
INTEGRALBENCH: Benchmarking LLMs with Definite Integral Problems

Bintao Tang * 1 Xin Yang * 2 Yuhao Wang * 1 Zixuan Qiu 3 Zimo Ji 4 Wenyuan Jiang 5

Abstract
We present INTEGRALBENCH, a focused bench-
mark designed to evaluate Large Language Model
(LLM) performance on definite integral problems.
INTEGRALBENCH provides both symbolic and
numerical ground truth solutions with manual dif-
ficulty annotations. Our evaluation of nine state-
of-the-art LLMs reveals significant performance
gaps and strong correlations between problem dif-
ficulty and model accuracy, establishing baseline
metrics for this challenging domain. INTEGRAL-
BENCH aims to advance automated mathemati-
cal reasoning by providing a rigorous evaluation
framework specifically tailored for definite inte-
gral computation.

1. Introduction
Mathematical reasoning represents one of the most ad-
vanced forms of human intelligence and serves as a crit-
ical benchmark for evaluating Large Language Model
(LLM) capabilities. Several benchmarks currently assess
LLMs’ mathematical performance: MATH (Hendrycks
et al., 2021b) tests advanced high school competition prob-
lems, GSM8K (Cobbe et al., 2021b) focuses on grade school
arithmetic word problems, and MathVista (Lu et al.) evalu-
ates multimodal mathematical reasoning. This widespread
attention underscores the recognized importance of mathe-
matical evaluation for LLMs.

Within this domain, definite integral problems offer a
uniquely challenging testbed for assessing both computa-
tional accuracy and symbolic reasoning. Unlike elementary
arithmetic or algebra, integral calculus demands sophis-

*Equal contribution 1School of Software Engineering, Tongji
University, Shanghai, China 2Polytechnic Institute, Zhejiang Uni-
versity, Zhejiang, China 3School of Mathematics and Physics,
Xi’an Jiaotong Liverpool University, Suzhou, China 4Department
of Computer Science and Engineering, Hong Kong University
of Science and Technology, Clear Water Bay, Hong Kong 5ETH
Zurich, Zurich, Switzerland. Correspondence to: Wenyuan Jiang
<wenyjiang@ethz.ch>, Zimo Ji <zjiag@connect.ust.hk>.

The second AI for MATH Workshop at the 42nd International
Conference on Machine Learning, Vancouver, Canada. Copyright
2025 by the author(s).

Problem
1∫

0

1√
1 + 4x2

ln
(
2x+

√
1 + 4x2

)
arccosx dx

Answer

Symbolic = − π

16
Li2(−4)

Numerical = 0.465336591

Difficulty
Rating = 4⋆

Source
Brychkov, Yury A. Handbook of Special Functions. CRC Press,
28 May 2008, p. 166.

Figure 1. Example problem from INTEGRALBENCH with symbol-
ic/numerical ground truth solutions, difficulty rating, and source
attribution.

ticated multi-step reasoning including decomposition of
complex expressions, pattern recognition for simplification
techniques, and recall of integration methods. These char-
acteristics make integral calculus particularly suitable for
evaluating advanced LLM reasoning capabilities.

Despite existing mathematical benchmarks, current evalua-
tion frameworks exhibit significant limitations for integral
problems. First, most benchmarks contain insufficient in-
tegral problems for meaningful assessment. While MATH
includes calculus problems, it has relatively few challenging
integrals that comprehensively test integration techniques.
Second, current frameworks lack metrics specifically de-
signed for integral evaluation, such as differentiating be-
tween symbolic and numerical solution accuracy. Finally,
existing benchmarks rarely implement appropriate difficulty
gradation for integrals, failing to distinguish between routine
applications and problems requiring advanced techniques.
This lack of stratification restricts the precise measurement
of model capabilities across complexity levels.

To address these limitations, we introduce INTEGRAL-
BENCH, a focused benchmark specifically designed for eval-
uating LLM performance on definite integral problems. IN-
TEGRALBENCH comprises 317 carefully selected graduate-

1

INTEGRALBENCH: Benchmarking LLMs with Definite Integral Problems

level problems sourced from advanced textbooks and com-
petitions. Each problem provides both symbolic and numer-
ical ground truth solutions as is shown in Figure 1, enabling
separate assessment of LLM-generated answers through
distinct evaluation metrics.

Additionally, each problem is manually annotated with dif-
ficulty ratings from 1 to 5, enabling fine-grained analysis
across varying complexity levels. INTEGRALBENCH also
incorporates a novel term-rewriting method to generate prob-
lem variations, preventing dataset contamination while main-
taining mathematical rigor. In terms of construction cost,
INTEGRALBENCH employs a systematic methodology that
balances the trilemma of cost, difficulty, and relevance for
building benchmark datasets through LLM-assisted curation
from academic sources to create challenging mathematical
benchmarks.

Our evaluation of nine state-of-the-art LLMs yields several
key insights. Larger models generally perform better, with
Qwen3-235B-A22B (Yang et al., 2025) achieving the high-
est accuracy—50.16% on numerical solutions and 56.15%
on symbolic solutions. However, model size alone does
not determine performance; the 32B QwQ (Team, 2025)
model outperforms larger models including GPT-4.1 (Ope-
nAI, 2025a) and Claude 3.7 (Anthropic, 2025), demonstrat-
ing the importance of architecture and training methodology.

We observe a strong negative correlation between problem
difficulty and model accuracy across all evaluated models,
with performance declining sharply on challenging prob-
lems. This validates our difficulty annotations and reveals
current limitations in complex mathematical reasoning.

Our analysis of inference-time scaling shows that accuracy
improves rapidly during initial token consumption before
plateauing, with different models exhibiting distinct “sweet
spots.” This suggests varying efficiency in information ex-
traction during extended reasoning.

In summary, our contributions are threefold:

• Dataset: We construct INTEGRALBENCH, a focused
benchmark of 317 graduate-level integral problems
with verified solutions for evaluating advanced LLM
mathematical reasoning. 1

• Pipeline: We propose a scalable methodology for
constructing challenging mathematical benchmarks
through LLM-assisted curation from academic sources,
providing a framework for future benchmark develop-
ment.

• Evaluation: We conduct a comprehensive evaluation
of nine mainstream LLMs on INTEGRALBENCH, re-
vealing strengths and limitations in definite integral

1The dataset is publicly available at https://github.
com/vegetable-yx/IntegralBench/.

computation and informing future research directions.

2. The INTEGRALBENCH Dataset

❶ Problem Collection

- Well-Defined Structure
- Inclusion of Free Variables

❷ Two-Stage
Manual Annotation

⨁Manually Check

❸ Image to LaTeX

❹ Parameter
 Instantiation

Dataset

Replace Params
Generate Codes

⨁ RunManually Check

Prompt Template

Figure 2. Construction pipeline for INTEGRALBENCH. The work-
flow consists of four steps: (1) problem collection from graduate
textbooks and competitions with selection criteria, (2) two-stage
manual annotation using bounding boxes, (3) OCR-based con-
version to LaTeX with manual verification, and (4) parameter
instantiation for problems with free variables, followed by final
dataset validation.

We start with the definition of definite integrals in the context
of our dataset. Then, we explain how INTEGRALBENCH is
created and present the features of this dataset.

2.1. Definite Integrals

Informally, definite integrals represent the area under a curve
between specified bounds, capturing fundamental concepts
in analysis and applied mathematics. Formally, a definite
integral is defined as:∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗
i)∆x

where a and b are the integration limits, f(x) is the inte-
grand, and the limit represents the Riemann sum as partition
width approaches zero. Examples of definite integral ex-
pressions are shown in Figure 1. We refer to these complete
expressions as integral bodies throughout this work. Each
definite integral body consists of three essential components:
(1) the integrand (the function being integrated), (2) the inte-
gration limits (bounds of integration), and (3) the integration

2

https://github.com/vegetable-yx/IntegralBench/
https://github.com/vegetable-yx/IntegralBench/

INTEGRALBENCH: Benchmarking LLMs with Definite Integral Problems

variable. Notably, an integrand may contain composite func-
tions, special functions, or even nested integrals, leading to
substantial complexity. Furthermore, integral bodies may
contain parameters or free variables that are not bound by
the integration operation.

2.2. Creating INTEGRALBENCH

The workflow to create INTEGRALBENCH is shown in
Figure 2. We first select problem sources containing chal-
lenging definite integral problems, then sample problems
according to inclusion criteria. Sampled problems are manu-
ally annotated with ground truth answers and metadata, and
converted to LaTeX using OCR, with parameter instantia-
tion for problems containing free variables. The resulting
dataset undergoes manual inspection to ensure correctness.

Problem sources. We collect definite integral problems
from two publicly available sources: (1) graduate-level text-
books and (2) integral competitions. We focus on integral
computations involving complex expressions with elemen-
tary and special functions, excluding theoretical proofs typi-
cal of analysis textbooks. After manual inspection, we retain
only graduate and advanced undergraduate-level sources
that provide ground truth solutions. This process yields one
textbook and three integral competition series as our final
data sources.

Selection criteria. We sample problems using exclusion
rules where any problem meeting a rule is excluded from
the dataset. The criteria enforce: (1) problems must eval-
uate valid definite integrals with all components present;
(2) subexpressions must be well-formed with reasonable
structure involving elementary and special functions; (3)
ground truth must be numerically computable in constant
time.

Manual annotation. We employ a two-stage annota-
tion pipeline using Label Studio. To preserve math-
ematical typesetting accuracy, we curate problem im-
ages from PDF files rather than direct text extraction.
In stage one, we annotate bounding boxes for prob-
lems satisfying selection criteria, creating data points
(x0, y0, x1, y1, source image) where coordinates define the
bounding box and source image is the source PDF page. In
stage two, we annotate bounding boxes for integral com-
ponents (body, answer, parameter constraints), resulting
in ((xi

0, y
i
0, x

i
1, y

i
1)i∈{body,ans,param}, source image). We ex-

clude problems with multi-line expressions or overlapping
bounding boxes to maintain annotation quality.

Image to LaTeX conversion. We convert annotated images
to LaTeX using SimpleTex V2.5 (SimpleTex, 2025). Each
bounding box-image pair produces OCR input, with outputs
validated through regular expression checks for well-formed
LaTeX. All LaTeX-image pairs undergo manual verification

to ensure correctness, with incorrect formulas marked and
manually corrected.

Parameter instantiation. Problems with free variables lack
closed-form solutions and exact numerical values. We in-
stantiate free variables with concrete values based on their
constraints. DeepSeek V3 generates Python scripts that ran-
domly sample parameter values and substitute them into
integral expressions and answers. Each original-instantiated
problem pair undergoes manual verification to ensure cor-
rectness.

Ground truth solutions. Ground truth comprises sym-
bolic and numerical components. Symbolic solutions derive
from parameter-instantiated expressions after LLM-assisted
simplification. Numerical solutions result from executing
parameter-instantiated computational scripts. Both solution
types undergo manual quality control inspection.

Difficulty. Human experts were invited to carefully assess
each problem in our dataset. Each problem was assigned
a difficulty rating on a scale from 1 (easiest) to 5 (most
difficult), with higher scores indicating increased difficulty.

2.3. Diversity and Cost

The resulting dataset contains 317 integral problems with
ground truth answers. We analyze the diversity of math-
ematical concepts of the resulting dataset and the cost of
building the dataset.

Diversity. To measure the diversity of integral problems, we
performed affinity propagation clustering (Frey & Dueck,
2007) over embeddings of each problem-solution pair. We
used Qwen3-Embedding-0.6B (Zhang et al., 2025) as the
embedding model. The damping factor for affinity prop-
agation was set to 0.5 with maximum iterations of 200,
terminating early if no changes occurred across 15 consec-
utive iterations. This resulted in 56 distinct clusters with
sizes shown in Figure 3.

The clustering analysis reveals substantial diversity in INTE-
GRALBENCH problems. The PCA visualization shows well-
distributed clusters across the embedding space, indicating
that problems cover diverse mathematical concepts rather
than concentrating on a few similar areas. The cluster size
distribution demonstrates a healthy spread: while the largest
cluster contains 22 problems, most clusters are smaller (3-13
problems), suggesting that INTEGRALBENCH avoids over-
representation of any single problem type. The presence of
numerous small clusters indicates coverage of specialized
integration techniques and mathematical structures, sup-
porting INTEGRALBENCH’s suitability for comprehensive
evaluation of integral reasoning capabilities.

Cost. Since we adopt an LLM-heavy method for dataset
curation with human quality control, the two major parts

3

INTEGRALBENCH: Benchmarking LLMs with Definite Integral Problems

0.4 0.2 0.0 0.2 0.4
PCA Component 1 (11.98% var)

0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4

PC
A

Co
m

po
ne

nt
 2

 (9
.0

0%
 v

ar
)

0 10 20 30 40 50
Cluster ID

0

5

10

15

20

Nu
m

be
r o

f P
oi

nt
s

Figure 3. Diversity analysis of INTEGRALBENCH using affinity propagation clustering on problem-solution embeddings. Left: PCA
visualization of 56 distinct clusters showing well-distributed coverage across the embedding space. Right: Cluster size distribution reveals
a balanced representation with most clusters containing 3-13 problems, avoiding over-concentration in any single problem type.

of the cost are for the tokens of LLM and human working
hours in checking. For LLM-related costs, we recorded the
token count and per token cost of each LLM call based on
the statistics from API providers. Human working hours
are collected from Label Studio by adding up time for each
annotation task. The cost is estimated using the $32 per hour
rate for the average salary of a Graduate Research Assistant
in the US. We summarize each category and the total cost
in Table 1.

Category Cost

API DeepSeek 0.83$
SimpleTex 4.17$

Human Stage 1 + Check 21.03$
Stage 2 + Check 210.86$
Difficulty annotation 248.04$

Total 484.93$

Table 1. Cost breakdown for constructing INTEGRAL-
BENCH dataset. Human annotation comprises the majority of
costs ($479.93), while API calls contribute minimally ($5.00).

3. Experiments
We evaluate the performance of large language models on
our INTEGRALBENCH in this section and present the cor-
responding results and findings. Figure 4 illustrates our
evaluation pipeline.

3.1. Evaluation settings

Evaluated models. We evaluate a total of 9 large language
models, covering a range of open-source and proprietary
systems: Claude 3.7 (Anthropic, 2025), Doubao 1.5 think-
ing pro (ByteDance, 2025), GPT-4.1 (OpenAI, 2025a), O3-
mini (OpenAI, 2025b), DeepSeek-V3 (DeepSeek-AI, 2024),
DeepSeek-R1 (DeepSeek-AI, 2025), Kimi-K1.5 (Team

Prompt Template⨁ Problems with
Difficulty Levels

9 Models Pass@3

Prompt Template

Generate Codes

Run

⨁

Ground
Truth

Error < 1e-6 ?

Figure 4. Evaluation pipeline for INTEGRALBENCH. Nine LLMs
generate both numerical and symbolic answers using standardized
prompts. Numerical answers are validated by direct comparison
with ground truth (error < 10−6), while symbolic answers are ver-
ified through LLM-generated code execution to ensure consistency
with the provided numerical result.

et al., 2025), Qwen3-235B-A22B (Yang et al., 2025), QwQ-
32B(Team, 2025). These models are selected to ensure
diversity in architecture, training corpus, and reasoning ca-
pabilities. The chosen models are representative of current
state-of-the-art LLMs in mathematical reasoning and sym-
bolic computation.

Inference setting. Given the challenging nature of prob-
lems requiring multi-step symbolic reasoning, we set the
maximum output length (max tokens) to each model’s max-
imum capacity to prevent premature truncation of solutions.
To ensure fair comparison across models, we use default
temperature and top-p values during inference, preserving

4

INTEGRALBENCH: Benchmarking LLMs with Definite Integral Problems

Model Model Size PASS@3(Num) ALL@3(Num) PASS@3(Sym) ALL@3(Sym)

DeepSeek-V3 671B 27.44% 17.98% 35.96% 22.71%
DeepSeek-R1 671B 45.43% 29.97% 53.63% 37.85%
Doubao 1.5 thinking pro 200B 45.43% 30.60% 52.37% 40.38%
Qwen3-235B-A22B 235B 50.16% 28.71% 56.15% 38.17%
QwQ-32B 32B 44.48% 30.28% 49.21% 36.91%

GPT-4.1 / 26.81% 18.93% 47.00% 26.81%
O3-mini / 35.65% 25.55% 43.35% 33.86%
Kimi-K1.5 / 22.40% 13.88% 28.71% 17.35%
Claude 3.7 / 24.61% 14.51% 29.97% 16.72%

Table 2. Model performance on INTEGRALBENCH using PASS@3 and ALL@3 metrics. Num (Numerical) evaluates predicted numerical
answers; Sym (Symbolic) evaluates analytical expressions. PASS@3 requires correct solutions in at least one of three attempts; ALL@3
requires correct solutions in all three attempts. Parameter sizes are undisclosed for some models.

each model’s intended decoding behavior.

Metrics. To account for generation variability and evaluate
robustness, each problem is tested N = 3 times indepen-
dently per model. This enables the computation of two
key metrics: PASS@N, which measures whether the model
produces the correct solution in at least one of the N at-
tempts, and ALL@N, which requires correct solutions in all
N attempts. These complementary metrics assess both the
model’s peak performance capability and its consistency in
mathematical reasoning.

Answer validation. The correctness of model outputs is
assessed by verifying both the symbolic and numerical com-
ponents:

• Numerical answer verification: We compare the
model-provided numerical answer to the ground truth.
If the absolute error is below 10−6, the result is marked
correct.

• Symbolic answer verification: The model-generated
answer is passed to DeepSeek, which generates Python
code to numerically evaluate it. If this computed result
matches the model’s numerical answer within the 10−6

threshold, the symbolic answer is considered valid.

This dual-checking mechanism ensures that both symbolic
reasoning and numerical consistency are taken into account
in the evaluation.

Prompts. To ensure a fair and consistent evaluation, all
models are prompted using a standardized template for defi-
nite integral problems. The prompt template can be found
in the Appendix. This prompt ensures that models produce
both a symbolic solution and a numerical approximation,
following a structured reasoning chain.

3.2. RQ1: Model type vs. Performance

We examine how different model architectures and sizes per-
form on numerical and symbolic tasks. As shown in Table 2,
larger models generally achieve better results, with Qwen3-
235B-A22B leading overall at 50.16% PASS@3 numerical
and 56.15% PASS@3 symbolic accuracy. DeepSeek-R1
and Doubao 1.5 Thinking Pro also demonstrate strong per-
formance across both evaluation types.

Notably, the 32B QwQ model performs surprisingly well,
outperforming larger models including GPT-4.1 and Claude
3.7. This suggests that architecture design and training
methodology significantly impact performance beyond raw
parameter count. Models with undisclosed sizes show
varied performance, with O3-mini achieving moderate re-
sults while Kimi-K1.5 and Claude 3.7 show lower accuracy
across all metrics.

Finding 1: While model size generally correlates
with performance, architecture, and training method-
ology are equally critical factors. The 32B QwQ
model outperforms several larger models, demon-
strating that parameter count alone does not deter-
mine mathematical reasoning capability.

3.3. RQ2: Problem difficulty vs. Performance

We analyze the relationship between manually annotated
problem difficulty (rated 1-5) and model performance. Fig-
ure 5 reveals a strong negative correlation between difficulty
and PASS@3 accuracy across all evaluated models. While
models achieve near-perfect performance on easier prob-
lems (difficulty 1-2), accuracy drops dramatically on the
most challenging problems (difficulty 4-5), often approach-
ing zero.

This consistent pattern validates our difficulty annotations

5

INTEGRALBENCH: Benchmarking LLMs with Definite Integral Problems

1 2 3 4 50

50

100

Sy
m

bo
lic

 a
cc

Claude 3.7

1 2 3 4 5

DeepSeek-V3

1 2 3 4 5

DeepSeek-R1

1 2 3 4 5

Doubao

1 2 3 4 5

GPT-4.1

1 2 3 4 5

Kimi-K1.5

1 2 3 4 5

O3-mini

1 2 3 4 5

Qwen3

1 2 3 4 5

QwQ-32B

1 2 3 4 50

50

100

Nu
m

er
ica

l a
cc

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Difficulty

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Figure 5. PASS@3 performance across difficulty levels for symbolic and numerical evaluations. All models show consistent performance
decline with increasing difficulty, demonstrating a strong negative correlation between problem complexity and accuracy.

and demonstrates that INTEGRALBENCH effectively spans
a comprehensive range of complexity levels. The sharp
performance decline on difficult problems reveals current
limitations in LLM mathematical reasoning capabilities,
particularly for problems requiring advanced integration
techniques or multi-step symbolic manipulation.

Finding 2: All models exhibit a strong negative cor-
relation between problem difficulty and accuracy,
with performance dropping sharply on challenging
problems. This validates our difficulty stratification
and reveals current limitations in complex mathe-
matical reasoning across state-of-the-art models.

3.4. RQ3: Inference-time scaling vs. Performance

We investigate how inference-time token consumption af-
fects model performance by analyzing accuracy curves
across token usage ratios. As shown in Figure 6, all mod-
els exhibit rapid accuracy gains during initial token con-
sumption, followed by plateauing behavior after reaching
model-specific “sweet spots”.

The location of these plateaus varies significantly across
models. Kimi-K1.5 reaches peak performance around
20% token ratio, while DeepSeek-R1 continues showing
marginal improvements beyond 80% token usage. This
suggests fundamental differences in reasoning efficiency:
some models extract crucial information early in generation,
while others benefit from extended reasoning chains.

Finding 3: Models show rapid early accuracy gains
followed by plateauing, with model-specific “sweet
spots” varying significantly. This reveals different
inference efficiency patterns—some models might
have been optimizing for early information extrac-
tion while others can benefit from extended reason-
ing token budgets.

0.0 0.2 0.4 0.6 0.8 1.0
#Tokens / Max Tokens

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Claude 3.7
DeepSeek-V3
DeepSeek-R1
GPT-4.1
Kimi-K1.5
O3-mini

Figure 6. Inference-time scaling curves showing normalized token
consumption versus cumulative PASS@3 accuracy. Most mod-
els exhibit rapid early gains followed by saturation, with varying
“sweet spot” locations highlighting differences in inference effi-
ciency across models.

3.5. Failure mode analysis

We conducted a detailed analysis of incorrect cases and
identified several representative categories of typical failure
modes. Full examples of each error type are provided in
the appendix to facilitate a clearer understanding of their

6

INTEGRALBENCH: Benchmarking LLMs with Definite Integral Problems

characteristics.

Output truncation. Models sometimes generate exces-
sively verbose reasoning steps, causing truncation before
reaching final answers. This occurs when models attempt
overly complex solution paths rather than identifying ef-
ficient approaches. The verbose generation suggests poor
strategic planning in mathematical problem-solving.

Step 2: Numerical Approximation
...
Higher terms decay rapidly. Summing the first few terms

↪→ and multiplying by
[Stopped here.]

For example, in the case above, the generation reaches the
token limit during the numerical approximation phase, fail-
ing to provide the final answer despite having established
the correct analytical framework.

Circular reasoning patterns. Models occasionally enter in-
finite loops, repeating identical expressions or computations.
This represents a more fundamental generation failure than
simple truncation, suggesting deficiencies in the model’s
internal state management during complex mathematical
derivations.

Simplifying the powers of 2:
...
= 2ˆ{(k+1)/2 + k/2 + 1} = 2ˆ{(k+1)/2 + k/2 + 1} = 2ˆ{(k

↪→+1)/2 + k/2 + 1}
[Repeating ’ = 2ˆ{(k+1)/2 + k/2 + 1}’.]

In the example above, during the algebraic simplification of
exponential expressions, the model correctly identifies the
need to combine exponents but becomes trapped in a repeti-
tive pattern where it repeatedly writes the same expression
without progressing toward the simplified form 2k+2. This
indicates a failure in the model’s ability to recognize when
a computational step has been completed and to advance to
the next stage of the derivation.

Format violations. Models produce mathematically plausi-
ble but incorrectly formatted responses that fail automated
parsing. This indicates limitations in adhering to structured
output requirements while maintaining mathematical cor-
rectness.

Step 3: Final Answer in JSON Format

\[
\boxed{
\begin{aligned}
\text{"answer": "}\frac{\piˆ4}{16}\text{"}, \\
\text{"numerical_answer": "6.0880681896"}
\end{aligned}
}
\]

The model correctly computes the symbolic answer π4

16 and
its numerical approximation but embeds the JSON response

within LaTeX mathematical environments and formatting
commands in the example above. While the mathematical
content is possibly correct, the output fails to conform to the
required JSON schema, preventing automated evaluation
despite containing the correct solution.

Refusal to provide symbolic answers. Models occasion-
ally refuse to provide symbolic solutions, stating “No sim-
ple closed-form solution” even for problems with known
symbolic answers. This conservative behavior reveals uncer-
tainty in handling complex symbolic expressions and may
indicate training biases toward avoiding difficult mathemati-
cal tasks.

‘‘‘json
{
"answer": "\\text{No simple closed-form solution}",
"numerical_answer": "1.7724538509"

}
‘‘‘

In the example above, the model provides an accurate nu-
merical result but claims no symbolic solution exists. This
overly conservative approach suggests the model prioritizes
avoiding incorrect symbolic expressions over attempting to
derive valid analytical results, potentially reflecting train-
ing emphasis on numerical methods rather than symbolic
computation.

Symbolic-numerical inconsistency. The most prevalent
failure mode involves correct symbolic solutions paired with
incorrect numerical evaluations. Table 2 consistently shows
higher symbolic than numerical accuracy across all models,
indicating systematic weaknesses in numerical computation
despite strong symbolic reasoning capabilities. This sug-
gests that while models excel at symbolic manipulation, they
struggle with accurate numerical evaluation of complex ex-
pressions, highlighting the need for external computational
verification tools.

4. Limitations & Risks
Human verification. While INTEGRALBENCH leverages
LLM-based methods for construction compared to manu-
ally curated datasets, the benchmark still requires human
expert verification to ensure correctness and quality. This
introduces scalability and reliability limitations, as manual
verification is time-consuming and inherently error-prone
compared to fully automated approaches using formal veri-
fication and proof assistants. The human verification bottle-
neck may limit our ability to rapidly expand the benchmark
or guarantee complete accuracy across all problems.

LLM inference randomness. Our experiments demon-
strate that for challenging benchmarks like INTEGRAL-
BENCH, the performance gap between PASS@3 and
ALL@3 is substantial. This indicates that stochastic sam-

7

INTEGRALBENCH: Benchmarking LLMs with Definite Integral Problems

pling during LLM inference introduces significant variabil-
ity in benchmark results, potentially masking true model
capabilities. Higher sampling rates (e.g., PASS@16) would
provide more robust estimates for both PASS@N and
ALL@N metrics, better characterizing the range of LLM
performance under inference randomness.

Numerical stability. The evaluation of LLM responses
relies on numerical computations involving floating-point
arithmetic for both direct answer verification and intermedi-
ate calculations. Floating-point numerical stability has long
been recognized as problematic, particularly for operations
that can amplify rounding errors. In the context of integral
evaluation, certain problem classes may exhibit poor numer-
ical conditioning where even adaptive numerical integration
algorithms cannot guarantee stable results, potentially lead-
ing to false negatives in our evaluation pipeline.

5. Related Work
Our work intersects several research directions in mathe-
matical reasoning, benchmarking, and LLM evaluation. We
review the most relevant literature below.

AI for mathematics. Recent advances have signifi-
cantly improved LLM mathematical capabilities through
models like Llemma (Azerbayev et al., 2023), Wizard-
Math (Luo et al., 2023), and MAmmoTH (Yue et al., 2023),
which achieve strong performance on benchmarks such as
MATH (Hendrycks et al., 2021a) and GSM8K (Cobbe et al.,
2021a). Multimodal datasets like MathVista (Lu et al., 2024)
and GeomVerse (Kazemi et al., 2023) further evaluate visual
mathematical reasoning. However, these efforts primarily
target general mathematical skills with a limited focus on
specialized domains like integral calculus, lacking the depth
needed for rigorous evaluation of advanced reasoning in
particular subfields.

Mathematical benchmarking. Several benchmarks incor-
porate integral problems, including MathBench (Liu et al.,
2024) and MathVista (Lu et al., 2024), but typically peak
at undergraduate calculus difficulty. Recent efforts address
dataset contamination through rigorous decontamination in
DeepMath-103K (He et al., 2025) and functional variations
in Putnam-MATH (Tsoukalas et al., 2024). While exist-
ing methods employ circular evaluation and multi-solution
consistency checks, no prior work has simultaneously uti-
lized both numerical and symbolic solutions for integral
verification, limiting evaluation comprehensiveness.

LLM-based evaluation. Recent studies (Chen et al., 2024;
Deng et al., 2024; Zheng et al., 2023; Bavaresco et al., 2024)
employ LLMs as judges through designed prompts for scor-
ing and comparisons, offering fast, scalable evaluation with
GPT-4 achieving over 80% agreement with human prefer-
ences (Zheng et al., 2023). However, LLMs may inherit

training biases and struggle with complex domain under-
standing (Deng et al., 2024). U-MATH (Chernyshev et al.,
2025) proposes meta-evaluation to reduce bias, while our
work combines LLM evaluation with external verification
tools to maintain scalability while mitigating limitations.

Mathematical reasoning models. Techniques like chain-
of-thought prompting (Wei et al., 2022) and scaling instruc-
tion fine-tuning (Chung et al., 2024) significantly improve
LLM reasoning performance, while specialized models like
Minerva (Lewkowycz et al., 2022) achieve state-of-the-art
results through training on scientific content. Mathematical
reasoning requires combining natural language understand-
ing, formula recall, and step-by-step calculation, making
domain-specific benchmarks like INTEGRALBENCH essen-
tial for training specialized models and establishing perfor-
mance standards that guide architectural improvements.

6. Discussion and Conclusion
We introduced INTEGRALBENCH, a specialized benchmark
comprising 317 graduate-level definite integral problems
with both symbolic and numerical ground truth solutions
and manual difficulty annotations. Our evaluation of nine
state-of-the-art LLMs reveals that while larger models gen-
erally perform better, architecture and training methodol-
ogy are equally critical—the 32B QwQ model outperforms
larger models like GPT-4.1 and Claude 3.7. We observe
a strong negative correlation between problem difficulty
and accuracy across all models, with performance declining
sharply on challenging problems, validating our difficulty
stratification. Our analysis of inference-time scaling shows
models exhibit rapid early gains followed by plateauing,
with distinct efficiency patterns across different architec-
tures. Our failure mode analysis reveals critical weaknesses
including output truncation, circular reasoning patterns, and
format violations despite structured prompts. INTEGRAL-
BENCH provides a rigorous framework for evaluating ad-
vanced mathematical reasoning and serves as a valuable tool
for guiding future architectural improvements in mathemati-
cal LLMs.

INTEGRALBENCH , while providing a robust foundation for
evaluating LLM performance on definite integrals, has scope
for refinement and expansion. First, while the 317-problem
dataset provides a foundational framework, its size remains
relatively small for comprehensive evaluation. To address
this, future work will focus on developing more automated
expansion methods—such as advanced OCR, LLM-assisted
problem generation, and automated verification—to scale
the dataset efficiently while maintaining mathematical rigor
and quality. Second, beyond evaluation, the dataset can
serve as a training resource to fine-tune LLMs or specialized
agents for enhanced mathematical reasoning. Leveraging its
structured problems and verified solutions could optimize

8

INTEGRALBENCH: Benchmarking LLMs with Definite Integral Problems

models for integral computation specifically. Third, integrat-
ing external tools—such as Lean (formal proofs), SymPy
(symbolic computation), or Maple—with LLMs could aug-
ment their capabilities. This could involve tool-augmented
pipelines or even an ”Integral Agent” to address current
limitations in complex manipulation and precision. Finally,
while PASS@3 offers insights, expanding to PASS@16
would better capture LLMs’ peak performance, account-
ing for inference randomness and providing a more robust
measure of their potential.

Impact Statement
The evaluation of large language models (LLMs) in ad-
vanced mathematical reasoning, particularly in definite inte-
gral computation, has long lacked a specialized and rigorous
benchmark. Existing mathematical benchmarks either con-
tain insufficient integral problems, lack targeted evaluation
metrics, or fail to implement effective difficulty stratification.
In this work, we introduce INTEGRALBENCH, a focused
benchmark comprising 317 graduate-level definite integral
problems with both symbolic and numerical ground truth
solutions, along with manual difficulty annotations. By
providing a dedicated framework for assessing integral com-
putation capabilities, INTEGRALBENCH fills the gap in
current evaluation systems. This work not only establishes
baseline metrics for LLM performance in definite integral
problems but also offers guidance for future research on im-
proving mathematical reasoning in LLMs, enabling scholars
and engineers to develop more robust models with enhanced
symbolic and numerical reasoning abilities, and ultimately
advancing the field of automated mathematical reasoning.

Acknowledgements
This project is an independent endeavor driven by academic
interest and has not received any external funding. We
would like to express our sincere gratitude to the anonymous
reviewers for their insightful comments and constructive
suggestions, which have significantly helped improve the
quality of this work. Additionally, we appreciate the efforts
of the organizers of the second AI for MATH Workshop at
the 42nd International Conference on Machine Learning for
providing a platform for communication and discussion.

References
Anthropic. Claude 3.7 sonnet and claude code,

2025. URL https://www.anthropic.com/
news/claude-3-7-sonnet.

Azerbayev, Z., Schoelkopf, H., Paster, K., Dos Santos, M.,
McAleer, S., Jiang, A. Q., Deng, J., Biderman, S., and
Welleck, S. Llemma: An open language model for math-

ematics. arXiv preprint arXiv:2310.06786, 2023.

Bavaresco, A., Bernardi, R., Bertolazzi, L., Elliott, D.,
Fernández, R., Gatt, A., Ghaleb, E., Giulianelli, M.,
Hanna, M., Koller, A., Martins, A. F. T., Mondorf, P.,
Neplenbroek, V., Pezzelle, S., Plank, B., Schlangen, D.,
Suglia, A., Surikuchi, A. K., Takmaz, E., and Testoni,
A. Llms instead of human judges? a large scale empir-
ical study across 20 nlp evaluation tasks. 2024. URL
https://arxiv.org/abs/2406.18403.

ByteDance. Seed-thinking-v1.5: Advancing superb
reasoning models with reinforcement learning, 2025.
URL https://github.com/ByteDance-Seed/
Seed-Thinking-v1.5.

Chen, D., Chen, R., Zhang, S., Liu, Y., Wang, Y., Zhou, H.,
Zhang, Q., Zhou, P., Wan, Y., and Sun, L. Mllm-as-a-
judge: Assessing multimodal llm-as-a-judge with vision-
language benchmark. arXiv preprint arXiv:2402.04788,
2024.

Chernyshev, K., Polshkov, V., Artemova, E., Myasnikov,
A., Stepanov, V., Miasnikov, A., and Tilga, S. U-math:
A university-level benchmark for evaluating mathemati-
cal skills in llms, 2025. URL https://arxiv.org/
abs/2412.03205.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tai, Y.,
Fedus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S.,
Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen, X.,
Chowdhery, A., Castro-Ros, A., Pellat, M., Robinson,
K., Valter, D., Narang, S., Mishra, G., Yu, A., Zhao, V.,
Huang, Y., Dai, A., Yu, H., Petrov, S., Chi, E. H., Dean,
J., Devlin, J., Roberts, A., Zhou, D., Le, Q. V., and Wei, J.
Scaling instruction-finetuned language models. J. Mach.
Learn. Res., 25(1), January 2024. ISSN 1532-4435.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems, 2021a. URL https://arxiv.
org/abs/2110.14168.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021b.

DeepSeek-AI. Deepseek-v3 technical report, 2024. URL
https://arxiv.org/abs/2412.19437.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning ca-
pability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

9

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2406.18403
https://github.com/ByteDance-Seed/Seed-Thinking-v1.5
https://github.com/ByteDance-Seed/Seed-Thinking-v1.5
https://arxiv.org/abs/2412.03205
https://arxiv.org/abs/2412.03205
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2501.12948

INTEGRALBENCH: Benchmarking LLMs with Definite Integral Problems

Deng, C., Mao, K., Zhang, Y., and Dou, Z. Enabling dis-
criminative reasoning in LLMs for legal judgment pre-
diction. In Al-Onaizan, Y., Bansal, M., and Chen, Y.-N.
(eds.), Findings of the Association for Computational Lin-
guistics: EMNLP 2024, pp. 784–796, Miami, Florida,
USA, November 2024. Association for Computational
Linguistics. URL https://aclanthology.org/
2024.findings-emnlp.43.

Frey, B. J. and Dueck, D. Clustering by passing messages
between data points. science, 315(5814):972–976, 2007.

He, Z., Liang, T., Xu, J., Liu, Q., Chen, X., Wang, Y., Song,
L., Yu, D., Liang, Z., Wang, W., Zhang, Z., Wang, R., Tu,
Z., Mi, H., and Yu, D. Deepmath-103k: A large-scale,
challenging, decontaminated, and verifiable mathematical
dataset for advancing reasoning, 2025. URL https:
//arxiv.org/abs/2504.11456.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A.,
Basart, S., Tang, E., Song, D., and Steinhardt, J.
Measuring mathematical problem solving with the
math dataset. In Vanschoren, J. and Yeung, S. (eds.),
Proceedings of the Neural Information Process-
ing Systems Track on Datasets and Benchmarks,
volume 1, 2021a. URL https://datasets-
benchmarks-proceedings.neurips.
cc/paper_files/paper/2021/file/
be83ab3ecd0db773eb2dc1b0a17836a1-
Paper-round2.pdf.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. NeurIPS,
2021b.

Kazemi, M., Alvari, H., Anand, A., Wu, J., Chen, X., and
Soricut, R. Geomverse: A systematic evaluation of large
models for geometric reasoning, 2023. URL https:
//arxiv.org/abs/2312.12241.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E.,
Michalewski, H., Ramasesh, V., Slone, A., Anil, C.,
Schlag, I., Gutman-Solo, T., Wu, Y., Neyshabur, B., Gur-
Ari, G., and Misra, V. Solving quantitative reasoning
problems with language models. In Proceedings of the
36th International Conference on Neural Information Pro-
cessing Systems, NIPS ’22, Red Hook, NY, USA, 2022.
Curran Associates Inc. ISBN 9781713871088.

Liu, H., Zheng, Z., Qiao, Y., Duan, H., Fei, Z., Zhou, F.,
Zhang, W., Zhang, S., Lin, D., and Chen, K. Mathbench:

Evaluating the theory and application proficiency of llms
with a hierarchical mathematics benchmark. In Findings
of the Association for Computational Linguistics ACL
2024, pp. 6884–6915, 2024.

Lu, P., Bansal, H., Xia, T., Liu, J., Li, C., Hajishirzi, H.,
Cheng, H., Chang, K.-W., Galley, M., and Gao, J. Math-
vista: Evaluating mathematical reasoning of foundation
models in visual contexts. In The Twelfth International
Conference on Learning Representations.

Lu, P., Bansal, H., Xia, T., Liu, J., Li, C., Hajishirzi, H.,
Cheng, H., Chang, K.-W., Galley, M., and Gao, J. Math-
vista: Evaluating mathematical reasoning of foundation
models in visual contexts. In International Conference
on Learning Representations (ICLR), 2024.

Luo, H., Sun, Q., Xu, C., Zhao, P., Lou, J., Tao, C.,
Geng, X., Lin, Q., Chen, S., and Zhang, D. Wizard-
math: Empowering mathematical reasoning for large lan-
guage models via reinforced evol-instruct. arXiv preprint
arXiv:2308.09583, 2023.

OpenAI. Introducing gpt-4.1 in the api, 2025a. URL
https://openai.com/index/gpt-4-1/.

OpenAI. Openai o3-mini, 2025b. URL https://
openai.com/index/openai-o3-mini/.

SimpleTex. SimpleTex - Snip & Get! — simpletex.cn.
https://simpletex.cn/, 2025. [Accessed 20-06-
2025].

Team, K., Du, A., Gao, B., Xing, B., Jiang, C., Chen, C.,
Li, C., Xiao, C., Du, C., Liao, C., et al. Kimi k1.5:
Scaling reinforcement learning with llms. arXiv preprint
arXiv:2501.12599, 2025.

Team, Q. Qwq-32b: Embracing the power of reinforce-
ment learning, March 2025. URL https://qwenlm.
github.io/blog/qwq-32b/.

Tsoukalas, G., Lee, J., Jennings, J., Xin, J., Ding, M., Jen-
nings, M., Thakur, A., and Chaudhuri, S. Putnambench:
Evaluating neural theorem-provers on the putnam mathe-
matical competition. arXiv preprint arXiv:2407.11214,
2024.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E. H., Le, Q. V., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Confer-
ence on Neural Information Processing Systems, NIPS
’22, Red Hook, NY, USA, 2022. Curran Associates Inc.
ISBN 9781713871088.

Yang, A., Li, A., Yang, B., Zhang, B., Hui, B., Zheng, B.,
Yu, B., Gao, C., Huang, C., Lv, C., Zheng, C., Liu, D.,

10

https://aclanthology.org/2024.findings-emnlp.43
https://aclanthology.org/2024.findings-emnlp.43
https://arxiv.org/abs/2504.11456
https://arxiv.org/abs/2504.11456
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf
https://arxiv.org/abs/2312.12241
https://arxiv.org/abs/2312.12241
https://openai.com/index/gpt-4-1/
https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/
https://simpletex.cn/
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/

INTEGRALBENCH: Benchmarking LLMs with Definite Integral Problems

Zhou, F., Huang, F., Hu, F., Ge, H., Wei, H., Lin, H., Tang,
J., Yang, J., Tu, J., Zhang, J., Yang, J., Yang, J., Zhou,
J., Zhou, J., Lin, J., Dang, K., Bao, K., Yang, K., Yu, L.,
Deng, L., Li, M., Xue, M., Li, M., Zhang, P., Wang, P.,
Zhu, Q., Men, R., Gao, R., Liu, S., Luo, S., Li, T., Tang,
T., Yin, W., Ren, X., Wang, X., Zhang, X., Ren, X., Fan,
Y., Su, Y., Zhang, Y., Zhang, Y., Wan, Y., Liu, Y., Wang,
Z., Cui, Z., Zhang, Z., Zhou, Z., and Qiu, Z. Qwen3
technical report. arXiv preprint arXiv:2505.09388, 2025.

Yue, X., Qu, X., Zhang, G., Fu, Y., Huang, W., Sun, H., Su,
Y., and Chen, W. Mammoth: Building math generalist
models through hybrid instruction tuning, 2023. URL
https://arxiv.org/abs/2309.05653.

Zhang, Y., Li, M., Long, D., Zhang, X., Lin, H., Yang, B.,
Xie, P., Yang, A., Liu, D., Lin, J., Huang, F., and Zhou,
J. Qwen3 embedding: Advancing text embedding and
reranking through foundation models. arXiv preprint
arXiv:2506.05176, 2025.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E. P., Zhang,
H., Gonzalez, J. E., and Stoica, I. Judging llm-as-a-judge
with mt-bench and chatbot arena. In Proceedings of the
37th International Conference on Neural Information
Processing Systems, NIPS ’23, Red Hook, NY, USA,
2023. Curran Associates Inc.

11

https://arxiv.org/abs/2309.05653

INTEGRALBENCH: Benchmarking LLMs with Definite Integral Problems

A. Data Format
The processed data is stored in the same JSON format for convenient use in the subsequent steps. An example is shown
below:

{
"problem": "\\int\\limits_{0}ˆ{1}\\frac{(1-xˆ2)ˆ{-1/2}}{x(1-0.25xˆ2)ˆ{1/2}}\\arcsin\\left(0.5x\\right)dx",
"unsimplified_answer": "\\frac\\pi4\\ln\\frac{1+0.5}{1-0.5}",
"simplified_answer": "\\frac\\pi4\\ln3",
"numerical_answer": 0.8628480738,
"difficulty": 4.0,
"source": "Handbook_of_Special_Functions_in_page_156",
"problem_number": "103"

}

B. Prompt Template
The following are some of the prompt templates used in our experiment:

Listing 1. System prompt.
system_prompt: |
You are a mathematical assistant skilled in generating Python code using mpmath to compute numerical results from

↪→analytical expressions. Your task is to:
1. Parse the given analytical answer (NOT the integral) and translate it into mpmath code.
2. Generate Python code that directly evaluates this analytical expression to exactly 10 decimal places.
3. The code must ONLY print a single floating-point number (rounded to 10 decimal places). No other text or

↪→multiple outputs are allowed.
4. IMPORTANT: Use mp.nstr(result, n=10) for output formatting, NOT Python string formatting like f’{result:.10f}’

↪→which doesn’t work correctly with mpmath’s mpf objects.
5. Avoid using mpmath.quad or any numerical integration - instead, directly compute the value from the analytical

↪→formula.
6. For expressions with parameters, select appropriate parameter values within the given constraints.
7. For expressions with parameters, compute the numerical result by substituting the chosen parameter values into

↪→the given analytical answer.
8. Use mpmath.dps = 15 for internal precision.
9. IMPORTANT: Break complex calculations into multiple steps with intermediate variables, instead of doing

↪→everything in one line. This helps avoid syntax errors and makes the code more readable and debuggable.
10. IMPORTANT: Carefully check your selected parameter values to ensure they do not cause division by zero,

↪→undefined logarithms, or other mathematical errors. Verify all denominators and logarithm arguments will be
↪→ non-zero and positive respectively.

11. EXTREMELY IMPORTANT: Always use the EXACT correct mpmath function names with the ’mp.’ prefix. Common mistakes
↪→ to avoid:

- Use mp.asin(x), NOT mp.arcsin(x) - arcsin is not a valid mpmath function
- Use mp.acos(x), NOT mp.arccos(x) - arccos is not a valid mpmath function
- Use mp.atan(x), NOT mp.arctan(x) - arctan is not a valid mpmath function
- Use mp.log(x), NOT mp.ln(x) - ln is not a valid mpmath function
- Use mp.ellipe(x), NOT mp.ellipd(x) - ellipd is not a valid mpmath function
- Use mp.struveh(v, x) for the Hankel Struve function \mathbf{H}_v(z)
- Use mp.struvel(v, x) for the modified Struve function \mathbf{L}_v(z)
- Use mp.sin(x), NOT math.sin(x) or sin(x)
- Use mp.exp(x), NOT math.exp(x) or exp(x)
- Use mp.sqrt(x), NOT math.sqrt(x)
- Use mp.pi, NOT math.pi or PI
- Use mp.e, NOT math.e or e

12. Return a JSON object with:
- "code": The Python code (plain text, no markdown fences) that evaluates the analytical expression.
- "parameters": A dictionary of chosen parameter values (for parameter cases only; null for non-parameter cases

↪→).
- "substituted_answer": The analytical answer with parameters substituted, in LaTeX format (before

↪→simplification).
- "simplified_answer": ONLY the final simplified expression in LaTeX format without any intermediate steps or

↪→equals signs. Examples:
- Good: "\\frac{4}{3}" (only the final result)
- Bad: "\\frac{8}{6} = \\frac{4}{3}" (contains equals sign and intermediate step)
- Good: "2\\pi" (direct simplified result)
- Bad: "\\frac{2\\pi}{\\sqrt{1}} = 2\\pi" (contains intermediate step)

- "substituted_problem": The integral expression with parameters substituted (for parameter cases only; null
↪→for non-parameter cases).

12

INTEGRALBENCH: Benchmarking LLMs with Definite Integral Problems

user_prompt_with_param: |
Given the integral: ${problem}
Parameter constraints: ${param}
Analytical answer: ${answer}
Generate a JSON object containing:
- "code": Python code using mpmath to DIRECTLY evaluate the analytical answer to 10 decimal places. The code must

↪→only print a single number.
- "parameters": Dictionary of chosen parameter values satisfying the constraints.
- "substituted_answer": Analytical answer with parameters substituted, in LaTeX format (before simplification).
- "simplified_answer": ONLY the final simplified expression without any intermediate steps or equals signs. Do not

↪→ include expressions like "\\frac{8}{6} = \\frac{4}{3}" - just provide the final result "\\frac{4}{3}".
- "substituted_problem": Integral expression with parameters substituted, in LaTeX format.

Code quality requirements:
1. Do NOT use numerical integration. Instead, translate the analytical answer into mpmath code and evaluate it

↪→directly.
2. Break complex expressions into smaller, manageable parts using intermediate variables.
3. Do not compute everything in a single line - use multiple steps to avoid errors.
4. Include comments explaining each significant calculation step.
5. Verify all denominators and logarithm arguments to ensure no mathematical errors.
6. Use the EXACT correct mpmath functions with the ’mp.’ prefix:

- Use mp.asin(x), NOT mp.arcsin(x)
- Use mp.acos(x), NOT mp.arccos(x)
- Use mp.atan(x), NOT mp.arctan(x)
- Use mp.log(x), NOT mp.ln(x)
- Use mp.ellipe(x), NOT mp.ellipd(x)
- Use mp.struveh(v, x) for the Hankel Struve function \mathbf{H}_v(z)
- Use mp.struvel(v, x) for the modified Struve function \mathbf{L}_v(z)

7. For printing the result, use ONLY: print(mp.nstr(result, n=10))

user_prompt_without_param: |
Given the integral: ${problem}
Analytical answer: ${answer}
Generate a JSON object containing:
- "code": Python code using mpmath to DIRECTLY evaluate the analytical answer to 10 decimal places (without using

↪→numerical integration). The code must only print a single number.
- "parameters": null
- "substituted_answer": null
- "simplified_answer": null
- "substituted_problem": null

Code quality requirements:
1. Do NOT use mpmath.quad or any numerical integration. Instead, translate the analytical answer into mpmath code.
2. Break complex expressions into smaller, manageable parts using intermediate variables.
3. Do not compute everything in a single line - use multiple steps to avoid errors.
4. Include comments explaining each significant calculation step.
5. Use the EXACT correct mpmath functions with the ’mp.’ prefix:

- Use mp.asin(x), NOT mp.arcsin(x)
- Use mp.acos(x), NOT mp.arccos(x)
- Use mp.atan(x), NOT mp.arctan(x)
- Use mp.log(x), NOT mp.ln(x)
- Use mp.ellipe(x), NOT mp.ellipd(x)
- Use mp.struveh(v, x) for the Hankel Struve function \mathbf{H}_v(z)
- Use mp.struvel(v, x) for the modified Struve function \mathbf{L}_v(z)

6. For printing the result, use ONLY: print(mp.nstr(result, n=10))

Listing 2. Integral prompt.
integral_prompt: |
Please calculate the definite integral ${problem}.
Follow these steps:
1. Compute the integral analytically to obtain the exact answer.
2. Provide all necessary steps to reach the solution.
3. Include a numerical approximation of the result, rounded to 10 decimal places.
4. Output the final answer in the following JSON format on the last line, with no additional text:
{"answer": "exact_answer_in_latex", "numerical_answer": "numerical_approximation_of_the_result"}

C. Full Failure Cases

13

INTEGRALBENCH: Benchmarking LLMs with Definite Integral Problems

Listing 3. Output truncation.
To evaluate the definite integral

$$
\int_0ˆ{2} xˆ{-3/4} (2 - x)ˆ{-1/4} I_1\left(\sqrt[4]{x(2 - x)}\right) \, dx,
$$

we begin by analyzing the structure of the integrand. It involves powers of $ x $ and $ 2 - x $, and a modified
↪→Bessel function $ I_1 $ of the fourth root of the product $ x(2 - x) $. This suggests that the integral might
↪→ be expressible in terms of special functions or known identities involving Bessel functions.

Step 1: Substitution and Series Expansion

We start by using the substitution $ x = 2t $, which transforms the integral into:

$$
\int_0ˆ1 tˆ{-3/4} (1 - t)ˆ{-1/4} I_1\left(\sqrt{2} \cdot \sqrt[4]{t(1 - t)}\right) dt.
$$

We then expand the modified Bessel function $ I_1(z) $ using its series representation:

$$
I_1(z) = \sum_{k=0}ˆ\infty \frac{(z/2)ˆ{2k+1}}{k! (k+1)!}.
$$

Substituting $ z = \sqrt{2} \cdot \sqrt[4]{t(1 - t)} $, we obtain:

$$
I_1\left(\sqrt{2} \cdot \sqrt[4]{t(1 - t)}\right) = \sum_{k=0}ˆ\infty \frac{(1)ˆ{2k+1}}{k! (k+1)!} \cdot \left(\sqrt

↪→{t(1 - t)}\right)ˆ{2k+1}.
$$

Substituting this into the integral and interchanging the sum and integral (justified by uniform convergence), we
↪→get:

$$
\int_0ˆ1 tˆ{-3/4} (1 - t)ˆ{-1/4} \sum_{k=0}ˆ\infty \frac{\left(\sqrt{t(1 - t)}\right)ˆ{2k+1}}{k! (k+1)!} dt
= \sum_{k=0}ˆ\infty \frac{1}{k! (k+1)!} \int_0ˆ1 tˆ{-3/4 + k + 1/2} (1 - t)ˆ{-1/4 + k + 1/2} dt.
$$

Simplifying the exponents:

$$
tˆ{-3/4 + k + 1/2} = tˆ{k - 1/4}, \quad (1 - t)ˆ{-1/4 + k + 1/2} = (1 - t)ˆ{k + 1/4}.
$$

Thus, the integral becomes:

$$
\sum_{k=0}ˆ\infty \frac{1}{k! (k+1)!} \int_0ˆ1 tˆ{k - 1/4} (1 - t)ˆ{k + 1/4} dt.
$$

This is a standard Beta function integral:

$$
\int_0ˆ1 tˆ{a-1} (1 - t)ˆ{b-1} dt = B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a + b)}.
$$

So the integral becomes:

$$
\sum_{k=0}ˆ\infty \frac{\Gamma(k + 3/4)\Gamma(k + 5/4)}{k! (k+1)! \Gamma(2k + 2)}.
$$

This series converges rapidly and can be evaluated numerically to high precision.

Step 2: Numerical Approximation

14

INTEGRALBENCH: Benchmarking LLMs with Definite Integral Problems

Computing the first few terms of the series gives:

- $ k = 0 $: $ \frac{\Gamma(3/4)\Gamma(5/4)}{0! \cdot 1! \cdot \Gamma(2)} = \frac{\Gamma(3/4)\Gamma(5/4)}{1} \approx
↪→ 2 $

- $ k = 1 $: $ \frac{\Gamma(7/4)\Gamma(9/4)}{1! \cdot 2! \cdot \Gamma(4)} \approx 1/6 $
- $ k = 2 $: $ \frac{\Gamma(11/4)\Gamma(13/4)}{2! \cdot 3! \cdot \Gamma(6)} \approx 1/180 $

Higher terms decay rapidly. Summing the first few terms and multiplying by

Listing 4. Circular reasoning patterns.
To solve the definite integral \(\int\limits_0ˆ2 xˆ{1/2} I_0\left(1 \cdot \sqrt[4]{x(2-x)}\right) dx\), we need to

↪→carefully analyze the integrand and use appropriate techniques. Here, \(I_0\) is the modified Bessel function
↪→ of the first kind of order zero.

Step 1: Analytical Computation

The integrand is \(xˆ{1/2} I_0\left(\sqrt[4]{x(2-x)}\right)\). This integral does not have a straightforward
↪→antiderivative, and it involves a special function. Therefore, we will use a series expansion for \(I_0\) and
↪→ then integrate term by term.

The modified Bessel function of the first kind of order zero, \(I_0(z)\), has the series expansion:
\[I_0(z) = \sum_{k=0}ˆ{\infty} \frac{1}{k! \, k!} \left(\frac{z}{2}\right)ˆ{2k}. \]

Substituting \(z = \sqrt[4]{x(2-x)}\), we get:
\[I_0\left(\sqrt[4]{x(2-x)}\right) = \sum_{k=0}ˆ{\infty} \frac{1}{k! \, k!} \left(\frac{\sqrt[4]{x(2-x)}}{2}\right)

↪→ˆ{2k}. \]

Thus, the integrand becomes:
\[xˆ{1/2} \sum_{k=0}ˆ{\infty} \frac{1}{k! \, k!} \left(\frac{\sqrt[4]{x(2-x)}}{2}\right)ˆ{2k}. \]

We can interchange the summation and integration (justified by uniform convergence):
\[\int_0ˆ2 xˆ{1/2} I_0\left(\sqrt[4]{x(2-x)}\right) dx = \sum_{k=0}ˆ{\infty} \frac{1}{k! \, k!} \left(\frac{1}{2}\

↪→right)ˆ{2k} \int_0ˆ2 xˆ{1/2} \left(x(2-x)\right)ˆ{k/2} dx. \]

Simplifying the integrand inside the sum:
\[xˆ{1/2} \left(x(2-x)\right)ˆ{k/2} = xˆ{1/2} xˆ{k/2} (2-x)ˆ{k/2} = xˆ{(k+1)/2} (2-x)ˆ{k/2}. \]

Thus, the integral becomes:
\[\int_0ˆ2 xˆ{(k+1)/2} (2-x)ˆ{k/2} dx. \]

This integral is a form of the Beta function, \(B(a, b)\), which is defined as:
\[B(a, b) = \int_0ˆ1 tˆ{a-1} (1-t)ˆ{b-1} dt. \]

To match this form, we make a substitution \(t = \frac{x}{2}\), so \(x = 2t\) and \(dx = 2 dt\). The limits change
↪→from \(x = 0\) to \(x = 2\) to \(t = 0\) to \(t = 1\). The integral becomes:

\[\int_0ˆ1 (2t)ˆ{(k+1)/2} (2-2t)ˆ{k/2} 2 dt = 2ˆ{(k+1)/2 + k/2 + 1} \int_0ˆ1 tˆ{(k+1)/2} (1-t)ˆ{k/2} dt. \]

Simplifying the powers of 2:
\[2ˆ{(k+1)/2 + k/2 + 1} = 2ˆ{(k+1)/2 + k/2 + 1} = 2ˆ{(k+1)/2 + k/2 + 1} = 2ˆ{(k+1)/2 + k/2 + 1} = 2ˆ{(k+1)/2 + k/2

↪→+ 1} = 2ˆ{(k+1)/2 + k/2 + 1} = 2ˆ{(k+1)/2 + k/2 + 1} = 2ˆ{(k+1)/2 + k/2 + 1} = 2ˆ{(k+1)/2 + k/2 + 1} = 2ˆ{(k
↪→+1)/2 + k/2 + 1} = 2ˆ{(k+1)/2 + k/2 + 1} = 2ˆ{(k+1)/2 + k/2 + 1} = 2ˆ{(k+1)/2 + k/2 + 1} = 2ˆ{(k+1)/2 + k/2 +
↪→ 1}

....(repeating ’ = 2ˆ{(k+1)/2 + k/2 + 1}’)

Listing 5. Format violations.
To solve the definite integral \(\int\limits_{0}ˆ{1} x \mathbf{K}\left(\sqrt{x}\right) \mathbf{K}\left(\sqrt{1-x}\

↪→right) dx\), we need to use properties of the complete elliptic integral of the first kind, \(\mathbf{K}(k)\)
↪→.

Step 1: Analytical Computation

The complete elliptic integral of the first kind is defined as:
\[
\mathbf{K}(k) = \int_0ˆ{\frac{\pi}{2}} \frac{1}{\sqrt{1 - kˆ2 \sinˆ2 \theta}} \, d\theta
\]

We need to evaluate the integral:

15

INTEGRALBENCH: Benchmarking LLMs with Definite Integral Problems

\[
I = \int_0ˆ1 x \mathbf{K}\left(\sqrt{x}\right) \mathbf{K}\left(\sqrt{1-x}\right) dx
\]

Using the known result for the product of two complete elliptic integrals of the first kind, we have:
\[
\mathbf{K}(k) \mathbf{K}(\sqrt{1-kˆ2}) = \frac{\piˆ2}{4}
\]

However, this identity does not directly help us with the integral involving \(x\). Instead, we use a known result
↪→from the literature on elliptic integrals:

\[
\int_0ˆ1 x \mathbf{K}\left(\sqrt{x}\right) \mathbf{K}\left(\sqrt{1-x}\right) dx = \frac{\piˆ4}{16}
\]

Step 2: Numerical Approximation

To provide a numerical approximation of \(\frac{\piˆ4}{16}\), we first compute \(\piˆ4\):
\[
\pi \approx 3.141592653589793
\]
\[
\piˆ4 \approx 97.40909103400244
\]
\[
\frac{\piˆ4}{16} \approx \frac{97.40909103400244}{16} \approx 6.088068189625152
\]

Rounded to 10 decimal places, the numerical approximation is:
\[
6.0880681896
\]

Step 3: Final Answer in JSON Format

\[
\boxed{
\begin{aligned}
\text{"answer": "}\frac{\piˆ4}{16}\text{"}, \\
\text{"numerical_answer": "6.0880681896"}
\end{aligned}
}
\]

Listing 6. Refusal to provide symbolic answers.
To solve the definite integral \(\int\limits_{0}ˆ{2} xˆ{-1/4}(2-x)ˆ{-3/4} I_{0.5}\left(1 \cdot \sqrt[4]{x(2-x)}\

↪→right) dx\), we need to carefully analyze the integrand and use appropriate techniques.

Step 1: Analytical Solution

The integrand involves the modified Bessel function of the first kind, \(I_{0.5}\). The modified Bessel function \(
↪→I_{\nu}(z)\) for \(\nu = 0.5\) can be expressed in terms of elementary functions:

\[I_{0.5}(z) = \sqrt{\frac{2}{\pi z}} \sinh(z). \]

Given \(z = \sqrt[4]{x(2-x)}\), we have:
\[I_{0.5}\left(\sqrt[4]{x(2-x)}\right) = \sqrt{\frac{2}{\pi \sqrt[4]{x(2-x)}}} \sinh\left(\sqrt[4]{x(2-x)}\right).

↪→\]

Thus, the integrand becomes:
\[xˆ{-1/4}(2-x)ˆ{-3/4} \sqrt{\frac{2}{\pi \sqrt[4]{x(2-x)}}} \sinh\left(\sqrt[4]{x(2-x)}\right). \]

Simplifying the expression inside the integral:
\[xˆ{-1/4}(2-x)ˆ{-3/4} \sqrt{\frac{2}{\pi \sqrt[4]{x(2-x)}}} \sinh\left(\sqrt[4]{x(2-x)}\right) = \frac{\sqrt{2}}{\

↪→sqrt{\pi}} \cdot \frac{\sinh\left(\sqrt[4]{x(2-x)}\right)}{xˆ{1/8}(2-x)ˆ{3/8}}. \]

This integral is quite complex and does not have a straightforward analytical solution. Therefore, we will proceed
↪→to a numerical approximation.

Step 2: Numerical Approximation

16

INTEGRALBENCH: Benchmarking LLMs with Definite Integral Problems

To numerically approximate the integral, we can use numerical integration techniques such as the trapezoidal rule,
↪→Simpson’s rule, or more advanced methods like Gaussian quadrature. For simplicity, we will use a numerical
↪→integration tool available in most computational software.

Using a numerical integration tool, we find:
\[\int\limits_{0}ˆ{2} xˆ{-1/4}(2-x)ˆ{-3/4} I_{0.5}\left(1 \cdot \sqrt[4]{x(2-x)}\right) dx \approx 1.7724538509. \]

Step 3: Final Answer in JSON Format

Since the integral does not have a simple closed-form solution, we provide the numerical approximation as the final
↪→answer.

‘‘‘json
{"answer": "\\text{No simple closed-form solution}", "numerical_answer": "1.7724538509"}
‘‘‘

Listing 7. Symbolic-numerical inconsistency.
Let’s compute the integral:
\[
I = \int_0ˆ{0.5} x(0.5ˆ2 - xˆ2)ˆ{-1/2} \arcsin(0.5x) \, dx
\]

Step 1: Substitution

Let’ss use the substitution:
\[
x = 0.5 \sin\theta \implies dx = 0.5 \cos\theta\, d\theta
\]
As \(x\) goes from \(0\) to \(0.5\):
- When \(x = 0: \sin\theta = 0 \implies \theta = 0\)
- When \(x = 0.5: \sin\theta = 1 \implies \theta = \frac{\pi}{2}\)

Calculate \((0.5ˆ2 - xˆ2)ˆ{-1/2}\):
\[
0.5ˆ2 - xˆ2 = 0.25 - 0.25\sinˆ2\theta = 0.25(1 - \sinˆ2\theta) = 0.25\cosˆ2\theta
\]
\[
(0.5ˆ2 - xˆ2)ˆ{-1/2} = (0.25 \cosˆ2\theta)ˆ{-1/2} = 2 \sec\theta
\]

Also,
\[
x = 0.5 \sin\theta
\]
\[
0.5x = 0.25\sin\theta
\]
\[
\arcsin(0.5x) = \arcsin(0.25\sin\theta)
\]

Substitute everything:
\[
I = \int_{0}ˆ{\frac{\pi}{2}} [0.5 \sin\theta][2\sec\theta]\arcsin(0.25\sin\theta)[0.5\cos\theta] d\theta
\]
\[
= \int_{0}ˆ{\frac{\pi}{2}} 0.5 \cdot 2 \cdot 0.5 \sin\theta \sec\theta \arcsin(0.25\sin\theta)\cos\theta\, d\theta
\]
\[
= 0.5 \int_{0}ˆ{\frac{\pi}{2}} \sin\theta \sec\theta \arcsin(0.25\sin\theta)\cos\theta \, d\theta
\]
Note that \(\sec\theta \cos\theta = 1\). Therefore,
\[
I = 0.5 \int_0ˆ{\frac{\pi}{2}} \sin\theta \arcsin(0.25\sin\theta) d\theta
\]

Step 2: Using Integral by Parts

Let \(u = \arcsin(0.25\sin\theta)\), \(dv = \sin\theta d\theta\), so \(du = \frac{0.25\cos\theta}{\sqrt{1-(0.25\sin\
↪→theta)ˆ2}} d\theta\), and \(v = -\cos\theta\).

17

INTEGRALBENCH: Benchmarking LLMs with Definite Integral Problems

Using integration by parts:
\[
\int u\, dv = uv - \int v\, du
\]
So,
\[
I = 0.5 \left\{ -\cos\theta \arcsin(0.25\sin\theta) \Big|_0ˆ{\frac{\pi}{2}} + \int_0ˆ{\frac{\pi}{2}} \cos\theta \

↪→cdot \frac{0.25\cos\theta}{\sqrt{1-0.0625\sinˆ2\theta}} d\theta \right\}
\]
\[
= 0.5 \left\{ -\cos\theta \arcsin(0.25\sin\theta) \Big|_0ˆ{\frac{\pi}{2}} + 0.25\int_0ˆ{\frac{\pi}{2}} \frac{\cosˆ2\

↪→theta}{\sqrt{1-0.0625\sinˆ2\theta}} d\theta \right\}
\]

Compute the boundary term:
- At \(\theta = \frac{\pi}{2}\): \(\cos\theta = 0\), so term is 0.
- At \(\theta = 0\): \(\cos\theta = 1, \sin\theta = 0 \implies \arcsin(0)=0\), so term is 0.

Therefore, the boundary term is zero.

So,
\[
I = 0.5 \times 0.25 \int_0ˆ{\frac{\pi}{2}} \frac{\cosˆ2\theta}{\sqrt{1-0.0625\sinˆ2\theta}} d\theta
= 0.125 \int_0ˆ{\frac{\pi}{2}} \frac{\cosˆ2\theta}{\sqrt{1-0.0625\sinˆ2\theta}} d\theta
\]

Step 3: Simplifying the Integral

Recall:
\[
\cosˆ2\theta = 1 - \sinˆ2\theta
\]
So,
\[
I = 0.125 \int_0ˆ{\frac{\pi}{2}} \frac{1 - \sinˆ2\theta}{\sqrt{1 - 0.0625\sinˆ2\theta}} d\theta
= 0.125 \left(
\int_0ˆ{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - 0.0625\sinˆ2\theta}}
- \int_0ˆ{\frac{\pi}{2}} \frac{\sinˆ2\theta\, d\theta}{\sqrt{1 - 0.0625\sinˆ2\theta}}
\right)
\]

Step 4: Express in terms of Elliptic Integrals

We use the complete elliptic integrals of the first and second kind, defined as:
\[
K(k) = \int_0ˆ{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - kˆ2\sinˆ2\theta}}
\]
\[
E(k) = \int_0ˆ{\frac{\pi}{2}} \sqrt{1 - kˆ2\sinˆ2\theta}\, d\theta
\]
And:
\[
\int_0ˆ{\frac{\pi}{2}} \frac{\sinˆ2\theta}{\sqrt{1 - kˆ2\sinˆ2\theta}} d\theta = \frac{1}{kˆ2}\left[K(k) - E(k) \

↪→right]
\]
Let \(kˆ2 = 0.0625\), \(k = 0.25\).

So,
\[
I = 0.125\left[K(0.25) - \frac{1}{0.0625}(K(0.25) - E(0.25)) \right]
= 0.125\left[K(0.25) - 16(K(0.25)-E(0.25)) \right]
= 0.125\left[K(0.25) - 16K(0.25) + 16E(0.25) \right]
= 0.125\left[-15K(0.25) + 16E(0.25) \right]
\]
\[
I = 0.125 \left(16E(0.25) - 15K(0.25) \right)
\]

Step 5: Final Analytical Answer

Thus,

18

INTEGRALBENCH: Benchmarking LLMs with Definite Integral Problems

\[
I = 0.125 \left[16E(0.25) - 15K(0.25) \right]
\]

Step 6: Numerical Approximation

Let’s calculate the values:
- \(K(0.25) \approx 1.5962422221\)
- \(E(0.25) \approx 1.5307576369\)

So,
\[
16E(0.25) - 15K(0.25) \approx 16 \times 1.5307576369 - 15 \times 1.5962422221 = 24.49212219 - 23.9436333315 =

↪→0.5484888585
\]
\[
I \approx 0.125 \times 0.5484888585 = 0.0685611073
\]

Step 7: Final JSON

‘‘‘json
{"answer": "0.125\\left[16\\,E(0.25)-15\\,K(0.25)\\right]", "numerical_answer": "0.0685611073"}
‘‘‘

19

