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Abstract

The integration of network information and node attribute information has recently gained
significant attention in the community detection literature. In this work, we consider community
detection in the Contextual Labeled Stochastic Block Model (CLSBM), where the network fol-
lows an LSBM and node attributes follow a Gaussian Mixture Model (GMM). Our primary focus
is the misclassification rate, which measures the expected number of nodes misclassified by com-
munity detection algorithms. We first establish a lower bound on the optimal misclassification
rate that holds for any algorithm. When we specialize our setting to the LSBM (which preserves
only network information) or the GMM (which preserves only node attribute information), our
lower bound recovers prior results. Moreover, we present an efficient spectral-based algorithm
tailored for the CLSBM and derive an upper bound on its misclassification rate. Although the
algorithm does not attain the lower bound, it serves as a reliable starting point for designing
more accurate community detection algorithms (as many algorithms use spectral method as an
initial step, followed by refinement procedures to enhance accuracy).

1 Introduction

The community detection problem Girvan and Newman [2002], Newman and Leicht [2007], Fortunato
[2010], Karrer and Newman [2011] is one of the fundamental challenges in the field of network science
and data analysis. It focuses on identifying and reconstructing the underlying community structure
within a network or graph. Accurately identifying these communities is crucial for understanding
the structure and function of complex systems, ranging from social networks and biological systems
to communication networks and financial markets.

Among the various proposed models, the Stochastic Block Model (SBM) Holland et al. [1983]
stands out as one of the most significant and extensively studied in recent decades. Given pa-
rameters n and K, according to the definition of the SBM, each node with index i ∈ [n] be-
longing to the set of nodes V is independently assigned to the k-th community (where k ∈ [K])
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with probability αk. Denote σ : [n] → [K] as the ground truth indicator function such that
σ(i) = k if the node i belongs to community k, thus the community detection problem is to
infer the ground truth indicator function σ(·) from the observed graph (usually represented by
an adjacency matrix A). Here the probability of observing an edge Aij between any two nodes
i, j ∈ [n] is characterized by Pσ(i),σ(j). In addition to the basic SBM, many variants have been
proposed and investigated, such as weighted/labeled SBM Jog and Loh [2015], Aicher et al. [2015],
Nowicki and Snijders [2001], Yun and Proutiere [2016], degree-corrected SBM Karrer and Newman
[2011], Gao et al. [2018], Yan et al. [2014], Qin and Rohe [2013], overlapping/mixed-membership
SBM Airoldi et al. [2008], Latouche et al. [2014], Fu et al. [2009], Xing et al. [2010], hypergraph
SBM Ghoshdastidar and Dukkipati [2014], Zhang and Tan [2023], Cole and Zhu [2020], Nandy and Bhattacharya
[2024], latent space model Hoff et al. [2002], Rohe et al. [2011], Bing et al. [2020], Rohe and Zeng
[2023], Bing et al. [2023]. Among the aforementioned variants, in this paper we focus on the labeled
SBM (LSBM) Heimlicher et al. [2012], Yun and Proutiere [2016], an extension of the SBM in terms
of the non-binary observed edges. Compared to the basic SBM, the non-binary edge formulation
provides enhanced capability in modeling diverse types of interactions between any pair of nodes.

In the community detection literature, many existing methods rely solely on topological infor-
mation, such as adjacency or Laplacian matrices. However, real-world applications often require the
analysis of contextual networks, as side information like node attributes can play a crucial role in un-
covering node labels within communities. Significant research has been dedicated to this area, as evi-
denced by works such as Zhang et al. [2016], Abbe et al. [2022], Braun et al. [2022], Yan and Sarkar
[2021]. Specifically, Zhao et al. [2021], Sima et al. [2021], Abbe et al. [2022], Dreveton et al. [2024],
Braun et al. [2022] investigate the threshold for exact recovery (equavilent to strong consistency
Abbe [2018]) of the Contextual-SBM, with Zhao et al. [2021], Sima et al. [2021], Abbe et al. [2022]
focusing on the special case of two communities and Dreveton et al. [2024], Braun et al. [2022] ex-
tending the results to the more general case of K communities. While exact recovery is a valid
performance metric that has received significant theoretical attention, it requires the number of
misclassified nodes to be exactly zero, which is overly stringent and often impractical. In contrast,
most real-world applications of community detection or node classification often prioritize weak
consistency, where a small fraction of nodes is allowed to be misclassified. This aligns more closely
with practical needs, where partial misclassification is acceptable and more realistic.

Motivated by practical considerations, in this paper, we investigate a model that integrates the
LSBM with contextual Gaussian node attributes, referred to as Contextual-LSBM (CLSBM). Our
focus is on the relationship between the misclassification rate and the model parameters. Specifically,
let s represent the expected number of misclassified nodes. Our primary objective is to establish the
lower bound of the misclassification rate for the CLSBM when s = o(n). While this result has been
established for the LSBM in [Yun and Proutiere, 2016, Theorem 1], our Theorem 1 is the first to
extend this result to the setting where contextual node attributes are present. Notably, Braun et al.
[2022] and Dreveton et al. [2024] also investigate contextual models similar to ours. However, neither
Braun et al. [2022] nor Dreveton et al. [2024] allows edges to carry labels, and Dreveton et al. [2024]
focuses specifically on achieving exact recovery. These can be viewed as special cases or reductions
of our more general results (see Theorem 1 and Remark 1). In addition to the lower bound, we also
design an efficient community detection algorithm for CLSBM. The algorithm begins by aggregating
topological and contextual information into a latent factor model and then employs a spectral-based
method to consistently estimate the community assignments for each node.
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1.1 Organization

The remainder of the paper is organized as follows: In Section 2, we review related literature and
highlight our main contributions. In Section 3.1, we formalize the model definitions and discuss the
assumptions underpinning for our theoretical findings. Section 3.2 provides the theoretical lower
bound for the number of misclassified nodes in the model and explores its connections with earlier
work. Furthermore, Section 3.3 introduces an efficient spectral community detection algorithm
for the proposed aggregated factor model and presents theoretical guarantees for its performance.
Finally we conclude our results and future directions in Section 4.

1.2 Notations

In this paper, bold lowercase letters, such as x, represent vectors, while bold uppercase letters, like
X, denote matrices and 3-dimensional arrays. For a matrix X, Xij indicates the element located
at the i-th row and j-th column, with Xi· and X·j representing the i-th row and j-th column of X,
respectively. For a 3-dimentional array X, we use X(i, j, k) to indicate the element at indices i, j, k
for each dimension. Occasionally, xj is used as a simplified notation for X·j.

The operators of probability and expectation are denoted by P and E, respectively. For any
integer K ∈ N, the set {1, 2, 3, · · · ,K} is represented by [K]. The notation ‖x‖q, ‖X‖F , ‖X‖op
represent the ℓp norm of a vector x, Frobenius norm and operator norm of matrix X respectively.
Here we use 1(·) to display the indicator function. For two sequences an and bn, the notation
an . bn means an ≤ Cbn for some constant C.

2 Related work and main contributions

The threshold for exact recovery in the weighted/labeled SBM was first investigated by Jog and Loh
[2015], which extends the results established in Zhang and Zhou [2016] for the SBM. Moreover,
Yun and Proutiere [2016] derived the optimal misclassification rate for the LSBM and introduced
a two-stage algorithm to achieve the information-theoretic limit. Besides, the Contextual-SBM, a
generalization of SBM that incorporates additive node attributes to provide further information for
identifying communities, has been explored in various studies Braun et al. [2022], Deshpande et al.
[2018], Dreveton et al. [2024], Abbe et al. [2022]. However, to the best of our knowledge, the optimal
misclassification rate for models with general non-binary labeled edges combined with independent
arbitrary node attributes still remains unexplored. Our Theorem 1 establishes that the lower bound
for the expected number of misclassified nodes (as defined in Eq. (2)) is n exp (−(1 + ǫn)D(α,P,µ)n)
for some sequence ǫn approaching zero. Here the key quantity D(α,P,µ) (defined in (4)) is the
divergence defined based on the minimal value for the sum of two KL divergences, representing
the topological and attribute information respectively. Furthermore, Remark 1 reveals a connec-
tion between the minimal value of sum of KL divergences over constrained sets and the Chernoff
divergence, extending the results of [Yun and Proutiere, 2016, Claim 4] to our settings and conse-
quently prove that the aformentioned lower bound indeed match the optimal misclassification rate
in the LSBM (Zhang and Zhou [2016], Yun and Proutiere [2016]) and the Gaussian mixture model
(Lu and Zhou [2016]). Our main technical contribution stems in the analysis to the problem (4). It
is worth noting that, while the optimal solution for DA has been investigated in Yun and Proutiere
[2016], the impact of the newly introduced term DX on the main results remains unclear. The
additional term introduces further challenges, as it involves in solving an optimization problem in
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function spaces, which is significantly more complex. In addition to establishing the theoretical
lower bound, we also apply spectral-based methods to the proposed aggregated latent factor model,
achieving a polynomial misclassification rate. Despite the suboptimality of the result, the output of
the spectral-based method provides a valuable initialization for further refinement in a subsequent
step (e.g., Gao et al. [2018], Yun and Proutiere [2016], Braun et al. [2022]).

3 Model description and main result

3.1 Model definition

We largely follow the notation introduced in Yun and Proutiere [2016] to describe the LSBM. De-
note V as the set of nodes constrained to card(V) = n and let {Vk}k∈[K] represent the K disjoint
communities. Here each node is independently assigned to a community Vk with probability αk,
where k ∈ [K] and 1Tα = 1, and this assignment is independent of the number of nodes n. Each
edge (i, j) ∈ V2 is assigned to a label l ∈ {0, 1, · · · , L}, where the probability of labeling depends
on i, j, and l, and is denoted by P(σ(i), σ(j), l). Here, P ∈ RK×K×(L+1), and σ(·) is the ground
truth indicator function. We summarize the above in the definition of LSBM as follows:

Definition 1 (LSBM). Let L ≥ 1, K ≥ 2, α ∈ RK
+ , P ∈ R

K×K×(L+1)
+ and we denote {Al}l∈{0,1,··· ,L} ∼

LSBM (L, n,K,P,α, σ(·)) if ∀l ∈ {0, 1, · · · , L} Al ∈ {0, 1}n×n is symmertical and its upper trian-
gular elements are independent, such that:

P(Al(i, j) = 1) = P(σ(i), σ(j), l),
L∑

l=0

Al(i, j) = 1,

P(σ(i) = k) = αk, (1)

∀i 6= j ∈ [n], k ∈ [K]. Here we assume A0(i, i) = 1 for all i ∈ [K] to eliminate the self-loops within
the graph.

In addition to topological information, contextual node attributes are also incorporated into
the final model. We assume that each node i is associated with an attribute vector xi ∈ Rd, and
the graph {Al}l∈{0,1,··· ,L} is considered independent of the sets of attribute vectors {xi}i∈[n] given
the ground truth indicator function σ(·). This setting was initially proposed in Zhang et al. [2016]
and has since been discussed in subsequent works Binkiewicz et al. [2017], Yan and Sarkar [2021],
Weng and Feng [2016], Deshpande et al. [2018].

Definition 2 (CLSBM). Let d ≥ 1, L ≥ 1, K ≥ 2, α ∈ RK
+ , P ∈ R

K×K×(L+1)
+ , µ ∈ Rd×K ,

and we denote ({Al}l∈{0,1,··· ,L} , {xi}i∈[n]) ∼ CLSBM(L, d, n,K,P,α, σ(·)), if {Al}l∈{0,1,··· ,L} ∼
LSBM (L, n,K,P,α, σ(·)), and {xi}i∈[n] ∼ N (µσ(i), Id).

Let σ̄(·) be an assignment vector function that indicates the assignment for each node and is
estimated from the observed edge labels {Al}l∈{0,1,··· ,L} and node attributes {xi}i∈[n]. In the next
section, we derive an information-theoretic lower bound for the expected number of misclassified
nodes, valid for all the possible choices of σ̃(·), defined as follows

s̄ := inf
π∈SK
σ̃∈FI

E




∑

i∈[n]

1{π(σ̃(i))6=σ(i)}



 . (2)
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Here, SK represents the set of all permutations of [K], and FI denotes the set of all indicator
functions. Before presenting the main results, we first outline our assumption as follows.

Assumption 1. ∃ η1, η2 > 0 such that

∀l ∈ {0, 1, · · · , L}, ∀i, j, k ∈ [K],
P(i, j, l)

P(i, k, l)
≤ η1, and ‖µi‖2 ≤ η2. (3)

Although counterintuitive, the aforementioned assumption implies that the signal contributed by
any one of the K communities cannot be excessively strong for both the network and node attributes.
This assumption arises from the limitations of our proof techniques, and it could potentially be
eliminated with improved proof mechanisms. Specifically, the assumption for µ is newly introduced
here to bound the second-order moments of the pseudo-likelihood estimator for the perturbed model
in the proof of Theorem 1. Similarly, the assumption regarding P originates from Yun and Proutiere
[2016], serves the the same purpose. It is also worth mentioning that similar assumptions on µ are
commonly found in previous literature, such as Abbe et al. [2022].

3.2 Lower bound on the number of misclassification nodes

In this section we provide one of our main results. We start with the definition of D(α,P,µ):

D(α,P,µ) := min
k1 6=k2∈[K]

min
qA∈RK×L

+

qX∈F

DA(k1, k2,P,qA) +
1

n
DX(k1, k2,µ, qX), (4)

where

DA(k1, k2,P,qA) := max

{ K∑

k=1

αk KLA (qA(k) ‖ P(k, k1)) ,
K∑

k=1

αk KLA (qA(k) ‖ P(k, k2))

}

,

DX(k1, k2,µ, qX) := max

{

KLX (qX ‖ pX(k1)) ,KLX (qX ‖ pX(k2))

}

. (5)

Here KLA and KLX represent the KL divergence for discrete and continuous probability respectively,
and F represents the set of probability density function (PDF) such that F :=

{
f : Rd → R, s.t

∫

x f(x)dx = 1
}
,

and pX(k) is denoted as the PDF of ∼ N (µk, Id). The following theorem then builds the lower
bound of the number of misclassified nodes in expectation with the aforementioned divergence
D(α,P,µ):

Theorem 1 (Lower bound). Denote p̄ := maxi,j,l≥1P(i, j, l), grant Assumption 1 and assume
p̄ = ω(1/n), p̄ = o(1), and η2 = o(n). Let s = o(n). If there exists an algorithm that asymptotically
has fewer misclassified nodes than s in expectation, i.e., lim supn→∞

s̄
s ≤ 1, then we have

lim inf
n→∞

nD(α,P,µ)

log(n/s)
≥ 1, (6)

where s̄ is defined in (2).

Proof. We defer the proof to Appendix A.

5



Theorem 1 implies that the expected number of misclassified nodes for the proposed CLSBM
is at least of the order n exp(−nD(α,P,µ)). The following remark indicates that the proposed
measure D(α,P,µ) generalizes both the CH-divergence for the LSBM [Yun and Proutiere, 2016,
Claim 4] and the minimal distance between the centers of Gaussian mixtures.

Remark 1. When p̄ = o(1), for CLSBM, one has

D(α,P,µ)

= min
k1 6=k2∈[K]

max
t∈[0,1]

K∑

k=1

αk

[ L∑

l=1

(

(1− t)P(k, k1, l) + tP(k, k2, l)−P1−t(k, k1, l)P
t(k, k2, l)

)

+
t(1− t)

2n

∥
∥µk1 − µk2

∥
∥2

2

]

.

(7)

The proof is deferred Appendix B. When the contextual node attributes are absent (i.e., µ = 0),
the divergence D(α,P,µ) simplifies to the CH-divergence introduced in Yun and Proutiere [2016].
On the other hand, in cases where topological information is missing (e.g., P(k, k1, l) = P(k, k2, l)
for all k, k1, k2, l), we have D(α,P,µ) = 1

8n‖µk1 − µk2‖22, which corresponds to threshold for the
Gaussian mixture model, as shown in [Lu and Zhou, 2016, Theorem 3.3].

3.3 Spectral community detection for latent factor model

In this section, we extend the proposed CLSBM to a latent factor model and demonstrate that
the spectral-based method can consistently estimate the proposed estimator s(σ̂) defined in (10),
based on the adjacency matrices {Al}l∈{0,1,2,...,L} and contextual node attribute vectors {xi}i∈[n].
Specifically, we first outline the construction of the estimator by combining the topological informa-
tion with the contextual node attributes and provide an intuitive explanation of the spectral-based
method in Section 3.3.1. Subsequently, in the following section, we formalize the spectral-based
method in Section 3.3.2 and establish its consistency, as proven in Lemma 1, thereby demonstrating
its effectiveness.

3.3.1 Aggregated latent factor model

The latent factor model demonstrates its capability in revealing hidden low-dimensional structures
within observed high-dimensional data and has been widely applied in various domains, including
PCA, Gaussian mixtures, nonnegative matrix factorization, sparse factor analysis and so on. This
provides an intuitive basis for combining both the topological model and contextual node attributes
into a shared latent space, as both the adjacency matrix and the node attributes share the same
eigenspace spanned by the ground truth assignment matrix Z(σ) ∈ Rn×k, where Zi· := eTσ(i). To

elaborate, we begin by defining our aggregator factor matrix S: Given weights {wl}l∈[L] i.i.d sampled
from a uniform distribution over [0, 1], we define:

S :=
L∑

l=1

wlAl +
1

n
XTX, (8)

where X ∈ Rd×n is a matrix whose columns represent the collection of n observed node attributes.
The weights {wl}l∈[L] are employed to identify signals for different labels l ∈ [L], and the factor
1/n balances the signal-to-noise ratio (SNR) between the graph signal and the Gaussian signal, as
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motivated by Remark 1. Let Ps := 1/(2L)
∑L

l=1P(·, ·, l) ∈ RK×K. At the population level, the
following holds:

E [S] = H(ZPsZ
T ) +

1

n
ZµTµZT

= ZPsZ
T − diag(ZPsZ

T ) +
1

n
ZµTµZT

= Z

(

Ps +
1

n
µTµ

)

ZT

︸ ︷︷ ︸

M

− diag(ZPsZ
T ). (9)

Here, H(·) denotes the hollowing operation, which sets the diagonal elements of the matrix to zero,
and Z is shorthand for Z(σ). It is evident that the first term M in E [S] is a symmetric low-rank
factor model when K < n, which has been extensively studied in areas such as low-rank matrix
decomposition, factor analysis, signal processing, and spectral clustering. By definition, the optimal
solution of the k-means algorithm applied to the columns/rows of M should yeild the ground truth
assignment Z. In practice, however, instead of directly applying k-means to the columns of M

(which has dimension n), spectral methods Newman [2006] are often pre-employed due to their
computational effficiency. Specifically, let UK ∈ Rn×K denote the top-K eigenvectors of M. We
apply k-means to the columns of UT

KM. In fact applying k-means to the columns of M or UT
KM

yeilds equivalent clustering outcomes, as UK is an orthonormal matrix that preserves distances
during projection. Chooseing UT

KM is motivated by its computational efficiency for clustering,
particularly because K is typically much smaller than n. However, since neither M nor UK is
observed even at the population level, we substitute S for M and employ its top-K eigenvectors,
denoted as ŪK , in place of UK . Given that the second term in (9) has a small operator norm, i.e.,
‖diag(ZPsZ

T )‖op = o(1), the misclassification rate of the k-means algorithm based on S depends on
‖S−E(S)‖F , a quantity can be further bounded via some concentration inequalities. We summarize
the aforementioned procedures in Algorithm 1, refer to as Spectral Community Detection.

3.3.2 Theoretical guarantee

Denote s(σ̄) as the number of misclassified nodes for indicator function σ̄ recovered from Algorithm 1
such that

s(σ̄) := inf
π∈SK

E

[
∑

i∈n

1{π(σ̄(i))6=σ(i))}

]

. (10)

The following lemma thus provides the upper bound of s(σ̄).

Lemma 1. Grant the assumptions in Theorem 1 and further assume p̄ = ω(log(n)/n), let σ̄ be the
solution of the Algorithm 1, we have

s(σ̄) .
K

n · SNR (11)

with high probability, where SNR := mink1 6=k2

∥
∥
∥(Ps)k1 − (Ps)k2 +

1
n

(
µk1 − µk2

)T
µ

∥
∥
∥

2

2
. Furthermore

if n · SNR = w(1) we obtain s(σ̄) = o(1).
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Algorithm 1: Spectral Community Detection

Require: Node attributes {xi}i∈[n], adjacency matrices {Al}l∈{0,1,··· ,L}, and number of
communities K.

Ensure: Assignment for each node
1: Step 1: Compute eigenvectors

Calculate the eigen decomposition of S as proposed in (8):

S =

n∑

i=1

σiūiūi
T .

and denote ŪK ∈ Rn×k as the collection of the top K eigenvectors.
2: Step 2: Apply k-means

Denote Q := ŪT
KS ∈ Rk×n and denote σ̄(·) as the solution to k-means such that:

σ̄(·),
{
θ̄
}

i∈[K]
= argmin

σ∈Fa,
θi∈R

k

∑

i∈[n]

∥
∥Q·i − θσ(i)

∥
∥2

2
.

3: Return: Assignment indicator function σ̄(·).

Proof. The proof is deferred to Appendix C.

Lemma 1 demonstrates that the proposed indicator s(σ̄) is upper bounded by the inverse of
the defined (SNR) in a polynomial manner, which corresponds to the minimum distance between
any two columns in the matrix Ps +

1
nµ

Tµ. Rates of this nature have been extensively studied in
the literature Lei and Rinaldo [2015], Löffler et al. [2021], Zhang and Zhou [2024] for spectral-based
methods under SBM or Gaussian mixtures, respectively. However, our work is the first to provide
theoretical guarantees for spectral-based methods under the CLSBM. Despite achieving consistency,
our analysis does not lead to the optimal rate presented in Theorem 1, which is exponentially small.
However, we believe that this estimate can serve as an effective initializer for potential subsequent
refinement steps, as demonstrated in Yun and Proutiere [2016], Gao et al. [2018]. By leveraging
the spectral method’s output as a starting point, further refinement techniques such as MLE can
be applied to improve the accuracy of community detection, potentially bridging the gap between
polynomial and exponential misclassification rates.

4 Conclusion

In this paper, we derive the theoretical lower bound for the misclassification rate in the Label-
Stochastic Block Model with Gaussian node attributes. Our results also establish connections with
previously introduced models, highlighting their broader applicability and usefulness. Beyond the
theoretical lower bound, we propose a spectral method with theoretical guarantees for the proposed
model, achieving a polynomial error rate in estimating community cluster assignments with high
probability. In future work, we aim to explore the theoretical limitations of the spectral method to
determine whether it can attain the optimal exponential rate.
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A Proof of Theorem 1

Mimicking the change of measure method in Yun and Proutiere [2016] we adapt it to the CLSBM
model and its perturbed version in this section. Denote Φ and Ψ as the parameter for the true
parameter model (CLSBM) and a potential perturbed parameter model respectively. To be more
specific, the true ground truth model Φ first generates the cluster for each node based on α such
that P(σ(i) = k) = αk for the i-th node indepedently. For the topological information, model Φ
generates the observed labels l ∈ [L] for two different nodes i, j based on the P(σ(i), σ(j), l). For
the contextual information, xi is sampled from N (µσ(i), Id). We state the definition of Ψ as follows:
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Definition of the perturbed model Ψ : Denote (k⋆1 , k
⋆
2 ,q

⋆
A, q

⋆
X) as the solve for D(α,P,µ)

such that

D(α,P,µ) = DA(k
⋆
1 , k

⋆
2 ,q

⋆
A) +

1

n
DX(k⋆1 , k

⋆
2 , q

⋆
X) (12)

The edge label generation mechanism for the topological information(A) in Ψ is the same as in
Yun and Proutiere [2016] with replace q with q⋆

A, Here, we describe the generation of labels for the
side information {xi}i∈[n] as follows: let i⋆ = argminσ(i)∈{k⋆

1
,k⋆

2
} i.

• When i 6= i⋆: xi is sampled from N (µσ(i), Id) which is the same as in Φ.

• When i = i⋆: xi⋆ is sampled from the distribution whose pdf is q⋆X.

We denote log dPΨ

dPΦ
as the pseudolikelihood ratio of the observed labels and contextual variables

such that:

log
dPΨ

dPΦ
:=

n∑

i 6=i⋆

log
q⋆
A(σ(i),Ai,i⋆)

P(σ(i), σ(i⋆), Ai,i⋆)
+ log

q⋆X
pX(σ(i⋆))

. (13)

In the following two sections, we provide the detailed proof of theorem 1, which follows the
proof in Yun and Proutiere [2016]. The proof consists of two parts, the first part constructs a
stochastic model Ψ and lower bounds the misclassification error EΦ(ǫ

π(n)) using the expectation
of the proposed log-likelihood ratio log dPΨ

dPΦ
defined in (13); In the second part, we further estimate

upper bounds for EΨ(log
dPΨ

dPΦ
) and EΨ

[(

log dPΨ

dPΦ
− EΨ[log

dPΨ

dPΦ
]
)2
]

respectively, to complete the

proof.

A.1 Part 1

Leverage Lemma 2 we assert there exist (k⋆1 , k
⋆
2 ,q

⋆
A, q

⋆
X) such that:

D(α,P,µ) =

K∑

k=1

αk KLA (q⋆
A(k),P(k, k⋆1 )) +

1

n
KLX (q⋆X , pX(k⋆1))

=

K∑

k=1

αk KLA (q⋆
A(k),P(k, k⋆2 )) +

1

n
KLX (q⋆X , pX(k⋆2)) (14)

Recall the definition of the log ratio Eq. (13) we obtain:

log
dPΨ

dPΦ
:=

n∑

i 6=i⋆

log
q⋆
A(σ(i),Ai,i⋆)

P(σ(i), σ(i⋆), Ai,i⋆)
+ log

q⋆X
pX(σ(i⋆))

. (15)

Mimicking the approach described in Yun and Proutiere [2016], we can derive inequality (17) in
Yun and Proutiere [2016] adapted with our new defined log-ratio log dPΨ

dPΦ
as the necessary condition

for E[ǫ(n)] ≤ s:

log(n/s)− log(2/αk1) ≤ EΨ(log
dPΨ

dPΦ
) +

√
√
√
√ 4

αk1

EΨ

[(

log
dPΨ

dPΦ
− EΨ[log

dPΨ

dPΦ
]

)2
]

. (16)

Then the next part finishes the proof by estimating the bounds of EΨ[log
dPΨ

dPΦ
] and EΨ

[(

log dPΨ

dPΦ
− EΨ log dPΨ

dPΦ

)2
]

respectively.
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A.2 Part 2

• Upper bound for EΨ[log
dPΨ

dPΦ
]:

Denote L := log dPΨ

dPΦ
and we obtain

EΨ[L]

:= EΨ





n∑

i 6=i⋆

log
q⋆A(σ(i), Ai,i⋆)

P(σ(i), σ(i⋆), Ai,i⋆)
+ log

q⋆X
pX(σ(i⋆))



 .

= EΨ

n∑

i 6=i⋆

log
q⋆A(σ(i), Ai,i⋆)

P(σ(i), σ(i⋆), Ai,i⋆)
︸ ︷︷ ︸

Γ1

+EΨ log
q⋆X

pX(σ(i⋆))
︸ ︷︷ ︸

Γ2

(17)

Γ1 has been carefully studied in [Yun and Proutiere, 2016, Theorem 1] such that:

Γ1 ≤ (n+ 2 log2(n) log(η1))DA(k
⋆
1 , k

⋆
2 ,q

⋆
A).

Thus we will focus on Γ2: By definition of Ψ we have

Γ2 = DX(k⋆1 , k
⋆
2 ,q

⋆
X).

Combine Γ1 and Γ2 together we have

EΨ[L] ≤ (n+ 2 log2(n) log(η1))D(α,P,µ).

Furthermore, repeating the procedure in (17) leads to

EΨ[L] ≥ (n− 2 log2(n) log(η1))D(α,p,µ).

Consequently we obtain

|EΨ[L]− nD(α,p,µ)| ≤ 2 log2(n) log(η)D(α,p,µ). (18)

• Upper bounding EΨ

[(

log dPΨ

dPΦ
− EΨ log dPΨ

dPΦ

)2
]

: Recall the notation of L we obtain:

EΨ

[(

log
dPΨ

dPΦ
− EΨ log

dPΨ

dPΦ

)2
]

= EΨ[(L− EΨ[L])
2]

= EΨ[L
2]− (EΨ[L])

2

≤ EΨ[L
2]−

(
n− 2 log2(n)

)2
D2(α,p, µ). (19)
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Thus, the following part remains to upper bound EΨ[L
2]: Without loss of generality we assume

σ(i⋆) = k1, by definition we have

EΨ[L
2]

= EΨ[L
2| σ(i⋆) = k1]

= P(i⋆ ≤ log2(n))EΨ

[

L2

∣
∣
∣
∣
∣
σ(i⋆) = k1, i

⋆ ≤ log2(n)

]

︸ ︷︷ ︸

Γ1

+P(i⋆ > log2(n))EΨ

[

L2

∣
∣
∣
∣
∣
σ(i⋆) = k1, i

⋆ > log2(n)

]

︸ ︷︷ ︸

Γ2

(20)

For Γ2 we have

Γ2 = P(i⋆ > log2(n))EΨ

[

L2

∣
∣
∣
∣
∣
σ(i⋆) = k1, i

⋆ > log2(n)

]

≤ 1

n4
EΨ









n∑

i 6=i⋆

log
q⋆A(σ(i), Ai,i⋆)

P(σ(i), σ(i⋆), Ai,i⋆)
+ log

q⋆X
pX(σ(i⋆))





2 ∣
∣
∣
∣
∣
σ(i⋆) = k1, i

⋆ > log2(n)





=
1

n4
EΨ

[




n∑

i 6=i⋆

log
q⋆A(σ(i), Ai,i⋆)

P(σ(i), σ(i⋆), Ai,i⋆)





2

+

(

log
q⋆X

pX(σ(i⋆))

)2

+ 2





n∑

i 6=i⋆

log
q⋆A(σ(i), Ai,i⋆)

P(σ(i), σ(i⋆), Ai,i⋆)





(

log
q⋆X

pX(σ(i⋆))

)
∣
∣
∣
∣
∣
σ(i⋆) = k1, i

⋆ > log2(n)

]

≤ 1

n4

[

n2 log2(η1) + Ex∼q⋆
X

[∥
∥x− µk1

∥
∥2

2
−
∥
∥x− (1− t)µk1 − tµk2

∥
∥2

2

]2
+ n log(η1)KLX(q⋆X , pX(σ(i⋆)))

]

.
1

n4

(
n2 log2(η1) + t(1− t)

(
η42 + η22

))
,

.
log2(η1)

n2
+

η42 + η22
n4

. (21)

Here, we use P(i⋆ > log2(n)) ≤ n−4 in the second step, the independence of {x}i∈[L] and A

in the third step, equation (33) and Assumption 1 in the fourth step and 0 < t < 1 in the last
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step. To proceeds we then focus on Γ1:

Γ1 ≤ EΨ

[

L2

∣
∣
∣
∣
∣
σ(i⋆) = k1, i

⋆ ≤ log2(n)

]

= EΨ

[




n∑

i 6=i⋆

log
qA(σ(i), Ai,i⋆)

P(σ(i), σ(i⋆), Ai,i⋆)
+ log

q⋆X
pX(σ(i⋆))





2 ∣
∣
∣
∣
∣
σ(i⋆) = k1, i

⋆ ≤ log2(n)

]

= EΨ

[( n∑

i>i⋆

log
qA(σ(i), Ai,i⋆)

P(σ(i), σ(i⋆), Ai,i⋆)
+ log

q⋆X
pX(σ(i⋆))

)2 ∣∣
∣
∣
∣
σ(i⋆) = k1, i

⋆ ≤ log2(n)

]

+ EΨ

[(
∑

i<i⋆

log
qA(σ(i), Ai,i⋆)

P(σ(i), σ(i⋆), Ai,i⋆)
+ log

q⋆X
pX(σ(i⋆))

)2 ∣∣
∣
∣
∣
σ(i⋆) = k1, i

⋆ ≤ log2(n)

]

+ 2EΨ

[(
∑

i<i⋆

log
qA(σ(i), Ai,i⋆)

P(σ(i), σ(i⋆), Ai,i⋆)

)(
n∑

i>i⋆

log
qA(σ(i), Ai,i⋆)

P(σ(i), σ(i⋆), Ai,i⋆)
+ log

q⋆X
pX(σ(i⋆))

)

∣
∣
∣
∣
∣
σ(i⋆) = k1, i

⋆ ≤ log2(n)

]

≤ EΨ

[( n∑

i>i⋆

log
qA(σ(i), Ai,i⋆)

P(σ(i), σ(i⋆), Ai,i⋆)
+ log

q⋆X
pX(σ(i⋆))

)2 ∣∣
∣
∣
∣
σ(i⋆) = k1, i

⋆ ≤ log2(n)

]

︸ ︷︷ ︸

Γ11

+ (log(n) log(η1) + η2)
2 + 2 (log(n) log(η1) + η2)D(α,p, µ). (22)

Here we use the fact that any two nodes i1 and i2 satisfying i1 6= i2 ≥ i⋆ are mutually
independent in the derivation. To upper bound Γ11, we first have

(
n∑

i>i⋆

log
qA(σ(i), Ai,i⋆)

P(σ(i), σ(i⋆), Ai,i⋆)
+ log

q⋆X
pX(σ(i⋆))

)2

=
∑

i,j>i⋆

log
qA(σ(i), Ai,i⋆)

P(σ(i), σ(i⋆), Ai,i⋆)
log

qA(σ(j), Aj,i⋆)

P(σ(j), σ(i⋆), Aj,i⋆)
+

(
n− i⋆

n
log

q⋆X
pX(σ(i⋆))

)2

+ 2

(
n− i⋆

n
log

q⋆X
pX(σ(i⋆)

)
∑

i>i⋆

log
qA(σ(i), Ai,i⋆)

P(σ(i), σ(i⋆), Ai,i⋆)
(23)

We thus complete the upper bound of Γ1 by analyzing Γ11:

Γ11 = EΨ

[( n∑

i>i⋆

log
qA(σ(i), Ai,i⋆)

P(σ(i), σ(i⋆), Ai,i⋆)
+ log

q⋆X
pX(σ(i⋆))

)2 ∣∣
∣
∣
∣
σ(i⋆) = k1, i

⋆ ≤ log2(n)

]

= (n− i⋆)2D2(α,p,µ) +
∑

i>i⋆

E

[

log2
qA(σ(i), Ai,i⋆)

P(σ(i), σ(i⋆), Ai,i⋆)

]

−
∑

i>i⋆

(

E

[

log
qA(σ(i), Ai,i⋆)

P(σ(i), σ(i⋆), Ai,i⋆)

])2

≤ (n− i⋆)2D2(α,p,µ) + (n− i⋆) log(η1)D(α,p,µ). (24)
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Plug (24) back to (22) and (20) sequentially we conclude

EΨ[L
2] ≤ log2(η1)

n2
+

η42 + η22
n4

+ (log(n) log(η1) + η2)
2 + 2 (log(n) log(η1) + η2)D(α,p, µ)

+ (n− i⋆)2D2(α,p,µ) + (n− i⋆) log(η1)D(α,p,µ)

. n2D2(α,p,µ) + (n log(η1) + η2)D(α,p,µ) (25)

Further we end the proof of upper bounding by plugging above inequalities back to (19):

EΨ

[(

log
dQ

dP
− EΨ[log

dQ

dP
]

)2
]

≤ (n+ log(n))
(
log(η1)D(α,p, µ)−D2(α,p, µ)

)
. (26)

Finally, we align (16), (26) and (17) together to conclude

lim inf
nD(α,P,µ)

log(n/s)
≥ 1.

Our proof concludes here.

B Proof of Remark 1

In this section we provide the proof of Remark 1:

Proof. Recall the definition of D(α,P,µ). For any k1 6= k2 ∈ [K] define D′(k1, k2,α,P,µ) such
that:

D′(k1, k2,α,P,µ) := min
qA∈RK×L

qX∈F

DA(k1, k2,P,qA) +
1

n
DX(k1, k2,µ, qX). (27)

Here, DA(k1, k2,P,qA) and DX(k1, k2,µ, qX) follow the definition in (5). Thus the proof reduces
to showing:

D′(k1, k2,α,P,µ)

= max
t∈[0,1]

K∑

k

αk

[ L∑

l=1

(
(1− t)P(k, k1, l) + tP(k, k2, l)−P1−t(k, k1, l)P

t(k, k2, l)
)
+

t(1− t)

2n

∥
∥µk1 − µk2

∥
∥2

2

]

.

(28)

We begin the proof by studying the constrained version of (27): Note that D′(k1, k2,α,P,µ) actually
reaches the minimum of the following problem:

min
qA∈RK×L

qX∈F

K∑

k=1

αk KLA (qA(k),P(k, k1)) +
1

n
KLX (qX , pX(k1))

s.t.

K∑

k=1

αk KLA (qA(k),P(k, k1)) +
1

n
KLX (qX , pX(k1))

>

K∑

k=1

αk KLA (qA(k),P(k, k2)) +
1

n
KLX (qX , pX(k2)) . (29)
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Thus, we express the lagrange dual form of Eq. (29) such that:

max
t≥0

min
qA∈RK×L

qX∈F

L(qA, qX , t) (30)

where

L(qA, qX , t)

=

K∑

k=1

αk KLA (qA(k),P(k, k1)) + t

(
K∑

k=1

αk KLA (qA(k),P(k, k2))−
K∑

k=1

αk KLA (qA(k),P(k, k1))

)

︸ ︷︷ ︸

Γ1(qA,t)

+
1

n




KLX (qX , pX(k1)) + t (KLX (qX , pX(k2))−KLX (qX , pX(k1)))
︸ ︷︷ ︸

Γ2(qX ,t)




 (31)

for some postive variable t > 0. Notice that Γ1 (qA, t) has been completely studied in Claim 4 in
Yun and Proutiere [2016], due to the independence of the qA, qX , the remaining part then focuses
on solving Γ2(qX , t).

Since qX represents a PDF that lies in the function space F : Rd → R. We denote δF (p)
δp (x) as

the functional derivative of F (p) with respect to p, ∀p ∈ F . By definition, we have

δΓ2(qX , t)

δqX
(x)

= (1− t) [log(qX(x)) + 1− log(pX(k1)(x))] + t [log(qX(x)) + 1− log(pX(k2)(x)] . (32)

Here we use δKL(q,p)
δq (x) = log(q(x))+1−log(p(x)) in the derivation. Let q⋆X(x) := argminqX∈F Γ2(qX , t).

Setting (32) equal to zero, we have:

log(q⋆X(x)) = (1− t) log(pX(k1)(x)) + t log(pX(k2)(x)) − 1.

due to the convexity of Γ2(qX , t). Note that pX(k1) and pX(k2) represent the PDF for N (µk1 , Id)
and N (µk2 , Id) respectively. Consequently, after some calculation, we obtain

q⋆X(x) = C exp(−
∥
∥x− (1− t)µk1 − tµk2

∥
∥2

2
/2). (33)

after some calculation. Here C is a constant that is irelevent with x. We assert C = (2π)−d/2 by
utilizing qX is an probability density function.

Substituting the expression of q⋆X into Γ2(qX , t) defined in (31) yields:

Γ2(q
⋆
X , t) =

t(1− t)

2

∥
∥µk1 − µk2

∥
∥2

2
. (34)

after some algebra. Here, we use Lemma 3 and the fact that q⋆X is the PDF for N ((1 − t)µk1 +
tµk2 , Id) in the derivation. We thus finish the proof by combining the expressions of Γ1(qA, t)(see
[Yun and Proutiere, 2016, Claim 4]) and Γ2(q

⋆
X , t) together.
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C Proof of Lemma 1

In this section we provide the proof of Lemma 1:

Proof. Let S(K) be the best rank-K approximation of S, define σ̂(·) and {ci}i∈[n] such that

σ̂(·), {ĉi}i∈[K] := argmin
σ(·)∈F ,
ci∈R

n

∑

i∈[K]

∥
∥
∥S

(K)
i − cσ(i)

∥
∥
∥

2

2
. (35)

By lemma 4 we have σ̂ = σ̄ ◦ π for some permutation π. Thus we could then focues on σ̂ in the
remaining part of the proof. We start by bounding

∥
∥S(K) −M

∥
∥
op

for the M defined in (9):

∥
∥
∥S

(K) −M

∥
∥
∥
op

≤
∥
∥
∥S

(K) − E [S]
∥
∥
∥
op

+ ‖E [S]−M‖op

≤
∥
∥
∥S

(K) − S

∥
∥
∥
op

+ ‖S− E [S]‖op + ‖E [S]−M‖op
≤ 2 ‖S− E [S]‖op + ‖E [S]−M‖op

≤ 2





∥
∥
∥
∥
∥

L∑

l=1

w(l)A(l) − E

[
L∑

l=1

w(l)A(l)

]∥
∥
∥
∥
∥
op

+

∥
∥
∥
∥

1

n
XXT − 1

n
E(XXT )

∥
∥
∥
∥
op



+ 1

.
√
n. (36)

with probability at least 1 − cn−c′ . Here we use tha fact that S(K) is the best approximation of S
in the third step, [Coja-Oghlan, 2010, Lemma 8.5] and [Löffler et al., 2021, Lemma B.1] in the last
step. Notice that rank (S(K) −M) ≤ rank(S(K)) + rank(M) ≤ 2K we further have

∥
∥
∥S

(K) −M

∥
∥
∥
F
≤

√
2k
∥
∥
∥S

(K) −M

∥
∥
∥
op

.
√
Kn. (37)

with high probability. On the other hand define Ĉ such that Ĉi := ĉσ̂(i), consequently we have Ĉ

is the solve of (35) :
∥
∥
∥Ĉ− S(K)

∥
∥
∥
F
≤
∥
∥
∥M− S(K)

∥
∥
∥
F
. (38)

Consequently we have
∥
∥
∥Ĉ−M

∥
∥
∥
F
≤
∥
∥
∥Ĉ− S(K)

∥
∥
∥
F
+
∥
∥
∥S

(K) −M

∥
∥
∥
F
≤ 2

∥
∥
∥S

(K) −M

∥
∥
∥
F
.

√
Kn. (39)

with high probability. Here we use (37) in the last step. Define set Sm(δ) such that

Sm(δ) :=

{

i ∈ [n] |
∥
∥
∥Ĉi −Mi

∥
∥
∥
2
≥ δ

2

}

. (40)

where δ := minMi 6=Mj
‖Mi −Mj‖2. It is easy to check any index i ∈ [n] \ Sm(δ) will not be

misclassfied up to permutation. Thus we finish the proof by upper bound the size of Sm(δ):

s(σ̂) ≤ card (Sm(δ)) ≤
4
∥
∥
∥Ĉ−M

∥
∥
∥

2

F

δ2
.

kn

δ2
. (41)

18



By the definition of δ we have

δ = min
σ(i)6=σ(j)

∥
∥
∥
∥
Z

(

Ps +
1

n
µTµ

)

zTi − Z

(

Ps +
1

n
µTµ

)

zTj

∥
∥
∥
∥
2

= min
σ(i)6=σ(j)

∥
∥
∥
∥
∥
Z

(

Ps +
1

n
µTµ

)

σ(i)

− Z

(

Ps +
1

n
µTµ

)

σ(j)

∥
∥
∥
∥
∥
2

= min
σ(i)6=σ(j)

∥
∥
∥
∥
∥
ZΣ−1Σ

((

Ps +
1

n
µTµ

)

σ(i)

−
(

Ps +
1

n
µTµ

)

σ(j)

)∥
∥
∥
∥
∥
2

= min
σ(i)6=σ(j)

∥
∥
∥
∥
∥
Σ

((

Ps +
1

n
µTµ

)

σ(i)

−
(

Ps +
1

n
µTµ

)

σ(j)

)∥
∥
∥
∥
∥
2

(42)

where Σ := diag([n1, n2, · · · , nK ]) = n (diag(α) +∆)IK) for some ∆ i.e. ‖∆‖op = o(1). Here we

use the orthonormality for the columns of ZΣ−1 in the last step. Thus we further obtain

δ = (1 + o(1))n min
σ(i)6=σ(j)

∥
∥
∥
∥
(Ps)σ(i) − (Ps)σ(j) +

1

n

(

µσ(i) − µσ(j)

)T
µ

∥
∥
∥
∥
2

. (43)

Combine (41) and (43) together we finish the proof here.

D Technical lemmas

In this section we provide some technical lemmas that is essential to our main results.

Lemma 2. Recall the definition of DA, DX and D(α,P,µ), one has

DA(k
⋆
1 , k

⋆
2 ,q

⋆
A) =

K∑

k=1

αk KLA (q⋆
A(k),P(k, k1)) =

K∑

k=1

αk KLA (q⋆
A(k),P(k, k2))

and, DX(k⋆1 , k
⋆
2 , q

⋆
X) = KLX (q⋆X , pX(k1)) = KLX (q⋆X , pX(k2)) (44)

Here KL(·, ·) represent the KL divergence and

(k⋆1 , k
⋆
2 ,q

⋆
A, q

⋆
X) := argmin

k1 6=k2
qA∈RK×L

qX∈F

DA(k1, k2,qA) +
1

n
DX(k1, k2, qX) (45)

Proof.

Proof of first equation in (44): Here we mimic the approach in Yun and Proutiere [2016] and
finish the proof by contradiction: Recall the definition of DA(k

⋆
1 , k

⋆
2 ,q

⋆
A) we have

DA(k
⋆
1 , k

⋆
2 ,q

⋆
A) = max

{
K∑

k=1

αk KLA (q⋆
A(k),P(k, k1)) ,

K∑

k=1

αk KLA (q⋆
A(k),P(k, k2))

}

.
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Without loss of generality, we assume

DA(k
⋆
1 , k

⋆
2 ,q

⋆
A) =

K∑

k=1

αk KLA (q⋆
A(k),P(k, k⋆1 )) >

K∑

k=1

αk KLA (q⋆
A(k),P(k, k⋆2 )) .

Thus there should exist a k′ ∈ [K] such that

KLA

(
q⋆
A(k

′),P(k′, k⋆1)
)
> KLA

(
q⋆
A(k

′),P(k′, k⋆2)
)
.

Leverage the positivity of the KL-divergence we assert q⋆
A(k

′) 6= P(k′, k⋆1) then there should exist a
q′
A(·, ·) ∈ RK×L satisfy the following two conditions

{

KLA(q
′
A(k),P(k, k⋆1)) = KLA(q

⋆
A(k),P(k, k⋆1)) k 6= k′

KLA(q
′
A(k),P(k, k⋆1)) ∈ [KLA(q

⋆
A(k

′),P(k′, k⋆1))− ε,KLA(q
⋆
A(k

′),P(k′, k⋆1))] k = k′

and
{

KLA(q
′
A(k),P(k, k⋆2)) = KLA(q

⋆
A(k),P(k, k⋆2)) k 6= k′

KLA(q
′
A(k),P(k, k⋆2)) ∈ [KLA(q

⋆
A(k

′),P(k′, k⋆2)),KLA(q
⋆
A(k

′),P(k′, k⋆2)) + ε] k = k′

where ε is an constant such that ε ∈ [0, 1/2 (KLA (q⋆
A(k

′),P(k′, k⋆1))−KLA (q⋆
A(k

′),P(k′, k⋆2)))].
Then we have

DA(k
⋆
1 , k

⋆
2 ,q

⋆
A) >

K∑

k=1

αk KLA

(
q′
A(k),P(k, k⋆1)

)

︸ ︷︷ ︸

:=DA(k⋆
1
,k⋆

2
,q′

A
)

>

K∑

k=1

αk KLA

(
q′
A(k),P(k, k⋆2)

)
.

thus further leads to:

D(α,P,µ) = DA(k
⋆
1 , k

⋆
2 ,q

⋆
A) +DX(k⋆1 , k

⋆
2 ,q

⋆
X) > DA(k

⋆
1 , k

⋆
2 ,q

′
A) +DX(k⋆1 , k

⋆
2 ,q

⋆
X).

which is contradicted by the definition of D(α,P,µ).

Proof of second equation in (44): The proof here is in spirits similar to the previous part via
contradicting the definition of D(α,P,µ) by constructing a new distribution function q′X : Recall
the definition of the DX(k⋆1 , k

⋆
2 ,q

⋆
A):

DX(k⋆1 , k
⋆
2 , q

⋆
X) := max {KLX (q⋆X , pX(k⋆1)) ,KLX (q⋆X , pX(k⋆2))} .

W.L.O.G we assume

KLX (q⋆X(k), pX (k⋆1)) > KLX (q⋆X(k), pX(k⋆2)) . (46)

Similarly to the first part, we could also build a new measure q′X(·, ·) such that

DX(k⋆1 , k
⋆
2 , q

⋆
X) > KLX

(
q′X , pX(k⋆1)

)

︸ ︷︷ ︸

:=DX(k⋆
1
,k⋆

2
,q′

X
)

> KLX

(
q′X(k), pX(k⋆2)

)
.

thus further leads to:

D(α,P,µ) = DA(k
⋆
1 , k

⋆
2 ,q

⋆
A) +DX(k⋆1 , k

⋆
2 ,q

⋆
X) > DA(k

⋆
1 , k

⋆
2 ,q

⋆
A) +DX(k⋆1 , k

⋆
2 ,q

′
X).

which is a contradiction against the definition of D(α,P,µ). Until then our proof ends.
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Lemma 3 (KL divergence for two Gaussian distributions). Consider two Gaussian probability dis-
tributions with unit variance, having means µ1 and µ2, and PDFs denoted as p1 and p2, respectively.
It follows that one has

KL(p1, p2) =
‖µ1 − µ2‖22

2
. (47)

Here KL(p, q) := Ep log(
p
q ) represents the KL-divergence for two continuous probability distribution.

Proof. By definition we have

KL(p1, p2) = Ex∼p1 log(
p1(x)

p2(x)
)

=
1

2
Ex∼p1

(

‖x− µ2‖22 − ‖x− µ1‖22
)

=
1

2

(

‖µ2‖22 − ‖µ1‖22
)

+ Ex∼p1 (µ1 − µ2)
T
x

=
1

2

(

‖µ2‖22 − ‖µ1‖22
)

+ (µ1 − µ2)
T µ1

=
‖µ1 − µ2‖22

2
. (48)

Lemma 4. Let S(K) as the best rank-k approximation of S proposed in algorithm 1, denote σ̂(·)
and {ci}i∈[n] such that:

σ̂(·), {ci}i∈[n] := argmin
σ̂(·)∈F ,
ci∈Rn

∑

i∈[n]

∥
∥
∥S

(K)
i − cσ̂(i)

∥
∥
∥

2

2
. (49)

Recall the definition of σ̄(·) in (1) we have π(σ̄(i)) = σ̂(i) for some permutation π(·).

Proof. By definition of σ̄(·) and Q in Algorithm 1 we have

∑

i∈[n]

∥
∥Qi − θσ̄(i)

∥
∥2

2
=
∑

i∈[n]

∥
∥
∥UKQ

(K)
i −Ukθσ̄(i)

∥
∥
∥

2

2

=
∑

i∈[n]

∥
∥
∥S

(K)
i −UKθσ̄(i)

∥
∥
∥

2

2

thus there exist σ̂(i) such that cσ̂(i) := UKθσ̄(i). Here we use UK is a orthogional matrix is the

first step and definition of S(K) in the second step.
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