoder 508

of the Doduo framework and the RuTaBERT ap- 509

proach demonstrated nearly comparable results in 510

terms of evaluation metrics. However, it can be ob- 511

served that the use of a pre-trained tabular encoder 512

based on contrastive learning positively impacts 513

7
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the performance. With a smaller model and iden-514

tical settings, the proposed approach achieved re-515

sults equivalent to those of the classical RuTaBERT516

model or the fine-tuned Doduo. Additionally, the517

model consumes approximately three times less518

GPU memory during training, requiring less than519

10 GB (with a batch size of 32, consistent across all520

three models), which enables training on a standard521

home computer. Furthermore, with a larger batch522

size (e.g., 256), the proposed approach achieved523

a performance gain of 1.5% compared to the clas-524

sical RuTaBERT model and nearly 3% compared525

to the fine-tuned Doduo. The experimental results526

highlight the potential of our approach for semantic527

annotation of Russian-language tables.528

To further evaluate CoLeM’s performance, we529

conducted a statistical analysis on three aspects:530

1) Datatype groups: We categorized all531

columns from the collected tables into 5 basic532

groups: Datetime, Numeric, Links, Short Text,533

and Long Text. Datetime columns included dates,534

years, or times. Numeric columns contained only535

numbers, for example, the results of measurements536

of length, weight or age. URL columns included537

different web addresses. Text columns were further538

divided into Short Text (tokens fewer than four)539

and Long Text (tokens four or more). We also540

identified a separate Persons datatype, given the541

prevalence of instances like "employer", "screen-542

writer", "athlete", and "football player". Table 3543

summarizes the Micro F1 score and distribution for544

each datatype group.545

Data type F1 (CoLeM) F1 (RuTaBERT)
Datetime 0.948 0.941
Long text 0.858 0.885
Numeric 0.760 0.749
Person 0.716 0.692
Short text 0.932 0.926
Links 0.611 0.699

Table 3: The performance for the six datatype groups.

2) Rare semantic types: Performance evalu-546

ations were also conducted for the 15 least fre-547

quently occurring semantic types. For comparison,548

checkpoints of the CoLeM-bs32 and RuTaBERT549

models, which achieved the highest macro F1 score550

on the training set, were used. The results are pre-551

sented in Table 4.552

The results demonstrate that, due to the robust553

tabular representations obtained, the CoLeM model554

significantly outperforms the existing state-of-the- 555

art (SOTA) Russian-language solution, RuTaBERT, 556

in terms of evaluation metrics for infrequently oc- 557

curring semantic types. 558

3) Model convergence: To evaluate the con- 559

vergence of the CoLeM model, experiments were 560

conducted for checkpoints of CoLeM-bs32 and 561

RuTaBERT models trained for 10 epochs. The 562

performance results are summarized in Table 5. 563

It can be observed that the CoLeM model con- 564

verges faster than the RuTaBERT model and has 565

1-3% better performance. This allows us to use 566

a smaller number of epochs in training stage, 567

while obtaining comparable or even superior per- 568

formance to the RuTaBERT model. 569

5 Conclusion 570

This study proposes an approach for semantic an- 571

notation of columns in Russian-language tables 572

based on contrastive learning. The experimental 573

results demonstrate that the approach mitigates the 574

dependency on large volumes of labeled data by 575

leveraging self-supervised learning on unlabeled 576

tables. Moreover, it outperforms existing baseline 577

solutions (Doduo and RuTaBERT) in terms of eval- 578

uation metrics, particularly for rare semantic types. 579

The approach also ensures computational efficiency 580

through the use of a distilled model and optimized 581

batch sizes, reducing memory requirements by 60% 582

compared to analogous methods. 583

The results of the experimental evaluation con- 584

firm the effectiveness of the proposed solution. In 585

the future, as part of a research project with the 586

Ivannikov Institute for System Programming of 587

the Russian Academy of Sciences (ISP RAS), it 588

is planned to integrate these results into a special- 589

ized table processor within the Talisman platform5. 590

Additionally, the approach will be extended to ta- 591

bles with horizontal and matrix layouts. Further 592

investigation will also focus on the use of new data 593

augmentations to enhance the robustness of tabular 594

representations. 595

Overall, the proposed approach opens up oppor- 596

tunities for the development of universal systems 597

for semantic interpretation of tables, which is rele- 598

vant for tasks involving the integration of structured 599

and semi-structured information, as well as busi- 600

ness analytics. 601

5http://talisman.ispras.ru
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Semantic type Number of samples (test subset) F1 (RuTaBERT) F1 (CoLeM-bs32)
camera 102 (4) 0.250 0.750
employer 101 (10) 0.899 1.000
device 101 (8) 0.625 0.875
animal 93 (7) 0.857 1.000
magazine 93 (9) 0.440 0.440
continent 92 (8) 0.625 0.750
novel 89 (11) 0.818 0.909
law 89 (9) 1.000 1.000
wrestler 88 (5) 0.400 0.600
college 87 (5) 0.000 0.200
museum 86 (4) 0.500 0.750
firm 85 (6) 0.333 0.333
prefecture 83 (10) 0.600 0.699
road 83 (6) 0.500 0.666
quote 76 (7) 0.857 1.000

Table 4: Experimental evaluation results for the 15 least frequently occurring semantic types

B Appendix: Model evaluation after 10 training epochs700

Model micro F1 Macro F1 Weighted F1
RuTaBERT (10 epochs) 0.952 0.856 0.952
CoLeM-bs32 (10 epochs) 0.966 0.888 0.966

Table 5: Results of model evaluation after 10 training epochs
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