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Abstract

Interpretability at the neuron level has provided valuable insights into how indi-1

vidual units respond to specific features and patterns. To advance interpretabil-2

ity at the network level, we propose treating networks as generative models to3

probe their learned statistical priors. We introduce Prior-Guided Drift Diffusion4

(PGDD), which accesses the implicit statistical structure networks acquire dur-5

ing training. PGDD iteratively refines inputs according to the network’s learned6

priors, essentially probing what patterns emerge from the network’s internal statis-7

tical knowledge. For adversarially robust networks, this leverages implicit denois-8

ing operators shaped by robust training. For standard networks, our extension uses9

gradient smoothing techniques to stabilize the generative process. Applying this10

method during early training reveals that networks appear to acquire rich seman-11

tic representations well before achieving reliable classification performance. This12

demonstrates a dissociation between internal representation learning and classi-13

fication performance, where networks develop structured knowledge before they14

can reliably use it. Our training-free approach provides direct access to this latent15

representational structure in the models we tested.16

1 Introduction17

How can we understand what concepts a network has learned? Interpretability at the neuron level has18

provided valuable insights into individual unit responses, but understanding network-level knowl-19

edge—what populations of neurons collectively know—remains challenging. Current approaches20

have significant limitations: external generative models impose their own inductive biases [Bau21

et al., 2019, Xie et al., 2021], while methods requiring additional training face practical challenges22

including hyperparameter sensitivity, seed-dependent instability, and poor downstream performance23

[Gao et al., 2024, Authors, 2025, Rajamanoharan et al., 2024]. With reasoning models and inference-24

time compute becoming central [OpenAI, 2024, Wei et al., 2022], understanding how networks25

could use their learned knowledge generatively becomes crucial.26

We introduce Prior-Guided Drift Diffusion (PGDD), a method that treats networks as implicit gen-27

erative models. Instead of asking ”what activates this neuron?”, we ask ”what patterns can this28

network generate from its learned statistical knowledge?” For robust networks, PGDD accesses the29

implicit denoiser shaped by adversarial training; for standard networks, our extension sPGDD uses30

gradient smoothing to access learned priors. PGDD works by iteratively refining inputs according to31

the network’s own learned statistical regularities. Applied to early training epochs, PGDD provides32

evidence of early semantic representation development: networks consistently generate bird-like33

patterns across different noise initializations by epoch 4, with per-category accuracy analysis con-34

firming preferential learning of avian categories despite poor overall performance at early epochs.35

Workshop on Mechanistic Interpretability, NeurIPS 2025.
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Figure 1: Network-level interpretability through implicit generative operators. (A) PGDD shifts
from neuron-level analysis to network-level understanding by running networks as generative mod-
els to probe learned priors. (B) Across 9 different noise initializations, PGDD applied to ResNet-50
layer 4 at epochs 6-8 consistently produces bird-like patterns with recognizable features (beaks,
feathers, wings) at different viewing angles, suggesting an instance of rapid semantic learning in
early training. Results from adversarially-trained [Madry et al., 2018] robust network (ε = 4, L2);
PGDD parameters: reference noise σ2 = 0.2, diffusion noise=0.01, iterations=500.

Our main contributions are: (1) PGDD, a training-free method that accesses network priors through36

implicit generative operators, (2) evidence that networks rapidly acquire semantic knowledge within37

epochs despite poor classification performance, and (3) demonstration of a dissociation between38

internal knowledge acquisition and external performance metrics.39

2 Prior-Guided Drift Diffusion40

PGDD iteratively optimizes an input to align its representations with a noisy reference, effectively41

asking the network to ”denoise” according to its learned priors. Given a network f and starting input42

x̂, we minimize:43

LPGDD(x̂) = ∥rℓ(x̂)− sg(rℓ(x̂+ ε))∥22 (1)

where rℓ(·) are representations at layer ℓ, ε ∼ N (0, σ2I), and sg(·) stops gradients through the44

reference.45

The update rule follows:46

x̂t+1 = x̂t + η∇x̂tLPGDD + ζt (2)
where η is the step size and ζt ∼ N (0, τ2I) adds stochastic exploration (diffusion noise). The gradi-47

ent∇x̂LPGDD ≈ J(x̂)⊤J(x̂)ε reveals that PGDD applies the learned denoiser J⊤J to noise ε, where48

J(x̂) = ∇x̂rℓ(x̂) is the Jacobian of representations with respect to the input. In robust networks,49

adversarial training shapes this operator to preserve class-relevant information (see supplementary50

Section A.2 for detailed theoretical justification).51

Extension to Standard Networks (sPGDD) For standard networks that lack the well-structured52

J⊤J operator shaped by adversarial training, we develop sPGDD (smooth PGDD). The core53
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Per-class accuracy
Category Accuracy (%) Confidence

Jacamar 95 0.94

House Finch 95 0.92

Tiger 95 0.90

Steam Locomotive 95 0.88

Chickadee 95 0.87

Dunlin 100 0.86

Dalmatian 90 0.85

Yellow Garden Spider 95 0.83

Echidna 95 0.81

Catamaran 95 0.71

Figure 2: A basic category (birds) seems to emerge in early training (Top) sPGDD applied to
standard ResNet-50 at epoch 4 trained on ImageNet consistently produces bird-like patterns across
different noise seeds. Y-axis shows detected categories for generated interpretations, with dot in-
tensity indicating classification confidence. (Bottom left) Validation accuracy curve showing epoch
4 position in training progression. (Bottom right) Three example generated patterns at iteration
50 (Crane: 0.55, Vulture: 0.98, Jacamar: 1.00), demonstrating consistent bird-like features. Per-
category training accuracy analysis (table inset) shows 4 of top 10 categories are bird classes, sug-
gesting birds as a learned basic level category despite low overall accuracy at epoch 4. (For smooth-
ing, nsample = 100 and σ2 = 0.1 Control experiments on other epochs in supplementary 5)

idea is to stabilize the update step by smoothing the gradients at each iteration, rather than re-54

lying on a single noisy gradient estimate. Specifically, we fix the noisy reference representation55

r(x + ϵ) once at the start of the trajectory, and then, at each iteration t, we compute multiple56

gradients with respect to independently sampled noise perturbations {ϵi}ni=1 and average them as57

gt = 1
n

∑n
i=1∇xt

LPGDD(xt; ϵi). This gradient smoothing reduces variance, suppresses spurious58

noise-sensitive directions, and emphasizes the stable prior information embedded in the network. In59

practice, sPGDD yields smoother and more interpretable trajectories in non-robust networks, though60

with lower fidelity compared to robust models.61

3 Experiments62

Understanding how learned representations evolve during training provides crucial insights into neu-63

ral network development. Previous work like Network Dissection [Bau et al., 2017] has shown that64

interpretable units emerge gradually across training epochs, with higher layers developing complex65

patterns only after extensive training. To investigate how network priors develop, we applied PGDD66

to adversarially robust networks and sPGDD to standard-trained neural networks at different training67

epochs.68

3.1 Learning Trajectories and Semantic Emergence69

We applied PGDD to ResNet-50 models trained on ImageNet across epochs 0, 4, 6, 8, 10, 50,70

100, 150 (where epoch 0 refers to after the first training epoch, not random initialization). We71

initialized PGDD with Perlin noise patterns at systematically varying seeds and octaves to ensure72

robustness across different starting conditions. As shown in Figure 1B, even at early epochs PGDD73
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arrived at consistent meaningful structure. For example, at epochs 6 and 8, generated patterns show74

similar bird-like features yet differ in meaningful variations like position, viewing angle, and specific75

anatomical details, suggesting the network has learned structured representations of avian categories.76

To check whether this phenomenon is specific to adversarially trained models, we ran sPGDD on77

standard-trained networks. Figure 2 shows results for epoch 4 (additional adjacent epochs in supple-78

mentary Figure 5). The network consistently arrives at bird-like patterns, though generated images79

are less sharp than those from adversarially trained networks. This suggests that semantic structure80

emerges rapidly even in standard training regimes. To validate whether PGDD patterns reflect actual81

network knowledge, we evaluated per-category accuracy on training images (since priors are built82

from the training distribution). Despite overall accuracy of only 23% at epoch 4, analysis of the top83

10 performing categories across 1000 ImageNet classes revealed that 4 are bird categories (Figure84

2B), with consistently high confidence scores. This pattern holds across multiple random seeds and85

different noise initializations, as shown in supplementary Figure 3. Unlike neuron-level activation86

maximization methods, which can be unstable and often fail to converge, PGDD operates at the level87

of network priors and produce stable and strongly convergent trajectories.88

This finding is particularly striking because even in Network Dissection [Bau et al., 2017], higher89

layers at initial epochs did not demonstrate interpretable units or complex semantic concepts be-90

yond those found in lower layers. The rapid emergence of bird categories suggests that basic-level91

categories [Rosch et al., 1976] may be learned much faster than previously recognized, consistent92

with theoretical predictions about hierarchical concept acquisition [Saxe et al., 2019]. However, this93

needs validation across different architectures and training seeds to verify whether this represents a94

general ”bird effect” and whether there are sequential aspects to category emergence (see supple-95

mentary Figures 5 and 4 for additional controls). These findings are specific to ResNet-50 trained96

on ImageNet and require validation across different architectures and datasets to establish broader97

generality.98

4 Discussion99

Our main contribution is PGDD, a training-free method for network-level interpretability that treats100

classifiers as implicit generative models and, through sPGDD, extends to standard networks. Using101

this tool, we probed training dynamics and found that networks acquire semantic structure (e.g.,102

bird-like features) within a few epochs, well before classification accuracy improves, revealing a103

dissociation between internal representation learning and external performance. While prior work104

has shown that classifiers can synthesize images [Santurkar et al., 2019, Grathwohl et al., 2019],105

our approach is the first to link these generative properties to denoising score matching and extract106

priors from intermediate layers, extending SmoothGrad into a generative inference setting. This107

connects to theories of rapid concept acquisition [Saxe et al., 2019, McClelland et al., 2010] and to108

recent work on emergence in learning [Fort and Jastrzebski, 2019]. PGDD thus highlights a hidden109

layer of knowledge in networks that is invisible to performance metrics alone. Limitations include110

reliance on robust models for the clearest results, noisier outputs in sPGDD, and evaluation restricted111

to ResNet-50 on ImageNet; Control experiments confirm untrained networks show no structured112

patterns (supplementary Figure 4). future work should extend across architectures, datasets, and113

domains beyond vision.114

5 Conclusion115

We introduced PGDD, a training-free method that repurposes classifiers as implicit generative mod-116

els to access their learned priors. Unlike neuron-level or prediction-focused interpretability methods,117

PGDD can reveal prior structure from intermediate layers, offering a richer perspective on how net-118

works represent knowledge. Applied across training epochs, PGDD shows that, in the models we119

probed, semantic categories such as bird emerge well before classification accuracy, suggesting that120

internal representation development precedes external performance. This dissociation reframes our121

understanding of learning dynamics and aligns with theories of rapid concept acquisition. Beyond122

interpretability, PGDD provides a way to track training trajectories, uncover hidden biases in learned123

representations, and assess how priors shape model behavior. These capabilities may inform both124

scientific inquiry and the safety of deployed AI systems. Future work should extend PGDD to other125
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architectures and domains, exploring its role as both an analytical tool and a diagnostic instrument126

for emerging reasoning models.127
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A Supplementary Material196

A.1 Prior-Guided Drift Diffusion: Algorithm, Intuition, and Theory197

We present the detailed algorithm for Prior-Guided Drift Diffusion (PGDD), together with the un-198

derlying intuition and theoretical justification for how PGDD grants access to the learned priors199

of a network. The method is designed to be both conceptually transparent and practically simple,200

offering a principled way to leverage the implicit generative structure in networks which were not201

explicitly trained for pattern generation (notably classifiers).202

For reproducibility, we provide a minimal implementation at: https://anonymous.4open.203

science/r/PGDD_MechInterp_minimal-21B7/README.md204

A.1.1 PGDD algorithm205

Algorithm 1 Prior-Guided Drift Diffusion Objective
1: Input: Image xinput, model f , target layer ℓ, constraint ϵ, step size α, noise ratio σ, iterations T
2: Output: Refined representations {xt}Tt=0
3: // Step 1: Feedforward pass
4: x0 ← normalize(xinput)
5: fℓ ← extract layers(f, ℓ) {Extract model up to layer ℓ}
6: xnoisy ← x0 + σ · N (0, I)
7: ranti-target ← fℓ(xnoisy) {Generate noisy reference representation}
8: for t = 1 to T do
9: // Step 2: Inference objective selection

10: anti-target← ranti-target {Use noisy reference as target}
11: // Step 3: Feedback error propagation
12: ht ← fℓ(xt−1) {Forward pass through target layers}
13: Lt ← ∥ht − ranti-target∥2 {MSE loss in representation space}
14: gt ← ∇xt−1

Lt {Gradient via feedback pathways}
15: // Step 4: Constrained activation update
16: g̃t ← α · gt/(∥gt∥+ 1e-10) {Normalize gradient}
17: ηt ← diffusion noise ratio · N (0, I) {Add stochastic noise}
18: x′

t ← xt−1 + g̃t + ηt {Move away from representation of noisy input (anti-target)}
19: xt ← project(x′

t, x0, ϵ) {Enforce ∥xt − x0∥∞ ≤ ϵ}
20: // Step 5: Iteration control
21: {Continue to next iteration}
22: end for
23:
24: return {xt}Tt=0

A.2 Intuition behind PGDD and Theory206

The Prior-Guided Drift Diffusion (PGDD) objective draws direct inspiration from denoising score207

matching and Denoising Diffusion Probabilistic Models (DDPMs) ?. In DDPMs, networks learn to208

predict added noise by minimizing:209

LDDPM = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥2

]
(3)

where xt =
√
ᾱtx0+

√
1− ᾱtϵ. This noise prediction objective implicitly learns the score function210

of the data distribution, enabling iterative generation through gradient-based sampling.211

We show that 1) there is a denoiser hidden in a robust classifier: JTJ , it discards class-insensitive212

perturbations in input 2) We show that the gradient of loss in PGDD between x and x+ ϵ is JTJϵ,213

which means it keeps class-sensitive parts of the perturbation while discarding the rest in each step214

of PGDD.215

PGDD Objective:216

LPGDD = ∥r(x̂)− r(x̂+ ϵ)∥2 (4)
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where r(·) represents a chosen layer in the network and ϵ ∼ N (0, σ2I).217

The gradient of the PGDD objective, where J(x̂) = ∇x̂r(x̂) is the Jacobian matrix of representa-218

tions with respect to input, satisfies:219

∇x̂LPGDD ≈ 2JTJϵ (5)

Linearizing r(x̂+ ϵ) ≈ r(x̂) + J(x̂)ϵ:220

∇x̂LPGDD = 2J(x̂)T (r(x̂)− r(x̂+ ϵ)) (6)

≈ 2J(x̂)T (r(x̂)− (r(x̂) + J(x̂)ϵ)) (7)

= 2J(x̂)TJ(x̂)ϵ = 2JTJϵ (8)

This shows PGDD applies a denoising operator JTJ that preserves directions aligned with the221

learned representations while suppressing orthogonal noise. There is extensive literature show-222

ing that robustness suppresses Jacobian norms and local Lipschitz constants Drucker and Le Cun223

[1992], Ross and Doshi-Velez [2018], Hoffman et al. [2019], Finlay and Oberman [2019]. Adver-224

sarial training itself can be understood as a form of operator-norm regularization on J Novak et al.225

[2018], Cisse et al. [2017]. Empirically, robust networks exhibit markedly reduced input-gradient226

magnitudes and improved local linearity Tsipras et al. [2019], Etmann et al. [2019]. Recent studies227

also highlight the low-rank structure of Jacobians in deep networks, linking the spectral decay of228

J⊤J to both generalization and robustness Novak et al. [2018], Oymak et al. [2019], Sagun et al.229

[2018]. In particular, a low-rank J implies a low-rank J⊤J , which endows J⊤J with filtering prop-230

erties: in PGDD, at each step, the component of the perturbation that is orthogonal to the target class231

is suppressed, thereby nudging the trajectory toward a more probable learned prior.232

A.3 PGDD roots233

We developed Prior-Guided Drift Diffusion (PGDD) not primarily as an interpretability tool, but234

as a framework to account for human and animal cognitive processes. PGDD extends the broader235

principle of Generative Inference, which proposes that perception is an active inferential process236

shaped by the integration of sensory inputs with learned priors.237

In biological vision, feedback signals are recruited especially when perception cannot rely on clear238

feedforward cues alone—for example, in cases of ambiguous, incomplete, or noisy inputs. This239

feedback-driven integration explains hallmark perceptual effects such as delayed neural responses240

to illusory contours, laminar-specific activation patterns in early visual cortex, and the flexible in-241

terpretation of ambiguous stimuli. PGDD captures these dynamics by iteratively refining internal242

representations in a way that filters out class-orthogonal perturbations and aligns network activity243

with more probable priors.244

As a result, PGDD provides a computational account of many perceptual and neural phenomena,245

including figure-ground segregation, Gestalt principles of grouping and closure, illusory contour246

perception, and imagination-like pattern formation from noise. These effects, long studied in psy-247

chophysics and systems neuroscience, emerge naturally when robust classifiers are repurposed to248

perform inference through feedback. By grounding these phenomena in a single mechanism, PGDD249

highlights a computational symmetry between learning and inference, offering a unified explanation250

for how cognitive systems flexibly interpret the world.251
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A.4 PGDD in early epochs for ResNet50 robust252

Epoch 4

Epoch 6 Epoch 8

Epoch 2
  Early phases of learning in the same layer (9 different seeds of input noise)

Figure 3: Expanded results corresponding to Figure 1B, showing PGDD applied to ResNet-50
(layer 4) trained on ImageNet across early epochs (2, 4, 6, 8), with 9 different seeds of input noise.
PGDD parameters: reference noise variance σ2 = 0.2, diffusion noise = 0.01, iterations = 500, step
size η = 0.1. At epoch 2, generated patterns are largely texture-like and lack coherent structure. By
epoch 4, object-like features begin to emerge, including partial animal body from different views.
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A.5 sPGDD on untrained network as control253

Figure 4: sPGDD on untrained ResNet50 (layer4) with the same input and same sPGDD parameters,
does not arrive at structured pattern
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A.6 sPGDD trajectory for other epochs254
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Figure 5: sPGDD trajectories at additional training epochs. Results are shown for epochs 2 and 6,
chosen as the two neighboring epochs around the epoch 4 case analyzed in the main text (Figure 2),
to demonstrate that the emergence of bird-like patterns is not specific to a single training snapshot
but is already visible before and after epoch 4. We also include epochs 50 and 100 to show that while
bird-like features are gradually replaced by other structures as discriminative learning unfolds, their
early presence was not an artifact of the specific noise input.
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A.7 PGDD sweep ϵ robustness in early epochs at layer1255

Epoch 0 Epoch 2 Epoch 4 Epoch 6 Epoch 8

Figure 6: Generated patterns from PGDD applied to ResNet-50 trained on ImageNet, shown across
training epochs (0, 2, 4, 6, 8) and robustness levels (ϵ = 0–5). Each row corresponds to a different
robustness setting, and each column to a different training epoch. Note that “epoch 0” refers to the
network after the first epoch of training (not initialization).(ResNet50, Layer 1, at PGDD iteration
1000.). All from the same input seed noise.
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A.8 PGDD sweep ϵ robustness across all epochs256

Figure 7: Generated patterns from PGDD applied to ResNet-50 trained on ImageNet, shown across
training epochs and robustness levels (ϵ = 0–5). Each row corresponds to a different robustness
setting, and each column to a different training epoch. Note that “epoch 0” refers to the network
after the first epoch of training (not initialization).(ResNet50, Layer 3, at PGDD iteration 500.). All
from the same input seed noise.
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