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Abstract

Transformers have revolutionized Computer Vision (CV) through self-attention mechanisms.
However, their complexity makes latent token representations difficult to interpret. We in-
troduce ULTra, a framework for interpreting Transformer embeddings and uncovering mean-
ingful semantic patterns within them. ULTra enables unsupervised semantic segmentation
using pre-trained models without requiring fine-tuning. Additionally, we propose a self-
supervised training approach that refines segmentation performance by learning an exter-
nal transformation matrix without modifying the underlying model. Our method achieves
state-of-the-art performance in unsupervised semantic segmentation, outperforming existing
segmentation methods. Furthermore, we validate ULTra for model interpretation in both
synthetic and real-world scenarios, including Object Selection and interpretable text sum-
marization using LLMs, demonstrating its broad applicability in explaining the semantic
structure of latent token representations. 1

1 Introduction

In recent years, the Transformer architecture and foundation models, which leverage self-attention mech-
anisms to capture complex dependencies, have transformed Natural Language Processing (NLP) bench-
marks (Vaswani et al., 2017; Touvron et al., 2023; Team et al., 2024). Similarly, Vision Transformers
(ViTs) (Dosovitskiy et al., 2020) have been adapted in Computer Vision (CV) and now serve as the back-
bone for various tasks such as segmentation and object detection (Thisanke et al., 2023; Liu et al., 2021).
Despite their success, understanding the interpretability of Transformers remains a challenge due to the
complexity of their latent token representations.

Several methods have been developed to enhance the interpretability of CNN-based models (Simonyan et al.,
2014; Zeiler & Fergus, 2014; Selvaraju et al., 2017). While some of these can be extended to Transformer
architectures, they do not fully leverage the unique attention mechanisms inherent to Transformers. Recent

∗This work was conducted during a visit at CICS, UMass Amherst.
1The codebase is available at https://github.com/CocoAika/ULTra
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research has introduced interpretability methods specifically designed for Transformers (Chefer et al., 2021b;
Abnar & Zuidema, 2020; Vig & Belinkov, 2019). However, these approaches primarily aim to explain the
final outputs of a model and cannot be directly applied to interpret latent tokens, offering only limited insight
into the intermediate processes that drive predictions. This gap naturally raises a fundamental question:

Do transformer models exhibit semantic awareness within their latent representations?

To address this, we propose Unveiling Latent Token Interpretability in Transformer-Based Understanding
(ULTra), a framework for interpreting latent tokens in Transformers. At a high level, ULTra interprets latent
tokens by tracing how input information flows through the Transformer’s attention layers to individual token
representations. Given a pre-trained Transformer and a target layer, we select a latent token and define a
scalar function of its embedding. We then backpropagate this signal through the attention probability
matrices, constructing layer-wise contribution maps that are aggregated across layers to produce a token-
specific explanation map in the input space. These explanation maps reveal which input regions most
strongly influence each latent token, exposing their semantic specialization without modifying the model or
requiring aligned modalities.

Recent work with similar objectives (Chen et al., 2024) interprets latent tokens by projecting them into
CLIP’s multi-modal embedding space. This is achieved by disabling the self-attention mechanism and then
using an external text encoder to associate tokens with semantic descriptions. In contrast, ULTra (i) offers
a direct interpretation of latent tokens without relying on any aligned modality, and (ii) preserves the
model architecture and behavior at inference time, thereby avoiding modifications that could compromise
faithfulness.

By examining the semantic information encoded in latent tokens, we demonstrate that Transformers in-
herently capture the semantic structure of their input as a collection of distinct concepts. For instance, in
Figure 2, tokens clearly separate semantic entities, with individual tokens specializing in the dog, the cat,
the background, or even fine-grained attributes such as the cat’s head. This observation naturally leads to
a second question:

Can such alignment be exploited for unsupervised semantic segmentation (USS)?

we cluster token-level explanation maps and aggregate them to form pixel-wise semantic regions, thereby
achieving unsupervised semantic segmentation. Unlike prior unsupervised segmentation methods that re-
quire additional training (Sick et al., 2024; Hamilton et al., 2022; Li et al., 2023), ULTra leverages the
intrinsic knowledge of pre-trained models on tasks other than semantic segmentation to achieve state-of-the-
art performance on benchmark datasets without the need for fine-tuning. To further enhance segmentation
performance, we introduce a self-consistency approach that learns an external transformation matrix in a
self-supervised manner, refining segmentation without modifying the underlying model. Additionally, we
validate our interpretability framework on transformer-based LLMs through qualitative analyses in text
summarization, demonstrating its broad applicability across modalities.

Our main contributions are as follows:

• We propose a framework for interpreting latent tokens in Transformers, uncovering the stored se-
mantic knowledge in each latent token. To the best of our knowledge, we are the first to investigate
latent token interpretability directly.

• We extend ULTra to several designed synthetic and real-world tasks, showcasing its versatility and
applicability, including Object Selection and interpretation of LLMs in text summarization tasks.

• By aggregating explanation maps generated from latent tokens, our method enables unsupervised se-
mantic segmentation using pre-trained ViTs without requiring any additional training. This strategy
outperforms existing state-of-the-art approaches that rely on fine-tuning or supervision, highlighting
the effectiveness of leveraging the semantic structure embedded in large-scale models.

• To further enhance segmentation performance, we introduce ULTraW , a lightweight learnable exten-
sion that optimizes a self-consistency loss. This loss encourages stable token representations under
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input perturbations and yields a transformation matrix that projects tokens onto a more informative
subspace while keeping the backbone model unchanged.

2 Related Work

Interpretable Deep Learning. Model interpretability is a critical aspect of deep learning, particularly
for complex architectures like Transformers. Traditional methods such as saliency maps (Simonyan et al.,
2014), Grad-CAM (Selvaraju et al., 2017), LIME (Ribeiro et al., 2016), and SHAP (Lundberg, 2017) have
been effective for CNNs but do not fully exploit Transformers’ self-attention mechanisms. A growing body
of research focuses on Transformer-specific interpretability techniques that leverage attention mechanisms as
intrinsic explanations (Vig & Belinkov, 2019; Abnar & Zuidema, 2020; Chefer et al., 2021b; Jain & Wallace,
2019; Wu et al., 2024). These methods are largely post-hoc, providing explanations after model training. In
contrast, ante-hoc approaches such as IA-ViT (Qiang et al., 2023) and Mechanistic Interpretability (Rai et al.,
2024) seek to make Transformers inherently interpretable. Additionally, techniques like LeGrad (Bousselham
et al., 2024) and IA-RED2 (Pan et al., 2021) improve interpretability by analyzing feature formation and
reducing redundancy in self-attention. Despite these advancements in model interpretability, understanding
latent tokens in ViTs remains underexplored, underscoring the need for methods that explicitly interpret
these latent tokens. A related study (Chen et al., 2024) explores latent token interpretation in CLIP by
modifying self-attention mechanisms.

Semantic Segmentation. Unsupervised semantic segmentation has progressed through self-supervised
learning and clustering techniques. Early methods such as IIC Ji et al. (2019) and PiCIE Cho et al. (2021)
leveraged mutual information and consistency principles to enhance feature representations. Transformer-
based approaches like DINO Caron et al. (2021) and STEGO Hamilton et al. (2022) further improved seg-
mentation by capturing meaningful structures through self-attention. Other techniques, including MaskCon-
trast Van Gansbeke et al. (2021), Leopart Ziegler & Asano (2022), and ACSeg Li et al. (2023), refined seg-
mentation through clustering and adaptive conceptualization. More recent methods, such as DepthG Sick
et al. (2024), incorporate depth-guided correlations, while U2SEG Niu et al. (2024) utilizes pseudo-labeling.
Additionally, SmooSeg Lan et al. (2023) enforces smoothness priors, and HSG Ke et al. (2022) applies hierar-
chical segmentation via multiview clustering Transformers. In the context of semantic segmentation, Weakly
Supervised Semantic Segmentation (WSSS) aims to generate segmentation masks using only image-level
labels. These methods often rely on saliency maps from interpretability techniques, such as Class Activation
Maps (CAMs), to localize objects Choe & Shim (2019); Yin et al. (2020); Chen et al. (2023). Typically, they
depend on class logits to guide segmentation, refining masks based on predicted class scores.

Latent Embedding. The high dimensionality and complex distribution of latent embeddings in deep
models pose significant challenges for interpretation and manipulation. Methods like GroupViT Xu et al.
(2022) utilize hierarchical grouping to facilitate more meaningful representation learning, enabling seman-
tic segmentation. Other approaches, such as Lee et al. (2024); Bolya et al. (2023); Liang et al. (2022),
improve computational efficiency by eliminating redundant tokens, while register-based ViTs Darcet et al.
(2024) address artifacts in feature maps caused by outlier-norm tokens through the introduction of reg-
ister tokens. However, these techniques primarily emphasize computational efficiency and representation
structuring rather than the interpretability of latent embeddings.

3 Methodology

In this section, we introduce our approach for interpreting latent representations in Transformers. We
start by outlining the essential preliminaries, followed by a detailed explanation of the ULTra framework for
analyzing latent tokens. Additional details on the Transformer architecture are provided in Appendix I.

3.1 Preliminaries

Previous research on attention-based model interpretability (Abnar & Zuidema, 2020; Chefer et al., 2021b;a;
Wu et al., 2024) has primarily focused on analyzing the semantic flow from input tokens to class logits.
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Figure 1: The overall architecture of the ULTra framework. The framework consists of a forward path, where
the input data x is fed into the model, and a backward path, starting from the target layer l, where we
compute the gradient of a scalar function of the i-th latent token, f(z(l)

i ), with respect to the attention
probability matrix of the middle layer b. Next, we compute the corresponding contribution map C(b,l)

i for
all middle layers. Finally, we construct the explanation map S

(l)
i , select its i-th row, and transform it to

the input size. As an example, on the left, we observe that the token corresponding to the middle window
assigns considerable attention to the left window, suggesting an underlying semantic understanding.

This is typically achieved by adding the attention probability matrix of each layer to an identity matrix and
aggregating the results across attention heads through a weighted average. The weights are derived from the
gradients of the class logits with respect to the attention probabilities. Specifically, to assess the contribution
of each class logit using attention information, the contribution map for layer b is defined as:

C(b)
c = I + Eh

[(
∇A(b)

h

p(c)
)+

⊙ A(b)
h

]
, (1)

Sc = C(1)
c · C(2)

c · · · C(L)
c , (2)

Sc = Sc[0, 1 :], (3)

where ⊙ denotes the Hadamard product, and (·)+ is the operator that retains only positive values. I
represent the identity matrix, which reflects the contributions of skip connections and A(b)

h ∈ R(n+1)×(n+1)

denotes the attention probability matrix of head h and layer b. The term ∇A(b)
h

p(c) = ∂p(c)
∂A(b)

h

is the partial
derivative of the attention map with respect to the predicted probability for class c, and Eh denotes the mean
over multiple attention heads. Equation 2 represents matrix multiplication, which accounts for aggregating
contributions from all layers. Each element of Sc[i, j] represents the influence of the j-th input token on
the i-th output token. Thus, each element of Sc[j] quantifies the influence of the j-th input token on
class c, with token 0 corresponding to the CLS token. This raises a new question: Can we expect similar
semantically meaning for a latent token? Is there a similar approach to interpret latent tokens
in Transformers?
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3.2 ULTra Framework

Inspired by Equation 1, in this work we aim to measure the contribution of latent token z(l)
i to the input

space using the underlying attention probabilities, where i ∈ {0, 1, . . . , n} denotes the token index and l
represents the layer. Specifically, to quantify the influence of the attention map at layer b on the latent token
z(l)

i , the contribution map C(b,l)
i is defined as follows:

C(b,l)
i = I + Eh

((
∇Ab

h
f(z(l)

i )
)+

⊙ Ab
h

)
, (4)

Intuitively, this approach traces the most influential input information contributing to a latent token z(l)
i ,

where the notion of influence is defined based on the impact an input token has on the function f : Rn → R
of the target token. Specifically, by influence, we refer to the degree to which an input token affects f(z(l)

i ),
reflecting its relative importance in the representation. Since tokens are high-dimensional vectors, assuming
equal importance across all components can obscure critical contributions. Moreover, different aggregation
strategies can assign varying importance to individual dimensions. To address this, we evaluated three
functions: (i) a simple summation over all components, (ii) the vector norm (treating all components equally),
and (iii) our proposed ULTraW , which learns a weighting function. Empirically, ULTraW generally yields
stronger downstream performance.

Finally, we define the corresponding explanation map for the latent token z(l)
i , denoted as S

(l)
i ∈ Rn, where

each element represents the influence of an input token on z(l)
i . The explanation map is computed as:

S
(l)
i = C(1,l)

i · C(2,l)
i · · · C(l−1,l)

i , S
(l)
i = S

(l)
i [i, 1 :], (5)

where . represents matrix multiplication, which aggregates contributions from all layers to the target latent
token. Transformer skip connections cause most contributions to concentrate on S

(l)
i [i − 1], hindering token-

level analysis. To mitigate this, we replace it with the maximum of the other elements, better capturing
token contributions. Moreover, in some experiments, e.g., semantic segmentation, we reshape and upsample
the explanation map using bilinear or cubic interpolation to match the input resolution, producing S̃

(l)
i . The

overall framework of ULTra is shown in Figure 1.

Additionally, As we illustrate in section 5, in our experiments we utilize three approaches for designing f in
ULTra framework:

(i) fs(z(l)
i ) = ⟨z(l)

i , 1⟩ In this formulation, 1 represents an all-ones vector, meaning that the function simply
computes the sum of all elements in z(l)

i . This approach is denoted by ULTraS . The underlying intuition is
that this approach treats all elements of the token equally.

(ii) fe(z(l)
i ) = ⟨z(l)

i , z(l)
i ⟩ This approach is based on the energy (or norm) of a given token, a concept that

has been previously explored in the literature Darcet et al. (2024). By leveraging token energy, this method
captures the magnitude of the token’s latent representation. We refer to this variant as ULTraE .

(iii) fw(z(l)
i ) = ⟨z(l)

i , wi⟩: Beyond the previous approaches, we introduce a learnable vector wi to project each
token representation z(l)

i . Geometrically, the function fs in ULTraS can be viewed as mapping all tokens onto
a shared projection basis within the token space. In contrast, learning wi enables the construction of a more
informative, robust projection basis. We refer to this variant as ULTraW . Unlike ULTraS and ULTraE , which
are entirely training-free, ULTraW requires light training to optimize the wi vectors. In practice, we train
these vectors using only a limited number of batches, yet this additional flexibility improves segmentation
performance. In Section 4.1, we discuss this idea more in detail by introducing a self-supervised strategy for
learning wi, which relies on another ULTra variants for an initial segmentation.

For both ULTraS and ULTraE , our framework remains fully training-free. In semantic segmentation tasks,
experimental results show that these variants not only approach but often surpass baselines that rely on
fine-tuning, underscoring both their effectiveness and efficiency.
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(a) Original Image (b) Latent Token’s explanation Map (c) Predicted Binary Mask

Figure 2: An example of token interpretation by our model and its predicted binary mask. (a) Original
image. (b) Overlay of S̃

(13)
i on the original image for different i, where the location of the i-th token is

indicated by the purple square. (c) The binary mask M
(13)
i for each corresponding explanation map in (b).

We can generally observe that tokens clearly separate semantic entities, attending to the dog, the cat, the
background, or even fine-grained attributes like the cat’s or dog’s head.

4 Tailoring ULTra for Different Applications

In this section, we aim to examine ULTra’s capability to adapt to various tasks involving semantic knowledge.

4.1 Unsupervised Semantic Segmentation

Explanation maps are defined for each latent token at a fixed layer, resulting in as many maps as there
are latent tokens. For segmentation, we use hierarchical clustering to group these maps. This clustering
method naturally matches how vision transformers process images, eventually aggregating similar concepts
at multiple scales of fineness. It finds the structure in token explanations without needing us to guess
the number of clusters beforehand. In Appendix G Figure 14 also provides a schematic of this process.
In our experiments, we set a predefined number of clusters k for the algorithm which setup the threshold
corresponding to that number of classes, however as we discuses in the appendix G segmenting using only the
threshold ζ gives flexible control over segmentation detail; lower values show fine details and higher values
create broader regions. To ensure fair representation, we apply Min-Max scaling to prevent larger objects
from dominating the clustering process.

Figure 3: ULTra segmentation results on sam-
ple images. The top row displays the orig-
inal images, the middle row shows true an-
notations, and the bottom row presents our
model’s predictions.

After clustering, k distinct concepts are defined by aggregat-
ing explanation maps. The aggregated explanation map for
cluster c is:

S̃(l)
c [x, y] =

∑
i∈ϕ(c)

S̃
(l)
i [x, y], (6)

where ϕ(c) = {i : Class(S̃(l)
i ) = c} represents the grouping of

label assignments. Class labels are assigned to input pixels
using the explanation map of the l-th layer as follows:

Class[x, y](l) = argmax
c∈{1,...,k}

S(l)
c [x, y]. (7)

Some examples illustrating our segmentation method are pre-
sented in Figure 3.

ULTraW . As previously mentioned, to further enhance seg-
mentation performance, we propose ULTraW , which utilizes
a learnable transformation matrix to obtain a more informa-
tive projection basis for the token space. For simplicity of
notation, we fix the layer ℓ and omit the layer superscript in the following derivations. Consider zi,j = eT

j zi,
where ej is the j-th standard basis vector. The gradients can then be rewritten as:
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∇Ab
h
fs(zi) =

∑
j

∇Ab
h
zi,j , ∇Ab

h
fw(zi) =

∑
j

wi,j∇Ab
h
zi,j . (8)

In other words, the gradient of fw(zi) is a weighted version of the gradient of fs(zi). From this perspective,
by manipulating the weighting vector wi, we can prioritize the more informative dimensions of the token
space. As illustrated in Section 5, this leads to improved performance of ULTra compared to variants that
rely on a naive choice of f .

Here, a crucial question arises: How do we characterize the amount of information in the token space to
achieve a good projection basis for the token space? In other words, we need to learn a matrix W =
[w1, . . . , wn]T to perform more effective segmentation. To this end, we introduce a perturbation on the
input image and, by optimizing W, aim to minimize the divergence of specific tokens from their unperturbed
versions. This motivation is supported by prior findings showing that transformers remain robust under noisy
inputs Zhou et al. (2022), suggesting that they encode information in noise-resistant representations.

Let x be an input image and x̃ its perturbed version corresponding to segmentation class c, which can be
computed as:

x̃c = x + Pϕ(x, c; δ), (9)

where Pϕ
2 is a perturbation strategy that applies perturbations to the region that are not predicted for class

c ∈ C using the initial segmentation. Moreover, δ quantifies the amount of perturbation, and for δ = 0, we
have x̃c = x.

Now, to optimize the parameters W, we formulate the problem as:

min
W

Ex∼D

∑
c∈C

∑
i∈{j|xj=xc

j
}

dW(zi, z̃i)

 , s.t. ∥wk∥2 = 1, ∀k ∈ {1, · · · , n}, (10)

where dW(zi, z̃i) denotes the divergence between the two vectors based on the projection basis wi, ∥·∥2 is the
Euclidean norm, and xi and zi represent the i-th input token and latent token, respectively. In particular,
we do not perturb the regions recognized by ULTraW that contain localized information. This encourages
the model to become more aware of self-attended regions, producing sharper and more focused heatmaps
over positively contributing areas. Consequently, the model’s decision-making becomes more precise in these
critical regions. Qualitative examples and additional discussion of ULTraW are provided in Appendix C.

In our experiments, we parameterize each projection vector as wk = θk/∥θk∥2. Hence, based on the for-
mulation in Equation 10, to optimize the parameters θk, we define the Self-Consistency loss as follows:

Lsc(x, Θ) =
∑
c∈C

∑
i∈{j|xj=xc

j
}

∣∣wT
i (zi − z̃i)

∣∣2 , (11)

where wi = θi/∥θi∥2 and Θ = [θ1, . . . , θn]T . We use the term "Self" because we leverage the model’s own
segmentation results, obtained using ULTraW , to enhance its performance through a systematic weighting
approach. Experimentally, we found that lightly optimizing Θ on a limited number of samples improves the
model’s segmentation performance.

4.2 Latent Token Interpretability Assessment

A key challenge in interpretability is the lack of a universal evaluation metric Chefer et al. (2021b); Wu
et al. (2024). In supervised settings, explainability is typically evaluated indirectly via downstream tasks
(e.g., semantic segmentation) or perturbation tests. Assuming strong explanation maps, performance should
improve or coherent output changes should occur under perturbation. Since tokens in ULTra naturally have
no labels, we extend this principle to the unsupervised domain. As we already discussed how unsupervised
semantic segmentation serves as an interpretability evaluation approach for ULTra, in this section we evaluate
ULTra using additional introduced metrics. Specifically, we designed two tasks: (i) Perturbation Test and

2The perturbation strategy is defined based on the model parameters ϕ since the model is involved in distinguishing the
perturbation using its segmentation.
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(a) Original Image (b) Explanation Relevency Map

Example 1: Elephant and
zebra scene.

Example 2: Jungle with
multiple animals.

Figure 4: Two examples illustrating the model’s decision-making across layers. Columns correspond to
progressively deeper layers. The first row for each image shows the CLS token, while the subsequent rows
show three selected tokens (highlighted by red squares). Deeper layers capture richer semantics: in Example
1, elephant, zebra, and background tokens become increasingly distinct as we go through layers. The CLS
token represents both animals but does not differentiate background types (sky, ground, or water), whereas
token-level representations do. In Example 2, which contains multiple animals, the CLS token captures only
the tiger and part of the elephant, while other tokens represent additional objects. Interestingly, the model
confuses the parrot with part of the rainbow due to similar colors.

(ii) Object Selection. Additionally, in Section 5.3, we propose quantitative metrics to evaluate our method
on these tasks to provide deeper insights into the interpretability of ULTra by identifying influential regions
and behaviors within the model’s decision-making process.

Perturbation Test. The perturbation test is a widely used metric for evaluating explainability methods
Chefer et al. (2021b); Wu et al. (2024). This approach involves perturbing parts of an image based on
the explanation map generated by the method and measuring the resulting change in the predicted class
probability. Inspired by this technique, instead of using class probability, we leverage the change in the

8
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embedding space to design a perturbation-based validation test. This allows us to assess the reliability of
the explanation maps generated for the latent tokens.

Method Model Training U. ACC U. mIoU
IIC R18+FPN ✓ 21.8 6.7
PiCIE R18+FPN ✓ 48.1 13.8

DINO
ViT-S/8 ✓ 28.7 11.3
ViT-S/16 ✓ 22.0 8.0
ViT-B/8 ✓ 30.5 9.6

ACSeg ViT-S/16 ✓ - 16.4
TransFGU ViT-S/8 ✓ 52.7 17.5

STEGO
ViT-S/8 ✓ 48.3 24.5
ViT-S/16 ✓ 52.5 23.7
ViT-B/8 ✓ 56.9 28.2

STEGO +HP ViT-S/8 ✓ 57.2 24.6
ViT-S/16 ✓ 54.5 24.3

DepthG ViT-S/8 ✓ 56.3 25.6
ViT-B/8 ✓ 58.6 29.0

U2Seg R50 ✓ 63.9 30.2
ViT-B/32 ✓ 60.6 34.1

ULTraCLIP
W ViT-B/16 ✓ 63.8 34.0

ViT-L/14 ✓ 67.9 38.2
ViT-B/32 ✗ 60.8 34.6

ULTraCLIP
S ViT-B/16 ✗ 63.0 33.2

ViT-L/14 ✗ 66.5 37.5
ViT-B/32 ✗ 59.5 32.6

ULTraCLIP
E ViT-B/16 ✗ 53.6 26.6

ViT-L/14 ✗ 59.0 31.7
ViT-S/16 ✓ 67.2 34.4ULTraDINO

W ViT-B/16 ✓ 67.4 37.7
ViT-S/16 ✗ 66.4 33.3ULTraDINO

S ViT-B/16 ✗ 67.3 35.6
ViT-S/16 ✗ 63.4 31.6ULTraDINO

E ViT-B/16 ✗ 63.0 31.3

Table 1: Comparison of unsupervised segmentation meth-
ods on the COCO-Stuff dataset.

Object Selection. In this task, we convert
the upsampled explanation map S̃

(l)
i into a bi-

nary segmentation mask using a threshold τ ,
where the binary mask M

(l)
i is defined as:

M
(l)
i [x, y] =

{
0, if S̃

(l)
i [x, y] < τ,

1, otherwise.
(12)

Here, S̃
(l)
i [x, y] represents the relevance value

at position [x, y] in S̃
(l)
i , with τ as the thresh-

old. When M
(l)
i [x, y] = 1, it indicates that the

position [x, y] belongs to the object region.

Our findings indicate that as tokens propa-
gate through the network, they refine their ob-
ject representation while retaining the seman-
tic meaning of their associated image patches,
performing Object Selection. Figure 4 visually
illustrates this process. Deeper layers show
richer semantic awareness, with tokens grad-
ually capturing entire objects like the elephant
or zebra, or the background, while the CLS
token captures both the zebra and elephant.
For a given patch token xi, the object it most
strongly represents is denoted as class ki. The
latent token z(l)

i generates an explanation map
that highlights areas with higher values associ-
ated with class ki in the whole image, includ-
ing xi. After applying a threshold, this map
becomes a binary segmentation mask expected
to exhibit a high Intersection over Union (IoU)
with the corresponding class ki region in the
image. An illustrative example is shown in Fig-
ure 2.

4.3 Interpreting LLMs in Text Summarization

In this section, we examine how our interpretability framework can be applied to text summarization tasks,
taking steps toward uncovering the underlying intent of LLMs. In Section 5.4, we qualitatively evaluate
ULTraS using two samples by visualizing the regions of the input context that an LLM prioritizes while
interpreting a given TL;DR summary. This analysis reveals key input regions shaping the model’s decisions,
aiding in understanding how concise and relevant summaries are generated.

For this task, we concatenate the context x and the summary y with a separator token. After feeding this
input into the model, we compute the relevance scores of the TL;DR tokens with respect to the context
tokens.

We then average these scores for each token in x to obtain a scalar value, referred to as the Token Contribution
Score, λ

(l)
i ∈ R+, which highlights the contribution of each context token in interpreting the summary y

within the given context. Accordingly, λ
(l)
i is computed as:

9



Published in Transactions on Machine Learning Research (01/2026)

λ
(l)
i = 1

|y|

|y|∑
j=1

S
(l)
j+|x|[i], ∀i ∈ {1, · · · , |x|}, (13)

where | · | denotes the number of tokens in the text.

5 Experiments & Results

5.1 Experimental Setup

Datasets. In our experiments, we evaluate model performance on several unsupervised semantic segmenta-
tion benchmarks, focusing on vision-related tasks. We conducted experiments on four datasets: COCO-Stuff
27 Caesar et al. (2018), PASCAL VOC 2012 Everingham & Winn (2011), Potsdam-3 ISPRS (2018), and
Cityscapes Cordts et al. (2016).

For our qualitative analysis of LLM interpretation in the task of text summarization, as described in Section
4.3, we utilized the TL;DR dataset (Stiennon et al., 2022). This dataset contains summary comparisons with
human feedback collected by OpenAI.

Models. For all experiments in the vision tasks, we used different pretrained versions of CLIP’s image
encoder (Radford et al., 2021) as well as DINO ViT-S/16 and ViT-B/16 (Caron et al., 2021). For interpreting
text summarization, as described in Section 4.3, we used the Llama-2-7B language model (Touvron et al.,
2023). All experiments were run on 4 NVIDIA A100-80GB GPUs.

Further details of the datasets and models used are provided in Appendix E.

5.2 Semantic Segmentation Method Model Training U. mIoU
IIC R18+FPN ✓ 9.8
MaskContrast R50 ✓ 35.0
Leopart ViT-S/16 ✓ 41.7
TransFGU ViT-S/8 ✓ 37.2
MaskDistill ViT-S/16 + R50 ✓ 42.0
ACSeg ViT-S/16 ✓ 47.1

ViT-B/32 ✓ 51.2
ULTraCLIP

W ViT-B/16 ✓ 50.9
ViT-L/14 ✓ 49.1
ViT-B/32 ✗ 49.2

ULTraCLIP
S ViT-B/16 ✗ 48.3

ViT-L/14 ✗ 48.7
ViT-B/32 ✗ 50.0

ULTraCLIP
E ViT-B/16 ✗ 40.0

ViT-L/14 ✗ 45.2
ViT-S/16 ✓ 48.9ULTraDINO

W ViT-B/16 ✓ 50.5
ViT-S/16 ✗ 47.9ULTraDINO

S ViT-B/16 ✗ 50.0
ViT-S/16 ✗ 46.9ULTraDINO

E ViT-B/16 ✗ 50.0

Table 2: Comparison on the PASCAL VOC 2012
dataset. The Training column Indicates if fine-tuning
is required

To evaluate the effectiveness of our approach,
we use the Unsupervised mean Intersection over
Union (U. mIoU) and Unsupervised Pixel Accu-
racy (U. ACC) metrics. The experimental results
on the COCO-Stuff, PASCAL VOC, Potsdam,
and Cityscapes datasets are reported in Tables
1, 3, 4, and 2, respectively. In these tables, the
Training column indicates whether any additional
training is required. Moreover we present the re-
sult of using the threshold ζ instead of predefined
number of class k in the appendix G along with
its sensitivity analysis.

We benchmarked the segmentation performance
of our approach against several state-of-the-art
(SOTA) methods in unsupervised segmentation.
The projection matrix W W in ULTraW was opti-
mized using the ADAM optimizer with a learning
rate of 0.01 and a batch size of 32, over a total
of 256 training samples and 10 epochs. This com-
pact training setup suffices, as W implements a
linear mapping with a parameter count equal to
the embedding dimensionality.

Among the proposed variants of ULTra, ULTraW
achieves the highest performance, requiring only a
small number of training samples. Notably, even
when no training data is available, ULTraS still

10



Published in Transactions on Machine Learning Research (01/2026)

Method Model Training U. mIoU
IIC R18+FPN ✓ 6.4
PiCIE R18+FPN ✓ 12.3
STEGO ViT-B/8 ✓ 21.0

STEGO +HP ViT-S/8 ✓ 18.4
ViT-B/8 ✓ 18.4

DepthG ViT-B/8 ✓ 23.1
ViT-B/32 ✓ 17.6

ULTraCLIP
W ViT-B/16 ✓ 24.8

ViT-L/14 ✓ 25.1
ViT-B/32 ✗ 17.1

ULTraCLIP
S ViT-B/16 ✗ 24.2

ViT-L/14 ✗ 24.2
ViT-B/32 ✗ 20.4

ULTraCLIP
E ViT-B/16 ✗ 20.9

ViT-L/14 ✗ 23.0
ViT-S/16 ✓ 25.8ULTraDino

W ViT-B/16 ✓ 26.5
ViT-S/16 ✗ 24.2ULTraDino

S ViT-B/16 ✗ 25.7
ViT-S/16 ✗ 22.9ULTraDino

E ViT-B/16 ✗ 23.0

Table 3: Comparison of different unsupervised seg-
mentation methods on the Cityscapes dataset.

Method Model Training U. ACC
IIC R18+FPN ✓ 65.1
DINO ViT-S/8 ✓ 71.3
STEGO ViT-S/8 ✓ 77.0
DepthG ViT-S/8 ✓ 80.4

ViT-B/32 ✓ 78.7
ULTraCLIP

W ViT-B/16 ✓ 80.9
ViT-L/14 ✓ 82.4
ViT-B/32 ✗ 78.3

ULTraCLIP
S ViT-B/16 ✗ 80.9

ViT-L/14 ✗ 82.8
ViT-B/32 ✗ 78.1

ULTraCLIP
E ViT-B/16 ✗ 70.4

ViT-L/14 ✗ 75.5
ViT-S/16 ✓ 79.0ULTraDino

W ViT-B/16 ✓ 80.7
ViT-S/16 ✗ 77.4ULTraDino

S ViT-B/16 ✗ 80.8
ViT-S/16 ✗ 75.7ULTraDino

E ViT-B/16 ✗ 76.8

Table 4: Comparison of different unsupervised seg-
mentation methods on the Potsdam dataset. The
Training column Indicates if fine-tuning is required

achieves state-of-the-art results on several bench-
marks.

For some models, such as ViT-L/14, no existing baseline is available for direct comparison, highlighting the
versatility of ULTra across different architectures. Furthermore, we conducted an ablation study related to
the model depth in Appendix A.

We hypothesize that ULTra’s strong training-free performance arises from two key factors: (i) Comprehensive
token utilization: leveraging information from all latent tokens yields richer representations than relying
solely on the final CLS token; and (ii) Information-preserving aggregation: projecting embeddings into the
input space before aggregation reduces information loss compared to methods that aggregate first. As shown
in Figure 4, the CLS token loses substantial information that remains accessible through individual tokens.

Despite being zero-shot, our method is computationally intensive for semantic segmentation, since generating
explanation maps requires computing multiple gradients per token (see Appendix B). Future work could
explore approximation or more efficient gradient strategies (see Section 6).

5.3 Interpretability Evaluations

Perturbation Test. To assess the reliability of the explanation maps, we conduct a perturbation test by
selectively altering image regions based on the explanation map S

(l)
i for each token i. The perturbation is

applied at the patch level while ensuring the total perturbed area remains consistent across all cases.

We consider two types of perturbations:

(i) Positive Perturbation: Removing highly relevant regions, which should significantly affect the token’s
representation.

(ii) Negative Perturbation: Removing less relevant regions, which should have minimal impact.

Two types of modifications are introduced. In the masking perturbation, selected patches are replaced with
zeros, effectively removing the corresponding visual information. This is applied to both highly relevant
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Model Perturb. VOC Potsdam COCO Cityscapes
Neg. ↓ Pos. ↑ Neg. ↓ Pos. ↑ Neg. ↓ Pos. ↑ Neg. ↓ Pos. ↑

ViT-B/32 Mask 13.16 15.51 12.35 14.02 12.62 15.21 9.95 14.42
Noise 6.97 10.23 9.39 11.44 6.83 10.26 5.99 11.13

ViT-B/16 Mask 14.68 17.5 13.91 15.51 14.16 17.39 11.33 16.27
Noise 9.87 14.03 13.5 14.45 10.14 14.12 9.46 14.22

ViT-L/14 Mask 6.66 9.43 6.61 8.99 6.38 9.31 5.36 8.86
Noise 4.45 7.88 4.95 7.96 4.27 7.74 3.89 7.77

Table 5: Average token vector differences for ViT models under mask and noise perturbation tests across
multiple datasets, highlighting the impact of positive and negative perturbations based on the relevancy map
on token representations.

regions (positive masking) and less relevant areas (negative masking). In contrast, the noise perturbation
introduces Gaussian noise to the same sets of patches, adding controlled randomness to test the robustness
of token representations.

The noise follows a standard normal distribution with a standard deviation of 0.3. Figure 5 provides a
detailed visualization of the perturbation test conducted on a sample image from the PASCAL VOC dataset
using the CLIP ViT-B/32 model. It illustrates the model’s explanation map (d), and compares the effects
of both positive (b, c) and negative (e, f) perturbations applied through masking and Gaussian noise,
demonstrating how altering semantically relevant regions leads to more significant changes in the model’s
internal representations.

(a) Original (b) Pos. Mask (c) Pos. Noise

(d) Explain. Map (e) Neg. Mask (f) Neg. Noise

Figure 5: Effect of perturbations on a sample image from the
PASCAL VOC dataset, where the model used is CLIP ViT-B/32.

To ensure fairness, the initial token’s
patch remains unchanged in both per-
turbations, as its information is directly
propagated to the target token through
skip connections. Given a perturbed rep-
resentation z̃

(l)
i , we measure the devia-

tion from the original token representa-
tion z

(l)
i using the Euclidean distance, we

then compute the average deviation over
the entire dataset by selecting k random
tokens per image and aggregating the dis-
tances:

d̄Euc = 1
M

M∑
j=1

(
1
k

k∑
i=1

∥z
(l)
i,j − z̃

(l)
i,j ∥2

)
,

(14)
where M is the number of images, and k
tokens are randomly selected from each.
For our results, we set k = 10. The per-
turbation test results are presented in Ta-
ble 5

Positive perturbations result in greater deviations compared to negative ones, confirming that the explanation
maps effectively highlight influential regions. The consistency of these results across multiple datasets further
validates the reliability of our interpretability framework. Similar results also hold for cosine similarity.
However, due to redundancy and the fact that cosine similarity is bounded between 0 and 1, which results
in weaker contrasts, we do not report these results.
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How	do	I	[	2	0	M	]	stop	feeling	bad	about	myself	for	having	no	relationship
experience	at	all	?	POST	:	It	just	seems	like	everyone	I	know	has	at	least
had	a	"	thing	"	with	someone	by	this	point	.	I	'	ve	made	out	with	a	girl	once
(	who	later	told	me	that	was	a	mistake	)	and	I	feel	like	girls	always	reject
me	or	only	see	me	as	a	friend	.	Which	is	perfectly	acceptable	,	but	I	'	m
starting	to	get	ups	et	that	I	'	ve	never	had	any	kind	of	relationship	.	I	just
got	rejected	by	a	girl	who	I	thought	was	into	me	and	I	'	ve	been	feeling
bad	ever	since	.	I	just	don	'	t	know	what	'	s	wrong	with	me	.	I	guess	I	'	m	a
little	bit	skin	ny	(	I	work	out	regularly	though	),	but	I	show	er	every	day	,
dress	pretty	well	,	all	that	stuff	.

I	need	help	about	those	feelings	POST	:	I	am	a	1	8	M	,	she	'	s	a	1	7	F	.	We	'
ve	got	a	troubles	ome	relationship	which	started	as	a	pure	friendship	one
year	ago	.	I	'	ve	made	mist	akers	,	she	made	hers	too	.	O	ur	last	situation
scenario	is	explained	in	here	:	Now	I	feel	like	I	hate	her	,	I	used	to	adm	ire
her	a	lot	,	but	I	'	m	really	disappoint	ed	with	her	and	with	her	character	.
But	I	just	realized	I	still	like	her	.	So	,	well	,	yeah	,	I	like	her	and	hate	her	.
And	just	after	that	bad	situation	happened	I	realized	she	also	had	that
feeling	.	Well	,	now	we	both	hate	and	love	each	other	.	What	to	do	?	What
to	think	?	What	to	feel	?	add	itional	info	:	today	our	friend	asked	me	for
help	with	some	calculations	and	I	made	a	jo	ke	about	our	physics	teacher	.
She	laughed	and	smiled	at	me	just	like	one	year	ago	,	but	after	she
realized	that	,	she	seemed	kind	a	[	gr	ouch	y	](

(a) TL;DR: I’ve had very bad luck with girls my whole (b) TL;DR: I still like her but my rational
life and I don’t know how to get my confidence up. side says "no, she is a trash person".

Figure 6: Visualization of Token Contribution Scores (λ(l)
i ) highlighting the relevance of context tokens

in interpreting the summary. Each token is colored proportionally to its λ
(l)
i value. These visualizations

demonstrate the model’s ability to identify key semantic elements in the context for generating relevant
summaries. Further analysis and examples are provided in Appendix H.

Object Selection. To quantify alignment, we compute the IoU by converting the explanation map S
(l)
i

into a binary mask M
(l)
i and comparing it with the ground-truth mask. We propose the Initial Token IoU

(ITIoU) metric, which measures how well the explanation maps of input tokens align with their respective
class masks. The ITIoU is calculated as:

ITIoU(l)(X) = 1
C

C∑
i=1

1
|Ti|

∑
xj∈Ti

IoU(M (l)
j , Gi), (15)

where C denotes the number of classes, Ti represents the set of tokens associated with class i, M
(l)
j is the

binary segmentation mask for token xj within class i, and Gi is the ground-truth mask for class i in image
x. The inner sum averages the IoU for tokens in Ti for each class, and the outer sum then averages across all
classes. Using a threshold of 0.2, our ITIoU metric achieves an average score of 37.84% on the COCO-Stuff
validation dataset and 39.51% on the PASCAL VOC dataset. A more detailed analysis of ITIoU is provided
in Appendix F.

5.4 Interpretable Text Summarization

In this experiment, we used a Supervised Fine-Tuned (SFT) version of Llama-2-7B trained on the Ul-
traFeedback Binarized (UFB) dataset (Cui et al., 2024). Additionally, we aligned the model to the text
summarization task on the TL;DR dataset (Stiennon et al., 2022) using the Direct Preference Optimization
(DPO) method (Rafailov et al., 2024) for 1,000 iterations, with a learning rate of 5 × 10−6 and β = 0.5. To
validate our framework, we selected the preferred response (TL;DR) of each sample in the dataset, denoted
by y, and used it as the summary of the context x. The result can be seen in Figure 6

In example (a), semantically significant words such as ‘relationship’, ‘experience’, ‘rejection’, and ‘never’ are
prominently highlighted, reflecting the model’s interpretation of the person’s struggles with relationships and
feelings of rejection. Additionally, the highlighting of the question at the beginning of the context ‘How do
I stop feeling bad...’ suggests the model recognizes the presence of uncertainty and a request for guidance,
which is encapsulated in the summary as ‘I don’t know.’

In example (b), λ
(l)
i scores reveal the model’s focus on words such as ‘feelings’, ‘hate’, ‘disappoint’, ‘love’,

and ‘like’, which correspond to the person’s mixed emotions toward their girlfriend, as described in the
summary. The apparent contradiction between ‘love’ and ‘trashness’ in the summary appears to be derived
from these highlighted terms, suggesting the model understands the conflicting emotions present in the
text. Furthermore, the focus on ‘character’ reflects the summary’s judgmental tone, suggesting the model
associates this term with a personality assessment.

Quantitative Validations. While the qualitative visualizations in Figure 6 illustrate ULTra’s ability
to highlight semantically relevant context tokens, we further assess the faithfulness of these attributions
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using the Comprehensiveness metric (DeYoung et al., 2020). This metric measures how much the model’s
confidence in producing the gold summary decreases when important context tokens are removed.

Following Eq. 13, we compute token-level contribution scores λ
(l)
i and select the top-k% tokens as the rationale

set Rk. Using the pretrained language model π, we define the summary support score as the log-probability
of the gold summary y given context x:

S(x, y) = log π(y | x) =
|y|∑
i=1

log π(yi | x, y<i), (16)

and compute the Comprehensiveness score:

Compk(x, y) = S(x, y) − S(x \ Rk, y)
S(x, y) , (17)

where larger values indicate that the removed tokens were more necessary for maintaining model confidence.

As shown in Figure 7, ULTra consistently achieves higher Compk values than the random baseline, which
selects rationale sets Rk uniformly at random. At small budgets (k ≤ 15%), the performance of both methods
is similar; however, as k increases, ULTra exhibits steady improvements, highlighting its ability to identify
context regions that causally influence model predictions.

5 10 15 20 25 30 35
Selection rate k (%)

0.1

0.0

0.1

0.2

0.3

0.4

Co
m

p k

ULTra ±1
Random ±1
± standard deviation

Figure 7: Average Comprehensiveness score Compk on
the validation set across different selection rates k for
ULTra and random baseline. ULTra shows a consistent
increase, indicating that its selected tokens are critical
for preserving model confidence in the summary.

This quantitative analysis further confirms that UL-
Tra’s highlighted tokens are not only interpretable
but also faithfully reflect the model’s internal rea-
soning process. We also present additional qualita-
tive examples and a detailed discussion of the metric
in Appendix H.

These language-based experiments are not intended
as a benchmark for interpretable summarization, es-
pecially given the absence of standardized evalu-
ation metrics, but rather to demonstrate the ver-
satility of ULTra across modalities. These exper-
iments also highlight an important direction for
future research: applying post-hoc interpretability
techniques to better understand and align large lan-
guage models within frameworks such as RLHF
(Christiano et al., 2023; Stiennon et al., 2022;
Ouyang et al., 2022) and direct preference optimiza-
tion (Rafailov et al., 2024; Azar et al., 2023; Ethayarajh et al., 2024), where understanding model behavior
and intent is critical.

6 Concluding Remarks and Limitations

Summary. We introduced a framework for interpreting latent tokens in Transformers, providing new insights
into the semantic information encoded within them. Our method achieves state-of-the-art performance in
unsupervised semantic segmentation across multiple datasets and settings, notably without requiring any
additional training. Beyond segmentation, we validated the approach through perturbation tests and object
selection, highlighting its broader applicability for probing Transformer behavior at the layer level.

Discussion. A central challenge in interpretability is its evaluation. Traditional methods often rely on class
logits as the primary signal, employing strategies such as supervised semantic segmentation or perturbation
tests to measure changes in these logits. However, even for explanations of final predictions, it remains unclear
whether such approaches faithfully reflect the quality of interpretability. In our setting, many of these metrics
are not directly applicable due to fundamental methodological differences. To address this, we evaluated
our framework through the lens of unsupervised semantic segmentation. While baseline methods were
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specifically designed for this task, our approach achieved superior results by aggregating explanation maps,
demonstrating both the potential of latent token interpretability and the importance of effective aggregation
strategies. For instance, clustering-based techniques could further improve performance, especially at smaller
patch sizes; when the patch size is 8, the large number of tokens makes aggregation particularly challenging.

Limitations and Future Work. Despite operating in a zero-shot setting, our method incurs notable compu-
tational cost for semantic segmentation. High inference times result from computing multiple gradients for
each token when generating explanation maps. We provide a FLOPs and estimated-runtime analysis (batch
size 64) in Appendix B. Future work could alleviate this limitation by exploring more efficient strategies,
including: (i) approximations in the attention mechanism (e.g., sparse attention or token pruning), (ii) gra-
dient approximations (e.g., using fewer layers), and (iii) optimized computations such as parallel processing
or alternative interpretability signals. In particular, we examines layer selection effect in Appendix A, where
for some models, using middle layers instead of the last layer improves both accuracy and computational
efficiency, whereas in others, a trade-off between performance and computational cost remains.

7 Broader Impact Statement

Our work contributes to the interpretability of large language models (LLMs) by identifying and analyzing
latent token structures. While interpretability can enhance transparency, accountability, and trust in LLM-
based systems, it also introduces potential risks. In particular, deeper insights into model internals could
be misused for adversarial purposes, such as crafting more effective jailbreak prompts, reverse engineering
proprietary models, or developing targeted manipulations that reduce model safety. Furthermore, inter-
pretability methods risk conveying a false sense of security if stakeholders overestimate the completeness or
reliability of the provided explanations.

Despite these risks, we believe that developing interpretability methods is ultimately beneficial for safe and
responsible deployment of LLMs. By making the limitations and inner workings of these systems more visible,
our work can help practitioners identify failure modes, mitigate biases, and design more robust safeguards.
Careful communication of the scope and limitations of our method will be essential to minimize potential
misuse and prevent overconfidence in the explanations it provides.
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Appendix

A Effect of Layer Depth in ViT Token Understanding

In this section, we analyze the impact of depth on our model’s interpretability and segmentation performance,
providing insights into the contribution of each layer. For smaller models such as ViT-B/32 in Figure 9,
deeper layers generally carry more semantic significance. However, the contribution diminishes in the final
layers, suggesting that a depth of around 13 layers might be more than sufficient for the ViT to effectively
comprehend image content. This finding implies that even fewer layers might achieve comparable results,
potentially reducing computational costs without compromising performance.
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Figure 8: The segmentation performance of the CLIP ViT-L/14 model in an unsupervised setting, measured
by accuracy and IoU, changes across different layers. As layer depth increases, both metrics improve at
first, reaching their highest point in the mid-depth layers. However, performance slightly declines in deeper
layers. This suggests that while deeper layers capture richer semantic details, they also introduce complexity
that does not always improve segmentation. Additionally, the limitations of labeled datasets, especially the
ambiguity in object definitions, further restrict the model’s ability to achieve better segmentation, despite
its strong interpretability.
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Figure 9: Ablation study on two evaluation metrics across layers ViT-B/32. These plots demonstrate a
progressive improvement in semantic segmentation performance in the deeper layers of the transformer
model. This enhancement is attributed to latent tokens capturing more meaningful segment structures,
resulting in increasingly accurate and refined semantic representations.

We observe an intriguing behavior in the initial layers, where performance initially declines before improving.
This phenomenon is also visually evident in Figure 4, where the attention maps in the first layer appear
to focus on the entire image. This suggests that, initially, the token examines the image as a whole before
selectively gathering information from tokens with similar characteristics.

In the CLIP ViT-L/14 model, deeper layers capture more refined and detailed feature representations.
Unlike shallower models, where segmentation performance stabilizes early, ViT-L/14 benefits from its depth
by gradually extracting richer hierarchical features. As shown in Figure 8, accuracy and Mean IoU improve
as layers deepen, with segmentation performance peaking around the mid-depth layers. However, in deeper
layers (beyond layer 20), segmentation quality slightly declines. This suggests that while the model gains a
better understanding of high-level semantics, it loses some spatial precision. This trade-off occurs because
later layers prioritize semantic abstraction over detailed spatial structures.

While deeper models like ViT-L/14 offer improved feature extraction, more layers do not always lead to
better segmentation. Instead, an optimal balance between depth and spatial representation is necessary for
effective segmentation.
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We note that, for a fixed model, the overall performance remains relatively consis-
tent across different datasets, as illustrated in Figure 4. This observation suggests
the presence of a sweet spot—a region where the model achieves optimal performance.

Original ULTraS ULTraW

Figure 10: Visual comparison of segmentation quality between
ULTraS and ULTraW on several examples from the COCO-Stuff
(CLIP ViT-B/32). Each row corresponds to a different example,
and the columns show the original image, the heatmap generated
by ULTraS , and the refined heatmap produced by ULTraW .

A similar pattern can be observed in Fig-
ure 8, where a flat region in the curve
represents this stable performance zone.
Interestingly, the location of this sweet
spot tends to be similar across datasets
for the same model. In practice, it can
be identified experimentally by evaluat-
ing the model’s performance on a small
validation subset and then verifying its
consistency on other datasets.

B Complexity Analysis
of ULTra for Segmenetation

In this section, we analyze the time com-
plexity of ULTra for the segmentation
task. To compute the final segmentation
mask, our method requires the heatmaps
of all tokens from a fixed layer. As a
result, the computational complexity is
significantly higher than that of meth-
ods that rely solely on a forward pass
and are explicitly designed for segmen-
tation. In our case, We perform a single
forward pass and then n backward passes
(one backward pass per token, where n
denotes the number of tokens). The
backward passes constitute the primary
source of computational overhead.

To quantify this cost, we report the to-
tal number of FLOPs needed for both
the forward and backward passes at a
fixed layer. The results are presented in
Table 6. I-t is important to note that,
although our segmentation approach is
computationally intensive, ULTra is pri-
marily designed as an interpretability
framework. Segmentation is just one ap-
plication that benefits from the generated heatmaps. While the framework was not specifically developed for
segmentation, it nonetheless achieves state-of-the-art performance in unsupervised semantic segmentation
and notably, without any training. Moreover, segmentation is also included as part of our evaluation.

C Qualitative Analysis of fw

In this section, we visually present the improvement of ULTraW over ULTraS when ULTraS is used as
the initial segmentation. Figure 10 provides several examples illustrating how this improvement is captured
during the learning of fw. Recall that ULTraW is trained by perturbing the negative regions in the image and
learning a representation that is robust to such perturbations. This process encourages the model to develop
features that are less sensitive to the negative regions and more focused on the positive regions. Consequently,
the resulting heatmaps become more centered on the target object that was previously captured by ULTraS .
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Model Forward (FLOPs) Layer 3 Layer 5 Layer 7 Layer 9 Layer 11 Layer 13
ViT-B/32 5.7 × 1011 5.6 × 1012 2.0 × 1013 4.4 × 1013 7.7 × 1013 1.1 × 1014 1.7 × 1014

Ratio 1× 10× 35× 77× 135× 193× 298×
ViT-B/16 2.3 × 1012 9.2 × 1013 3.3 × 1014 7.3 × 1014 1.2 × 1015 1.9 × 1015 2.8 × 1015

Ratio 1× 40× 143× 317× 521× 826× 1217×

Table 6: FLOPs required to compute a forward pass and to generate gradient-based explanation maps
targeting different layers for batch size of 64. Ratios show the multiple relative to one forward pass.

Figure 11: This figure illustrates challenging samples from the COCO-Stuff 27, Potsdam-3, and PASCAL
VOC that contribute to low performance due to poor dataset labeling quality. The first row displays the
original images, the second row shows the ground truth labels and the third row presents our predicted
segmentation.

It is important to note that though ULTraW depends on the initial segmentation, we do not expect it to
perform worse than the initial results. This is because the target token itself always lies within the positive
region, and surrounding areas with positive values tend to be reinforced. In essence, ULTraW sharpens
the heatmap around these positive regions. As shown in Figure 10 ULTraW further captures the regions
identified by ULTraS .

D Datasets Limitations

A significant challenge in deep learning is obtaining labeled datasets, which are essential for the success of deep
learning methods. However, labeling can be ambiguous, as objects or attributes may be labeled separately
or combined as a single entity. Our method demonstrates how ViT interprets images in a zero-shot setting,
capturing fine-grained or general representations. Notably, our method’s predictions often exhibit logical
consistency that surpasses the ground truth, effectively identifying relationships between objects.

However, since our approach does not involve supervised training, it cannot adapt to detect only the specific
objects labeled in the dataset. As a result, while the logical quality of the predictions is high, the numerical
metrics may decline due to mismatches with the dataset’s ground truth labels. Figure 11 illustrates this
phenomenon with examples, showing instances where our method successfully captures unlabeled objects
that are omitted in the dataset annotations.

E Datasets & Models

E.1 Datasets

We utilize a combination of datasets to provide a diverse testing ground for evaluating our method across
both standard and challenging perspectives in semantic segmentation and interpretability evaluations.
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• COCO-Stuff 27 Lin et al. (2014): A subset of the COCO dataset, featuring complex real-world
scenes with pixel-level annotations across various object categories.

• PASCAL VOC 2012 Everingham & Winn (2011): A widely used benchmark containing pixel-level
annotations for foreground objects in structured scenes.

• Potsdam-3: A high-resolution aerial-view dataset capturing urban landscapes, including buildings,
roads, and vegetation, presenting additional challenges due to its large-scale top-down perspective.

• Cityscapes Cordts et al. (2016): An urban street scene dataset with fine-grained pixel-level anno-
tations, enabling the evaluation of segmentation performance in structured environments.

These datasets allow for a comprehensive evaluation of our approach across different environments, ensuring
robustness across diverse segmentation challenges.

E.2 Models

We employ various Vision Transformers (ViTs) pre-trained on large-scale datasets. These models process
images as non-overlapping patches and employ self-attention mechanisms across multiple layers to capture
long-range dependencies.

Transformer Architectures

CLIP ViT Radford et al. (2021): A vision transformer trained using contrastive learning on 400 million
image-text pairs. It encodes images into a shared embedding space with text prompts. CLIP variants
include:

• ViT-B/16: Consists of 12 transformer layers, a hidden size of 768, and processes images with 16×16
patch resolution.

• ViT-B/32: Similar to ViT-B/16 but with a 32×32 patch resolution, reducing computational cost
at the expense of finer details.

• ViT-L/14: A larger model with 24 transformer layers, a hidden size of 1024, and a 14×14 patch
resolution, providing enhanced feature extraction.

DINO ViT Caron et al. (2021): A self-supervised vision transformer trained using knowledge distillation
without labeled data. It learns image representations by maximizing similarity between different augmented
views. Evaluated variants:

• ViT-S/16: A smaller model with 12 transformer layers, a hidden size of 384, and a patch size of
16×16.

• ViT-B/16: A larger model with 12 layers, a hidden size of 768, and a patch size of 16×16, providing
stronger feature representation.

F ITIoU Analysis

This section evaluates the effectiveness of ITIoU in assessing the performance of our object selection process.
As expected, the final layers exhibit superior performance compared to the earlier layers, consistent with
the results illustrated in Figure 13. This improvement highlights the increasing relevance of features in
deeper layers for accurate object selection. Additionally, we observe the existence of an optimal threshold, τ ,
which significantly influences segmentation performance. This phenomenon is depicted in Figure 12, where
performance trends are analyzed across different threshold values.
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Figure 12: Impact of varying the threshold τ on
ITIoU performance for COCO-Stuff 27 dataset. The
plot demonstrates the existence of an optimal τ ,
where segmentation performance is maximized.
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Figure 13: Layer-wise ITIoU analysis for COCO-
Stuff 27 dataset. Final layers perform significantly
better than earlier ones due to their ability to cap-
ture high-level semantic features. This progression is
evident in the increasing ITIoU values.
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Figure 14: Hierarchical clustering tree showing the grouping of token explanation maps for all tokens in
a latent layer of the Vision Transformer, not limited to the CLS token. Each leaf node represents a single
token explanation map, while higher-level nodes show aggregated clusters based on a clustering threshold
ζ, which controls the level of detail. Lower ζ values reveal finer details, while higher values create broader,
more general clusters.

G Threshold-Based Segmentation

Hierarchical clustering is used to segment the token explanation maps, where the threshold parameter ζ
controls the level of granularity. Lower values of ζ produce fine-grained segmentations, while higher values
merge similar clusters, leading to broader groupings.

Figure 14 illustrates the hierarchical clustering tree, where each leaf node represents a single token explanation
map. As ζ increases, multiple explanation maps are grouped into larger clusters, reducing segmentation
granularity. The rightmost part of the figure shows how different ζ values affect the final segmentation
output.

Figure 15 further quantifies the impact of ζ on segmentation performance for the COCO-Stuff 27 dataset.
Accuracy and Mean IoU metrics are plotted as a function of ζ, demonstrating that while different values of
ζ yield varying levels of segmentation detail, our method remains robust across a range of threshold values.

The results confirm that selecting an appropriate ζ enables the model to segment objects at different levels
of abstraction, demonstrating the adaptability of pre-trained Vision Transformers in unsupervised semantic
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Figure 15: Impact of the clustering threshold ζ on segmentation performance for the COCO-Stuff 27 dataset.
Accuracy and Mean IoU metrics show how different values of ζ affect segmentation quality.

Dataset U. ACC U. mIoU
COCO-Stuff 27 67.2 32.9
PASCAL VOC - 51.9
Potsdam 74.6 -

Table 7: ULTra results across different datasets using the same threshold ζ = 0.4. Accuracy (U. ACC) and
Mean IoU (U. mIoU) are reported where available.

segmentation. Table 7 summarizes the segmentation performance of our method across multiple datasets
using a fixed threshold ζ = 0.4. However, as discussed in Section D, not all threshold values may be equally
suited for standard datasets.

H Further Analysis of Text Summarization

H.1 Additional Examples

To complement the qualitative results presented in Section 5.4, we provide additional visualization examples
of the TL;DR summarization task in Figure 16. These samples further validate the interpretability of the
ULTra framework by demonstrating its ability to consistently highlight semantically salient tokens across
diverse contexts. The extended examples illustrate how token-level relevance scores align with the distilled
summaries.

Explanations:

(a): Semantically significant words such as “care deeply,” “depression,” “cutting,” and “upset” are
prominently highlighted, reflecting the model’s interpretation of the partner’s struggles and the narrator’s
emotional reaction. The focus on “love” and “don’t know” further shows the model capturing both the
romantic attachment and uncertainty, which are condensed into the summary.

(b): The model highlights tokens like “team,” “emotional,” “underdog win,” and “cry/teary,” focus-
ing on the parts about bonding with a team and the emotional reaction to underdog victories. This
attention shows the model captures the link between shared struggles and the narrator’s tears, which is
distilled into the TL;DR.

(c): The model highlights tokens such as “pretty girl,” “father,” “shy,” “well with the dad,” and
“unsure,” which emphasize both the attraction and the social barriers around the situation. Strong
attention is also given to the repeated question “How should I proceed / how should I go about asking out,”
showing the model identifies the narrator’s uncertainty as the key theme. By balancing the highlighted
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references to family dynamics and the narrator’s hesitation, the model distills the post into the TL;DR:
asking the girl out without misunderstandings or awkwardness.

(d): The model highlights tokens such as “mid year evaluation,” “pay,” “amount of units,” “24
units away from graduating,” and “working full time over the summer,” which directly connect to the
question of salary adjustment. Attention is also given to phrases about reflecting the “current amount of
units” taken, showing the model identifies the link between academic progress and pay. These focused
regions explain why the TL;DR condenses the post into the core concern of aligning mid-year pay with
completed units. By contrast, the final sentence (“I called HR... finals coming up”) receives lower scores,
as it conveys anxiety rather than information directly relevant to the pay issue.

(e): Here, the model highlights tokens such as “younger brother died,” “suddenly,” “impacting him
heavily,” “support him,” and “help him through this grief process,” which directly connect to the main
concern of coping with sudden loss. Broader attention is placed on sentences describing the death and its
emotional toll, showing the model captures the central event and the narrator’s intent to provide support.

(f): The model highlights tokens such as “pulled over,” “red light,” “ran through,” and “verbal warning,”
which directly capture the core sequence of events leading to the summary. Broader attention is given to
the description of being stopped and told not to repeat the behavior, showing the model identifies this as
the essential outcome.

H.2 Quantitative Validations

To quantitatively assess the faithfulness of the highlighted tokens produced by ULTra, we adopt the Com-
prehensiveness metric introduced by DeYoung et al. (2020) for our task, measuring the impact of removing
important context tokens on the model’s behavior.

First, as in Eq. 13, we compute token-level contribution scores λ
(l)
i ∈ R+ denotes the contribution of the i-th

context token to interpreting the summary y at a fixed layer l.

Based on these scores, we select the top-k% of context tokens to form the rationale set Rk. We then evaluate
how the removal of these tokens affects the model’s ability to support the gold summary using the same
pretrained model.

To evaluate the effect of removing important tokens, we define a scoring function S(x, y) that quantifies
how well the model supports the gold summary y given the context x. Let the language model π define the
conditional distribution:

π(y | x) =
|y|∏
i=1

π(yi | x, y<i), (18)

where yi denotes the i-th token of the summary and y<i the prefix tokens preceding it. We use the log-
probability of the gold summary given the context as the score:

S(x, y) = log π(y | x) =
|y|∑
i=1

log π(yi | x, y<i). (19)

Intuitively, S(x, y) reflects the model’s confidence in generating the reference summary when conditioned
on the provided context. Let x be the original context and x \ Rk be the context with the selected tokens
removed. The Comprehensiveness score at selection rate k is then defined as:

Compk(x, y) = S(x, y) − S(x \ Rk, y)
S(x, y) , (20)

where larger values indicate that removing the selected tokens leads to a larger drop in entailment, implying
that these tokens are more necessary for preserving the semantic content of the summary.
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(a) TL;DR: I’m seeing someone I care about get cut again and they’re getting depressed,
and I’m kind of in love with them and don’t know what I should do.

(b) TL;DR: I cry when I see an underdog win in just about any sports, does anyone else? Share your story!

(c) TL;DR: How do I go about asking the girl out without any misunderstandings/awkwardness?

(d) TL;DR: How do I get my mid-year pay to reflect the increase in units I have taken.

(e) TL;DR: Boyfriend’s brother died suddenly and it’s impacting him very hard.
What can I do to help him through this?

(f) TL;DR: I pulled over for running a red light, was told not to do it again.

Figure 16: Comparison of six different summarization examples. Each subfigure illustrates how the model
interprets and condenses the input text, highlighting variation across samples.

In Figure 17, we compare Compk of ULTra, i.e., selection is performed based on the ULTra method as
defined in Eq. 13, with the same-sized random selection as a baseline, denoted as Random. We report
the results across multiple selection rates, averaged over 300 samples randomly drawn from the validation
set of the TL;DR dataset. The results demonstrate that ULTra consistently achieves higher Compk values
than the Random baseline, particularly as the selection budget increases. At lower selection rates, ULTra is
only slightly better than Random, reflecting the difficulty of pinpointing influential tokens with very limited
budgets. However, as more tokens are selected, ULTra identifies context regions that have a clearer causal
impact on the model’s output, while the Random baseline exhibits negative or unstable behavior, especially
at smaller budgets.

Limitations. While the proposed Comprehensiveness metric offers an intuitive way to assess ULTra’s
effectiveness in identifying influential context tokens for summarization, it does not provide a complete
evaluation of interpretability. This metric focuses only on the causal impact of token removal and does not
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Figure 17: Average Comprehensiveness score Compk on the validation set across different selection rates k
(%) for ULTra and a random baseline. At small budgets (k ≤ 15), ULTra performs only marginally better
than Random; as k increases, it exhibits steadier gains, whereas Random shows negative values at low k and
non-monotonic behavior beyond 20%.

capture other important aspects such as sufficiency, stability under paraphrasing, or alignment with human
rationales. It is also sensitive to the choice of language model and may reflect model-specific behaviors.
A more comprehensive benchmark and evaluation strategy for interpretable text summarization should be
developed in future work, combining multiple faithfulness measures, human evaluations, and robustness
analyses.

I Transformer Architecture

The architecture of a typical Transformer can be formulated as follows: the input X is split into n tokens
{xi}n

i=1. After tokenization, token embeddings {ei}n
i=0 are computed, where e0 corresponds to the CLS

token. Positional encodings PEi are added to the i-th token embedding to incorporate spatial information,
resulting in the latent token representation z(1)

i = ei + PEi. Here, z(l)
i represents a latent token, where l

denotes the layer index with l ∈ {1, . . . , L} and L is the total number of layers in the Transformer, and i
represents the i-th token within the l-th layer.

For each head h ∈ {1, . . . , H} in the multi-head attention mechanism, the queries, keys, and values corre-
sponding to the i-th token are obtained via linear transformations, projecting the latent token of dimension
d into dimension k. For ∀l ∈ {2, . . . , L} :

Q
(l)
h (z(l−1)

i ) = (W (l)
h,q)T z(l−1)

i

K
(l)
h (zl−1

i ) = (W (l)
h,k)T z(l−1)

i

V
(l)

h (z(l−1)
i ) = (W (l)

h,v)T z(l−1)
i (21)

where W
(l)
h,q, W

(l)
h,k, W

(l)
h,v ∈ Rd×k. The attention weights for each token pair (i, j) at layer l and head h are

computed as:

α
(l)
h,i,j = softmaxj

(
⟨Q(l)

h (zl−1
i ), K

(l)
h (z(l−1)

j )⟩
√

k

)
. (22)

The i-th token is then updated by summing over the weighted values across all heads:

ū(l)
i =

H∑
h=1

(W (l)
c,h)T

n∑
j=1

α
(l)
h,i,jV

(l)
h (z(l−1)

j ), (23)
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where Wc,h ∈ Rk×d. The updated token representation ui after the attention layer is computed as:

u(l)
i = LayerNorm(z(l−1)

i + ū(l)
i ). (24)

Each token then passes through a feed-forward network:

z̄(l)
i = (W (l)

2 )T ReLU((W (l)
1 )T ui), (25)

z(l)
i = LayerNorm(ui + z̄(l)

i ). (26)

Here, W
(l)
1 ∈ Rd×m, W

(l)
2 ∈ Rm×d.
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