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Abstract

Deep learning-based cortical surface reconstruction (CSR) approaches typically1

rely on supervision information provided by pseudo ground truth generated by2

conventional CSR methods, subject to errors associated with the supervision in-3

formation and also increasing computational cost of training data preparation.We4

propose a new method to jointly reconstruct multiple cortical surfaces using weak5

supervision from brain MRI ribbon segmentation results. Our approach initializes a6

midthickness surface, which is then deformed inward and outward to form the inner7

(white matter) and outer (pial) cortical surfaces, respectively, by jointly learning8

diffeomorphic flows by minimizing loss functions to optimize the surfaces towards9

the boundaries of the cortical ribbon segmentation maps. Specifically, a boundary10

surface loss drives the initialization surface to the inner and outer boundaries, while11

an inter-surface normal consistency loss regularizes the pial surface in challenging12

deep cortical sulci regions. Additional regularization terms are utilized to enforce13

edge length uniformity and smoothness of the reconstructed surfaces. Our method14

has been evaluated on two large-scale adult brain MRI datasets and one infant brain15

MRI dataset, demonstrating comparable or superior performance in CSR in terms16

of accuracy and surface regularity compared to alternative supervised deep learning17

methods.18

1 Introduction19

Cortical surface reconstruction (CSR) is a crucial step for both qualitative visualization and quan-20

titative characterization of cortical surfaces in imaging studies of brain morphology [15, 51], neu-21

rodegenerative diseases [6, 12, 43], and psychological disorders [42]. Well-established cortical22

analysis pipelines, such as BrainSuite [48], FreeSurfer [17], Connectome Workbench [18], and23

iBEAT V2.0 [52], have achieved significant success in reconstructing cortical surfaces from brain24

MRI data. However, these pipelines typically involve multiple processing steps, including iterative25

surface deformation and topology check and correction, resulting in lengthy processing time (e.g.,26

∼6h/subject). Moreover, each pipeline requires meticulously tuned parameters, posing challenges for27

generalization across diverse data domains, age groups, or acquisition protocols.28

Deep learning (DL) approaches have significantly accelerated CSR, demonstrating orders of magni-29

tude faster inference speeds while maintaining high accuracy and topology correctness [8, 11, 13,30

22, 26, 30–32, 41, 47, 54]. One line of research predicts implicit surface representations, such as31

signed distance functions [13, 21] or level sets [41], from which 3D meshes are extracted using the32

Marching Cube (MC) algorithm [27] and refined with topology correction algorithms [4] to detect33

and rectify topology errors, ensuring that the reconstructed surface conforms to a sphere-like topology.34

Another line of research focuses on learning explicit surface deformations, using methods such as35

flow-based [8, 11, 22, 26, 47, 54] or NODE-based techniques [30, 31]), to deform an initial mesh36

towards target cortical surfaces. However, all these methods heavily rely on supervision information37
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provided by pseudo ground truth (pGT) of cortical surfaces generated by conventional CSR methods ,38

regardless of whether they use implicit or explicit surface representations. The prolonged processing39

time for generating pGT surfaces limits the collection of sufficiently large datasets for training,40

and a general pipeline capable of extracting pGT surfaces across various data domains (e.g., age,41

modality) is currently lacking. Conversely, segmentation of brain structures is comparatively simpler,42

inspiring us to explore avenues to eliminate the need for supervised learning in CSR and to generalize43

DL-based CSR approaches to scenarios where ribbon segmentation results are readily available.44

The key challenges for achieving accurate weakly supervised reconstruction of cortical surfaces45

span three primary aspects. First, devising sub-voxel supervision signals presents a formidable46

hurdle. While existing approaches can produce precise segmentations [7, 20, 29, 45, 52], voxel-level47

representations may struggle to capture the intricate morphology of the cerebral cortex, especially48

its thin and highly-folded structure, due to the partial volume effect (PVE) inherent in brain MRI49

scans. This problem becomes particularly prominent in deep cortical sulci [17], where the two banks50

of grooves nearly converge, or in low-resolution images [52], such as under-sampled or infant MRIs.51

Second, effectively modeling the interdependence between multiple surfaces is crucial. Incorporating52

this prior knowledge into the design of models and training algorithms can alleviate the complexity53

of reconstructing both the inner (white matter) and outer (pial) surfaces, ensuring the spherical54

topology of the reconstructed surfaces [8, 54]. However, in the absence of pGT, it becomes more55

challenging to forcibly deform surfaces and less stable to optimize multiple surfaces concurrently.56

Third, maintaining optimal surface topology is paramount. Mesh uniformity, smoothness, and57

topology are susceptible to distortion during large deformations if networks are optimized based on58

randomly sampled vertices in 3D space for dense volumetric fields.59

In this paper, we introduce SegCSR, a novel weakly supervised DL framework aimed at reconstructing60

multiple cortical surfaces using ribbon segmentations derived from brain MRIs. We address the61

diffeomorphic deformation problem in a continues coordinate space, deforming the initialization62

midthickness surface towards the target inner and outer surfaces via innovative loss functions.63

Specifically, the boundary surface loss function based on the ribbon segmentations and the intensity64

gradient loss function based on the raw image facilitate sub-voxel-level surface movement. The65

inter-surface normal consistency loss function explicitly integrates the normal directions of the WM,66

midthickness, and pial surfaces, thereby regularizing the pial surface in challenging deep cortical67

sulci regions. Furthermore, we devise a customized edge length loss, in conjunction with the known68

normal consistency loss, to ensure surface uniformity and smoothness. Our main contributions can69

be summarized as follows:70

• We propose a new weakly supervised paradigm for reconstructing multiple cortical surfaces,71

reducing the dependence on pGT cortical surfaces in training, unlike existing DL methods.72

• We design two loss functions to optimize the surfaces towards the boundary of the cortical73

ribbon segmentation maps, along with regularization terms to enforce regularity of surfaces.74

• We conduct extensive experiments on two large-scale adult brain MRI datasets and one75

infant brain MRI dataset. Our new method achieves comparable or superior performance76

compared to existing supervised DL-based CSR alternatives.77

2 Related Works78

Cortical Surface Reconstruction (CSR). (I) Traditional CSR methods typically rely on empirically79

defined automatic image/surface processing techniques to accomplish tissue segmentation (e.g., WM,80

GM, cerebrospinal fluid (CSF)), hemisphere separation, subcortical filling, topology correction, WM81

surface reconstruction, and pial surface reconstruction sequentially. Established pipelines such as82

FreeSurfer [17], BrainSuite [48], and HCP [18] are tailored for processing adult brain images, while83

dHCP [34] and iBEAT V2.0 [52] are designed for neonatal brain images, which exhibit distinct84

differences in intensity values, size, and shape compared to adult brains. Despite achieving sub-voxel85

accuracy and maintaining spherical topology, the iterative surface deformation and topology check and86

correction procedures lead to lengthy processing times. (II) DL-based CSR methods have significantly87

enhanced reconstruction speed while preserving high accuracy. Approaches like SegRecon [19] and88

DeepCSR [13] predict a signed distance map for implicit surface representation, embedding the target89

surface as the zero level-set and extracting it using MC algorithms. However, these methods require90

topology correction to eliminate artifacts and ensure spherical topology. Alternatively, PialNN [32],91

TopoFit [22], Vox2cortex [8], the CorticalFlow series [26, 47], SurfFlow [11], CortexODE [31],92
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and CoCSR [54] leverage explicit representation to maintain good topology and overcome PVE by93

learning volumetric or vertex-wise diffeomorphic deformations and progressively deforming genus-094

template meshes. However, both implicit and explicit methods heavily rely on the supervision of pGT95

of cortical surfaces generated by traditional pipelines. Our proposed method is based on the explicit96

representation but differs significantly from them by utilizing ribbon segmentation maps for weakly97

supervising the model training process.98

Weakly-/Un-supervised Mesh Reconstruction. Although geometric DL methods for general99

computer vision tasks have been extensively studied, research on mesh reconstruction from 3D100

images under weakly-/un-supervised settings is relatively underexplored. One approach involves101

constructing mesh-to-image rasterizer loss functions, as demonstrated in [36], where 2D projection102

views are extracted from predicted 3D meshes and compared with ground truth segmentations.103

Another line of research, exemplified by [39], focuses on learning the correspondence between104

a template image and a target image, which is then utilized to deform the template mesh to the105

target location. However, these methods have primarily been applied to biomedical tasks involving106

organs with relatively simple shapes, such as the liver and heart. But the cerebral cortex presents a107

highly-folded thin structure with a significantly complex shape, necessitating more advanced methods.108

Diffeomorphic Deformation. Diffeomorphic deformation is a spatial transformation that guarantees109

both smoothness and invertibility in the mapping process [46]. It has been widely used in the110

modeling and analysis of brain morphometry, including image registration and surface reconstruction111

tasks. LDDMM [5] computes diffeomorphic deformation based on a time-dependent velocity vector112

field, while Arsigny et al. [2] employ a stationary velocity field (SVF) in conjunction with the113

scaling and squaring method to reduce computation complexity. Learning-based methods [3, 28,114

38] improve the computation efficiency, with regularizations such as smoothness [3] and inverse-115

consistency [38] enchancing the diffeomorphic property of the deformation. In the CSR task,116

diffeomorphic deformation strategies have been adopted to solve an ordinary differential equation117

(ODE) modeling the trajectories of each vertex of a surface. For instance, CoticalFlow methods [26,118

47] propose solving the ODE vertex-wise and derive a numerical condition to ensure homeomorphism119

of integration by training a chain of diffeomorphic deformation models in sequential stages. Recently,120

with the advances in neural ODE solver [10], CortexODE [31] parameterizes the trajectories of121

vertices on the surface as ODEs and proposes a pipeline to reconstruct WM and pial surfaces122

sequentially. Our method builds upon these works [31, 47, 54] and integrates multiple CSR tasks123

into a single framework, leveraging the efficiency and diffeomorphic properties of these strategies.124

3 Methodology125

Our proposed framework, depicted in Fig. 1, is designed to reconstruct multiple cortical surfaces126

simultaneously, eliminating the dependency on pGT generated by conventional and time-consuming127

CSR pipelines. We leverage as weak supervision the brain ribbon segmentation maps that are less128

accurate than pGT surfaces but more accessible. Section3.1 outlines the network structure that couples129

multiple cortical surfaces to reduce the learning difficulty. Section 3.2 describes the loss functions130

devised to supervise the network optimization, facilitating sub-voxel reconstruction accuracy and131

preserving optimal surface topology.132

3.1 Coupled Cortical Surface Reconstruction133

Existing supervised methods require pGT obtained from traditional CSR pipelines to provide precise134

sub-voxel supervision. They can effectively learn the deformation field, even from distant initial135

locations, to accurately align the initialization surface with the target surfaces [11, 26, 47]. However,136

brain ribbon segmentation maps are inherently discrete voxel grids, offering much coarser supervision.137

Consequently, the selection of the initialization surface becomes more critical. Moreover, given the138

intricate folded patterns of the cerebral cortex, the proximity of the two banks of grooves in deep139

cortical sulci often poses a considerable risk of generating topology errors (e.g., handles, holes) in the140

reconstructed surfaces. Conversely, voxels closer to the WM surface exhibit clearer contrast, enabling141

a distinct separation between sulci (Fig. 2 (b)). Thus, following [54], we opt for the midthickness142

layer, positioned midway between the WM and pial surfaces, to serve as a connection for coupling143

the reconstructions of both surfaces and achieve a balanced performance for both surfaces.144

As illustrated in Fig. 1, SegCSR employs a neural network to jointly model three diffeomorphic flows:145

Fθ(I,S0) = (vm,vo,vi). Here, I represents a multi-channel input consisting of brain MRI, cortical146
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Figure 1: The SegCSR framework overview. SegCSR takes as input a brain MRI image, cortical
ribbon segmentation maps, and signed distance maps of cortical surfaces, and simultaneously learns
three diffeomorphic deformations to optimize the initial midthickness surface S0 to align with the
target midthickness surface SM , and then deform SM outwards and inwards to the pial surface SG and
the WM surface SW , respectively. The model is optimized using weakly supervised loss functions:
the mesh loss guides the surfaces towards the boundaries of the cortical ribbon segmentation maps; the
inter-surface normal consistency loss regularizes the pial surface in deep cortical sulci; the intensity
gradient loss facilitates sub-voxel-level movement; and additional regularization terms control the
deformation trajectories of multiple surfaces as well as the uniformity and smoothness of the surfaces.

ribbon masks, and signed distance functions (SDFs); S0 denotes the initialization midthickness147

surface; and vm, vo, vi correspond to the velocity fields that drive S0 towards the true midthickness148

surface SM , outward to the pial surface SG, and inward to the WM surface SW , respectively. The149

SegCSR establishes an explicit one-to-one mapping between multiple surfaces and is trained by150

minimizing weakly supervised losses between the predicted mesh and the ribbon segmentations.151

The diffeomorphic deformation between the initialization surface and the target surface can be152

computed as the integration of an ODE [1] based on the velocity field v:153

dΦ(x, t)

dt
= v(Φ(x, t), t) s.t. Φ(x, 0) = x(0), and thus Φ(x, t) = x(0) +

∫ t

o

v(Φ(x, s), s)ds, (1)

where Φ(x, t) defines a trajectory from the source position x(0) = Φ(x, 0) to the target position154

x(1) = Φ(x, 1). According to the Cauchy-Lipschitz theorem [50], if the velocity field is Lipschitz155

continuous, the resulting mapping Φ is bijective with continuous inverse (i.e., a diffeomorphism).156

To solve this initial value problem, we perform the integration on the predicted velocity fields157

using standard numerical integration techniques, such as the Euler method and the Runge-Kutta158

method [9]. Specifically, for each integration step t ∈ [0, 1], each vertex’s coordinates can be updated159

by x(t+1) = x(t) + hv(Φ(x, t), t), where h = 1
T is the step size and T is the total time steps, and160

the velocity vector v for a vertex is trilinearly interpolated from its neighboring velocity vectors [54].161

3.2 Weak Supervision Loss Functions162

Mesh Loss. Weak supervision for SegCSR is derived from cortical ribbon segmentation maps of163

WM and GM (see Fig. 1, the filled interior area of WM and pial surfaces), which can be obtained164

from existing segmentation approaches [7, 20, 29, 45, 52]. Although these ribbon segmentation165

maps do not perfectly represent the intricate pial surface, the WM surface is relatively easier to166

recognize due to its clear local intensity contrast, providing a better-separable boundary (see Fig. 2167

(a-b)). Therefore, we use the boundary of the pGT WM segmentation to supervise the WM surface168

reconstruction. Inspired by [31, 54], we generate an SDF for the WM surface by using a distance169

transform algorithm, where voxels with values of zero represent the surface boundaries and voxels170

with negative or positive values encode their distances to the surface boundaries inward or outward,171
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Figure 2: (a) A brain MRI region. (b)-(g) are illustration of loss terms. (b) WM, midthickness,
pial surfaces in a deep sulcus region. (c-1) Bi-directional Chamfer loss for the WM surface; (c-2)
Uni-directional Chamfer loss for the pGT pial surface generated from the GM segmentation. (d)
Normal consistency between three reconstructed surfaces. (e) Intensity gradient along the normal
direction of a vertex in the surface. (f) The symmetric deformation trajectory. vo and vi are outward
and inward velocity fields respectively. (g) The customized edge length loss. A: area; µ: edge length.

respectively. We then apply a fast topology check and correction algorithm [4] to the SDF to ensure172

the surface maintains spherical topology. The WM surface SW∗ is extracted using the Marching173

Cubes algorithm [27]. The distance of the vertices between the predicted surface SW and the pGT174

surface SW∗ is minimized using the bi-directional Chamfer distance [26]:175

LchW =
1

|SW |
∑

p∈SW

min
p∗∈SW∗

∥p− p∗∥22 +
1

|SW∗ |
∑

p∗∈SW∗

min
p∈SW

∥p∗ − p∥22, (2)

where p and p∗ are the coordinates of vertices on meshes. See Fig. 2 (c-1) for illustration.176

For the pial surface, GM segmentation may fail to delineate the boundary in deep cortical sulci.177

As shown in Fig. 2 (c-2), using a similar pGT surface generation protocol as the WM surface to178

generate the pial surface SG∗ fail to capture cortical folding accurately. Directly fitting to SG∗ with179

bi-directional Chamfer loss causes the model to predict similarly inaccurate cortical sulci. To address180

this issue, we propose the boundary surface loss, which uses a uni-directional Chamfer distance to181

compute the shortest distance from the pGT pial surface SG∗ to the predicted pial surface SG:182

LchG =
1

|SG|
∑
p∈SG

min
p∗∈SG∗

∥p− p∗∥22. (3)

In this way, the deformed surface is not influenced by the inaccuracies of SG∗ and does not move183

outward from the deep sulci. The overall mesh loss is computed as Lmesh = LchW + LchG.184

Inter-Mesh Normal Consistency Loss. To further alleviate the difficulty of constraining the pial185

surface using the WM and midthickness surfaces, we propose leveraging the prior knowledge that186

the cerebral cortex has a sheet-like topology (i.e., the inner, middle, and outer surfaces are locally187

parallel to each other). As shown in Fig. 2 (d), this loss is defined to ensure that the deformation188

of the midthickness surface aligns with its normal direction, thereby maintaining similar normal189

directions on the target surfaces:190

Limnc =
1

|SM |
∑

p∈SM

(1− cos(npG
,npW

)), (4)
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where npG
and npW

are the normal vectors of the deformed vertex p on SM and SG respectively.191

Intensity Gradient Loss. In addition to ribbon segmentaions, inspired by the fact that traditional192

methods utilize raw image intensity contrast to define and optimize the target surfaces, we propose to193

adjust the nuance between GT target surface and the pGT segmentation boundaries. By definition [17,194

52], the WM (or pial) surface lies at the WM/GM (or GM/CSF) interface where image intensity change195

most drastically. We sample K points along the extended lines on each side of the normal direction at196

vertex p, and compute the gradients of neighboring points: Lgrad = 1
|SW |

∑
p∈SM

∑K
i=1 gradi(p)+197

1
|SG|

∑
p∈SG

∑K
i=1 gradi(p).198

Cycle Consistency Loss. We utilize the midthickness layer to establish a correspondence between199

the inner and outer surfaces, thereby reducing the difficulty of learning large deformations. However,200

there is no true midthickness surface available for supervision, nor a definitive criterion for choosing201

between bi-directional or uni-directional approaches for different regions on the midthickness surface.202

Additionally, the learned velocity fields vo and vi could potentially cause non-inverse transformations203

at the midthickness surface. To address these issues, we propose a loss function that enforces the204

midthickness surface resides halfway between the WM and pial surfaces and maintains consistency205

along the entire trajectory:206

Lcyc =
1

|SM |
∑

p∈SM

∥pΦW ◦ΦG
−p∥22+∥pΦG◦ΦW

−p∥22+∥LMid→GM (p)−LMid→WM (p)∥22, (5)

where pΦb◦Φa
represents deforming a vertex p ∈ SM with velocity field va and vb sequentially, and207

LMid→GM (p) is the accumulated trajectory length over T steps of deformation. For example, as208

shown in Fig. 2 (f), the deformations move a vertex pMid outward to pGM using vo and then inward209

to p′
Mid using vi, in which the two trajectories are aligned by minimizing the distance between pMid210

and p′
Mid. Similarly, we enforce the consistency between pΦG◦ΦW

and p. Furthermore, starting211

from the midthickness layer, the trajectory lengths of the vertex moving to the WM and pial surfaces212

should be equal, which is regularized by the third term in the equation above.213

Mesh Quality Loss. First, the reconstructed surface should be composed of uniformally distributed214

triangles. To accommodate various sizes of brain volume and image resolution, we devise a cus-215

tomized edge length loss to constrain the size of triangles in the predicted meshes for each subject.216

Specifically, we assume an ideal prediction where the faces are equilateral and of the same area A217

and drive the edge length to the target edge length µel = 2
√

A√
3

(see Fig. 2 (g)). Second, we employ218

a normal consistency loss to promote the surfaces’ smoothness. The mesh quality loss is defined as:219

Lqua =
1

|S|

∑
p∈S

1

|N (p)|
∑

k∈N (p)

(µel − ∥p− k∥2)2 +
∑

e∈S,f0∩f1=e

(1− cos(nf0 ,nf1))

 , (6)

where S denotes the predicted mesh, N (p) are the neighbors of vertex p, e is an edge, f0 and f1 are220

e’s two neighboring faces with their unit normals nf0 and nf1 .221

In summary, we combine all the losses to jointly optimize our SegCSR model: L = λ1Lmesh +222

λ2Limnc + λ3Lgrad + λ4Lcyc + λ5Lqua, where {λi}i=1,··· ,5 are weights to balance the loss terms.223

4 Experiments224

4.1 Experimental Setups225

Datasets. We evaluate our method on two large-scale adult datasets and one infant dataset of low226

resolution. The ADNI-1 [24] dataset consists of 817 subjects aged 55 to 90. We randomly split it into227

subsets of 654, 50, and 113 subjects for training, validation, and testing, respectively. The OASIS-228

1 [35] dataset consists of 413 subjects aged 18 to 96. We randomly split it into subsets of 330, 25, and229

58 subjects for training, validation, and testing, respectively. We followed a pre-processing protocol230

used in previous works [8, 13, 26, 31] for fair comparison. The T1-weighted MRI scans were aligned231

to the MNI152 template and clipped to the size of 192× 224× 192 at 1mm3 isotropic resolution.232

The pseudo ground-truth (pGT) of ribbon segmentation and cortical surfaces were generated using233

FreeSurfer v7.2.0 [17]. The BCP [23] dataset consists of 121 subjects ranging in age from 2 weeks234

to 12 months. We randomly allocate 90, 12, and 19 subjects for training, validation, and testing,235
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Table 1: Quantitative analysis of cortical surface reconstruction on geometric accuracy and self-intersections.
The Chamfer distance (CD), average symmetric surface distance (ASSD), Hausdorff distance (HD), and the ratio
of the self-intersecting faces (SIF) were measured for WM and pial surfaces on three datasets. The mean value
and standard deviation are reported. Lower scores indicate better results for all metrics. “S” denotes the use of
pGT surfaces from conventional pipelines, while “W” represents weak supervision by pGT ribbon segmentations.
In each supervision setting, the best results are in bold, and the second best results are underlined.

D
at

a

Su
p. Method

L-Pial Surface L-WM Surface
CD (mm) ASSD (mm) HD (mm) SIF (%) CD (mm) ASSD (mm) HD (mm) SIF (%)

A
D

N
I

S

CorticalFlow++ [47] 0.545±0.036 0.410±0.033 0.886±0.069 0.098±0.067 0.544±0.034 0.401±0.030 0.878±0.066 0.069±0.042
cortexODE [31] 0.476±0.017 0.214±0.020 0.455±0.058 0.022±0.012 0.458±0.016 0.192±0.015 0.436±0.014 0.015±0.011
Vox2Cortex [8] 0.582±0.028 0.370±0.025 0.746±0.057 0.059±0.039 0.577±0.027 0.353±0.022 0.722±0.055 0.043±0.023

CoCSR [54] 0.322±0.021 0.123±0.010 0.267±0.022 0.013±0.011 0.303±0.018 0.117±0.010 0.254±0.021 0.005±0.002

W
DeepCSR [13] 0.945±0.078 0.593±0.065 1.149±0.203 \ 0.938±0.076 0.587±0.064 1.137±0.193 \
3D U-Net [44] 0.598±0.049 0.341±0.037 0.782±0.163 \ 0.473±0.013 0.265±0.015 0.558±0.028 \
SegCSR (Ours) 0.578±0.019 0.324±0.019 0.749±0.049 0.008±0.009 0.467±0.014 0.258±0.019 0.545±0.036 0.009±0.009

O
A

SI
S

S

CorticalFlow++ [47] 0.531±0.035 0.399±0.030 0.812±0.057 0.088±0.045 0.529±0.033 0.398±0.030 0.810±0.055 0.086±0.042
cortexODE [31] 0.481±0.019 0.218±0.021 0.461±0.062 0.026±0.015 0.463±0.018 0.207±0.017 0.435±0.015 0.018±0.010
Vox2Cortex [8] 0.588±0.032 0.381±0.030 0.750±0.063 0.061±0.037 0.581±0.028 0.375±0.027 0.731±0.059 0.046±0.027

CoCSR [54] 0.410±0.034 0.142±0.016 0.281±0.024 0.016±0.012 0.349±0.024 0.128±0.019 0.266±0.022 0.007±0.002

W
DeepCSR [13] 0.986±0.085 0.617±0.070 1.331±0.212 \ 0.975±0.081 0.594±0.067 1.151±0.197 \
3D U-Net [44] 0.611±0.069 0.332±0.050 0.774±0.267 \ 0.454±0.013 0.245±0.017 0.489±0.031 \
SegCSR (Ours) 0.581±0.016 0.321±0.018 0.725±0.040 0.010±0.010 0.449±0.011 0.223±0.016 0.461±0.027 0.010±0.009

B
C

P

S
CorticalFlow++ [47] 0.927±0.271 0.731±0.036 1.943±0.175 1.114±0.385 0.895±0.242 0.722±0.034 1.880±0.151 0.533±0.107

cortexODE [31] 0.759±0.082 0.396±0.032 0.823±0.103 0.124±0.061 0.678±0.071 0.349±0.031 0.816±0.099 0.101±0.034
CoCSR [54] 0.576±0.041 0.216±0.023 0.468±0.063 0.064±0.040 0.544±0.038 0.199±0.020 0.447±0.049 0.058±0.033

W
DeepCSR [13] 2.673±1.131 1.224±0.215 3.112±1.218 \ 1.440±0.521 0.428±0.051 0.933±0.118 \
3D U-Net [44] 1.175±0.314 0.793±0.059 2.140±1.021 \ 0.688±0.120 0.377±0.041 0.791±0.064 \
SegCSR (Ours) 0.927±0.070 0.497±0.061 1.287±0.144 0.061±0.058 0.876±0.067 0.478±0.052 1.206±0.132 0.055±0.057

respectively. Rigid registration was applied to the T1w and T2w image pairs. The pGT of ribbon236

segmentation and cortical surfaces were generated by the iBEAT v2.0 [52]. The intensity values of237

MRI scans, ribbon segmentation maps, and SDFs were normalized to [0, 1] and the coordinates of the238

vertices were normalized to [−1, 1]. All the models were trained on the training set until they reached239

a loss plateau on the validation set and evaluated on the test set.240

Implementation Details Our framework was implemented in PyTorch [40] and trained on a worksta-241

tion with 12 GB NVIDIA P100 GPU. The 3D U-Net [44] for segmentation of ribbons was trained for242

200 epochs using Adam [25] optimization and achieved an average Dice index of 0.96 on the testing243

set. The SegCSR model utilized T = 5 steps (i.e., step size is 0.2) in Euler solver. We trained our244

SegCSR model using Adam optimizer (β1 = 0.9, β2 = 0.999, ϵ = 1e−10, learning rate 1e−4) for245

400 epochs to reconstruct both WM, midthickness, and pial surfaces of both brain hemispheres. We246

set λ1 = λ4 = 1 and λ2 = λ3 = λ5 = 0.1. The surface meshes had ∼130k vertices. More details247

can be found in the Supplementary Materials.248

Evaluation Metrics We utilized three distance-based metrics to measure the CSR accuracy: Chamfer249

distance (CD), average symmetric surface distance (ASSD), and 90th-percentile Hausdorff distance250

(HD). CD [16, 53] measures the mean distance between two sets of vertices. ASSD [13] and251

HD [13, 49] measure the average and maximum distance between two surfaces. They were computed252

bidirectionally over ∼130k points uniformly sampled from the predicted and target surfaces. A lower253

distance means a better result. Since topology is also important in CSR, we utilized the ratio of254

self-intersection faces (SIF) [13, 14, 31, 54] to measure reconstructed surface quality.255

4.2 Comparison with Related Works256

We compare SegCSR with both implicit and explicit learning-based cortical surface reconstruction257

approaches described in Section 1 and summarize the experimental results in Table 5.258

On Adult Datasets. (I) Comparison with Implicit Approaches. We compare SegCSR with two259

representative implicit representation approaches on the ADNI and OASIS datasets. As shown260

in Table 5, SegCSR achieves superior geometric accuracy. Note that both DeepCSR [13] and 3D261

U-Net [44] require post-processing to correct topology and extract a mesh, resulting in SIFs of 0.262

Without post-processing, the SIFs for 3D U-Net’s WM and pial surfaces range from 3% to 15%.263

SegCSR produces a negligible number of self-intersecting faces, ∼0.3% on average for both white264

and pial surfaces. Fig. 3 shows that SegCSR effectively deforms the pial surface into deep sulci,265

while the baseline approaches exhibit large geometric errors due to the PVE problem of brain MRI.266
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(a) DeepCSR (b) CortexODE (c) SegCSR (S0 setting) (d) SegCSR (S0* setting) (e) pGT from FreeSurfer

Figure 3: Visualization of reconstructed pial surfaces compared to DeepCSR and CortexODE. CortexODE is
trained with pGT from FreeSurfer; DeepCSR and ours are trained with pGT ribbon segmentations.

Additionally, SegCSR requires only 0.37s of runtime per brain hemisphere, orders of magnitude267

faster than traditional FreeSurfer pipelines. (II) Comparison with Explicit Approaches. We compare268

SegCSR with explicit learning-based approaches, including CorticalFlow++ [47], Vox2Cortex [8],269

CortexODE [31], and CoCSR [54]. These methods are trained with pGT surfaces generated by270

conventional pipelines, providing more accurate supervision than pGT ribbon segmentations. For271

a fair comparison, we employ the same network structure for the current best CoCSR [54] and our272

SegCSR, with CoCSR serving as an upper-bound performance benchmark for our weakly supervised273

SegCSR. As shown in Table 5, SegCSR surprisingly surpasses some supervised baselines in terms of274

both geometric and morphological accuracy, demonstrating its potential to replace existing methods275

when accurate surface supervision is not available.276

On Infant Dataset. Infant brain MRIs present additional challenges due to the smaller size of fetal277

brains, limited image resolution, and lower image contrast, which together make the reconstruction278

task more difficult. Consequently, overall performance is inferior compared to adult datasets. We279

compare SegCSR with both implicit and explicit representation approaches. The results in Table 5280

show that SegCSR achieves superior performance than the implicit DeepCSR and 3D U-Net methods,281

and comparable performance to explicit methods like CorticalFlow++, CortexODE, and CoCSR.282

4.3 Ablation Studies283

Table 2: Ablation studies on the ADNI dataset. The setting S0 refers to our complete setting (cf. Table 5). Top:
The impact of loss functions. Bottom: The impact of initialization surface location.

Setting Loss L-Pial Surface L-WM Surface
Lmesh Limnc Lgrad Lcyc Lqua CD (mm) ASSD (mm) HD (mm) SIF (%) CD (mm) ASSD (mm) HD (mm) SIF (%)

S0 ✓ ✓ ✓ ✓ ✓ 0.578±0.019 0.324±0.019 0.749±0.049 0.008±0.009 0.467±0.014 0.258±0.019 0.545±0.036 0.009±0.009
S1 ✓ ✓ ✓ ✓ 0.576±0.019 0.323±0.019 0.747±0.046 0.012±0.011 0.467±0.015 0.257±0.020 0.542±0.036 0.011±0.011
S2 ✓ ✓ ✓ 0.579±0.019 0.325±0.019 0.748±0.047 0.014±0.013 0.469±0.016 0.248±0.019 0.544±0.042 0.015±0.014
S3 ✓ ✓ 0.579±0.020 0.325±0.021 0.749±0.050 0.018±0.014 0.473±0.013 0.249±0.018 0.544±0.039 0.017±0.013
S4 ✓ 0.589±0.034 0.356±0.039 0.764±0.067 0.015±0.012 0.473±0.012 0.256±0.020 0.564±0.042 0.014±0.013

S0⋆ ✓⋆ ✓ ✓ ✓ ✓ 0.607±0.034 0.327±0.024 0.752±0.077 0.026±0.016 0.469±0.015 0.258±0.020 0.547±0.038 0.020±0.015
S4⋆ ✓⋆ 0.626±0.053 0.321±0.039 0.773±0.168 0.034±0.025 0.476±0.013 0.256±0.018 0.562±0.034 0.031±0.017

Init. Surface
Location

L-Pial Surface L-WM Surface
CD (mm) ASSD (mm) HD (mm) SIF(%) CD (mm) ASSD (mm) HD (mm) SIF(%)

WM 0.878±0.077 0.587±0.060 1.084±0.097 0.012±0.011 0.439±0.011 0.211±0.013 0.430±0.028 0.007±0.008
Mid 0.578±0.019 0.324±0.019 0.749±0.049 0.008±0.009 0.467±0.014 0.258±0.019 0.545±0.036 0.009±0.009
GM 0.489±0.016 0.317±0.018 0.567±0.044 0.008±0.008 0.889±0.085 0.597±0.059 1.211±0.104 0.020±0.018

Loss Functions. We evaluated the contribution of different losses of our method to the surface284

reconstruction performance in terms of both accuracy (CD, ASSD, HD) and topological correctness285

(SIF). The results are summarized in Table 2 (Top). The setting S4 represents using our proposed286

Chamfer loss (i.e., uni-directional for the pial surface) alone, while S4⋆ referes to using existing287

bi-directional Chamfer loss for both WM and pial surfaces. The results of S4 and S4⋆ indicated288

that the model using bi-directional Chamfer loss overfitted to the pGT segmentation boundary and289

failed to fit the deep cortical sulci. Another pair of comparison, S0 and S0⋆, showed a similar290

phenomenon. Enforcing the inter-mesh normal consistency of the WM and pial surfaces (S3, Limnc)291

improved geometric accuracy by explicitly constraining the nromal direction of two surfaces but292

slightly worsened the topology, which might be caused by the discrepancy between the midthickness293

and the WM (and pial) surface. The proposed intensity gradient loss (S2, Lgrad) helped adjust the294

deformed surfaces locally, leading to slightly improved geometric accuracy and reduced topology295

error. Enforcing equality of the trajectories from the midthickness surface to the WM and pial surfaces296
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and symmetric cycle consistency of two trajectories (S1, Lcyc) helped optimize the midthickness297

surface and promoted the invertibility of deformations. Moreover, the inclusion of regularization298

terms on the uniformity and smoothness of the reconstructed surfaces (S0, Lqua) enhanced the299

surface quality and significantly reduce the self-intersection face ratio. Overall, our proposed method300

struck a balance between geometric accuracy and topology quality, with each component playing a301

complementary role.302

Initialization Surface Location. Table 2 (Bottom) shows the impact of the initialization surface303

location. Starting from either the WM or midthickness surfaces leads to satisfactory results. Con-304

versely, initializing from the GM surface introduced more difficulty in learning large deformations305

into deep sulci due to the severe partial volume effect, resulting in worse average geometric accuracy306

for both surfaces. The results also indicated that the closer the initial surface was to its target surface,307

the higher the reconstruction accuracy achieved. Therefore, starting from the midthickness surface308

strikes a balance between WM and pial surface reconstruction outcomes.309

4.4 Reproducibility310 Table 3: Reproducibility analysis.

Method L-WM Surface
CD (mm) ASSD (mm) HD (mm)

SegCSR (Ours) 0.473±0.016 0.254±0.024 0.520±0.062
DeepCSR 0.505±0.047 0.297±0.053 0.610±0.100
CoCSR 0.451±0.019 0.235±0.030 0.492±0.059

CortexODE 0.457±0.021 0.238±0.031 0.504±0.071
FreeSurfer 0.476±0.015 0.253±0.022 0.519±0.048

Method L-Pial Surface
CD (mm) ASSD (mm) HD (mm)

SegCSR (Ours) 0.529±0.023 0.285±0.033 0.622±0.066
DeepCSR 0.560±0.055 0.341±0.060 0.668±0.118
CoCSR 0.493±0.024 0.276±0.036 0.573±0.070

CortexODE 0.506±0.029 0.272±0.034 0.581±0.079
FreeSurfer 0.526±0.021 0.283±0.032 0.595±0.068

We conducted an experiment on the Test-Retest311

dataset [33], which comprises 40 MRIs collected within312

a short period for each of the 3 subjects. The cor-313

tical surfaces of the same subject should be nearly314

identical. Following the experimental setup outlined315

in [8, 13, 31, 54], we utilized the iterative closest-point316

algorithm to align image pairs and computed the ge-317

ometric distance between surfaces. The results for318

the left hemisphere are presented in Table 3, showing319

that SegCSR obtained superior reproducibility com-320

pared with DeepCSR (implicit representation; weakly321

supervised) and was comparable to the conventional322

FreeSurfer pipeline and supervised DL-based CSR323

methods. This implied that the results generated by SegCSR can be reliably used for downstream324

analyses, such as investigating cortical thickness changes in patients.325

5 Conclusions326

We introduce SegCSR, a novel approach to jointly reconstruct multiple cortical surfaces using327

weak supervision from ribbon segmentations derived from brain MRIs. Our method initializes a328

midthickness surface and then deforms it inward and outward to the inner and outer cortical surfaces by329

jointly learning diffeomorphic flows. The new boundary loss function optimizes the surfaces toward330

the boundaries of the cortical ribbon segmentation maps while the inter-surface normal consistency331

loss regularizes the pial surface in complex and challenging cortical sulci regions. Additional332

regularization terms are incorporated to enforce reconstructed surfaces’ uniformity, smoothness,333

and topology. Extensive experiments conducted on large-scale adult and infant brain MRI datasets334

demonstrate superior performance in terms of accuracy and surface regularity compared to existing335

supervised DL-based alternatives.336

Limitations and Future Directions. The efficacy of SegCSR is influenced by the quality of pGT337

segmentations. Also, We can utilize brain tissue segmentation as auxiliary functions to supervise the338

model training. SegCSR constrains the inter-mesh consistency of the deformation on the midthickness339

surface, potentially affecting anatomical fidelity of pial surfaces. The method should be tested on340

more diverse cohorts of subjects to demonstrate its efficacy on real world neuroimage analysis tasks.341

Societal Impact. Our proposed method has been rigorously evaluated on four real-world brain MRI342

datasets, showcasing its capacity to assist doctors and scientists in both quantitative and qualitative343

analyses of the cerebral cortex. Nonetheless it is imperative to conduct more thorough evaluation on344

a larger cohort of subjects and across various imaging qualities. And the deployment of the model in345

clinical settings should be approached with caution and under human supervision.346
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A Model Details496

A.1 Cortical Ribbon Segmentation Network Architecture497

Fig. 4 (Left) shows the detailed network architecture of our cortical ribbon segmentation network,498

which is a 5-level hierarchical encoder-decoder with skip connections. The network processes a 3D499

brain MRI to produce a cortical ribbon segmentation map. The white matter (WM) segmentation500

includes the interior of the WM surface, encompassing cortical WM, deep gray matter, ventricles,501

hippocampus, and other tissues within the surface. Similarly, the gray matter (GM) segmentation502

includes the interior of the pial surface. The output map has five classes: left hemisphere WM and503

GM, right hemisphere WM and GM, and background. In the encoder, each level uses a 3× 3× 3504

convolutional layer with a stride of 2 to downsample the features. In the decoder, features are505

upsampled by 2× at each scale, concatenated with the corresponding features from the encoder via506

skip connections, and then fused using a 3× 3× 3 convolutional layer with a stride of 1. For feature507

extraction at the input, a 3 × 3 × 3 convolutional layer with a stride of 1 is used. Before the final508

prediction, three consecutive convolutional layers are applied. Each convolutional layer is followed509

by a leaky ReLU activation function, except for the last one, which uses a Softmax function before510

computing the cross-entropy loss with the ground truth.511
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Figure 4: Left: 3D U-Net architecture for ribbon segmentation. The output, i.e., the cortical ribbon
map, is overlaid on the input image for illustration. Right: 3D U-Net architecture for cortical surface
reconstruction. The learned velocity fields are used to calculate deformations.

A.2 Cortical Surface Reconstruction Network Architecture and Training details512

As shown in Fig.4 (Right), our cortical surface reconstruction (CSR) network operates at five scales.513

To conserve memory, we downsample the input image using a 3× 3× 3 convolution with a stride of514

2 and skip complex feature fusion via skip connections in the decoding path at this scale. To improve515

the accuracy of the velocity fields (VFs), we use 2× 2× 2 deconvolutions with a stride of 2 in the516

decoding path instead of 2× trilinear upsampling. At the output stage, we employ three parallel517

3× 3× 3 convolutional layers to generate VFs for the white matter (WM), midthickness, and pial518

surfaces, respectively. ReLU activation functions are used after each convolutional layer, except for519

the three parallel layers, where Softsign functions are applied. The VFs are then utilized to compute520

diffeomorphic deformations.521
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B Experimental Settings522

B.1 Dataset Preprocessing523

We preprocessed all the MRIs of the ADNI-1 [24] and OASIS-1 [35] datasets with the same protocols524

as following: Based on the standard processing protocol in FreeSurfer V7.2.0 [17], the original525

images were conformed and normalized (saved as orig.mgz), affinely registered to the MNI152526

template [8] using the NiftyReg toolbox [37]. The respective ribbon segmentation maps, SDFs, and527

pseudo-ground-truth surfaces were also transformed using the computed transformation. Similarly,528

we utilize iBEAT V2.0 [52] to process the BCP [23] dataset and merge the brain tissue segmentation529

results as the ribbon segmentation maps.530

B.2 Baselines531

We compared our SegCSR with representatives from the two categories of existing DL-based CSR532

methods and evaluated their performance for both WM and pial surface reconstruction. DeepCSR [13]533

and 3D U-Net [44] represent implicit surface reconstruction methods, while others fall into the534

category of explicit methods. Note that we modify the 3D U-Net method to first generate SDFs535

based on the ribbon segmentation results, then perform topology correction, and finally utilize536

the Marching Cubes algorithm to extract the mesh. Since it does not require pGT surfaces from537

FreeSurfer for training supervision, it can be treated as a weakly supervised learning-based baseline.538

CorticalFlow++[47] utilizes smoothed convex hulls as the initialization template, trains a chain of539

deformation fields, and employs a fourth-order Runge-Kutta (RK4) solver to compute the integration540

for the initial value problem. CortexODE[31] uses WM segmentation for surface initialization and541

Neural ODE for deformation computation. Vox2cortex [8] deforms averaged surface templates with542

a GNN-based network to reconstruct multiple surfaces. CoCSR [54] integrates multiple cortical543

surface reconstructions into a single network. A summary of the state-of-the-art CSR methods is544

provided in Table 4.545

Table 4: Summary of baseline methods in terms of surface representation, supervision in training,
and loss functions.

Method Representation Supervision Primary Loss function
3D U-Net [44] Implicit Ribbon segmentation Cross Entropy
DeepCSR [13] SDFs L1 Loss

CorticalFlow++ [47]

Explicit

Mesh Bi-directional Chamfer Loss
cortexODE [31] Mesh Bi-directional Chamfer Loss
Vox2Cortex [8] Mesh Bi-directional Chamfer Loss

CoCSR [54] Mesh Bi-directional Chamfer Loss
SegCSR (Ours) Explicit Ribbon segmentation Weak Supervision

C More Experimental Results546

C.1 Quantitative comparison of our methods with Related Works547

Due to space limit, we only showcase the quantitative results on left hemisphere in the main paper.548

Quantitative comparison results on the right hemisphere are summarized as a supplement to Table 1549

in the main paper.550
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Table 5: Quantitative analysis of cortical surface reconstruction on geometric accuracy and self-
intersections. The Chamfer distance (CD), average symmetric surface distance (ASSD), Hausdorff
distance (HD), and the ratio of the self-intersecting faces (SIF) were measured for WM and pial
surfaces on three datasets. The mean value and standard deviation are reported. Lower scores indicate
better results for all metrics. “S” denotes the use of pGT surfaces from conventional pipelines, while
“W” represents weak supervision by pGT ribbon segmentations. In each supervision setting, the best
results are in bold, and the second best results are underlined.

D
at

a

Su
p. Method

R-Pial Surface R-WM Surface
CD (mm) ASSD (mm) HD (mm) SIF (%) CD (mm) ASSD (mm) HD (mm) SIF (%)

A
D

N
I

S

CorticalFlow++ [47] 0.550±0.038 0.413±0.034 0.891±0.071 0.101±0.069 0.548±0.035 0.403±0.032 0.883±0.068 0.071±0.042
cortexODE [31] 0.482±0.019 0.220±0.022 0.461±0.060 0.033±0.017 0.470±0.020 0.207±0.019 0.444±0.018 0.023±0.016
Vox2Cortex [8] 0.593±0.032 0.382±0.029 0.755±0.061 0.071±0.045 0.588±0.029 0.363±0.024 0.741±0.057 0.059±0.035

CoCSR [54] 0.326±0.023 0.126±0.012 0.271±0.024 0.015±0.013 0.320±0.020 0.124±0.012 0.265±0.022 0.006±0.003

W
DeepCSR [13] 0.948±0.080 0.597±0.068 1.154±0.207 \ 0.942±0.077 0.589±0.065 1.140±0.195 \
3D U-Net [44] 0.601±0.048 0.342±0.037 0.784±0.166 \ 0.476±0.014 0.268±0.016 0.563±0.031 \
SegCSR (Ours) 0.582±0.021 0.328±0.022 0.751±0.050 0.009±0.009 0.470±0.015 0.261±0.021 0.548±0.038 0.011±0.010

O
A

SI
S

S

CorticalFlow++ [47] 0.540±0.037 0.405±0.032 0.834±0.060 0.095±0.052 0.536±0.035 0.402±0.031 0.830±0.058 0.088±0.049
cortexODE [31] 0.497±0.023 0.225±0.024 0.473±0.065 0.038±0.027 0.481±0.021 0.214±0.021 0.450±0.022 0.025±0.019
Vox2Cortex [8] 0.598±0.033 0.386±0.031 0.761±0.064 0.072±0.040 0.592±0.031 0.379±0.028 0.752±0.061 0.061±0.037

CoCSR [54] 0.411±0.034 0.144±0.017 0.284±0.022 0.018±0.015 0.353±0.026 0.130±0.021 0.272±0.024 0.009±0.004

W
DeepCSR [13] 0.989±0.086 0.619±0.071 1.336±0.215 \ 0.980±0.082 0.601±0.069 1.175±0.202 \
3D U-Net [44] 0.613±0.070 0.333±0.050 0.777±0.268 \ 0.456±0.014 0.249±0.020 0.493±0.033 \
SegCSR (Ours) 0.584±0.018 0.323±0.019 0.728±0.041 0.012±0.011 0.452±0.012 0.224±0.016 0.465±0.030 0.012±0.010

B
C

P

S
CorticalFlow++ [47] 0.926±0.271 0.729±0.035 1.940±0.174 1.113±0.374 0.892±0.240 0.721±0.033 1.877±0.148 0.531±0.105

cortexODE [31] 0.758±0.081 0.394±0.032 0.820±0.102 0.121±0.060 0.676±0.069 0.346±0.029 0.814±0.098 0.098±0.033
CoCSR [54] 0.575±0.038 0.214±0.022 0.464±0.059 0.060±0.037 0.542±0.038 0.198±0.020 0.446±0.049 0.056±0.030

W
DeepCSR [13] 2.672±1.131 1.222±0.214 3.101±1.209 \ 1.437±0.519 0.426±0.049 0.927±0.116 \
3D U-Net [44] 1.174±0.312 0.790±0.058 2.136±1.020 \ 0.687±0.118 0.376±0.039 0.788±0.063 \
SegCSR (Ours) 0.926±0.070 0.497±0.060 1.287±0.142 0.058±0.056 0.875±0.067 0.476±0.050 1.203±0.130 0.054±0.055
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