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Abstract

Interpretability at the neuron level has provided valuable insights into how indi-
vidual units respond to specific features and patterns. To advance interpretabil-
ity at the network level, we propose treating networks as generative models to
probe their learned statistical priors. We introduce Prior-Guided Drift Diffusion
(PGDD), which accesses the implicit statistical structure networks acquire dur-
ing training. PGDD iteratively refines inputs according to the network’s learned
priors, essentially probing what patterns emerge from the network’s internal statis-
tical knowledge. For adversarially robust networks, this leverages implicit denois-
ing operators shaped by robust training. For standard networks, our extension uses
gradient smoothing techniques to stabilize the generative process. Applying this
method during early training reveals that networks appear to acquire rich seman-
tic representations well before achieving reliable classification performance. This
demonstrates a dissociation between internal representation learning and classi-
fication performance, where networks develop structured knowledge before they
can reliably use it. Our training-free approach provides direct access to this latent
representational structure in the models we tested.

1 Introduction

How can we understand what concepts a network has learned? Interpretability at the neuron level has
provided valuable insights into individual unit responses, but understanding network-level knowl-
edge—what populations of neurons collectively know—remains challenging. Current approaches
have significant limitations: external generative models impose their own inductive biases [Bau
et al., 2019, Xie et al., 2021], while methods requiring additional training face practical challenges
including hyperparameter sensitivity, seed-dependent instability, and poor downstream performance
[Gao et al., 2024, Authors, 2025, Rajamanoharan et al., 2024]. With reasoning models and inference-
time compute becoming central [OpenAl, 2024, Wei et al., 2022], understanding how networks
could use their learned knowledge generatively becomes crucial.

We introduce Prior-Guided Drift Diffusion (PGDD), a method that treats networks as implicit gen-
erative models. Instead of asking “what activates this neuron?”’, we ask “what patterns can this
network generate from its learned statistical knowledge?” For robust networks, PGDD accesses the
implicit denoiser shaped by adversarial training; for standard networks, our extension sPGDD uses
gradient smoothing to access learned priors. PGDD works by iteratively refining inputs according to
the network’s own learned statistical regularities. Applied to early training epochs, PGDD provides
evidence of early semantic representation development: networks consistently generate bird-like
patterns across different noise initializations by epoch 4, with per-category accuracy analysis con-
firming preferential learning of avian categories despite poor overall performance at early epochs.

Workshop on Mechanistic Interpretability, NeurIPS 2025.
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A Neuron-level interpretability Network-level interpretability

What activates this neuron? What concepts does this circuit know?
(Objective: Higher activation) (Objective: Prior-Guided Drift Diffusion)
______ : — : — Run this network as a generative model
T T

B Early phases of learning in the same layer (9 different seeds of input noise)

ResNet50

Epoch 6
Epoch 8

input seeds

Figure 1: Network-level interpretability through implicit generative operators. (A) PGDD shifts
from neuron-level analysis to network-level understanding by running networks as generative mod-
els to probe learned priors. (B) Across 9 different noise initializations, PGDD applied to ResNet-50
layer 4 at epochs 6-8 consistently produces bird-like patterns with recognizable features (beaks,
feathers, wings) at different viewing angles, suggesting an instance of rapid semantic learning in
early training. Results from adversarially-trained [Madry et al., 2018] robust network (¢ = 4, Lo);
PGDD parameters: reference noise o2 = 0.2, diffusion noise=0.01, iterations=500.

Our main contributions are: (1) PGDD, a training-free method that accesses network priors through
implicit generative operators, (2) evidence that networks rapidly acquire semantic knowledge within
epochs despite poor classification performance, and (3) demonstration of a dissociation between
internal knowledge acquisition and external performance metrics.

2 Prior-Guided Drift Diffusion

PGDD iteratively optimizes an input to align its representations with a noisy reference, effectively
asking the network to ”denoise” according to its learned priors. Given a network f and starting input
I, we minimize:

Lrcpp (&) = ||re(2) — sg(re(@ +€))II3 (D

where r,(-) are representations at layer £, ¢ ~ N(0,021), and sg(-) stops gradients through the
reference.

The update rule follows:

ZTi41 = Tt + Vs, Leepp + G (2)
where 7 is the step size and (; ~ N (0, 721) adds stochastic exploration (diffusion noise). The gradi-
ent V; Lpgpp ~ J(£) T J(2)e reveals that PGDD applies the learned denoiser .J " J to noise €, where
J(&) = Vare(&) is the Jacobian of representations with respect to the input. In robust networks,
adversarial training shapes this operator to preserve class-relevant information (see supplementary
Section A.2 for detailed theoretical justification).

Extension to Standard Networks (sPGDD) For standard networks that lack the well-structured
JT.J operator shaped by adversarial training, we develop sPGDD (smooth PGDD). The core
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sPGDD trajectories for epoch 4
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Figure 2: A basic category (birds) seems to emerge in early training (Top) sPGDD applied to
standard ResNet-50 at epoch 4 trained on ImageNet consistently produces bird-like patterns across
different noise seeds. Y-axis shows detected categories for generated interpretations, with dot in-
tensity indicating classification confidence. (Bottom left) Validation accuracy curve showing epoch
4 position in training progression. (Bottom right) Three example generated patterns at iteration
50 (Crane: 0.55, Vulture: 0.98, Jacamar: 1.00), demonstrating consistent bird-like features. Per-
category training accuracy analysis (table inset) shows 4 of top 10 categories are bird classes, sug-
gesting birds as a learned basic level category despite low overall accuracy at epoch 4. (For smooth-
ing, Ngample = 100 and o2 = 0.1 Control experiments on other epochs in supplementary 5)

idea is to stabilize the update step by smoothing the gradients at each iteration, rather than re-
lying on a single noisy gradient estimate. Specifically, we fix the noisy reference representation
r(x 4 €) once at the start of the trajectory, and then, at each iteration ¢, we compute multiple
gradients with respect to independently sampled noise perturbations {¢;}?_; and average them as
gy = %2?21 V. Lropp (24; €;). This gradient smoothing reduces variance, suppresses spurious
noise-sensitive directions, and emphasizes the stable prior information embedded in the network. In
practice, sPGDD yields smoother and more interpretable trajectories in non-robust networks, though

with lower fidelity compared to robust models.

3 Experiments

Understanding how learned representations evolve during training provides crucial insights into neu-
ral network development. Previous work like Network Dissection [Bau et al., 2017] has shown that
interpretable units emerge gradually across training epochs, with higher layers developing complex
patterns only after extensive training. To investigate how network priors develop, we applied PGDD
to adversarially robust networks and sPGDD to standard-trained neural networks at different training
epochs.

3.1 Learning Trajectories and Semantic Emergence

We applied PGDD to ResNet-50 models trained on ImageNet across epochs 0, 4, 6, 8, 10, 50,
100, 150 (where epoch O refers to after the first training epoch, not random initialization). We
initialized PGDD with Perlin noise patterns at systematically varying seeds and octaves to ensure
robustness across different starting conditions. As shown in Figure 1B, even at early epochs PGDD
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arrived at consistent meaningful structure. For example, at epochs 6 and 8, generated patterns show
similar bird-like features yet differ in meaningful variations like position, viewing angle, and specific
anatomical details, suggesting the network has learned structured representations of avian categories.

To check whether this phenomenon is specific to adversarially trained models, we ran sPGDD on
standard-trained networks. Figure 2 shows results for epoch 4 (additional adjacent epochs in supple-
mentary Figure 5). The network consistently arrives at bird-like patterns, though generated images
are less sharp than those from adversarially trained networks. This suggests that semantic structure
emerges rapidly even in standard training regimes. To validate whether PGDD patterns reflect actual
network knowledge, we evaluated per-category accuracy on training images (since priors are built
from the training distribution). Despite overall accuracy of only 23% at epoch 4, analysis of the top
10 performing categories across 1000 ImageNet classes revealed that 4 are bird categories (Figure
2B), with consistently high confidence scores. This pattern holds across multiple random seeds and
different noise initializations, as shown in supplementary Figure 3. Unlike neuron-level activation
maximization methods, which can be unstable and often fail to converge, PGDD operates at the level
of network priors and produce stable and strongly convergent trajectories.

This finding is particularly striking because even in Network Dissection [Bau et al., 2017], higher
layers at initial epochs did not demonstrate interpretable units or complex semantic concepts be-
yond those found in lower layers. The rapid emergence of bird categories suggests that basic-level
categories [Rosch et al., 1976] may be learned much faster than previously recognized, consistent
with theoretical predictions about hierarchical concept acquisition [Saxe et al., 2019]. However, this
needs validation across different architectures and training seeds to verify whether this represents a
general “bird effect” and whether there are sequential aspects to category emergence (see supple-
mentary Figures 5 and 4 for additional controls). These findings are specific to ResNet-50 trained
on ImageNet and require validation across different architectures and datasets to establish broader
generality.

4 Discussion

Our main contribution is PGDD, a training-free method for network-level interpretability that treats
classifiers as implicit generative models and, through sPGDD, extends to standard networks. Using
this tool, we probed training dynamics and found that networks acquire semantic structure (e.g.,
bird-like features) within a few epochs, well before classification accuracy improves, revealing a
dissociation between internal representation learning and external performance. While prior work
has shown that classifiers can synthesize images [Santurkar et al., 2019, Grathwohl et al., 2019],
our approach is the first to link these generative properties to denoising score matching and extract
priors from intermediate layers, extending SmoothGrad into a generative inference setting. This
connects to theories of rapid concept acquisition [Saxe et al., 2019, McClelland et al., 2010] and to
recent work on emergence in learning [Fort and Jastrzebski, 2019]. PGDD thus highlights a hidden
layer of knowledge in networks that is invisible to performance metrics alone. Limitations include
reliance on robust models for the clearest results, noisier outputs in SPGDD, and evaluation restricted
to ResNet-50 on ImageNet; Control experiments confirm untrained networks show no structured
patterns (supplementary Figure 4). future work should extend across architectures, datasets, and
domains beyond vision.

5 Conclusion

We introduced PGDD, a training-free method that repurposes classifiers as implicit generative mod-
els to access their learned priors. Unlike neuron-level or prediction-focused interpretability methods,
PGDD can reveal prior structure from intermediate layers, offering a richer perspective on how net-
works represent knowledge. Applied across training epochs, PGDD shows that, in the models we
probed, semantic categories such as bird emerge well before classification accuracy, suggesting that
internal representation development precedes external performance. This dissociation reframes our
understanding of learning dynamics and aligns with theories of rapid concept acquisition. Beyond
interpretability, PGDD provides a way to track training trajectories, uncover hidden biases in learned
representations, and assess how priors shape model behavior. These capabilities may inform both
scientific inquiry and the safety of deployed Al systems. Future work should extend PGDD to other



126
127

128

129
130
131

132

133
134

135
136
137

139
140

141
142
143

144
145

146
147
148

149
150

151
152

153
154

155
156
157

158
159

160
161
162

163
164
165

166
167
168

169

architectures and domains, exploring its role as both an analytical tool and a diagnostic instrument
for emerging reasoning models.
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A Supplementary Material

A.1 Prior-Guided Drift Diffusion: Algorithm, Intuition, and Theory

We present the detailed algorithm for Prior-Guided Drift Diffusion (PGDD), together with the un-
derlying intuition and theoretical justification for how PGDD grants access to the learned priors
of a network. The method is designed to be both conceptually transparent and practically simple,
offering a principled way to leverage the implicit generative structure in networks which were not
explicitly trained for pattern generation (notably classifiers).

For reproducibility, we provide a minimal implementation at: https://anonymous.4open.
science/r/PGDD_MechInterp_minimal-21B7/README.md

A.1.1 PGDD algorithm

Algorithm 1 Prior-Guided Drift Diffusion Objective
1: Input: Image wi,pu, model f, target layer £, constraint e, step size c, noise ratio o, iterations 1’
Output: Refined representations {z;}._,
// Step 1: Feedforward pass
x < normalize(Zinput)
fe + extract layers(f, ¢) {Extract model up to layer ¢}
Tnoisy < 20 +0N(O>I)
Tanti-target <— f¢(Znoisy) {Generate noisy reference representation }
fort =1to T do
9:  // Step 2: Inference objective selection
10:  anti-target <— Tyni-target { Use noisy reference as target}
11:  // Step 3: Feedback error propagation
12: hy < fo(w¢—1) {Forward pass through target layers}
13: Ly + ||ht — Tantitareet|* {MSE loss in representation space}
14: gt < Vg, , L {Gradient via feedback pathways}
15.  // Step 4: Constrained activation update
16: gt < - g+/(|lg¢]] + 1e-10) {Normalize gradient}
17:  n; < diffusion_noise_ratio - A/(0, I) {Add stochastic noise }
18:  a} < x4—1 + g + n: {Move away from representation of noisy input (anti-target) }
19:  x; + project(z}, 2o, €) {Enforce ||z; — Zq||loo < €}
20:  // Step 5: Iteration control
21:  {Continue to next iteration}
22: end for
23:
24: return {z,}7,

A.2 Intuition behind PGDD and Theory

The Prior-Guided Drift Diffusion (PGDD) objective draws direct inspiration from denoising score
matching and Denoising Diffusion Probabilistic Models (DDPMs) ?. In DDPMs, networks learn to
predict added noise by minimizing:

Loppm = Eqg e [|l€ — €02, t)|)?] 3)

where x; = \/ayxg + /1 — aye. This noise prediction objective implicitly learns the score function
of the data distribution, enabling iterative generation through gradient-based sampling.

We show that 1) there is a denoiser hidden in a robust classifier: J7.J, it discards class-insensitive
perturbations in input 2) We show that the gradient of loss in PGDD between z and = + € is JT Je,
which means it keeps class-sensitive parts of the perturbation while discarding the rest in each step
of PGDD.

PGDD Objective:
Leopp = ||7(&) — r(2 + ¢)||? )
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where r(-) represents a chosen layer in the network and € ~ A (0, 0%1).

The gradient of the PGDD objective, where J(Z) = V;r(&) is the Jacobian matrix of representa-
tions with respect to input, satisfies:

ViLpcpp ~ 2J7 Je ®)

Linearizing (% + €) = r(&) + J(2)e:

ViLpoop = 2J (&) (r(2) — r(@ + €)) (6)
~ 2J(2)" (r(&) — (r(2) + J(2)e)) (7)
=2J(2)T J(&)e = 2JT Je ®)

This shows PGDD applies a denoising operator .J7.J that preserves directions aligned with the
learned representations while suppressing orthogonal noise. There is extensive literature show-
ing that robustness suppresses Jacobian norms and local Lipschitz constants Drucker and Le Cun
[1992], Ross and Doshi-Velez [2018], Hoffman et al. [2019], Finlay and Oberman [2019]. Adver-
sarial training itself can be understood as a form of operator-norm regularization on J Novak et al.
[2018], Cisse et al. [2017]. Empirically, robust networks exhibit markedly reduced input-gradient
magnitudes and improved local linearity Tsipras et al. [2019], Etmann et al. [2019]. Recent studies
also highlight the low-rank structure of Jacobians in deep networks, linking the spectral decay of
JT.J to both generalization and robustness Novak et al. [2018], Oymak et al. [2019], Sagun et al.
[2018]. In particular, a low-rank .J implies a low-rank .J | .J, which endows .J T .J with filtering prop-
erties: in PGDD, at each step, the component of the perturbation that is orthogonal to the target class
is suppressed, thereby nudging the trajectory toward a more probable learned prior.

A.3 PGDD roots

We developed Prior-Guided Drift Diffusion (PGDD) not primarily as an interpretability tool, but
as a framework to account for human and animal cognitive processes. PGDD extends the broader
principle of Generative Inference, which proposes that perception is an active inferential process
shaped by the integration of sensory inputs with learned priors.

In biological vision, feedback signals are recruited especially when perception cannot rely on clear
feedforward cues alone—for example, in cases of ambiguous, incomplete, or noisy inputs. This
feedback-driven integration explains hallmark perceptual effects such as delayed neural responses
to illusory contours, laminar-specific activation patterns in early visual cortex, and the flexible in-
terpretation of ambiguous stimuli. PGDD captures these dynamics by iteratively refining internal
representations in a way that filters out class-orthogonal perturbations and aligns network activity
with more probable priors.

As a result, PGDD provides a computational account of many perceptual and neural phenomena,
including figure-ground segregation, Gestalt principles of grouping and closure, illusory contour
perception, and imagination-like pattern formation from noise. These effects, long studied in psy-
chophysics and systems neuroscience, emerge naturally when robust classifiers are repurposed to
perform inference through feedback. By grounding these phenomena in a single mechanism, PGDD
highlights a computational symmetry between learning and inference, offering a unified explanation
for how cognitive systems flexibly interpret the world.



252 A.4 PGDD in early epochs for ResNet50 robust

Early phases of learning in the same layer (9 different seeds of input noise)
Epoch 2 Epoch 4

Epoch 6 Epoch 8

Figure 3: Expanded results corresponding to Figure 1B, showing PGDD applied to ResNet-50
(layer 4) trained on ImageNet across early epochs (2, 4, 6, 8), with 9 different seeds of input noise.
PGDD parameters: reference noise variance o2 = 0.2, diffusion noise = 0.01, iterations = 500, step
size n = 0.1. Atepoch 2, generated patterns are largely texture-like and lack coherent structure. By
epoch 4, object-like features begin to emerge, including partial animal body from different views.



253 A.5 sSPGDD on untrained network as control

Itr 0: Class: through arch bridge Itr 1: Class: through arch bridge Itr 5: Class: through arch bridge Itr 20: Class: through arch bridge Itr 30: Class: through arch bridge
Conf: 0.54 Conf: 0.54 Conf: 0.49 Conf: 0.30 Conf: 021

Itr 50: Class: through arch bridge Itr 100: Class: through arch bridge Itr 150: Class: through arch bridge Itr 200: Class: through arch bridge Itr 250: Class: through arch bridge
Conf: 0.14 Conf: 0.06 Conf: 0.03 Conf: 0.02 Conf: 0.02

Itr 300: Class: through arch bridge Itr 350: Class: through arch bridge Itr 400: Class: through arch bridge Itr 450: Class: sawmill Itr 500: Class: through arch bridge
Conf: 0.02 Conf: 0.01 Conf: 0.01 : Conf: 0.01

Figure 4: sPGDD on untrained ResNet50 (layer4) with the same input and same sPGDD parameters,
does not arrive at structured pattern

10



254  A.6 sPGDD trajectory for other epochs
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Figure 5: sPGDD trajectories at additional training epochs. Results are shown for epochs 2 and 6,
chosen as the two neighboring epochs around the epoch 4 case analyzed in the main text (Figure 2),
to demonstrate that the emergence of bird-like patterns is not specific to a single training snapshot
but is already visible before and after epoch 4. We also include epochs 50 and 100 to show that while
bird-like features are gradually replaced by other structures as discriminative learning unfolds, their
early presence was not an artifact of the specific noise input.
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255 A.7 PGDD sweep ¢ robustness in early epochs at layerl

Epoch 0 Epoch 2 Epoch 4 Epoch 6 Epoch 8

Figure 6: Generated patterns from PGDD applied to ResNet-50 trained on ImageNet, shown across
training epochs (0, 2, 4, 6, 8) and robustness levels (¢ = 0-5). Each row corresponds to a different
robustness setting, and each column to a different training epoch. Note that “epoch 0” refers to the
network after the first epoch of training (not initialization).(ResNet50, Layer 1, at PGDD iteration
1000.). All from the same input seed noise.
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256  A.8 PGDD sweep ¢ robustness across all epochs
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Figure 7: Generated patterns from PGDD applied to ResNet-50 trained on ImageNet, shown across
training epochs and robustness levels (e = 0-5). Each row corresponds to a different robustness
setting, and each column to a different training epoch. Note that “epoch 0” refers to the network
after the first epoch of training (not initialization).(ResNet50, Layer 3, at PGDD iteration 500.). All
from the same input seed noise.
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