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Abstract

Transformers have revolutionized Computer Vision (CV) through self-attention mechanisms.
However, their complexity makes latent token representations difficult to interpret. We in-
troduce ULTra, a framework for interpreting Transformer embeddings and uncovering mean-
ingful semantic patterns within them. ULTra enables unsupervised semantic segmentation
using pre-trained models without requiring fine-tuning. Additionally, we propose a self-
supervised training approach that refines segmentation performance by learning an exter-
nal transformation matrix without modifying the underlying model. Our method achieves
state-of-the-art performance in unsupervised semantic segmentation, outperforming existing
segmentation methods. Furthermore, we validate ULTra for model interpretation on both
synthetic and real-world scenarios, including Object Selection and interpretable text sum-
marization using LLMs, demonstrating its broad applicability in explaining the semantic
structure of latent token representations.

1 Introduction

In recent years, the Transformer architecture and foundation models, leveraging self-attention mechanisms to
capture complex dependencies in text, have transformed Natural Language Processing (NLP) benchmarks
(Vaswani et all [2017; Touvron et al., [2023; |Team et all 2024). Similarly, Vision Transformers (ViTs)
(Dosovitskiy et al.l 2020) have been adapted in Computer Vision (CV) and now serve as the backbone for
various tasks such as segmentation and object detection (Thisanke et al.l |2023; Liu et al., 2021)). Despite
their success, understanding the interpretability of Transformers remains a challenge due to the complexity
of their latent token representations.

Several methods have been developed to enhance the interpretability of CNN-based models (Simonyan et al.),
2014; |Zeiler & Fergus| |2014; |Selvaraju et all [2017). While some of these can be extended to Transformer
architectures, they do not fully leverage the unique attention mechanisms inherent to Transformers. Recent
research has introduced interpretability methods specifically designed for Transformers (Chefer et al., [2021b;
Abnar & Zuidemal [2020; |Vig & Belinkovl, 2019). However, these approaches primarily focus on explaining
final model outputs, providing limited insight into the intermediate processes that lead to predictions.

In this paper, we introduce Unwveiling Latent Token Interpretability in Transformer-Based Understanding
(ULTra) a framework for interpreting latent tokens in Transformers. Recent work with objectives similar
to ours (Chen et al.l |2024) attempts to interpret latent tokens by mapping them into CLIP’s multi-modal
embedding space, using an external text encoder to associate tokens with semantic descriptions. In contrast,
our method directly analyzes the latent space of ViTs, uncovering the role and function of individual tokens
within the high-dimensional representation without relying on auxiliary models. ULTra provides deeper in-
sights into the internal representations of these models. By analyzing the semantic information captured
by latent tokens, we show that Transformers inherently encode the semantic structure of their input as a
collection of distinct concepts. Moreover, by aggregating explanation maps, ULTra achieves unsupervised
semantic segmentation. Unlike prior unsupervised segmentation methods that require additional training
(Sick et al.,|2024; [Hamilton et al.|2022;|Li et al.|2023)), ULTra leverages the intrinsic knowledge of pre-trained
models on tasks other than semantic segmentation to achieve state-of-the-art performance on benchmark



Under review as submission to TMLR

datasets without the need for fine-tuning. To further enhance segmentation performance, we introduce a
self-consistency approach that learns an external transformation matrix in a self-supervised manner, refin-
ing segmentation without modifying the underlying model. Additionally, we validate our interpretability
framework on transformer-based LLMs through qualitative analyses in text summarization, demonstrating
its broad applicability across modalities.

Our main contributions are as follows:

e We propose a framework for interpreting latent tokens in Transformers, uncovering the stored se-
mantic knowledge in each latent token. To the best of our knowledge, we are the first to investigate
latent token interpretability directly.

e We extend ULTra to several designed synthetic and real-world tasks, showcasing its versatility and
applicability, including Object Selection and interpretation of LLMs in text summarization tasks.

« By aggregating explanation maps generated from latent tokens, our method enables unsupervised se-
mantic segmentation using pre-trained ViTs without requiring any additional training. This strategy
outperforms existing state-of-the-art approaches that rely on fine-tuning or supervision, highlighting
the effectiveness of leveraging the semantic structure embedded in large-scale models.

o To further enhance segmentation performance, we introduce ULTrayy, a lightweight learnable exten-
sion that optimizes a self-consistency loss. This loss encourages stable token representations under
input perturbations and yields a transformation matrix that projects tokens onto a more informative
subspace while keeping the backbone model unchanged.

2 Related Work

Interpretable Deep Learning. Model interpretability is a critical aspect of deep learning, particularly
for complex architectures like Transformers. Traditional methods such as saliency maps (Simonyan et al.|
2014), Grad-CAM (Selvaraju et all 2017), LIME (Ribeiro et al., [2016), and SHAP (Lundberg, [2017)) have
been effective for CNNs but do not fully exploit Transformers’ self-attention mechanisms. A growing body
of research focuses on Transformer-specific interpretability techniques that leverage attention mechanisms as
intrinsic explanations (Vig & Belinkovl, [2019; |Abnar & Zuidemay, [2020; |Chefer et al. |2021b; [Jain & Wallace),
2019; [Wu et al., 2024). These methods are largely post-hoc, providing explanations after model training.
In contrast, ante-hoc approaches such as IA-ViT (Qiang et al., [2023) and Mechanistic Interpretability (Rai
et al., 2024) seek to make Transformers inherently interpretable. Additionally, techniques like LeGrad
(Bousselham et al., |2024)) and TA-RED? (Pan et al.l 2021)) improve interpretability by analyzing feature
formation and reducing redundancy in self-attention. Despite these advancements for model interpretability,
understanding latent tokens in ViTs remains underexplored, highlighting the need for methods that explicitly
interpret latent tokens. A related study (Chen et al., |2024]) explores latent token interpretation in CLIP by
modifying self-attention mechanisms.

Semantic Segmentation. Unsupervised semantic segmentation has progressed through self-supervised
learning and clustering techniques. Early methods such as IIC |Ji et al.| (2019) and PiCIE |Cho et al.| (2021)
leveraged mutual information and consistency principles to enhance feature representations. Transformer-
based approaches like DINO |Caron et al.| (2021) and STEGO |[Hamilton et al.|(2022) further improved seg-
mentation by capturing meaningful structures through self-attention. Other techniques, including MaskCon-
trast [Van Gansbeke et al.| (2021), Leopart |Ziegler & Asanol (2022)), and ACSeg |Li et al.| (2023)), refined seg-
mentation through clustering and adaptive conceptualization. More recent methods, such as DepthG |Sick
et al| (2024), incorporate depth-guided correlations, while U2SEG [Niu et al.| (2024) utilizes pseudo-labeling.
Additionally, SmooSeg [Lan et al.| (2023)) enforces smoothness priors, and HSG [Ke et al.| (2022)) applies
hierarchical segmentation via multiview clustering Transformers. Moreover, in the context of semantic seg-
mentation, Weakly Supervised Semantic Segmentation (WSSS) aims to generate segmentation masks using
only image-level labels. These methods often rely on saliency maps from interpretability techniques, such
as Class Activation Maps (CAMSs), to localize objects (Choe & Shiml (2019); [Yin et al.| (2020); (Chen et al.
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(2023). Typically, they depend on class logits to guide segmentation, refining masks based on predicted class
scores.

Latent Embedding.  The high dimensionality and complex distribution of latent embeddings in deep
models pose significant challenges for interpretation and manipulation. Methods like GroupViTXu et al.
(2022) utilize hierarchical grouping to facilitate more meaningful representation learning, enabling seman-
tic segmentation. Other approaches, such as [Lee et al| (2024)); Bolya et al| (2023)); Liang et al.| (2022),
improve computational efficiency by eliminating redundant tokens, while register-based ViTsDarcet et al.
(2024) address artifacts in feature maps caused by outlier-norm tokens through the introduction of reg-
ister tokens. However, these techniques primarily emphasize computational efficiency and representation
structuring rather than the interpretability of latent embeddings.

3 Methodology

In this section, we introduce our approach for interpreting latent representations in Transformers. We
start by outlining the essential preliminaries, followed by a detailed explanation of the ULTra framework for
analyzing latent tokens. Additional details on the Transformer architecture are provided in Appendix [F]

3.1 Preliminaries

Previous research on attention-based model interpretability (Abnar & Zuidemal [2020; (Chefer et al., |2021bja;
Wu et all 2024) has primarily focused on analyzing the semantic flow from input tokens to class logits.
This is typically achieved by adding the attention probability matrix of each layer to an identity matrix and
aggregating the results across attention heads through a weighted average. The weights are derived from the
gradients of the class logits with respect to the attention probabilities. Specifically, to assess the contribution
of each class logit using attention information, the contribution map for layer b is defined as:

+
Cgb) =1+ Eh |:(VA§lb)p(C)> ® Agb):l , (1)
S.=cW.c?...c, (2)
S, =5.[0,11], (3)

where ® denotes the Hadamard product, and (-) is the operator that retains only positive values. I represent

the identity matrix which reflect the contributions of skip connections and Aglb ) € RO+DX(n+1) denotes the

attention probability matrix of head h and layer b. The term V , @) p(c) = gi((?)
h h

attention map with respect to the predicted probability for class ¢, and Ej, denotes the mean over multiple
attention heads. Equation [2] represents matrix multiplication, which accounts for aggregating contributions
from all layers. Each element of S.[i, j] represents the influence of the j-th input token on the i-th output
token. Thus, each element of S.[j] quantifies the influence of the j-th input token on class ¢, with token 0
corresponding to the CLS token. This raises a new question: Is there a similar approach to interpret
latent tokens in Transformers?

is the partial derivative of the

3.2 ULTra Framework

Inspired by Equation |1} in this work we aim to measure the contribution of latent token zgl) using the

underlying attention probabilities, where i € {0, 1,...,n} denotes the token index and [ represents the layer.
(

Specifically, to quantify the influence of the attention map at layer b on the latent token zil)7 the contribution

)

map Cgb’l is defined as follows:

+
c =148, ((Vapsa) @ L) (@

Intuitively, this approach traces the most influential input information contributing to a latent token zgl),

where the notion of influence is defined based on the impact an input token has on the function f : R” — R
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Figure 1: The overall architecture of the ULTra framework. The framework consists of a forward path, where
the input data x is fed into the model, and a backward path, starting from the target layer [, where we

compute the gradient of a scalar function of the i-th latent token, f (zz(-l)), with respect to the attention
probability matrix of the middle layer b. Next, we compute the corresponding contribution map Cgb’l) for

—=( , .
all middle layers. Finally, we construct the explanation map SZ(- ), select its i-th row, and transform it to the
input size.

of the target token. Specifically, by influence, we mean the degree to which an input token affects f (zgl)),
reflecting its importance in the representation.

Finally, we define the corresponding explanation map for the latent token zgl), denoted as SZ-(I) € R"™, where
(

each element represents the influence of an input token on zil). The explanation map is computed as:

Sgl) _ Cgu) ) CZ(Q,l) o ngq,z)’ Si(l) _ gl(l) [i,1], (5)
where . represents matrix multiplication, which aggregates contributions from all layers to the target latent
token. Transformer skip connections cause most contributions to concentrate on Sfl) [i — 1], hindering token-
level analysis. To mitigate this, we replace it with the maximum of the other elements, better capturing
token contributions. Moreover, in some experiments, e.g., semantic segmentation, we reshape and upsample
the explanation map using bilinear or cubic interpolation to match the input resolution, producing 51-(1). The
overall framework of ULTra is shown in Figure

Additionally, As we illustrated in section [f] in our experimetns we utilize three approach for desiging f in
ULTra framework:

(i) fs(zgl)) = (zz(-l), 1) In this formulation, 1 represents an all-ones vector, meaning that the function simply

computes the sum of all elements in zz(-l). This approach is denoted by ULTras. The underlying intuition is

that this approach treats all elements of the token equally.

(ii) fe(zl(l)) = (zgl), zl(.l)> This approach is based on the energy (or norm) of a given token, a concept that

has been previously explored in the literature Darcet et al.| (2024)). By leveraging token energy, this method
captures the magnitude of the token’s latent representation. We refer to this variant as ULTrag.

(iii) fw(zl(l)) = (zgl),wi>: Besides of previous approaches, we introduce a learnable vector w; to project
each token zgl). Geometrically, the functionality of fs in ULTrag can be seen as mapping all tokens onto the
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(a) Original Image (b) Latent Token’s explanation Map (c) Predicted Binary Mask
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Figure 3: An example of token interpretation by our model and its predicted binary mask. (a) Original
image. (b) Overlay of 52-(13) on the original image for different ¢, where the location of the i-th token is
indicated by the purple square. (¢) The binary mask Mi(lg) for each corresponding explanation map in (b).

same projection basis within the token space. Intuitively, the goal of this approach is to enhance the overall
performance of the ULTra framework by computing a more informative projection basis. We refer to this
variant as ULTrayy. While ULTras is training-free, ULTrayy requires light training to learn the optimal w;
vectors. In our experiments, we train these vectors using a limited number of batches. Notably, we employ
this approach to further enhance segmentation performance. Furthermore, in Section we propose a
self-supervised approach for learning w;.

For both ULTrags and ULTrag, our framework operates without requiring any additional training. In the case
of semantic segmentation, experimental results demonstrate that these proposed approaches closely match,
or even surpass, other baselines that rely on fine-tuning, highlighting their effectiveness and efficiency.

4 Tailoring ULTra for Different Applications

In this section, we aim to examine ULTra’s capability to adapt to various tasks involving semantic knowledge.

4.1 Unsupervised Semantic Segmentation

Explanation maps are defined for each latent token at a fixed
layer, resulting in a total of as many maps as there are la-
tent tokens. For segmentation, we hierarchically cluster these
maps. In our experiments, we set a predefined number of
clusters k for the algorithm. Additionally, in Appendix [E]

we conduct comprehensive experiments exploring the use of : p—
a threshold ¢ to dynamically adjust the optimal cluster count
k. Figure |12| also provides a schematic of how it is done. To l ‘. (

ensure fair representation, we apply Min-Max scaling to pre-

vent larger objects from dominating the clustering process.
Figure 2: ULTra segmentation results on sam-

ple images. The top row displays the orig-
where ¢(c) = {i : Class(gfl)) = ¢} represents the grouping inal i@ages, the middle row shows true an-
of label assignments. Given a fixed threshold ¢, class labels notations, an'd .the bottom row presents our
are assigned to input pixels using the explanation map of the model’s predictions.
l-th layer as follows:

‘: \ = l S

After clustering, k distinct concepts are defined by aggregat-
ing explanation maps. The aggregated explanation map for

cluster c is: ~ ~
SO,y = Y 8], (6)
i€¢(c)

Class[z,y]Y = argmax SV [z, y]. (7)
ced{l,...,k}
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Some examples illustrating our segmentation method are presented in Figure

ULTray,. As previously mentioned, to further enhance segmentation performance, we propose ULTrayy,
which utilizes a learnable transformation matrix to obtain a more informative projection basis for the token
space. For simplicity of notation, we fix the layer £ and omit the layer superscript in the following derivations.
Consider z; ; = e’'z;, where e; is the j-th standard basis vector. The gradients can then be rewritten as:

J
Varfs(#) =Y Varzij, Varfu(z) wavazl,J (8)

J

In other words, the gradient of fy(2z;) is a weighted version of the gradient of fs(z;). From this perspective,
by manipulating the weighting vector w;, we can prioritize the more informative dimensions of the token
space. As illustrated in section [5] this leads to improved performance of ULTra compared to variants that
rely on a naive choice of f.

Here, a crucial question arises: How do we characterize the amount of information in the token space to
achieve a good projection basis for the token space? In other words, we need to learn a matrix W =
[W1,...,w,]T to perform more effective segmentation. To this end, we introduce a perturbation on the
input image and, by optimizing W, aim to minimize the divergence of specific tokens from their unperturbed
versions.

Let x be an input image and X its perturbed version corresponding to segmentation class ¢, which can be
computed as:
X = x4 Py(x,¢;9), (9)

where ’P¢E| is a perturbation strategy that applies perturbations to the corresponding negative regions pre-
dicted for class ¢ € C. Moreover, § quantifies the amount of perturbation, and for § = 0, we have X¢ = x.

Now, to optimize the parameters W, we formulate the problem as:

min E.wp Z Z dw(zi,2;) |, st |willa=1, Vke{l,--- ,n}, (10)
ceCie{jlx;=x5}

where dw (z;,Z;) denotes the divergence between the two vectors based on the projection basis w;, || - ||2 is
the eculidian norm, and x; and z; represent the i-th input token and latent token, respectively. In particular,
we do not perturb the regions recognized by ULTrayy, that contain localized information. This encourages
the model to become more aware of self-attended regions, ultimately enhancing its decision-making in these
critical areas.

In our experiments, we parameterize each projection vector as wy = 0y/]|0x||2. Hence, based on the for-
mulation in Equation to optimize the parameters 0y, we define the Self-Consistency loss as follows:

Lo(.0) =" > |wl(z—a)|, (11)

ceC ie{jlx;=x5}

where w; = 0,/]|0;]2 and © = [61,...,0,]7. We use the term "Self" because we leverage the model’s own
segmentation results, obtained using ULTrayy, to enhance its performance through a systematic weighting
approach. Experimentally, we found that lightly optimizing ® on a limited number of samples improves the
model’s segmentation performance.

4.2 Latent Token Interpretability Assessment

While semantic segmentation serves as an interpretability evaluation approach for ULTra, in this section, we
evaluate ULTra in additional introduced metrics. Specifically, we designed two tasks: (i) Object Selection
and (ii) Perturbation Test. Additionally, in Section we propose quantitative metrics to evaluate our

1The perturbation strategy is defined based on the model parameters ¢ since the model is involved in distinguishing the
perturbation using its segmentation.
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(a) Original Image (b) Explanation Relevency Map

Figure 4: An example illustrating the model’s decision-making process across layers. Moving from left to
right corresponds to deeper layers in the network. The first row corresponds to the CLS token, while the
second, third, and fourth rows represent three different tokens, highlighted by red squares.

method on these tasks to provide deeper insights into the interpretability of ULTra by identifying influential
regions and behaviors within the model’s decision-making process.

Perturbation Test. The perturbation test is a widely used metric for evaluating explainability methods
[Chefer et al| (2021b)); Wu et al| (2024). This approach involves perturbing parts of an image based on
the explanation map generated by the method and measuring the resulting change in the predicted class
probability. Inspired by this technique, instead of using class probability, we leverage the change in the
embedding space to design a perturbation-based validation test. This allows us to assess the reliability of
the explanation maps generated for the latent tokens.

Object Selection. In this task, we convert the upsampled explanation map SZ-(Z) into a binary segmentation
mask using a threshold 7, where the binary mask Mi(l) is defined as:

0 ifS(l)[x yl <t
MOy =4 T ’ 12
ooyl {1, otherwise. (12)

Here, S'i(l)[:c,y] represents the relevance value at position [z,y] in 5”1@, with 7 as the threshold. When
Mi(l)[:c, y] = 1, it indicates that the position [z, y] belongs to the object region.

Our findings indicate that as tokens propagate through the network, they refine their object representation
while retaining the semantic meaning of their associated image patches performing Object Selection. Figure[d]
visually illustrates this process. For a given patch token x;, the object it most strongly represents is denoted
as class k;. The latent token zgl) generates an explanation map that highlights areas with higher values
associated with class k; in the whole image, including x;. After applying a threshold, this map becomes a
binary segmentation mask expected to exhibit a high Intersection over Union (IoU) with the corresponding

class k; region in the image. An illustrative example is shown in Figure

4.3 Interpreting LLMs in Text Summarization

In this section, we examine how our interpretability framework can be applied to text summarization tasks,
taking steps toward uncovering the underlying intent of LLMs. In Section [5.4] we qualitatively evaluate
ULTrag using two samples by visualizing the regions of the input context that an LLM prioritizes while
interpreting a given TL;DR summary. This analysis reveals key input regions shaping the model’s decisions,
aiding in concise and relevant summary generation.

For this task, we concatenate the context x and the summary y with a separator token. After feeding this
input into the model, we compute the relevance scores of the TL;DR tokens with respect to the context
tokens. We then average these scores for each token in = to obtain a scalar value, referred to as the Token
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Contribution Score, )\l(-l) € R*, which highlights the contribution of each context token in interpreting the

summary y within the given context. Accordingly, /\EI) is computed as:

lyl

o vl = Z el Vie {1 el (13)
where | - | denotes the number of tokens in the text.
5 Experiments & Results
5.1 Experimental Setup Method Model Training U. ACC U. mloU
1IC R18+FPN v 21.8 6.7
Datasets. In our experiments, we evah.1— PiCIE R18+FPN v/ 481 13.8
ate model' performance on seV('eral sem'a.ntm ViT-S/3 v 987 113
segmentation benchmarks, focusing on vision- DINO ViT-S/16 v 29.0 3.0
related tasks. We conducted experiments on ViT-B/8 4 30.5 9.6
four datasets: COCO-Stuff 27 |Caesar et al. ACSeg VIT-S/16 % i} 16.4
(2018), PASCAL VOC 2012 |[Everingham & TramsFGU S ——y Y 27 75
Winn| (2011), Potsdam-3 ISPRS| (2018), and rans -5/ i i
Cityscapes |Cordts et al|(2016). ViT-S/8 4 48.3 24.5
STEGO ViT-S/16 v 52.5 23.7
For our qualitative analysis of LLM interpreta- ViT-B/8 v 56.9 28.2
tion in the task of text summarization, as de- STEGO +HP ViT-S/8 v 57.2 24.6
scribed in Section we utilized the TL;DR ViT-S/16 v 54.5 24.3
dataset (Stiennon et all 2022). The TL;DR DenthG ViT-S/8 v/ 56.3 95.6
dataset contains summary comparisons with P ViT-B/8 v 58.6 29.0
human feedback collected by OpenAl. U2Seg R50 v 63.9 30.2
Models. For all experiments in the vision ViT-B/32 v 60.6 34.1
tasks, we used different pretrained versions of ULTray, " VﬁT-B/ 16 v 63.8 34.0
CLIP’s image encoder (Radford et al.,[2021) as ViT-L/14 v 67.9 38.2
well as DINO ViT-S/16 and ViT- B/16 (Caron . ViT-B/32 X 60.8 34.6
et all [2021)). For interpreting text summariza- ULTra§ ViT-B/16 X 63.0 33.2
tion, as described in Section we used the ViT-L/14 X 66.5 375
Llama-2-7B language model (Touvron et al. - ViT-B/32 X 59.5 32.6
2023)). All experiments were run on 4 NVIDIA ULTrag ViT-B/16 X 53.6 26.6
AL00-80GB GPUs. ViT-L/14 X 59.0 31.7
, ULyaDINO  VIT-S/16 v 67.2 34.4
Further (.ietall.s of the da‘Fasets and models used rayy ViT-B/16 v/ 67.4 37.7
are provided in Appendix [C] red I VIT-S/16 X 6.4 333
&s ViT-B/16 X 67.3 35.6
5.2 Semantic Segmentation ULTyaRINO ViT-S/16 X 63.4 31.6
rae ViT-B/16 X 63.0 31.3

We benchmarked the segmentation perfor-

mance of our method against several SOTA Table 1: Comparison of unsupervised segmentation meth-
approaches in the literature on unsupervised ©0ds on the COCO-Stuff dataset.

segmentation. To train the matrix W for

ULTrayy, we utilized 256 samples.

To evaluate the effectiveness of our approach, we use the Unsupervised mean Intersection over Union (U.
mloU) and Unsupervised Pixel Accuracy (U. ACC) metrics. The experimental results on the COCO-Stuff,
PASCAL VOC, Potsdam, and Cityscapes datasets are reported in Tables and [] respectively. In
these tables, the Training column indicates whether any additional training is required.
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Method Model Training U. mIoU
11C R18+FPN v/ 6.4 Method Model Training U. ACC
PiCIE R18+FPN v/ 12.3 e RI18+FPN v 65.1
STEGO ViT-B/8 v 21.0 DINO ViT-5/8 v 71.3
STEGO +hp  ViT-S/8 v 18.4 STEGO ViT-S/8 v/ 77.0
i ViT-B/8 v 18.4 DepthG ViT-S/8 v 80.4
DepthG ViT-B/8 v 23.1 ViT-B/32 v/ 78.7
ViT-B/32 v 17.6 ULTra$H*  ViT-B/16 v 80.9
ULTra$e® ViT-B/16 v 24.8 ViT-L/14 v 82.4
ViT-L/14 v 25.1 VIT-B/32 X 733
ViT-B/32 X 17.1 ULTra$™*  ViT-B/16 X 80.9
ULTra$"* ViT-B/16 X 24.2 ViT-L/14 X 82.8
ViT-L/14 X 24.2 ViT-B/32 X 781
ViT-B/32 X 20.4 ULTrag“™  ViT-B/16 X 70.4
ULTrag"'"" ViT-B/16 x 20.9 ViT-L/14 X 75.5
ViT-L/14 X 230 ULualine  ViT-S/16 Vo790
ULTraBine ViT-S/16 v 25.8 W ViT-B/16 4 80.7
ViT-B/16 v 26.5 ULTraline ViT-S/16 X 774
ULiTralino V%T-S/l(} X 24.9 ] ViT-B/16 X 80.8
ViT-B/16 X 25.7 UliTpaDino VIT-5/16 X 75.7
ULTraDine ViT-S/16 X 22.9 £ ViT-B/16 X 76.8
ViT-B/16 X 23.0

Table 3: Comparison of different unsupervised seg-
Table 2: Comparison of different unsupervised seg- mentation methods on the Potsdam dataset.
mentation methods on the Cityscapes dataset.

Method Model Training U. mloU
Ampng the pr.oposed variants of ULTr'a,. ULTray 1Ic RIS+ FPN ; 05
achieves the highest performance, requiring only a
small number of training samples. Notably, even =~ MaskContrast R50 v 35.0
when no training data is available, ULTrag still Leopart ViT-S/16 v 41.7
?If:rlle{\s/es state-of-the-art results on several bench- TransFGU VIT-S/8 % 372
' MaskDistill  ViT-S/16 + R50 v 42.0
for some models, such as ViT-L/14, no existing ACS VIT-S/16 7 71
baseline is available for direct comparison, high- i) iT-8/ .
lighting the versatility of ULTra across different oL ViT-B/32 v 51.2
architectures. Furthermore, we conducted an ab- ULTrayy, ViT-B/16 4 50.9
lation study related to the model depth in Ap- ViT-L/14 v 49.1
pendix [A] ViT-B/32 X 49.2
ULTra§™" ViT-B/16 X 48.3
5.3 Interpretability Evaluations ViT-L/14 X 48.7
ViT-B/32 X 50.0
Perturbation Test. To assess the reliability of ~ ULTrag"™" ViT-B/16 X 40.0
the explanation maps, we conduct a perturbation ViT-L/14 X 45.2
test by selectively alterinlg image regions based on ULTyaDINO ViT-S/16 v 48.9
the explanation map Sl-() for each token i. The w ViT-B/16 v 50.5
pertu.rbatlon is applied at the patch l.evel Wh{le UL TralINO V%T-S /16 X 47.9
ensuring the total perturbed area remains consis- S ViT-B/16 X 50.0
tent across all cases. We consider two types of VIT-S/16 X 16.9
. DINO - .
perturbations: ULTrag ViT-B/16 X 50.0

(i) Positive Perturbation: Removing highly rele-
vant regions, which should significantly affect the Table 4: Comparison on the PASCAL VOC 2012

token’s representation. dataset.
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VOC Potsdam COCO Cityscapes
Neg.| Pos.T Neg.| Pos.?T Neg.| Pos.T Neg.| Pos. T
Mask 13.16  15.51 12.35 14.02 12.62 15.21 9.95 14.42

Model Perturb.

ViT-B/32 Noise 6.97 10.23 9.39 11.44 6.83 10.26 5.99 11.13
VIT-B/16 Mask 14.68 17.5 1391 1551 1416 17.39 11.33  16.27

e Noise 9.87 14.03 13.5 1445 10.14  14.12 9.46 14.22
ViT-L/14 Mask 6.66 9.43 6.61 8.99 6.38 9.31 5.36 8.86

Noise 4.45 7.88 4.95 7.96 4.27 7.74 3.89 7.7

Table 5: Average token vector differences for ViT models under mask and noise perturbation tests across
multiple datasets, highlighting the impact of positive and negative perturbations based on the relevancy map
on token representations.

(i) Negative Perturbation: Removing less relevant regions, which should have minimal impact.

Two types of modifications are intro-
duced. In the masking perturbation, se-
lected patches are replaced with zeros, ef-
fectively removing the corresponding vi-
sual information. This is applied to both
highly relevant regions (positive mask-
ing) and less relevant areas (negative
masking). In contrast, the noise pertur-
bation introduces Gaussian noise to the
same sets of patches, adding controlled
randomness to test the robustness of to-
ken representations.

(a) Original (b) Pos. Mask

The noise follows a standard normal dis-
tribution with a standard deviation of
0.3. Figure [§] provides a detailed visu-
alization of the perturbation test con-
ducted on a sample image from the PAS-
CAL VOC dataset using the CLIP ViT- (d) Explain. Map (e) Neg. Mask (f) Neg. Noise

B/32 model. It illustrates the model’s
explanation map (d), and compares the Figure 5: Effect of perturbations on a sample image from the

effects of both positive (b’ C) and nega- PASCAL VOC dataset, where the model used is CLIP VIT—B/32

tive (e, f) perturbations applied through

masking and Gaussian noise, demon-

strating how altering semantically relevant regions leads to more significant changes in the model’s internal
representations.

To ensure fairness, the initial token’s patch remains unchanged in both perturbations, as its information is

directly propagated to the target token through skip connections. Given a perturbed representation Zi(l),

we measure the deviation from the original token representation zi(l) using the Euclidean distance, then
we compute the average deviation over the entire dataset by selecting k random tokens per image and

aggregating the distances:
1 en (1
7 n =
dine = 573 <% Sl - z5,3||2> , (14)
j=1 i=1

where M is the number of images, and k tokens are randomly selected from each. For our results, we set
k = 10. The perturbation test results are presented in Table [j]
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Positive perturbations result in greater deviations compared to negative ones, confirming that the explanation
maps effectively highlight influential regions. The consistency of these results across multiple datasets further
validates the reliability of our interpretability framework.

Object Selection. To quantify alignment, we compute the IoU by converting the explanation map Si(l)
into a binary mask Mi(l) and comparing it with the ground-truth mask. We propose the Initial Token IoU
(ITIoU) metric, which measures how well the explanation maps of input tokens align with their respective
class masks. The ITIoU is calculated as:

Q

1

ITIoUY(X) = = 3 U, Gy, (15)

i=1

where C' denotes the number of classes, 7; represents the set of tokens associated with class i, M ;l) is the
binary segmentation mask for token x; within class 4, and G; is the ground-truth mask for class ¢ in image
x. The inner sum averages the IoU for tokens in 7; for each class, and the outer sum then averages across
all classes. Using a threshold of 0.2, our ITToU metric achieves an average score of 37.84% % on the COCO-
Stuff validation dataset and 39.51% % on the PASCAL VOC dataset. A more detailed analysis of ITIoU is
provided in Appendix

5.4 Interpretable Text Summarization

In this experiment, we used a Supervised Fine-Tuned (SFT) version of Llama-2-7B trained on the Ul-
traFeedback Binarized (UFB) dataset (Cui et al., 2024)). Additionally, we aligned the model to the text
summarization task on the TL;DR dataset (Stiennon et al.l [2022)) using the Direct Preference Optimization
(DPO) method (Rafailov et al., [2024) for 1,000 iterations, with a learning rate of 5 x 107¢ and 8 = 0.5. To
validate our framework, we selected the preferred response (TL;DR) of each sample in the dataset, denoted
by y, and used it as the summary of the context x. the result can be seen in figure [f]

In example (a): semantically significant words such as ‘relationship’, ‘experience’, ‘rejection’, and ‘never’
are prominently highlighted, reflecting the model’s interpretation of the person’s struggles with relationships
and feelings of rejection. Additionally, the highlighting of the question at the beginning of the context ‘How
do I stop feeling bad...” suggests the model recognizes the presence of uncertainty and a request for guidance,
which is encapsulated in the summary as ‘I don’t know.

In example (b): )\l(.l) scores reveals the model’s focus on words such as ‘feelings’, ‘hate’, ‘disappoint’, ‘love’,
and ‘like’, which correspond to the person’s mixed emotions toward their girlfriend, as described in the
summary. The apparent contradiction between ‘love’ and ‘trashness’ in the summary seems to be derived
from these highlighted terms, suggesting the model understands the conflicting emotions present in the text.
Furthermore, the focus on ‘character’ reflects the summary’s judgmental tone, implying the model links it
to personality assessment.

How do I[ 2 0 M ] stop feeling bad about myself for having no relationship
experience at all ? POST : It just seems like everyone I know has at least
had a " thing " with someone by this point | I | ve made out with a girl once
( who later told me that was a mistake ) and I feel like girls always reject
me or only see me as a friend | Which is perfectly acceptable , but I'' m
starting to get ups et that I ' ve never had any kind of relationship | I just
got rejected by a girl who I thought was into me and I ' ve been feeling
bad ever since . I just don [ t know what ' s wrong with me . I guessI'm a
little bit skin ny ( I work out regularly though ), but I show er every day ,
dress pretty well , all that stuff |

I need help about those feelings POST:Iamal8M,shefsal7F.We'
ve got a troubles ome relationship which started as a pure friendship one
year ago . I ' ve made mist akers , she made hers too . O ur last situation
scenario is explained in here : Now I feel like I hate her | I used to adm ire
her a lot , but I ' m really disappoint ed with her and with her character .
But I just realized I still like her . So, well , yeah , I like her and hate her |
And just after that bad situation happened I realized she also had that
feeling . Well , now we both hate and love each other . What to do ? What
to think ? What to feel ? add itional info : today our friend asked me for
help with some calculations and I made a jo ke about our physics teacher .
She laughed and smiled at me just like one year ago , but after she
realized that , she seemed kind a [ gr ouch y I(

(a) TL;DR: I've had very bad luck with girls my whole
life and I don’t know how to get my confidence up.

(b) TL;DR: T still like her but my rational
side says "no, she is a trash person".

Figure 6: Visualization of Token Contribution Scores ()\gl)) highlighting the relevance of context tokens

in interpreting the summary. Each token is colored proportionally to its )\gl) value. These visualizations
demonstrate the model’s ability to identify key semantic elements in the context for generating relevant
summaries.

11



Under review as submission to TMLR

This token-level analysis visually illustrates the model’s context processing, supporting interpretable fine-
tuning and alignment techniques such as RLHF (Christiano et al., 2023} |Stiennon et al.l 2022; |Ouyang
et al., [2022)) and direct preference optimization (Rafailov et al.| 2024; |Azar et al., [2023; [Ethayarajh et al.
2024)), where understanding model behavior and intent is critical. These language-based experiments are
not intended as a benchmark for interpretable summarization, especially given the absence of standardized
evaluation metrics, but rather to demonstrate the versatility of ULTra across modalities. This experiments
also highlights an important direction for future research: applying post-hoc interpretability techniques to
better understand and align large language models within frameworks such as RLHF and preference-based
training.

6 Concluding Remarks

Summary. We present a framework for interpreting latent tokens in Transformers. We investigate several
design choices for ULTra, and our method achieves state-of-the-art performance in unsupervised semantic
segmentation across multiple datasets and settings without any training. Additionally, we validate our
approach through perturbation tests and object selection, demonstrating its broader applicability. This
framework offers valuable insights into the decision-making processes and behavior of Transformer models
at the layer level.

Future Research. As a contribution to latent token interpretability, our framework extends existing meth-
ods. Future directions include refining the method specifically for latent token analysis and addressing its
computational complexity during inference (further discussion is provided in Appendix [B.2)).
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Appendix
A Effect of Layer Depth in ViT Token Understanding

In this section, we analyze the impact of depth on our model’s interpretability and segmentation performance,
providing insights into the contribution of each layer. for samller models such as ViT-B/32 in Figure
deeper layers generally carry more semantic significance. However, the contribution diminishes in the final
layers, suggesting that a depth of around 13 layers might be more than sufficient for the ViT to effectively
comprehend image content. This finding implies that even fewer layers might achieve comparable results,
potentially reducing computational costs without compromising performance.

We observe an intriguing behavior in the initial layers, where performance initially declines before improving,.
This phenomenon is also visually evident in Figure 4] where the attention maps in the first layer appear
to focus on the entire image. This suggests that, initially, the token examines the image as a whole before
selectively gathering information from tokens with similar characteristics.

In the CLIP ViT-L/14 model, deeper layers capture more refined and detailed feature representations.
Unlike shallower models, where segmentation performance stabilizes early, ViT-L/14 benefits from its depth
by gradually extracting richer hierarchical features. As shown in Figure [7] accuracy and Mean IoU improve
as layers deepen, with segmentation performance peaking around the mid-depth layers. However, in deeper
layers (beyond layer 20), segmentation quality slightly declines. This suggests that while the model gains a
better understanding of high-level semantics, it loses some spatial precision. This trade-off occurs because
later layers prioritize semantic abstraction over detailed spatial structures.

While deeper models like ViT-L/14 offer improved feature extraction, more layers do not always lead to
better segmentation. Instead, an optimal balance between depth and spatial representation is necessary for
effective segmentation.

B Limitations & Discussions

B.1 Datasets

A significant challenge in deep learning is providing labeled datasets, which are essential for the success of deep
learning methods. However, labeling can be ambiguous, as objects or attributes may be labeled separately
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Figure 7: The segmentation performance of the CLIP ViT-L/14 model in an unsupervised setting, measured
by accuracy and IoU, changes across different layers. As layer depth increases, both metrics improve at
first, reaching their highest point in the mid-depth layers. However, performance slightly declines in deeper
layers. This suggests that while deeper layers capture richer semantic details, they also introduce complexity
that does not always improve segmentation. Additionally, the limitations of labeled datasets, especially the
ambiguity in object definitions, further restrict the model’s ability to achieve better segmentation, despite
its strong interpretability.
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Figure 8: Ablation study on two evaluation metrics across layers. These plots demonstrate a progressive
improvement in semantic segmentation performance in the deeper layers of the transformer model. This
enhancement is attributed to latent tokens capturing more meaningful segment structures, resulting in
increasingly accurate and refined semantic representations.

or combined as a single entity. Our method demonstrates how ViT interprets images in a zero-shot setting,
capturing fine-grained or general representations. Notably, our method’s predictions often exhibit logical
consistency that surpasses the ground truth, effectively identifying relationships between objects. However,
since our approach does not involve supervised training, it cannot adapt itself to detect only the specific
objects labeled in the dataset. As a result, while the logical quality of the predictions is high, the numerical
metrics may decline due to mismatches with the dataset’s ground truth labels. Figure [J] illustrates this
phenomenon with examples, showing instances where our method successfully captures unlabeled objects
that are omitted in the dataset annotations.

B.2 Method

In this work, we aimed to uncover semantic information embedded within the latent tokens of transformers.
A key challenge in interpretability is the evaluation process. In traditional model interpretation, where
only class logits are available as the primary source of information, various evaluation approaches have been

proposed. However, in our case, many of these metrics are not directly applicable due to the fundamental
differences in our methodology.

To address this, we evaluated our approach in the context of unsupervised semantic segmentation. Although
our baseline methods were originally designed for this task, we achieved superior results by aggregating our
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Figure 9: This figure illustrates challenging samples of datasets COCO-Stuff 27, Potsdam-3, and PASCAL
VOC that contribute to low performance due to poor dataset labeling quality. The first row displays the
original images, the second row shows the ground truth labels and the third row presents our predicted
segmentation.

explanation maps. This outcome highlights the potential for future research in this direction. Specifically,
improved aggregation methods—such as clustering techniques—could enhance performance, particularly
when dealing with smaller patch sizes. Notably, in the case of a patch size of 8, clustering algorithms failed
due to the high number of tokens, making effective aggregation more challenging.

Moreover, despite being a zero-shot method, our approach incurs a significant computational cost when
applied to semantic segmentation. This is primarily due to the necessity of computing multiple gradients
for generating explanation maps, a process that must be performed for each token. As a result, inference
time is considerably high. Future work could explore more efficient strategies to mitigate this issue, such as
leveraging approximation techniques or optimizing the gradient computation process.

C Datasets & Models

C.1 Datasets

We utilize a combination of datasets to provide a diverse testing ground for evaluating our method across
both standard and challenging perspectives in semantic segmentation and interpretability evaluations.

o« COCO-Stuff 27 (2014): A subset of the COCO dataset, featuring complex real-world
scenes with pixel-level annotations across various object categories.

« PASCAL VOC 2012 Everingham & Winn| (2011)): A widely used benchmark containing pixel-level
annotations for foreground objects in structured scenes.

¢ Potsdam-3: A high-resolution aerial-view dataset capturing urban landscapes, including buildings,
roads, and vegetation, presenting additional challenges due to its large-scale top-down perspective.

o Cityscapes |Cordts et al|(2016]): An urban street scene dataset with fine-grained pixel-level anno-
tations, enabling the evaluation of segmentation performance in structured environments.

These datasets allow for a comprehensive evaluation of our approach across different environments, ensuring
robustness across diverse segmentation challenges.

C.2 Models

We employ various Vision Transformers (ViTs) pre-trained on large-scale datasets. These models process
images as non-overlapping patches and employ self-attention mechanisms across multiple layers to capture
long-range dependencies.
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Transformer Architectures

CLIP ViT [Radford et al.|(2021): A vision transformer trained using contrastive learning on 400 million
image-text pairs. It encodes images into a shared embedding space with text prompts. CLIP variants
include:

o ViT-B/16: Consists of 12 transformer layers, a hidden size of 768, and processes images with 16x 16
patch resolution.

o ViT-B/32: Similar to ViT-B/16 but with a 32x32 patch resolution, reducing computational cost
at the expense of finer details.

e ViT-L/14: A larger model with 24 transformer layers, a hidden size of 1024, and a 14x14 patch
resolution, providing enhanced feature extraction.

DINO ViT |Caron et al.| (2021)): A self-supervised vision transformer trained using knowledge distillation
without labeled data. It learns image representations by maximizing similarity between different augmented
views. Evaluated variants:

e ViT-S/16: A smaller model with 12 transformer layers, a hidden size of 384, and a patch size of
16x16.

o ViT-B/16: A larger model with 12 layers, a hidden size of 768, and a patch size of 16x 16, providing
stronger feature representation.

D ITloU Analysis

This section evaluates the effectiveness of ITIoU in assessing the performance of our object selection process.
As expected, the final layers exhibit superior performance compared to the earlier layers, consistent with the
results illustrated in Figure [II] This improvement highlights the increasing relevance of features in deeper
layers for accurate object selection. Additionally, we observe the existence of an optimal threshold, 7, which
significantly influences the segmentation performance. This phenomenon is depicted in Figure where
performance trends are analyzed across different threshold values.

" —e— ITIoU

—e— ITIoU
0.36 0.36

0.32

0.28

ITIoU

0.24

0.20

0.16

2 4 6 8 10 12
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 Layer
Threshold

Figure 11: Layer-wise ITIoU analysis for COCO-
Stuff 27 dataset. Final layers perform significantly
better than earlier ones due to their ability to cap-
ture high-level semantic features. This progression is
evident in the increasing ITIoU values.

Figure 10: Impact of varying the threshold 7 on
ITIoU performance for COCO-Stuff 27 dataset. The
plot demonstrates the existence of an optimal T,
where segmentation performance is maximized.

E Threshold-Based Segmentation
Hierarchical clustering is used to segment the token explanation maps, where the threshold parameter ¢

controls the level of granularity. Lower values of ( produce fine-grained segmentations, while higher values
merge similar clusters, leading to broader groupings.
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Original Image

Segmentation Results

Figure 12: Hierarchical clustering tree showing the grouping of token explanation maps for all tokens in
a latent layer of the Vision Transformer, not limited to the CLS token. Each leaf node represents a single
token explanation map, while higher-level nodes show aggregated clusters based on a clustering threshold
(¢), which controls the level of detail. Lower ¢ values reveal finer details, while higher values create broader,
more general clusters.
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Figure 13: Impact of the clustering threshold ¢ on segmentation performance for the COCO-Stuff 27 dataset.
Accuracy and Mean IoU metrics show how different values of ¢ affect segmentation quality.

Figure[I2]illustrates the hierarchical clustering tree, where each leaf node represents a single token explanation
map. As ( increases, multiple explanation maps are grouped into larger clusters, reducing segmentation
granularity. The rightmost part of the figure shows how different ¢ values affect the final segmentation
output.

Figure [13] further quantifies the impact of { on segmentation performance for the COCO-Stuff 27 dataset.
Accuracy and Mean IoU metrics are plotted as a function of ¢, demonstrating that while different values of
¢ yield varying levels of segmentation detail, our method remains robust across a range of threshold values.

The results confirm that selecting an appropriate ¢ enables the model to segment objects at different levels
of abstraction, demonstrating the adaptability of pre-trained Vision Transformers in unsupervised semantic
segmentation. Table [6] summarizes the segmentation performance of our method across multiple datasets
using a fixed threshold ¢ = 0.4. However, as discussed in Section [B:I} not all threshold values may be equally
suited for standard datasets.
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Dataset U. ACC U. mloU
COCO-Stuff 27 67.2 32.9
PASCAL VOC - 51.9
Potsdam 74.6 -

Table 6: ULTra results across different datasets using the same threshold ¢ = 0.4. Accuracy (U. ACC) and
Mean IoU (U. mIoU) are reported where available.

F Transformer Architecture

The architecture of a typical Transformer can be formulated as follows: the input X is split into n tokens
{x;}",. After tokenization, token embeddings {e;}! , are computed, where ey corresponds to the CLS
token. Positional encodings PE; are added to the i- th token embedding to incorporate spatial information,
resulting in the latent token representation zgl) = e; + PE;. Here, zgl) represents a latent token, where [
denotes the layer index with [ € {1,...,L} and L is the total number of layers in the Transformer, and i
represents the i-th token within the I-th layer.

For each head h € {1,...,H} in the multi-head attention mechanism, the queries, keys, and values corre-
sponding to the i-th token are obtained via linear transformations, projecting the latent token of dimension
d into dimension k:

W @) = W) e Y KD ) = )T,

q Z; 9

Vv}fl)( (G 1)) (W(l) )T (l 1)’ Vi € {2, ey L} (16)

i h,v

where W,El)q, W’%’ W}(Ll) € R?* The attention weights for each token pair (i,75) at layer I and head h are

computed as:
M, 1-1 ()¢, (1=1)
z, ), K; ' (z)
aELl)” = softmax; <<Qh (=i ), Ky (=, )>> . (17)

VEk
Then, ¢-th token is updated by summing over the weighted values across all heads:
H n
a) =y wi)” Vi (2 ), (18)
h=1 j=1
where W, j, € R**4 The updated token representation u; after the attention layer is computed as:

ul(l) = LayerNorm(zgl_l) + l_ll('l))- (19)

Each token then passes through a feed-forward network:

720 = (W TReLU((W D) uy), (20)

zE = LayerNorm(u; + z( )) (21)

Here, W € ROm W) ¢ gmxd,
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