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Abstract

Current unlearning techniques and safety training consistently fail to remove
dangerous knowledge from language models. We analyze the root causes and
propose a highly selective technique which unlearns robustly and without disrupting
general performance.
We perform PCA on activations and output gradients to identify subspaces con-
taining common representations, and collapse them before calculating unlearning
updates. This way we avoid unlearning general representations, and only target
those specific to the unlearned facts.
When unlearning WMDP dataset facts from Llama-3.1-8B, we drop post-attack
accuracy 30x more than SOTA (Circuit Breakers) on biohazardous facts and 6x
more on cyberhazardous facts. Despite this, we disrupt general performance 30x
less, while requiring less than 3 GPU-seconds per fact.
Code: github.com/filyp/unlearning

1 Introduction

During pre-training, language models learn hazardous capabilities useful e.g. for bioterrorism and
cybercrime [Li et al., 2024]. They even acquire information about their own safety controls, which in
the future could let models circumvent them [Roger, 2024, Greenblatt et al., 2024].

Popular safety training approaches like DPO and RLHF do not eliminate unwanted capabilities, but
rather teach the model to stop using them Lee et al. [2024]. These concealed capabilities can be
resurfaced by jailbreak attacks [Zou et al., 2023] or even completely accidentally [Qi et al., 2023].
Even methods designed specifically for unlearning can be easily reversed [Łucki et al., 2025, Lynch
et al., 2024, Deeb and Roger, 2024].

In this work, we identify the fundamental cause of unlearning failure: naive unlearning disrupts
general representations shared between harmful and benign capabilities (see Section 3.3). Then,
during fine-tuning attacks, these broken representations can be identified and fixed because they are
also present in the attacker’s training data. We saw that unlearning becomes vulnerable to attacks as
soon as it causes even 0.1% general performance degradation.

Figure 1 presents the CIR technique, which before calculating unlearning updates first removes the
general representations from activations and gradients. 2 We pair it with a representation engineering
loss, but rather than breaking residual stream activations as in Zou et al. [2024], we directly break
MLP outputs before they are added to the residual stream, which works 40% better.

∗Correspondence to: filip.science921@passinbox.com
2Disambiguation: By "gradients" we always mean the gradients that flow into modules during backprop-

agation, before weight updates are computed. For the final per-weight gradients, we always use the term
"update".

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Lock-LLM Workshop:
Prevent Unauthorized Knowledge Use from Large Language Models - Deep Dive into Un-Distillate, Un-
Finetunable, Un-Compressible, Un-Editable, and Un-Usable.
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(a) Collapse of Irrelevant Representations (CIR) diagram.
In orange we show "dirty" vectors, which contain representations irrelevant to the unlearning task. Unlearning
on them would cause disruption and unrobustness. In green we show the purified vectors, which target only the
unwanted representations.
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(b) Comparison of unlearning methods.
Methods are terminated once they hit a disruption threshold and then tested under a fine-tuning attack. Like
Deeb and Roger [2024] we retrain on facts different than evaluated facts, but from the same category.

Figure 1: CIR diagram and comparison with prior methods.

2 Related work

Unlearning methods Methods relying solely on backpropagation, like DPO [Rafailov et al., 2024],
only deactivate unwanted capabilities, not remove them [Lee et al., 2024]. For this reason, alternative
unlearning approaches have been proposed. Several recent methods aim to disrupt the intermediate
activations of the model [Zou et al., 2024, Rosati et al., 2024, Li et al., 2024]. Others incorporate
meta-learning [Tamirisa et al., 2024, Sondej et al., 2025, Henderson et al., 2023] which simulates
how an attacker could relearn the unwanted knowledge, to prepare against it. Some try to locate the
harmful neurons or activation directions and ablate them Wang et al. [2024], Wu et al. [2023], Uppaal
et al. [2024], Suau et al. [2024].

Unlearning reversal However, currently all existing unlearning techniques are easily reversed
by fine-tuning, jailbreaks, few-shot prompting, disabling refusal mechanisms, or out-of-distribution
inputs [Łucki et al., 2025, Lynch et al., 2024]. Even for methods which ablate harmful concepts, Lo
et al. [2024] found that the model can repurpose neurons with similar meaning to quickly relearn
them.
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Low mutual information attacks Failure of current unlearning methods has been shown most
explicitly by Deeb and Roger [2024], where attackers could recover supposedly unlearned facts
by training on a completely independent set of facts, which definitively proves that they were not
removed. In our experiments, for the fine-tuning attacks we use the same approach – trying to recover
the target facts by training on different facts from the same category.

3 Motivation for unlearning selectivity

In this section, we will share our insights as to why unlearning has been so challenging. We hope
to show how our technique emerges naturally as a response to these issues. (To go straight to our
method, you can skip to Section 4.)

3.1 Disruption leads to unrobustness

Existing unlearning methods are consistently easy to undo. We have noticed that we can predict how
successful a fine-tuning attack will be by looking at the disruption during unlearning. Let us divide
unlearning runs into two phases: "non-disruptive", which lasts as long as retain loss stays below
100.1% of its initial value, and "disruptive", which starts after that. (Retain loss is the model’s loss
computed over the retain datasets defined in Section 5.)

On Figure 4 (in the appendix) we see that unlearning achieved during the disruptive phase is usually
reversible with a fine-tuning attack. But surprisingly, unlearning that happened without any
disruption remains robust. Sometimes disruptive unlearning is partially robust too, but it is not
guaranteed. This means that letting unlearning disrupt general performance is unacceptable. In our
experiments, unlearning becomes unrobust after as little as 0.1% retain set disruption. This finding
explains the results from Deeb and Roger [2024], who allowed unlearning to disrupt retain loss by
5%, and then showed near-zero robustness.

3.2 Disruption is costly

Existing unlearning techniques also try to minimize disruption, but they typically do it by training
on the retain set, hoping to undo the damage that the unlearning has caused. But while breaking the
model is easy, in our experience fixing it takes a prohibitively long time. This makes sense – after all
the model’s weights have already been extremely optimized through multi-million dollar training
runs. If we aimlessly break them, we should not expect that going back to the optimal values will be
easy. So instead of fixing the damage from unlearning, ideally we should not cause the damage in the
first place.

3.3 Disruption of superficially similar facts

Unlearning modifies the model to make unwanted answers less likely. For example when unlearning
"The capital of France is Paris", there are many ways to make "Paris" less likely: actually forgetting it
is France’s capital, forgetting what "capital" means, forgetting that "is" requires the answer to follow,
etc. In fact, as Figure 2 shows, unlearning "The capital of France is Paris", accidentally unlearns "The
capital of Spain is Madrid" 84% as strongly. (We unlearn only the tokens shown in purple.) It can
even affect completely unrelated facts. Interestingly, wrong facts are not disrupted. See Appendix B
for more examples.

Similarly, unlearning biohazardous facts likely disrupts many benign biological concepts. This could
explain why we can recover "unlearned" facts by retraining on unrelated biological text [Deeb and
Roger, 2024] – retraining fixes these benign concepts.

In Figure 2 we see that the activations (and to a lesser extent, gradients) are quite similar across
different facts. This sheds light on why superficially similar facts are disrupted – most representations
are not specific to the fact we are trying to unlearn, but more general. And since the model updates are
computed using these "dirty" activations and gradients, other facts which also contain these general
representations will be disrupted. To prevent this, we need to find a way to filter out these general
representations.
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The capital of France is Paris 100%
The capital of Spain is Madrid 84%
The capital of China is Beijing 84%
The capital of Ukraine is Kyiv 64%
The capital of France is Madrid -5%
The capital of Spain is Beijing 19%
The capital of China is Kyiv -24%
The capital of Ukraine is Paris 1%
The largest planet is Jupiter 32%
The author of 1984 is George Orwell 29%
Marie Curie discovered radium 6%
Prometheus stole fire 6%

Prompt Disruption Activations Gradients

Figure 2: Disruption caused by unlearning a simple fact. We show how unlearning "The capital of
France is Paris" disrupts the recall of other facts. We measure disruption using cosine similarity
between the model’s update on the "Paris" fact and the evaluated fact. Activations column shows
a slice of activations incoming into a middle layer MLP module on the token position right before
the answer. Gradients column shows a slice of the gradients incoming into the same module during
backpropagation when aiming to unlearn the answer (in purple).

4 Collapse of Irrelevant Representations

Ablations are too coarse Following the findings from the previous section, we have tried many
ways to remove representations which cause disruption. Simply ablating elements of the activations
and gradients (like on Figure 5) often struggles to only get rid of disruption. That is because
representations exist in superposition [Elhage et al., 2022], so one element takes part in encoding
multiple representations, some relevant to the unlearning task, some not.

Collapsing common representations We found that rather than ablating, it is much better to
project out irrelevant representations. Trying to define irrelevant representations manually would be
prohibitively tedious, so we assume that if a representation is commonly present in many training
texts, it is probably irrelevant. Removing them will leave us only with representations which are
specific to the given training text. The most natural way to locate the subspace with most common
representations, is to first take the mean of the values and then also their principal components
(PCs). (To simplify, we treat the mean as the "0th principal component", and whenever we talk about
collapsing components, we first collapse the mean.) Equation 1 shows how to collapse activation
PCs, and the same is done for gradients.

activation′ = activation− (activation · mean

||mean||
)

mean

||mean||

activationpure = activation′ −
k∑

i=1

(activation′ ·PCi)PCi

(1)

On Figure 7a & 7b we see how well different numbers of projected PCs work.

Collapse implementation We calculate PCs for each trained MLP module, both for their incoming
activations and for their output gradients incoming during backpropagation. Normally these activa-
tions and output gradients would be Einstein summed to calculate the weight updates. But we discard
this default weight update and instead first collapse PCs and only then calculate the update. PCs drift
over time, so it helps to recompute them during unlearning – we do it after each epoch, but it can be
rarer. PCs can be computed over any dataset, but we have found it works best to simply compute
them on the unlearning corpus itself. This luckily makes the algorithm much more efficient, because
we can reuse forward and backward passes for unlearning and for fetching activations and gradients.
See Algorithm 1 in the appendix for the pseudocode.

We only intervene on MLPs, since this is where the model’s knowledge is stored [Nanda et al., 2023].
Also, collapsing representations on attention modules would be complex and specific to the model
implementation.

Loss functions CIR is compatible with any unlearning loss function and (optionally) with any
retain loss function. First we tried loss functions which operate on the final logits, like negative cross
entropy, negative entropy [Tamirisa et al., 2024], or (best in this category) simply minimizing the
logit for the target token (but not below 0). The last one is extremely good at preventing the model
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from recalling the harmful answer, but does not generalize to preventing recognizing the harmful
answer during multiple-choice questions. So it may be the optimal choice if we only care for recall,
not recognition, but it must be checked whether it fails to generalize in some other ways.

Representation engineering loss functions In contrast, losses which aim to break intermediate
representations prevent both recall and recognition of the harmful answers. The SOTA representation
breaking method is Circuit Breakers [Zou et al., 2024], which minimizes (but only down to 0) the
cosine similarity between current and initial activations of the residual stream.

We improve on this SOTA in two ways. First, we notice a problem with cosine similarity: it can be
minimized not only by removing the original representation, but also by adding some big random
direction. We expected this to be disruptive, so we replaced cosine similarity with the dot product.
Indeed, on Figure 6 the dot product disrupts the model much less for the same amount of unlearning,
and we see that it is connected to cosine similarity growing the activation norm.

Secondly, rather than breaking activations on the residual stream (which contains representations
added there by both MLPs and attention layers), we decided to work at the source, and directly break
the MLP outputs before they are added to the stream. Figure 7c shows that this improves unlearning
vs disruption by an additional 40%, and that it is best to target MLPs on layers 6-12 (for a 32-layer
Llama 8B).3 So our final unlearning loss is:

MLP_breaking_loss(MLPout,MLPorig_out) =
ReLU(MLPout · MLPorig_out)

avg_MLP_out_norm2 (2)

We normalize with the average norm of the original MLP outputs, because later layers have bigger
norms and could dominate the loss too much. Lastly, we also decided not to break representations at
the <BOS> token position, as this disrupts all texts, including benign ones. We also train on the retain
set, using the representation engineering loss: ||resid_streamact − resid_streamorig_act|| from the
original circuit breakers paper [Zou et al., 2024], which penalizes changing residual stream activations
on the retain set.

5 Method comparisons

WMDP datasets We compare the methods on a task of unlearning knowledge useful for bio-
terrorism and cyber-warfare. We use the Weapons of Mass Destruction Proxy (WMDP) benchmark
[Li et al., 2024]. Similarly to Deeb and Roger [2024], for each WMDP question we generate three
simple sentences and use them all as the forget set. We chose a high-quality subset of 144 biological
and 203 cyber questions. 4 See Appendix C for generation details and filtering criteria.

As retain sets, we use the FineFineWeb corpus [M-A-P et al., 2024] – the biology subset for
WMDP-Bio and the computer_science_and_technology subset for WMDP-Cyber.

Baselines We compare CIR to two popular unlearning methods. Gradient Difference [Liu et al.,
2022] which maximizes the cross-entropy loss on the forget set while minimizing the loss on the
retain set, and Circuit Breakers [Zou et al., 2024] which we described in Section 4.

Unlearning and relearning We use the Llama-3.1-8B model [Meta, 2024]. We control for the
disruption of general performance as measured by the loss on WikiText [Merity et al., 2016]. We
terminate CIR when this loss crosses 100.1% of its initial value. For our baselines this threshold is
very low, so we gave them a 30x handicap and terminate them when they cross 103%. Afterwards,
we perform a 100 epoch fine-tuning attack, on facts different than the evaluated ones but from the
same distribution. For this we use the same WMDP split as Deeb and Roger [2024], with unlearning
on 100% of the data, then relearning on 80% and evaluating the accuracy on the remaining 20%.
Following Sondej et al. [2025], to stabilize training we always normalize the norm of unlearning
updates to some fixed value. This value effectively acts as the unlearning rate. We describe compute
requirements in Appendix D.

3It also means that it is enough to do forward and backward passes on just the first 12 layers, which is a
major speedup.

4We use 20% of those as our dev set and 80% as the holdout set for the results shown.
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Hyperparameter search For each method, we manually find a high but safe retain learning rate,
which aims to minimize disruption during unlearning. With this retain rate fixed, we search the
optimal unlearning rate, doing 3 runs per order-of-magnitude. Finally, for each method we select the
run which did not diverge and had the highest post-relearning accuracy.

We found CIR significantly easier to tune, as it has a wider range of valid hyperparameters. In Circuit
Breakers and Gradient Difference, unlearning and retaining seem to push against each other, and
small changes of hyperparameters can tip the balance. As we see on Figure 3, the balance can even
tip during one run. Again, this is likely caused by these methods unlearning general representations
which are present in retain set too.
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Figure 3: WMDP-Cyber unlearning results.
Circuit Breakers had an abrupt unlearning reversal where apparently its retain loss component started
undoing the gains, so we have run a second relearning run from the point of minimum accuracy, but
it turned out even less robust. We also run another CIR run with higher allowed disruption.

Results For both the biological facts CIR drops the post-attack accuracy 30x more than the best
baseline (Figure 1b) and for cyber facts 6x (Figure 3), despite 30x less performance disruption.

On Figure 3 we show what happens if we give CIR some handicap too and let it disrupt up to 1%.
Surprisingly, it does not achieve any higher drop in post-attack accuracy, which supports our findings
from Section 3.1 about disruptive unlearning being unhelpful. 5

6 Limitations

Scaling to more facts In our work we targeted facts present in the WMDP dataset. Our results
show that CIR enables us to robustly unlearn hundreds of facts, but for full bio and cyber safety we
will need orders of magnitude more. Now, a significant limiting factor becomes a lack of high-quality
unlearning data. Creating such datasets will require a ton of work from bio and cyber experts, and
releasing them publicly would pose a security risk, so both creation and usage of such datasets will
need to be coordinated for example by AI Safety Institutes.

More work needed for unlearning tendencies Note that the assumption that common represen-
tations are irrelevant, works well when unlearning knowledge – the relevant representations are
fact-specific, and so quite rare. But if we hope to unlearn tendencies (like power-seeking, deceptive-
ness, etc.), then the harmful representations are often quite common across training texts. So there,
choosing which representations to collapse will need to be more elaborate than simply doing PCA.
We leave it for future work to explore this.

5Another explanation would be that unlearning has already stopped since we have hit random accuracy
level. But the probability of generating the harmful answer (not shown here) keeps decreasing, meaning that
unlearning still proceeds – it is just unrobust.
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Algorithm 1 Collapse of Irrelevant Representations
Input: Model weights model; forget set Dforget; unlearning loss Lunl; learning rate LR. The
function get_representations performs a forward and backward pass and returns activations and
gradients incoming to each MLP module.

1: for e in num_epochs do
2: for xforget ∈ Dforget do Iterate over forget corpus
3: acts, grads = get_representations(model, xforget,Lunl) Get activations and gradients
4: Cache acts & grads
5: if PCsact, PCsgrad are available then
6: pure_acts = CIR(acts, PCsact) Collapse irrelevant activation components
7: pure_grads = CIR(grads, PCsgrad) Collapse irrelevant gradient components
8: model −= LR · einsum(pure_acts, pure_grads) Calculate and apply update
9: Optionally train on a retain batch

10: end if
11: end for
12:
13: PCsact = PCA(cached_acts) Compute principal components for activations
14: PCsgrad = PCA(cached_grads) Compute principal components for gradients
15: Reset cache
16: end for

A Filtering out disruption is easier in activation and gradient space

A natural thing to try if we want to be selective, is to limit which weights to update. For example
Sondej et al. [2025] have shown unlearning improvements when allowing to modify only the weights
where the signs of the unlearning and the retaining update are the same. Similarly, the A-GEM
technique [Chaudhry et al., 2019] from the field of continual learning aims to avoid performance
disruption by projecting the weight updates to make them orthogonal to the retaining updates. Such
projections have also been successfully used for unlearning [Wu et al., 2025].

On Figure 5, under "masked per weight" you can see the effects of such filtering techniques. They
significantly reduce the disruption (shown in red), but some of it still escapes the filtering. That is
because the "control/retaining updates" that we use to decide which weights to filter out never match
the actual disruption perfectly. (Compare the blue control pattern and the red disruption pattern.)

Can we improve this filtering? When we look at update patterns, we see that both disruption and
transfer appear as column- and row-wise stripes. (This happens because updates are computed by
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Figure 4: Success of fine-tuning attacks is determined by disruption during unlearning.
We show 50 unlearning runs, each followed by the same fine-tuning attack and each of the attacks has
converged. (We use Llama-3.1-8B and WMDP-Cyber set, and several variants of CIR unlearning.)
For each run, we show on the y axis the WMDP accuracy that was reached before the point where
disruption starts (defined as retain loss crossing 100.1% of its initial value). After that point we
continue unlearning, but there WMDP accuracy drop comes at the cost of disruption.
Then, during the attack WMDP accuracy is partially restored (see the arrows), but at most to its level
from when the disruption started (shown in red). It means that only unlearning that happened
after the point of disruption can be reverted, and unlearning that happened without disruption
remains robust.

multiplying the activations with the gradients, which makes the update low-rank.) It looks like it is
certain rows and columns that are disruptive, rather than individual weights.

Since the disruption patterns shift within these columns and rows, it means that granular, per-weight
filtering will miss some weights. It makes more sense to identify and remove whole faulty columns
and rows (which would correspond to ablating values in the activations and output gradients). Indeed,
we see that it improves the disruption/transfer ratio from 33% to 5%. 6

B Unrelated Facts Disruption and Language Transfer

When looking at Figure 2, one may wonder what it is about the prompt that causes the disruption/-
transfer. Maybe it is the usage of the word "is"? And does unlearning transfer to other languages?

On Figure 8 we show additional examples, and we can see that disruption happens also if we ask
the questions differently, without using the word "is". We can also see that more distant facts are
disrupted less, around 8%.

We also see that there is some language transfer, but it is significant (about 50%) only for languages
with similar words ("ist", "es"). In contrast, for Russian and Portuguese the transfer is quite weak,
which would necessitate doing the unlearning in other languages too. This is consistent with a finding
by Thibodeau [2022] that unlearning (in his case, the ROME technique [Meng et al., 2023]) is quite
specific to the exact tokens used (for example unlearning facts about "cheese", does not transfer to
"fromage").

6Another advantage of intervening on whole columns and rows, is that we can save memory by operating on
the activations and output gradients rather than on the final update.
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Control Unmasked
Masked per

weight
Masked per

column and row

disruption / transfer: 58% 33% 5%
Figure 5: Comparison of two masking strategies.
We show a slice of the updates of one weight matrix when unlearning "The capital of France is Paris".
We color a weight green if its update successfully transfers to unlearning "France’s capital is Paris",
and red if it disrupts the recall of "The capital of Spain is Madrid".
We also record disruption of a control fact: "The capital of Italy is Rome" (shown in blue). Then we
use this control disruption as a guess to which weights (or columns and rows) are most disruptive,
and filter the unlearning update accordingly.
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Figure 6: Comparison of three ways of breaking representations.
In our method we minimize the dot product of current and initial activations, clipped at 0 to avoid
the dot product becoming negative. Secondly, we tried simply minimizing the norm of the current
activations. Lastly, we tried minimizing the cosine similarity between current and initial activations,
also clipped at 0 – this was used in the original circuit breakers paper [Zou et al., 2024].
(We used CIR, with Llama-3.1-8B and measured activation norm at layer 6.)

A non-factual but typical sentence "the library is/was quiet" happens to not be disrupted. In a similar
vein, facts which are false (see Figure 2) or worded less adequately (see "is" vs "was" pairs) are
disrupted less. To reproduce the plots or try out different facts, use this script. The model we used
was Llama-3.2-1B.

C Unlearning corpus creation

Filtering We started off with a subset of WMDP created by Deeb and Roger [2024], where they
filtered out skill-based questions and duplicates (WMDP-Deduped). Then, for faithful answer recall
evaluations, we wanted to create a dataset where the answer can be cleanly separated from the
non-harmful context, but we found that many answers were convoluted and long, containing mostly
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(c) Search for the optimal layers for intervention, with 3 different algorithms. 0.5% allowed disruption.

Figure 7: CIR hyperparameter searches.
In all experiments we report WMDP-Cyber accuracy at temperature=1, after a fine-tuning attack. All
the attacks have converged. For cleaner comparisons, no retaining was used. Note that 1 projected
component means just projecting the mean and no actual PCs (which is efficient but performs poorly).

benign tokens. So we kept only the questions with answers shorter than 60 characters. We also
excluded "none of the above" and "all of the above" answers, because they lead to awkward generated
forget corpus.

This leaves us with 189 biological and 298 cyber questions, which we provide in our repository,
together with their generated forget corpus. Since it only makes sense to unlearn on questions where
the model knows the answer, in our experiments we further filter out the questions where our main
model (Llama-3.1-8B) has worse than random accuracy. This leaves us with final 144 biological and
203 cyber questions.

See the script data_transformation.py for the exact data filtering pipeline.

Generation For each of the final WMDP questions, we generated 20 simple sentences using
gpt-4.1, which paraphrase the tested fact. In the final training corpus, we ended up using only 3
sentences per question, because using more actually hurts unlearning, probably because the first
sentences are higher quality. We have split the questions into dev and holdout sets, with 20/80
proportion, and used dev for the development of our method, and holdout for the final comparisons.

The script generation_simple.py contains the full corpus generation pipeline.

Generation prompt asks for simplicity and not adding unnecessary text. In Table 2 we see it indeed
produces simpler sentences than in the best corpus from Deeb and Roger [2024] who used a similar
generation approach. (But for most questions the improvement was smaller than in the table.) We saw
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The capital of France is Paris 100%
The capital of Skyrim is Solitude 37%
The capital of Rohan is Edoras 19%
Die Hauptstadt von Frankreich ist Paris 54%
La capital de Francia es París 48%

 16%
A capital de França é Paris 4%
Water contains hydrogen 10%
Salt contains sodium 10%
Diamond contains carbon 8%
Air contains oxygen 7%
Napoleon is French 10%
Napoleon was French 12%
Mozart is Austrian 4%
Mozart was Austrian 6%
Gold is valuable 10%
Gold was valuable 8%
The library is quiet -1%
The library was quiet -2%

Prompt Disruption Activations Gradients

Figure 8: Disruption caused by unlearning a simple fact.
Uses the same format as Figure 2, but with different facts.

that this avoiding of unnecessary text greatly reduces disruption from unlearning. We invite future
designers of unlearning corpora to also include only essentially harmful text.

The full generated corpus can be found in our repository in:
data/wmdp_deduped_[bio|cyber]/{split_name}_corpus_simple.jsonl.

D Compute Requirements

We run all our experiments on a single A100 GPU with 40GB memory. We also use up to 48GB
of RAM for storing cached activations and gradients. All unlearning+relearning runs took between
15 and 120 minutes, depending on how fast the unlearning stage is terminated due to performance
disruption. If the disruption threshold is not reached, unlearning is terminated after 200 epochs. In
Table 1 we show the execution times for the optimal unlearning runs of each method – ones selected
for the plots in the main text.

Table 1: Execution times for the unlearning runs.
CIR Circuit Breakers Gradient Difference

WMDP-Bio 5 min 16 min 106 min

WMDP-Cyber 5 min 45 min 14 min
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Table 2: Example of WMDP question and corresponding generated sentences.

WMDP
question

In RNA virus genome synthesis, what potential risk is associated with obtaining
virions solely from sequence information?

Correct
answer

Re-creating and engineering dangerous pathogens

Our corpus • Obtaining virions from sequence information in RNA virus genome synthesis
risks re-creating dangerous pathogens.
• A major risk of synthesizing virions solely from sequence data is engineering
hazardous pathogens.
• Re-creating and engineering dangerous pathogens is a potential threat when
virions are generated from only sequence information.

Prior corpus
from Deeb
and Roger
[2024]

• In the synthesis of RNA virus genomes, obtaining virions solely from sequence
information poses the potential risk of re-creating and engineering dangerous
pathogens. This concern highlights the importance of careful consideration and
oversight in the manipulation and study of viral genetic material.
• When synthesizing RNA virus genomes, obtaining virions based exclusively on
sequence data carries the inherent risk of re-creating and engineering hazardous
pathogens. This issue underscores the necessity for meticulous oversight and
consideration when manipulating and researching viral genetic material.
• In the context of RNA virus genome synthesis, relying exclusively on sequence
information to produce virions carries the risk of unintentionally re-creating and
engineering harmful pathogens. This underscores the critical need for vigilant
oversight and careful consideration in the handling and study of viral genetic
material.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claimed improvement over SOTA is comes from the experiments desribed
in the paper. The explanation behind prior methods’ unrobustness is substantiated by
Section 3.1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include a separate "Limitations" section in the paper. We say what are the
areas where our proposed technique is not tested yet.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: There are no theorems that we introduce.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We explain our method in detail in Section 4, together with all the implementa-
tion choices. In Section 5, we describe how our method was tested again the baselines. We
also provide a link to our repository.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We link to the repository and include instructions how to run the experiments.
We also describe and link to the datasets used.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: No, because we have used a large model and long training runs, so repeating
them would be too costly. Instead, we validate the results by using holdout datasets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe it in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed the NeurIPS Code of Ethics and found no potential harms of our
work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss it in the problem statement in the Introduction.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We produce no harmful artifacts.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we credit all the datasets, models and methods used, and we are in
compliance with their licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the MIT license for our code. There are no other created assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: There was no crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We did not use human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not use LLMs for the core work, only for editing and code completion.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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