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ABSTRACT

Generative modeling of crystal data distribution is an important yet challenging task
due to the unique periodic physical symmetry of crystals. Diffusion-based methods
have shown early promise in modeling crystal distribution. More recently, Bayesian
Flow Networks were introduced to aggregate noisy latent variables, resulting in
a variance-reduced parameter space that has been shown to be advantageous for
modeling Euclidean data distributions with structural constraints (Song et al.,[2023)).
Inspired by this, we seek to unlock its potential for modeling variables located
in non-Euclidean manifolds e.g. those within crystal structures, by overcoming
challenging theoretical issues. We introduce CrysBFN, a novel crystal generation
method by proposing a periodic Bayesian flow, which essentially differs from the
original Gaussian-based BFN by exhibiting non-monotonic entropy dynamics. To
successfully realize the concept of periodic Bayesian flow, CrysBFN integrates a
new entropy conditioning mechanism and empirically demonstrates its significance
compared to time-conditioning. Extensive experiments over both crystal ab initio
generation and crystal structure prediction tasks demonstrate the superiority of
CrysBFN, which consistently achieves new state-of-the-art on all benchmarks.
Surprisingly, we found that CrysBFN enjoys a significant improvement in sampling
efficiency, e.g., ~ 100x speedup (10 v.s. 2000 steps network forwards) compared
with previous Diffusion-based methods on MP-20 dataset.

1 INTRODUCTION

Deep generative models, with their strong ability to approximate data distribution with complex
geometries, have recently emerged as a promising approach to de novo drug design (Hoogeboom
et al.,|2022), protein engineering (Shi et al.|[2022), and material science (Liu et al.,2017). To discover
new functional materials (Wang et al., 2023; Peng et al.l 2022), there has been an active line of
research on crystal generative modeling (Ren et al., [2021; [Hoffmann et al.,|2019; Noh et al.,[2019;
Court et al., 2020; |Yang et al.| [2023; |Nouira et al., 2018)). Recent diffusion-based models learns
through an iterative reverse process with multi-level noise perturbation, and has been demonstrated
as a powerful tool for capturing complex geometries of crystals. Studies show that these models can
generate crystal samples with realistic structures that well satisfy physical constraint (Xie et al.| [2021}
Jiao et al. [2023;2024; |Lin et al., 2024]).

Despite promising results, significant challenges persist. The search space for crystal structures
grows exponentially with the number of atoms, while thermodynamically stable materials represent
only a small fraction (Miller et al., 2024). This presents challenges in the multi-step generation
process, the variance of which might cause structures to deviate from stable distributions. Moreover,
the current widely-adapted diffusion-based approaches (Jiao et al., [2023;2024)) for crystal structure
modeling tend to learn the score function of wrapped normal distribution for periodic variables, where
the approximation of a sum of infinite terms is needed which could bring in extra bias. Recently,
BFN (Graves et al., [2023)) has been successfully applied to the geometry generative modeling of
molecules (Song et al.,|2023), a scenario that shares the above-mentioned challenges similar to crystal
generation, by modeling in a much lower variance parameter space. However, the periodic geometry
of crystals differs from that of small molecules and raises significant challenges.

To tackle these challenges, this paper aim to break the barrier of extending the paradigm of BFN into
those variables located non-Euclidean space, e.g., atom fractional coordinates in crystal structure.
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Figure 1: Framework of CrysBFN. Left: overview of training and sampling process. At training
time, the network receives €;_; from Bayesian flow based on data distribution, and tries to improve
the belief 8;_; over the groundtruth M by outputting an estimated distribution po and minimizing
the gap between estimation and groundtruth. At sampling time with the trained network, the
uninformative prior 6 is gradually improved by belief updates until 6,, with high fidelity. Right:
illustration of the periodic equivariant Bayesian flow.

We introduce the first non-Euclidean Bayesian flow over the periodic space, i.e. the hyper-torus.
To successfully implement such concept, we introduce a generalized training paradigm based on
simulation of the Bayesian flow and further propose a non-auto-regressive equivalent formulation
of Bayesian flow distribution that guarantees computational efficiency. By integrating all these
innovations, we introduce CrysBFN, the first periodic E(3) equivariant Bayesian flow network
designed for crystal generation. Extensive experiments demonstrate the significant superiority of
CrysBFN over current methods in both sampling quality and efficiency.

Our contributions can be summarized as follows:

* We present the first periodic Bayesian flow in non-Euclidean space (hyper-torus) with a
novel training paradigm and entropy conditioning mechanism tackling the unprecedented
and pivotal non-additive accuracy theoretical challenge.

* We introduce the first periodic-E(3) equivariant Bayesian flow networks for crystal genera-
tion tasks with appealing theoretical guarantees.

» Extensive experiments demonstrate that CrysBFN consistently outperforms previous meth-
ods on both ab initio crystal generation (99.1% COV-P on Carbon-24) and crystal structure
prediction tasks (64.35% match rate on MP-20). Efficiency experiments on MP-20 prove
that CrysBFN enjoys a ~ 100 x sampling efficiency with performance on par with previous
Diffusion-based methods.

2 RELATED WORK

Modeling and generating stable materials with data-driven approaches has been applied to discovering
new functional materials (Peng et al.,[2022). One line of approaches indirectly models crystal space
by transforming crystals into human-designed representations (Ren et al.| [2021; [Hoffmann et al.,
2019; |Noh et al., 2019} (Court et al.| 2020; [Yang et al.|[2023), though the encoding and decoding
process often leads to physical geometry loss In contrast, another line of research directly models
crystals in the sample space, drawing inspiration from the success of Diffusion models (Ho et al.,
2020bj; |Song et al., 2020a; Song & Ermon, 2019). For instance, CD-VAE (Xie et al.|[2021)) and SyMat
(Luo et al.l [2024b) employ score-matching (Song & Ermonl [2019) to learn scores for generating
stable materials, while their modeled distribution lacks geometric invariance (Zhang et al.,|2023)).
DiffCSP (Jiao et al.| [2023)) addresses this by transforming Cartesian atom coordinates into fractional
coordinates, introducing the periodic E(3) equivariance of crystals, and designing an equivariant
diffusion crystal generation model based on periodic diffusion (Jing et al., 2022). More recently,
Miller et al.|(2024)) applies Riemannian Flow Matching (Chen & Lipman, [2023)) to crystal generation
tasks offering improved sampling efficiency, while at the expense of quality ElHowever, we argue that

"For a more detailed discussion of related work, please refer to Appendix@
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these methods struggle to balance sampling quality and efficiency due to insufficient guidance during
each transition from the noise prior to the data distribution. This issue is particularly pronounced
for crystals, where thermodynamically stable materials constitute only a small fraction of the search
space (Miller et al} [2024). For instance, early generation states x; 1 with low confidence should be
retained less than later states to achieve the next state x;.

In this work, we propose to use BEN (Graves et al., 2023) to model crystals in a principally dif-
ferent way. BFN provides a framework to accurately update each generation state according to its
entropy/confidence, the effectiveness of which has been proved in (2023). However, there
are no established explorations on the challenging topic of non-Euclidean BFN which is essential to
many real-world applications Jing et al.| (2022)); Jumper et al.| (202T)). To address the above issues,
in this paper, we build a non-Euclidean Bayesian flow from scratch, identifying and tackling the
non-additive accuracy via introducing a novel entropy conditioning mechanism.

3 PRELIMINARIES

Crystal Representation and Related Manifold Crystals can be represented as a structure composed
of infinite, periodic and repeating unit cells defined by a triplet M = (A, F', L). Denote the number
of atoms in the unit cell as N, A = (a1, as,...,ay) € SEXN is the representation of atom types
with the length of vocabulary K, and every such one-hot discrete variable locates in the simplex S
represented by:

K

SKdéf{seRK\Zsi:Lsi20,2’:17...,K} 1)

i=1
which requires the designed generative path for A should be well defined on the simplex. Following
Jiao et al.[(2023), F = [f1, fo, - - -, fn] € [0,1)3* is the fractional coordinates of atoms located in
quotient space R3* ¥ /Z3*N equivalent to the hypertorus T>*~ (Jing et al., . The hypertorus
T3> can be represented as the Cartesian product of 3 x N toruses T*:

T & (2 e R?: ||z|| =1} @)

And L = [l1,15,13] € R3*3 denotes the lattice matrix, every column vector of which is the periodic
basic vector of the crystal. We can get the Cartesian coordinates representation of unit cell’s atom
coordinates X by X = LF € R3>*¥_ The ideal infinite periodic crystal structure of M can be
represented by {(a}, z})|a} = a;, &, = x; + Lk,Vk € Z*>*!'}. Based on the above notations, the

symmetry of crystal geometry is defined as periodic E(3) invarianceﬂ (Jiao et al.,[2023), including
periodic translational invariance of F' and rotational invariance of L (details in Appendix B .

Bayesian Flow Networks Different from the well-established SDE-based approaches, e.g. Diffusion
Models (Ho et al., 20204} [Song et al., 2020bfa) and ODE-based approaches e.g. Flow Match-
ing (Lipman et al., 2022)), Bayesian Flow Networks define a generative process driven by consecutive
Bayesian updates on noised samples from the uninformative prior distribution 6 to posteriors 6;
with higher confidence and more information.

To define the consecutive Bayesian update process, Bayesian Flow Networks contain a process
to add noise to the clean data samples which is an analogy to the forward process in Diffusion
Models. In BEN, such a process is explicitly defined by the so-called sender distribution ps(y|x; c)
where « is the parameter of sender distribution which corresponds to noise level, e.g. variance for
Gaussian-formed pg.

BFN aims to establish a procedure that gradually acquires information from the ground truth data
x to provide a training signal. To this end, the framework will sample a series of noisy sam-
ples y1,¥o,...,y¥, independently from the sender distribution ps with various accuracy levels
a1, g, ..., . Based on samples, the framework would simulate an auto-regressive update of 6
based on the Bayesian update function to reflect an information gathering process from prior to data

2 Actually some crystal structures are chiral and their structures are SE(3) invariant. In this
paper, we follow Jiao et al | to build an E(3) invariant framework for fair comparison, while the SE(3)
equivariance can be simply achieved by transforming an E(3) invariant network into an SE(3) equivariant network
by excluding invariance to reflections in the Markov chain.
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Figure 2: Visualization of the proposed periodic Bayesian flow with mean parameter .
and accumulated accuracy parameter ¢ which corresponds to the entropy/uncertainty. For
z = 0.3,3(1) = 1000 and «; defined in Appendix @ this figure plots three colored stochastic
parameter trajectories for receiver mean parameter m and accumulated accuracy parameter ¢, su-
perimposed on a log-scale heatmap of the Bayesian flow distribution pr(m|x, oy, as, ..., @;) and
pr(clz, a1, as, ..., a;). Note the non-monotonicity and non-additive property of ¢ which could
inform the network the entropy of the mean parameter m as a condition and the periodicity of m.

as:

0; =h(0;—1,yi, ) 3
The neural network U is trained in a teacher-forcing fashion: approximate the sender distribution
ps(-|x; ;) generating y; according to 0,1, which has integrated the information of (y1,--- ,yi-1)

through Eq. (3). The network ¥ hence takes 6 obtained by Bayesian update as input, and the distribu-
tion implied by p;(-|0) is termed input distribution. The network output ¥(6) is interpreted as the
parameter of an updated distribution po (+|¥(0)) over sample space, referred to as output distribution.
Combining the network output ¥ (6) and the sender distribution, we obtain the approximation to

ps (Vi | x;04) as:

Pr(Yi | 0i-1, Y, i) = By (xrjw(o,1))Ps (Vi | X5 04) 4)
Such distribution is named as receiver distribution pr. Note that @;_; can be seen as a deterministic
function mapping, given (y1,---,y:—1) as 6;—1 = f(y1, - ,¥i—1) based on the deterministic

update function in Eq. (3). By combining the objectives of different timesteps and taking expectation
over trajectories, we obtain the training objective of BFN as:

L(Y) = Expau Enr_ ps(vix.00) P L (Ps (yil X, i) ||pr(yi | €i-1, ¥, ) (5)
Here pyaia is the empirical distribution. Detailed derivation and discussion are provided in Appendix [A]
Additionally, we provide two toy examples with minimal components illustrating how Gaussian-based
BFN and hyper-torus BFN work in our code link https://anonymous.4open.science/xr/

CrystalBFN-BC42.

4 METHOD

In this section, we explain the detailed design of CrysBFN tackling theoretical and practical challenges.
First, we describe how to derive our new formulation of Bayesian Flow Networks over hyper-torus
TP from scratch. Next, we illustrate the two key differences between CrysBFN and the original
form of BFN: 1) a meticulously designed novel base distribution with different Bayesian update
rules; and 2) different properties over the accuracy scheduling resulted from the periodicity and
the new Bayesian update rules. Then, we present in detail the overall framework of CrysBFN over
each manifold of the crystal space (i.e. fractional coordinates, lattice vectors, atom types) respecting
periodic E(3) invariance.

4.1 PERIODIC BAYESIAN FLOW ON HYPER-TORUS TP

For generative modeling of fractional coordinates in crystal, we first construct a periodic Bayesian
flow on TP by designing every component of the totally new Bayesian update process which we
demonstrate to be distinct from the original Bayesian flow (please see Fig.[3).


https://anonymous.4open.science/r/CrystalBFN-BC42
https://anonymous.4open.science/r/CrystalBFN-BC42
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Figure 3: An intuitive illustration of non-additive accuracy Bayesian update on the torus. The lengths
of arrows represent the uncertainty/entropy of the belief (e.g. 1/02 for Gaussian and c for von Mises).
The directions of the arrows represent the believed location (e.g. u for Gaussian and m for von
Mises).

The fractional atom coordinate system (Jiao et al.,[2023)) inherently distributes over a hyper-torus
support T3> Hence, the normal distribution support on R used in the original (Graves et al., 2023)
is not suitable for this scenario.

To tackle this problem, the circular distribution (Mardia & Juppl [2009) over the finite interval
[—7,7) is a natural choice as the base distribution for deriving the BFN on T?. Specifically, circular
distributions enjoy desirable periodic properties: 1) the integration over any interval length of 27
equals 1; 2) the probability distribution function is periodic with period 27. Sharing the same intrinsic
with fractional coordinates, such periodic property of circular distribution makes it suitable for the
instantiation of BFN’s input distribution, in parameterizing the belief towards ground truth x on TP,

von Mises Distribution and its Bayesian Update We choose von Mises distribution (Mardia & Jupp,
2009) from various circular distributions as the form of input distribution, based on the appealing
conjugacy property required in the derivation of the BFN framework. That is, the posterior of a
von Mises distribution parameterized likelihood is still in the family of von Mises distributions.
The probability density function of von Mises distribution with mean direction parameter m and
concentration parameter c (describing the entropy/uncertainty of m) is defined as:

exp(ccos(z —m))
271’]0 (C)

where Iy(c) is zeroth order modified Bessel function of the first kind as the normalizing constant.
Given the last univariate belief parameterized by von Mises distribution with parameter 6;_; =
{mi_1, ¢;—1} and the sample y from sender distribution with unknown data sample = and known
accuracy « describing the entropy/uncertainty of y, Bayesian update for the receiver is deducted as:

flxlm,c) =vM(x|m,c) = 6)

h({mi-1,ci-1},y, ) = {m;, c;}, where @)
m; = atan2(asiny + ¢;_1 sinm;_1, acosy + ¢;_1 cosm;_1) ®)
¢ = \/oﬂ + 2 |+ 2aci—1 cos(y — mi—1) 9)

The proof of the above equations can be found in Appendix The atan2 function refers to
2-argument arctangent. Independently conducting Bayesian update for each dimension, we can obtain
the Bayesian update distribution by marginalizing y:

pU(a/‘ea X a) = Eps(ylx;a)6(0, - h(ea Yy, O‘)) = E’U]M(y\x,oz)(s(el - h(0, Yy, a)) (10)

Non-additive Accuracy The additive accuracy is a nice property held with the Gaussian-formed
sender distribution of the original BFN expressed as:

Py (0" 10,x00 + ) =Ep_(6/10,x:0,)P0 (0" | 0',%;5 ) (1D)

Such property is mainly derived based on the standard identity of Gaussian variable:
X ~ N (ux,0%),Y ~N (uy,03) = X +Y ~ N (ux + py, 0% + 0v) (12)
The additive accuracy property makes it feasible to derive the Bayesian flow distribution pz (6 |
x;1) = pu (0 | 6o, %, ZZ=1 ai) for the simulation-free training of Eq. . It should be noted that
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the standard identity in Eq. (TIT)) does not hold in the von Mises distribution. Hence there exists an
important difference between the original Bayesian flow defined on Euclidean space and the Bayesian
flow of circular data on T based on von Mises distribution. With prior § = {0,0}, we could
formally represent the non-additive accuracy issue as:

Py (CH ‘ 0,x; a4 + ab) = 5(0 — Qa — ab) # Epu(e’\e,x;oza)pu (C// | 0/3 X3 ab)
= EuM(ysx,00) EoM (yo|x,a5)0 (€ — ||[0tq COS Y, +ap cOS Yy, g SiN Y, +a1p 5i0 yb]T| l2)  (13)

A more intuitive visualization could be found in Fig.[3] This fundamental difference between periodic
Bayesian flow and that of |Graves et al.| (2023)) presents both theoretical and practical challenges,
which we will explain and address in the following contents.

Entropy Conditioning As a common practice in generative models (Ho et al., [2020aj |Lipman et al.,
2022} |Graves et al., [2023)), timestep ¢ is widely used to distinguish among generation states by feeding
the timestep information into the networks. However, this paper shows that for periodic Bayesian flow,
the accumulated accuracy ¢; is more effective than time-based conditioning by informing the network
about the entropy and certainty of the states ;. This stems from the intrinsic non-additive accuracy
which makes the receiver’s accumulated accuracy c not bijective function of ¢, but a distribution
conditioned on accumulated accuracies ¢; instead. Therefore, the entropy parameter c is taken
logarithm and fed into the network to describe the entropy of the input corrupted structure. We verify
this consideration in Sec.

Reformulations of BFN. Recall the original update function with Gaussian sender distribution, after
receiving noisy samples y;,ys, . . ., y¥; With accuracies ay, a, . . . , ;, the accumulated accuracies
of the receiver side could be analytically obtained by the additive property and it is consistent with
the sender side. However, as previously mentioned, this does not apply to periodic Bayesian flow,
and some of the notations in original BFN (Graves et al.| [2023) need to be adjusted accordingly.
We maintain the notations of sender side’s one-step accuracy « and added accuracy /3, and alter
the notation of receiver’s accuracy parameter as ¢, which is needed to be simulated by cascade of
Bayesian updates. We emphasize that the receiver’s accumulated accuracy c is no longer a function
of t (differently from the Gaussian case), and it becomes a distribution conditioned on received
accuracies o, o, . . . , ; from the sender. Therefore, we represent the Bayesian flow distribution of
von Mises distribution as pr (0| x; a1, g, . . ., ;). And the original simulation-free training with
Bayesian flow distribution is no longer applicable in this scenario.

Fast Sampling from Equivalent Bayesian Flow Distribution Based on the above reformulations,
the Bayesian flow distribution of von Mises distribution is reframed as:

pF(9i| X;Qq,Q2,..., ai) = ]EpU (6011600,x;001) * + + EpU (Bi,l\ei,g,x;ai,l)pu (9i|0i—17 X3 (17) (14)

Naively sampling from Eq. (I4) requires slow auto-regressive iterated simulation, making training
unaffordable. Noticing the mathematical properties of Eqs. (8) and (9), we transform Eq. (14) to the
equivalent form:

i %
pF(mz| X 01, Q2 ..., O‘?ﬂ) = ]E'UM(yl | x,01)..oM(y; \x,ai)é(mifatanz(z Qj COSY j, Z a sin y]))

j=1 j=1

_ _ (15)

pr(ci|x;on, a0, ..., 04) = IEqu(yl | x,a1)..vM (y, |x,ai)5(ci — ||[Z aj COSYpZ%’ SiHYﬂTHz)
j=1 j=1

(16)

which bypasses the computation of intermediate variables and allows pure tensor operations, with
negligible computational overhead.

Proposition 4.1. The probability density function of Bayesian flow distribution defined by Egs.
and (106) is equivalent to the original definition in Eq. (14).

Numerical Determination of Linear Entropy Sender Accuracy Schedule Original BFN designs
the accuracy schedule () to make the entropy of input distribution linearly decrease. As for crystal
generation task, to ensure information coherence between modalities, we choose a sender accuracy
schedule a1, g, . . ., v; that makes the receiver’s belief entropy H (t;) = H(p;(+|6;)) = H(ps(-|c;))
linearly decrease w.r.f. time ¢;, given the initial and final accuracy parameter ¢(0) and ¢(1). Due
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to the intractability of Eq. (30 , we first use numerical binary search in [0, ¢(1)] to determine the
receiver’s c(t;) for i = 1,...,n by solving the equation H(c(t;)) = (1 — ¢;)H(c(0)) + tH(c(1)).
Next, with ¢(¢;), we conduct numerical binary search for each «; in [0, ¢(1)] by solving the equations

IEyNDM(I’OH)[\/ozZ2 + 2 | +2a,c¢i—1 cos(y —mi—1)] = c(t;) from i = 1 to i = n for arbitrarily
selected = € [—m, ).

After tackling all those issues, we have now arrived at a new BFN architecture for effectively modeling
crystals. Such BEN can also be adapted to other type of data located in hyper-torus T2 .

4.2 EQUIVARIANT BAYESIAN FLOW FOR CRYSTAL

With the above Bayesian flow designed for generative modeling of fractional coordinate F', we are
able to build equivariant Bayesian flow for each modality of crystal. In this section, we first give an
overview of the general training and sampling algorithm of CrysBFN (visualized in Fig.[T). Then, we
describe the details of the Bayesian flow of every modality. The training and sampling algorithm can
be found in Algorithm[I]and Algorithm

Overview Operating in the parameter space 0™ = {84 0% 67}, CrysBFN generates high-fidelity
crystals through a joint BEN sampling process on the parameter of atom type 8, lattice parameter
0L = {u*, p"}, and the parameter of fractional coordinate matrix 0F = {m” c"}. We index the
n-steps of the generation process in a discrete manner ¢, and denote the corresponding continuous
notatlon t; = i/n from prlor parameter 3" to a considerably low variance parameter 8! (i.e. large
p”, m* and centered 84).

At training time, CrysBFN samples time ¢ ~ U{1,n} and 8;*; from the Bayesian flow distribution
of each modality, serving as the input to the network. The network U outputs \IJ(OZ 1 tic1) =
U094 ,,0F | 0F | t,_1)and conducts gradient descents on loss function Eq. Ii for each modality.
After proper training, the sender distribution pg can be approximated by the receiver distribution pg.
At inference time, from predefined 63", we conduct transitions from 8!, to 8! by: (1) sampling
y: ~ pr(y|OM;t:, ;) according to network prediction W, (@M, #;_1); and (2) performing
Bayesian update h(6,,yM,, a;) for each dimension.

Bayesian Flow of Fractional Coordinate F' The distribution of the prior parameter ¢ is defined as:

def
p(65) = {vM(mg |05, 03xn), 5(cy — O3xn)} = {U(0,1),6(c5 — 0s5n)} (17
Note that this prior distribution of m{" is uniform over [0, 1), ensuring the periodic translation
invariance property in Definition [I] The training objective is minimizing the KL divergence between
sender and receiver distribution (deduction can be found in Appendix [A.7):

I
Lp= n]EzNU{l n},pp(0F|Fiai, ag,...0;) Vg I:]EOZ ; (1 - COb(F \IIF(gz 17t7—1))) (18)

where Io(z) and I (x) are the zeroth and the first order of modified Bessel functions. The transition
from 67" | to OF is the Bayesian update distribution based on network prediction:

p(6]16:) = B p im0, 41,0 )5(0F h(O 1.y, ) (19)

Proposition 4.2. With U as a periodic translation equivariant function namely U (04, w(0F +
t),0L.t) = w(\Ilp(HA 0F, 0% t) + t),Vt € R3, the marginal distribution of p(F,) defined by
Egs. @ and (19) is perzodlc translation invariant.

Bayesian Flow of Lattice Parameter L Noting the lattice parameter L located in Euclidean space,

we set prior as the parameter of a isotropic multivariate normal dlStI'lbuthIl 0L = {Ho Py =
{05x3, 13x3} such that the prior distribution of the Markov process on u is the Dirac distribution
d(po — 0) and §(po — 1), which ensures O(3)-invariance of prior distribution of L. By Eq. 77 from
Graves et al.|(2023), the Bayesian flow distribution of the lattice parameter L is:

P |Lst) = N(p" |y (t) L, v (t)(1 = y(t)I) (20)
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where (t) = 1 — 02! and o is the predefined hyper-parameter controlling the variance of input
distribution at ¢ = 1 under linear entropy accuracy schedule. The variance parameter p does not need
to be modeled and fed to the network, since it is deterministic given the accuracy schedule. After
sampling p” from pk, the training objective is defined as minimizing KL divergence between sender
and receiver distribution (based on Eq. 96 in|Graves et al.| (2023)):

N 2
HL _ \I/L(Q{‘fl,ti_l)H

2i/n
01

n

— 2/n
£r=5 (10" ) BBy, Gt i

; 21

where the prediction term Uy, (OM,, ;1) is the lattice parameter part of network output. After train-
ing, the generation process is defined as the Bayesian update distribution given network prediction:

p(uF10M) = pL(nE UL (O ti1), wl y5tioa) (22)

Proposition 4.3. With Uy as O(3)-equivariant function namely V(64,07 Q0" t) =
QU (04,07 6% 1),YQT Q = I, the marginal distribution of p(uL) defined by Eq. (22)) is O(3)-

invariant.

Bayesian Flow of Atom Types A Given that atom types are discrete random variables located in
a simplex 8%, the prior parameter of A is the discrete uniform distribution over the vocabulary

064 o % 1, « n. With the notation of the projection from the class index j to the length K one-hot

def def . o
vector (e;)r = ;x, where e; € RE eq = (e,,,...,eq4y) € REXN the Bayesian flow distribution

of atom types A is derived in|Graves et al.| (2023):

ArgA A cv 0y
04 | A;t) =E . 5|64 - . (@23
Py (07 | Ast) = Enr(y|54(6)(Kea—Lixn) 54 () K i) ( SK e (80) )

where 34 (t) is the predefined accuracy schedule for atom types. Sampling 8! from pf} as the training
signal, the training objective is the n-step discrete-time loss for discrete variable (Graves et al.| [2023)):

Lo =nEiv(1,n),p4 (04| Asts 1) N(yloi(Kea—1),0:KI) InN(y | a; (Kea —1),0;K1)

N K
~> In (Z PO (k| 045t )N (y(d) | o (Kep, — 1) ,aiKI)> (24)
k=1

d=1

where I € REXN>XN and 1 € REXD. When sampling, the transition from 821 ; to 6! is derived as:

p(010)) = p (010,11, WA (O, ti1);ti1) (25)

The detailed training and sampling algorithm could be found in Algorithm I]and Algorithm 2]

5 EXPERIMENTS

We evaluate on two crystal generation tasks: ab initio generation in Sec. [5.1] and stable structure
prediction task in Sec.[5.2] Ablation studies are detailed in Sec.[5.3]to validate design choices. We
provide the implementation details in Appendix [C|

Following Xie et al.|(2021)); [Jiao et al.| (2023)), we choose the following datasets for evaluation: 1)
Perov-5 (Castelli et al., 2012ab) is composed of 18,928 perovskite crystals of similar structures, with
5 atoms in a unit cell sharing the chemical formula ABXj5. 2) Carbon-24 (Pickard, 2020) contains
10,153 crystals with 6~24 atoms in a cell, and all atom types are carbon. 3) MP-20 (Jain et al.,[2013)
selects 45,231 stable inorganic materials from Material Projects (Jain et al.| [2013), including the
majority of experimentally-verified materials with at most 20 atoms in a unit cell. 4) MPTS-52 (Jiao
et al., [2023) consists of 40,476 crystals up to 52 atoms per cell, which is a more challenging extension
of MP-20. All crystals are reduced as Niggli cells (Niggli, [1928). The procedure to split the datasets
into training, validation, and testing subsets adheres to prior practices (Xie et al.,|2021} Jiao et al.|
2023).
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Table 1: Results on ab initio generation task. Baseline results are from Xie et al.|(2021); Jiao et al.
(2023); Miller et al.|(2024).

Validity (%) T  Coverage (%) 1 Property |
Struc. Comp. COV-R COV-P d, dg detem

Perov-5 Cond-DFC-VAE (Court et al.|[2020) 73.60  82.95 73.92 10.13 2268  4.111 0.8373
G-SchNet (Gebauer et al.{[2019) 99.92  98.79 0.18 0.23 1.625 4746 0.0368
P-G-SchNet (Gebauer et al.[|2019)  79.63  99.13 0.37 0.25 0.2755 1.388  0.4552

Data Method

CDVAE (Xie et al.|[2021) 100.0 98.59 99.45 98.46 0.1258 0.0264 0.0628
DiffCSP(Jiao et al.|[2023) 100.0 98.85 99.74 98.27 0.1110 0.0263 0.0128
CrysBEN 100.0 98.86 99.52 98.63  0.0728 0.0198 0.0098
Carbon-24 G-SchNet (Gebauer et al.|[2019) 99.94 - 0.00 0.00 0.9427  1.320 -
P-G-SchNet (Gebauer et al.|[2019)  48.39 - 0.00 0.00 1.533 134.7 -
CDVAE (Xie et al.|[2021) 100.0 - 99.80 83.08 0.1407 0.2850 -
DiffCSP (Jiao et al.||2023) 100.0 - 99.90 97.27  0.0805 0.0820 -
CrysBEN 100.0 - 99.90 99.12  0.0612 0.0503 -

MP-20 G-SchNet (Gebauer et al.|[2019) 99.65 7596  38.33 99.57  3.034 42.09 0.6411
P-G-SchNet (Gebauer et al.[|2019)  77.51  76.40  41.93 99.74 4.04 2.448 0.6234

CDVAE (Xie et al.[[2021) 100.0 86.70  99.15 99.49  0.6875 0.2778 1.432
DiffCSP(Jiao et al.|[2023) 100.0 8325 99.71 99.76  0.3502 0.1247 0.3398
FlowMM (Miller et al.|[2024) 96.85 83.19  99.49 99.58  0.239 - 0.083
CrysBFN 100.0 87.51  99.09 99.79  0.2067 0.0632 0.1628

Table 2: Results on stable structure prediction task. Baseline results are from |Jiao et al.| (2023)); Miller
et al.| (2024).

Perov-5 MP-20 MPTS-52
Match ratet RMSE] Match ratef RMSE] Match ratef RMSE]
CDVAE (Xie et al.|[2021) 45.31 0.1138 33.90 0.1045 5.34 0.2106
DiffCSP (Jiao et al.|[2023) 52.02 0.0760 51.49 0.0631 12.19 0.1786
FlowMM (Miller et al.|2024)  53.15 0.0992 61.39 0.0566 17.54 0.1726
CrysBEN 54.69 0.0636 64.35 0.0433 20.52 0.1038

5.1 AB INITIO GENERATION

Baselines For this task, the compared baselines include: 2) two-stage VAE-based methods Cond-
DFC-VAE (Court et al., [2020) and CD-VAE (Xie et al., 2021); 2) auto-regressive method G-
SchNet (Gebauer et al., 2019), and its periodic adaptation P-G-SchNet (Xie et al., [2021); 3)
diffusion-based joint generation approach DiffCSP (Jiao et al., 2023). 4) flow-matching-based
approach FlowMM (Note that FlowMM only reports results on MP-20 and excludes d ). We follow
(Hoogeboom et al.| 2022; Jiao et al., [2023) to sample atom numbers from a distribution that is
pre-computed based on atom numbers in the training dataset. Performance Indicators Following
previous work (Xie et al., 2021), we evaluate the efficacy of our model from three aspects: 1) Validity:
Structure and compositional validity of randomly generated 10000 materials. 2) Coverage: Cover-
age score between generated 10000 materials and test set, defined by average minimum structure
distance and average minimum compositional distance. 3) Property Statistics: the earth mover’s
distance (EMD) between the property distribution of generated crystals and test dataset crystals.
Monitored properties include density (p, unit g/cm?), energy predicted by an independent GNN (F,
unit eV/atom), and the number of unique elements (# elem.).

Results The evaluation metrics for ab initio generation tasks are listed in Tab. |1} Our method consis-
tently achieves better or competitive property statistics and generation precision on three datasets
compared to baseline generative models. For compositional metrics including d;.,, and composi-
tional validity, our method demonstrates bigger performance improvement for the more challenging
dataset MP-20 (44.34% compared to DiffCSP with the same level of d¢j.,), underscoring the
importance of modeling atom types in the simplex space.

5.2 STABLE STRUCTURE PREDICTION

In this section, we extend our method to stable structure prediction task, where the modeling target is
p(L, F|A). The condition of atom types A is incorporated into the network by concatenating node
feature and atom type embedding, following Jiao et al.|(2023)). Baselines Following the practices in
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Jiao et al.| (2023)), we select baselines generative approaches including Diffusion-based approaches
CD-VAE and DiffCSP and the recent flow-matching-based method, FlowMM, which only reports
results on the MP-20 dataset for this task. Performance Indicators The measured performance
indicators for this task are Match Rate and RMSD computed by St ructureMatcher class with
thresholds stol1=0.5, angle_tol=10, 1ltol=0.3 inpymatgen (Ong et al.|[2013)), between
the predicted structure candidates and the groundtruth structure given the composition. Results
As summarized in Tab. 2] CrysBFN achieves consistent performance improvement over baseline
methods, especially for more challenging datasets (~ 13% higher match rate than DiffCSP for MP-20
and ~ 40% lower RMSE compared to FlowMM for MPTS-52).

5.3 ABLATION STUDY

) . Table 3: Ablation studies on MP-20.
Using MP-20 dataset and stable structure predic-

tion task, we validate the necessity of proposed
components of CrysBFN with results summa-

Match rate (%) T RMSE |

rized in Tab. 3} 1) By removing the entropy =~ CrysBFN 64.35 0.0433
parameter condition ¢’ and using time as condi- /o entropy cond. 5216 0.0631
tion, match rate drops to 52.16%, proving that, /o approx. sch. 49.76 0.0643
different from original BFN, the non-additive ac-  w/o torus BEN 6.17 0.3822

curacy dynamics requires the network to model
both mean parameter m and entropy parameter
condition c. 2) By altering the approximated ~ Iterated Sim. 356.1
linear-entropy sender accuracy schedule to the ~_Fast Sim. 92.6
hand-designed roughly linear-entropy schedule

c(t) = tc*(1), we validate the effect of exact searched linear entropy schedule. 3) By replacing the
proposed hyper-torus BEN with the original continuous BEN, we observe poor match rate at 6.17%,
indicating the importance of redesigning BFN for crystal data. Calculating the computational time
for simulating 1000 batches, we observe ~ 4 x efficiency, verifying fast sampling rate considering
the full training procedure of MP-20 requires ~ 150k steps.

1k Batches Sim. Time (s)

5.4 SAMPLING EFFICIENCY EXPERIMENT

o
o
!

We compare the sampling efficiency of Crys-
BEN and DiffCSPFF] over the CSP task on the
MP-20 dataset, based on the Number of Func-
tion Evaluations (NFE), i.e., the number of net-
work forward passes. The experimental results

o
n

Match Rate (%)
o
N

is plotted in Fig.{4| Notably, CrysBFN achieves 03

a remarkable match rate of 60.02% with only 0.2 —— DiffCSP(12.3M)

10 step network forwards, surpassing DiffCSP’s CrysBFN(12.3M)
performance of 51.49% at 2000 step network 0 500 1000 1500 2000
forwards. This illustrates the exceptional sam- Number of Network Forwards

pling efficiency of CrysBFN.
Figure 4: Experimental results on MP-20 with
different Number of Function Evaluations (NFE)

6 CONCLUSION i.e. number of network forward passes.

In this paper, we present the first periodic Bayesian flow modeling on the hyper-torus, addressing an
unprecedented theoretical issue related to non-additive accuracy. Specifically, we introduce a novel
entropy conditioning mechanism, theoretical reformulations of BFN, a fast sampling algorithm, and a
numerical method for determining the accuracy schedule. Leveraging the proposed periodic Bayesian
flow, we implement the first periodic E(3) equivariant Bayesian flow networks for crystal generation.
Our approach achieves state-of-the-art performance in crystal generation, with efficiency improved
by two orders of magnitude. Additionally, our methodology can be adapted to a wide range of data
types and tasks involving hyper-torus data.

3We exclude FlowMM from this comparison because its larger parameter size (28.3M) makes the comparison
based on NFE unfair. However, readers can find the figure that includes FlowMM in Fig.

10
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ETHICS STATEMENT

We confirm that our work complies with the ICLR Code of Ethics, and we have carefully considered
potential ethical concerns related to the development and use of our proposed method, CrysBFN,
for crystal generation. Our method is designed for general crystal generative modeling tasks and
does not involve sensitive data or tasks. We strongly encourage users to ensure compliance with
relevant privacy regulations and critically assess the model’s outputs. We are confirmed that there
is no conflict of interest, financial sources or other factors, that could influence the development or
presentation of this work.

With these considerations, we do not anticipate any violations of the ICLR Code of Ethics in the
development or use of this model. And we stress once again that CrysBFN should not be used for
malicious purposes, such as creating harmful structures.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we give a detailed derivation of the periodic Bayesian flow in Appendix [A]
and the proof of the propositions in Appendix [B] All datasets and performance evaluation method
used in our experiments are publicly available and clearly specified or cited in Sec.[5] We provide
our implementation details including training and sampling procedure, hyper-parameters, used
computational resources and anonymous code repository link in Appendix [C]
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m= 2,c-

Figure 5: Depiction of von Mises distributions with different directions parameters m and concen-
tration parameters c. The parameter m denotes the central location about which the distribution
is centered, while ¢ functions as a measure of the distribution’s concentration. When ¢ = 0, the
distribution is uniform on the circle. As c increases, the distribution becomes more concentrated
around the value m, with ¢ serving as a measure of this concentration. In the limit as ¢ — +o0, the
distribution converges to §(m), a Dirac delta distribution centered at m.

A BAYESIAN FLOW NETWORKS FOR CIRCULAR DATA
In this section, we provide a detailed derivation of Bayesian flow networks considering periodicity.

A.1 CIRCULAR DATA AND VON MISES DISTRIBUTION

One-dimensional circular data x refers to observations of random variables supporting on the circum-
ference of the unit circle defined in directional statistics (Mardia & Juppl 2009; [Ley & Verdebout,
2017). This space can be represented by the torus:

T & {2 e R?: ||z|| = 1} (26)

For n-dimensional data = € R™, the set of = with every dimension located in T' form a compact
Riemannian manifold named hyper-torus T formally.

Wrapped normal distribution used inJiao et al.|(2023) and von Mises distribution used in this paper
are both circular distributions defined in this space, the probability density function of von Mises
distribution with mean direction parameter m and concentration parameter c is

exp(ccos(z —m))
271‘[0 (C)

where Ij(c) is the modified Bessel function of the first kind of order 0 as the normalizing constant.
The parameters m and 1/c are analogous to mean y and variance o in the normal distribution:
1) m represents the central location around which the distribution is clustered, while c serves as a
measure of concentration. 2) We give a depiction of von Mises distributions with different directions
parameters in Fig. 5] When ¢ equals zero, the distribution is uniform. As ¢ becomes large, the
distribution becomes tightly concentrated around the value m, with ¢ quantifying this concentration.
In the limit as ¢ — o0, the distribution becomes a Dirac delta distribution centered at m. Its
support can be chosen as any interval of length 27 and we in this paper choose [—m, 7). Note
that the fractional coordinate can be transformed to this interval easily by a linear transformation
g(x) = 2mx — . For this modeled interval, the map function from R to [—, ) is

Wi—r,m)(T) = (x —m)%2m — 7 =2+ 21k, Ik € Z (28)

f(:c\m, C) = vM(:c\m, C) = 27
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Such map function is equivalent to the map function w(x) =  — || = « + k, 3k € Z used in Jiao
et al.| (2023)) if we choose the modelled interval as [0, 1). Then, we can prove that the probability
density distribution of von Mises distribution is equivariant to the periodic translation transformation:
VteR, [f(wi—rm(@+t)|w_rmn(m+1t),c)= f(x+2nk'|m+2nk +t,c)
_exp(ccos(z + 27k’ — (m + 27k + 1))

27 ly(c)
_ exp(ccos((x — m))
2r1y(c)
= f(x|m,c) (29)

The differential entropy of von Mises distribution with mean direction parameter m and concentration
parameter c is

I(c)

H(vM(zlm,c)) = _CIO(C)

+ In[27ly(c)] (Mardia & Juppl[2009) (30)

We opt for von Mises distribution rather than the wrapped normal distribution used in Jiao et al.
(2023); Jing et al.| (2022)) mainly because of the Bayesian conjugacy of von Mises distribution the
posterior of which is conjugate to the prior distribution if the likelihood is parameterized as von Mises
distribution which is the fundamental basis of constructing a Bayesian flow. Interestingly, there is
an intriguing connection between von Mises distribution and crystal force field that the von Mises
distribution is the stationary distribution of a drift and diffusion process on the circle in a harmonic
potential corresponding to the harmonic force field of crystals (Risken & Risken,|1996).

A.2 INPUT DISTRIBUTION p;( - |@) AND SENDER DISTRIBUTION pg(y|x; @)

For circular data x which locates in a quotient space T" = R3*¥ /[—m 7)3*¥ we define the input
distribution of the Bayesian Flow Networks as independently factorized von Mises distribution over
the interval [—, 7).

def

0% (m, c} (31)

pr(x[6) € T wM (2 Dm®, D) (32)
where m(4) € [—7,7) and ¢(? € [0, 00).

In this paper, to ensuring the periodic translational invariance, the prior parameter of CrysBFN’s
Bayesian flow is chosed as
def

p(0§) = {vM(m|03x n, 03x ), 6(co — O35 n)} = {U(0,1),5(co — O35 n)} (33)

where O is the length of D vector whose entries are all 0. Note that this input prior 8, defines a
multivariate uniform distribution

pr(x|60) = IIP_ wM (zD]0,0) = T2, U(—=, ) (34)

which ensures periodic E(3) invariance of the prior distribution.

The sender space Y is identical to the data space & for circular data. And the sender distribution is
von Mises distribution centered on & with concentration parameter « represented by

ps(ylx;a) = Ht?:lvM(y(d)\x(d),a) =M (y|x, ) (35)
A.3 BAYESIAN UPDATE FUNCTION h(@ifl, y, a) AND BAYESIAN UPDATE DISTRIBUTION
py (-1 60,x;0a)

For the receiver, given his last univariate belief parameterized by von Mises distribution with
parameter 6; 1 = {m;_1, ¢;—1}, he now observes a sample y from sender distribution with unknown
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x and known «.. Now, by Bayesian theorem,

(ylz; a)p(a;mi—1,¢i-1)

p
p(zly;a,mi—1,cim1) = (36)
p(y)

o p(ylz; a)p(asmi—1,¢i-1) 37
= oM (y|z, a)oM (z|mi—1,ci—1) (38)
ox exp{acos(z —y) + ¢;—1 cos(x — m;_1)} 39)

The last expression has the form of a von Mises distribution in « and hence:
p(@ly; o, mi—1,ci1) = vM(z3my, ¢;) (40)

where

m; = atan2(asiny + ¢;—1 sinm;_1, € cosy + ¢;—1 cosm;_1) 41)
¢ = \/a2 + 2 |+ 2aci—1 cos(y — mi—1) (42)

We refer readers interested in more detailed deduction to Mardia & El-Atoum| (1976)); |Guttorp &

. . L . def .
Lockhart (1988). Defining the notation for scaler x in circular space as & = [cos z, sin z]7, these
two expressions will be much simpler, intuitive and more similar to the Gaussian form:

h({m;_1,c},9, ) = {my,c;} (43)
where . .
- oy +ci—1mMm;— (44)
¢
¢i = ||lag + ci—1mi—1||2 (45)

The Bayesian update distribution p,, (- | 8,x; «) could be obtained by marginalizing y:

pU(9/|9, X a) = Eps(y|x;a)5(9/ - h(ea Y, Ol)) = Evl\/](y\x,a)(s(el - h(ea Yy, a)) (46)

A.4  Non-Additive ACCURACY ISSUE

Although all cases including continuous and discrete data are proven to enjoy the so-called additive
accuracy property considered in (Graves et al.|(2023) defined as:

Py (0" 10,x00 + ) =Ep_(0/10.x:0,)Pu (07 | 0", %5 05). (47)

this property does not hold for von Mises distribution. The untenability of this property for von Mises
distribution can be checked out by considering two steps Bayesian updates with prior 8 = {0, 0},

Qg Ohy Yo' Yoo
P, (" 0,x;00 + ap) = 0(c — g — ap) (48)
#EPU(G’W,X;aa)pU (CH | 0/7 X5 ab) = EUM(Y\X,OLa)EUM(Y\xvab)6(0 - Haa Yo TWYy ||) (49)

Consequently, the Bayesian flow distribution does not equal to one-step Bayesian update distribution
with 3(t):

pe(8]x:t) # p, (0| 60,%: (). (50)
With an accuracy schedule oy, as, ..., a, and 5(t) = Z?:l «a;, this untenability will cause the
incongruity between sender’s accumulated accuracy (3(t) and the confidence of receiver’s belief ¢;
over his location parameter m;. Hence we should differentiate the sender’s accuracy schedule «;
and the receiver’s belief confidencec;. And ¢; is no longer a function but a distribution over t;. In
consequence, we should define the Bayesian flow distribution parameterized by received sender’s
accuracies o, o, . . . , ; rather than t. Furthermore, the information of receiver confidence ¢; should
be part of the network input as well.
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A.5 BAYESIAN FLOW DISTRIBUTION pr (0| X; a1, @, ..., ;) AND SENDER ACCURACY
SCHEDULE «y

pF(0| X;01,Q2, . .. ,Oli) = EpU (611600,x;01) * * + EpU (0160;—1,%;0:)Pu (0\01'71»)“ ai) (5D
The original definition of Bayesian flow distribution in Eq. (5I) provides an iterative algorithm to
sample from pr but which practically is slow resulting the training unaffordable. In fact, noticing the
"additive" property of c¢;m; by Egs. (#4) and (#3)), we can sample from pp without iteration:

i i
pF(m| X;0n,0Q2, ... 7ai) = EvM(yl | x,a1) - -~ E'u]\l(yi | x,ai)d(m_atanz(z Q; COSY,, Z &%} bln}’z))
j=1 j=1

(52)
pF(C| X;01,002,. .., ai) = ]EvM(yl | x,01) -+ 'EUM(yi \x,ai)6<c — H(Z Q; COSY,, Zai siny,;)Hg)
j=1 j=1

(53)
Egs. (52) and (53) provides an algorithm allowing sampling from pp by pure tensor operations
without simulating the flow iteratively. Next, we can define the entropy of the receiver’s belief as
H(t):

def
H(t) = EpF(GI X§a17a2;~~7ai)H(pI( 16)) (54)

Il(Ci)

pr(ci| X300 ,02,...,a;) — Ci
' Io(ci)

To ensure the information coherence between modalities, we choose to find a sender accuracy
schedule to make the receiver’s belief entropy H (t) linearly decrease with predefined ¢,,. Formally,
we would like to find an accuracy schedule a; such that

=E

+ In[271y(c;)], where i = nt (55)

H(t)=(1-t)H(0)+tH(1) =In27 — ¢, ? EZ”; + In[271(cy)] (56)
0\Cn
Note that Eq. (56) can not be solved analytically but we can solve it numerically by firstly getting
the target sender’s accumulated accuracy ((t) via binary search due to the monotonicity of Eq. .
Next, we could iteratively search «; from ¢ = 1 to ¢+ = n by matching the average accuracy toward
¢;. This process could be done only once and the resultant «; can be cached for each pre-confirmed
hyper-parameter (c,,, n) pair.

A.6 OUTPUT DISTRIBUTION p,, (- | @;t) AND RECEIVER DISTRIBUTION p,. (- | ;)

Given samples 8 = {m, ¢} from Bayesian flow distribution as input, the receiver uses network
output W(6, ) to rebuild his belief over ground truth & termed output distribution. Following |Graves
et al.| (2023), we parameterize p,, using X(6,t) = ¥(0,t) to be ¢ prediction of x:

po(x[0;t) = 0(x — %(6,1)) (57)
Therefore, the receiver distribution is:
pR(y|0a «, t) = Epo(x’\e;t)ps(yb(l; Ot) = ’UM(y‘)A((O, t)7 a) (58)

A.7 DISCRETE-TIME LOss L™ (x)

From Kitagawa & Rowley| (2022), the KL divergence between vM (my, ¢1) and vM (ma, c2) is
10(61) Il (Cl)
Io(c2)  Io(c1)
From Eq. (3)), the discrete-time loss for circular data is

L™(x) = nEicv {1} p, (0x:01,02,....00) DL (D5 (- | X505) [ P (- | €5ti1, 05)) (60)

I () .
= nEiNU{l,n},pF (0]x;001,2,...,005) IO(ai) 041'(1 - COS(X - X(ei—la ti—l)) (61)

DKL(’UM(TTLl,Cl)HUM(mQ,CQ)) = 7111 (Clml — Cgmg)/ml (59)

Continuous-time loss is not tractable because the Bayesian flow distribution is not analytical due to
the non-additive accuracy property.
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B PROOF OF PROPOSITIONS

In this section, we first prove the crystal geometric invariance of CrysBFN. Crystals remain the same
under transformations including permutation, orthogonal transformation, and periodic translation
defined as follows:

Definition 1 (Permutation Invariance (Jiao et al., 2023)). For any permutation matrix P,
p(L,F,A) =p(L, FP,AP), i.e., changing the order of atoms will not change the distribution.

Definition 2 (O(3) Invariance (Jiao et al., 2023)). For any orthogonal transformation Q € R3%3
satisfying Q' Q = I, p(QL, F, A) = p(L, F, A), namely, any rotation/reflection of L keeps the
distribution unchanged.

Definition 3 (Periodic Translation Invariance (Jiao et all 2023)). For any translation t € R3*1,
p(L,w(F +t1"), A) = p(L, F, A), where the function w(F) = F — | F| € [0,1)**¥ returns
the fractional part of each element in F, and 1 € R3*! is a vector with all elements set to one. It
explains that any periodic translation of F will not change the distribution.

The combination of the above invariances is abbreviated in a compact manner termed periodic E(3)
invariance proposed by Jiao et al.[(2023). The permutational invariance can be easily achieved by
using GNN frameworks. Periodic translation and rotation are both space group transformations. We
first introduce the basic concept of G-invariant.

Definition 4. We call a distribution p(z) is G-invariant if for any transformation g in the group G,
p(g-x) = p(x), and a conditional distribution p(z|c) is G-equivariant if p(g - x|g - ¢) = p(z|c), Vg €
G

With a lemma from [Xu et al.| (2021)), we can prove a Markov-process-generated distribution G-
invariant by proving the G-invariance of the prior distribution and the G-equivariance of every
transition kernel.

Lemma 1 (Xu et al| (2021)). Consider the generation Markov process p(0,) =
J p(00)p(0,,:1|00)d01.r,. If the prior distribution p(y) is G-invariant and the Markov transitions
p(0:4110:),0 <t <n — 1 are G-equivariant, the marginal distribution p(0,,) is also G-invariant.

Proof.
YgeG, plg-0a)=plg-00) / D(6rt00)d61.n

n—1
=p(g - bo) / H p(g - Or41lg - 01)dbr.r,
t=0

n—1

—p(60) [ [T ol besalg - )0,
t=0

n—1

=p(90) / Hp(9t+1|9t)d91:n
t=0
— p(60) / P(600)D (Ot 90)d61.m

= p(‘gn)-

Therefore, the marginal distribution p(6,,) is G-invariant. O

With Lemmal(I] we can prove the following propositions mentioned in the main text:

Proposition 4.3. With Uy as O(3)-equivariant function namely V(04,07 Q0 t) =
QU (04,07 6% 1),YQT Q = I, the marginal distribution of p(uL) defined by Eq. (22)) is O(3)-

invariant.
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Proof. The prior is O(3) invariant since p(ul) = 6(u — 0) = §(Qu — 0),vQTQ = I.
The transition probability of
P(Quy Qi 1,611,6[ ;)
=p>(Qui|Qui 1, VL (Qul 1,-), ti—1)
alL(Qul )+ Qul pi1 «
=N(Quf| : -

) 71—)
Pi o?
\il L L)+ L i
:N(Quf‘| OLQ L(l’l’zfl ) Q/szlp, 1 7 %1—) (by equivariance of \IIL)
Pi Pi
p(ul )+ pl i pie
—N(QuiQ ) T 6
Pi Pi
a\i] L , " —+ L i
=N (uk| LBy )+ Bisipic , %I) (by property of isotropic Normal p.d.f)
Pi n

:pﬁ(ﬂﬂﬂf—la ‘i’L(Hz‘L—l, ), tiz1)
:p(“iL“J’iL—l’ aﬁla ezF—l)

is equivariant. By Lemma the marginal distribution p(u’) is O(3)-invariant. O

Proposition 4.2. With U as a periodic translation equivariant function namely U (04 w(0F +
t),0F 1) = w(Vp(04,0F,0 t) +t),Vt € R®, the marginal distribution of p(F,,) defined by
Egs. (T7) and (19) is periodic translation invariant.

Proof. We first prove that the Bayesian update is periodic translational equivariant. Based on
Egs. and , we can interpret the Bayesian update of {7;_1, ¢;_1 } observing y with «, as the
vector addition between ;1 and ¥ with weight ¢;_1 and o. And the periodic translation ¢ for x
corresponds to the rotation of  with angle ¢:

[cos(z + t + 27k), sin(x + t 4+ 27k)]T = [cos(z + t),sin(z + t)]7
=[cosxcost — sinzsint,sina cost + cos xsint]”

__|cost —sin t] [cos x

- [sint cost sinx] = Rz

where R is the 2-dimensional rotation matrix with angle ¢. Due to the rotational equivariance of 2D
vector addition, we can infer that the Bayesian update function A is periodic translational equivariant:

h({w(mi—l + t)7 Ci—l}, w(y + t), a) = h({Rtmi_l, Ci—1}7 Ry, Oé)

—{ aRwy +ci1Remy
[laRy + ci—1 Rimni_1]]2
={

aRy + ci 1 Rymin

NaRey + cii Rem—a |2}

oy + e 1l Nag + ciimi—a|f2}
11— 11—

The prior is periodic translation invariant because m’ ~ U(0,1).
We prove that the Bayesian update distribution p;(mI'|/m! | ef |, g(m! |); ) is periodic transla-
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tion equivariant if U is periodic translation equivariant:
pu(w(m{ +t)|wimi_, +1t),cl, ¥ (wimi_, +1));a)
=E My 07 (w(m?,+6)),0)0(W(m] + ) = h(w(m_, +t),cl_;,y,a))
=Bt (y (0 (mF)+t),0)0(w(m] + ) — h(w(m{_, +t),¢[,,y,a))(by equiv.0")
=E Mty +6)|w(@F (mF )+, 0(w(m] +1) = h(w(m{, +t),¢/;, w(y +t),a))
=E iy [wr (P )d(w(mf +1) = h(w(m{; +t),¢ 1, w(y +t),a))(by Eq. €9))
=K, 0y [wF (mF ) a)5(w(m +t) —w(h(m_,,c/ |, y,a)+t))(by Eq. (62))
(

=E,p(y (w7 (mF )),0)0 m!I — h(m! |, cf | y,))(by equivariance of § function)

:PU(mi |mi—1a Cf—p ‘I’F(mf—l)% @)

Next, we prove the following proposition:

Proposition 4.1. The probability density function of Bayesian flow distribution defined by Egs. (1)
and (L6)) is equivalent to the original definition in Eq. (14).

Proof. Combining Egs. (#4) and @3],
M;c; = oY + G111
= Y; + G 1Yi—1 + G212
= Oéiyz' + et Ot1y1 + comhg

_ Zazyl = Zai cosyi7zai Sinyz‘]T
j=1 J=1

Taking the 2-norm to each side,

% %
lricillz = [I[D_ cicosy;, Y aisiny;]”[[
j=1 j=1

=[I[)_aicosy;, y_ aisiny;]" ||z
j=1 j=1

The vector direction of m; is irrelevant to the scaler ¢;. Therefore,

m; = ataHZ(Z Q; Cosy;,, Z a;siny;) (63)

Hence,
pF(mi‘X§Oél7042a .. .,Oéi)

:EPU(Ql\eoyx;Oq) EpU(Bl 1162, x;50 l)pu(mzwz 1,X; az)
=Eor(y, | x.a1) - - - Bodt(y, | x,00)0 (M — atan2( Z Q; COSY,, Z a;siny;))

pF(Ci|X§0417042a~-- aai)

:EPU (611600,x;001) * -+ EpU (0;-1|0;—2,x;00;— 1)pU (mileifh X3 ai)

:vaf(yl [x,00) - - ]EUM(y7 | x, al)é — || Z Q; COSYy,, Za, sulyl TH
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C IMPLEMENTATION DETAILS

We provide our code in the anonymous link https://anonymous.4open.science/r/
CrystalBFN-BC42.

Training and Sampling Procedure We provide the training and sampling procedure in Algorithm /]
and in Algorithm 2]

Network Architecture We use CSPNet proposed by Jiao et al.[(2023) with minor modifications:
(1) We add a residual connection from the input to the output of fractional coordinates ensuring the
equivariance of the network:

(02,0, 6F 1)) = w(pr(h!™) + 65), (64)

(5)

g

By the periodic translational invariance of ¢ (h
W (6M,t;) can be easily checked:

) proved by Jiao et al.| (2023)), the equivariance of

UF (0, w(OF +1t),0F, ) =w(pr(hl”) + w6 +1t))
=w(w(pr(hi”) + 6F) +t)
=w(UF (04,08 0L ;) +t)

(2)We alter the frequency of the Fourier transformation features to model in the interval [—m, )
with length 27. (3)The concentration parameter of each fractional coordinate ¢ is taken logarithm,
normalized and concatenated to time embedding. The network hyper-parameters follows the setting
of Jiao et al.| (2023) including the number of hidden states and layers.

Hyper-parameters For the network, the CSPNet has 6 layers, 512 hidden states, 128 frequencies for
the Fourier feature for each task and dataset following (Jiao et al.,[2023). For BFN hyper-parameters,
we set a% = 0.001 for continuous variable generation, 5; = 1000 for circular variables generation
across all datasets and tasks. For discrete variables, we set 81 = 0.4 for the MP-20 dataset and
B1 = 3.0 for the Perov-5 dataset. The number of steps is searched in {50, 100, 500, 1000, 2000}
For optimizations, we apply an AdamW optimizer with an initial learning rate 1 X 1073 and a
plateau scheduler with a decaying factor of 0.6, a patience of 100 epochs, and a minimal learning rate
1 x 104, The weight of every loss is 5 X 10~2. The network is trained for 4000, 5000, 1500, and
1000 epochs for Perov-5, Carbon-24, MP-20, and MPTS-52 respectively.

Computational Resources All training experiments are conducted on a server with 8 x NVidia RTX
3090 GPU, 64 x Intel Xeon Platinum 8362 CPU and 256GB memory. Each training task requires
one GPU. We also report the required GPU hour across methods to converge in our experimental
environment in Tab. 4l

Table 4: Comparison of GPU hours required for training across different methods.

GPU Hour Perov-5 MP-20 MPTS-52
DiffCSP|Jiao et al.|(2023) 8.59 9222 10.42
FlowMM Miller et al.|(2024) 16.36 106.37 16.49
CrysBFN 10.19 85.71 12.31

D MORE RESULTS

Visualizations Here we give visualizations of the ab-initio generated structures from CrysBFN and
DiffCSP in Fig.[6] We also provide a gif animation of the generation process in the anonymous link
https://anonymous.4open.science/r/CrystalBFN-BC42.

Error Bars We report the error bar for the crystal structure prediction task following|Jiao et al.[(2023)
in Tab. [5|running three experiments with different random seeds. The results are similar to Tab. [2]

Uniqueness, Novelty, and Stability Here we compare the uniqueness, novelty, and stability of ab
initio generated samples across methods on MP-20. Using StructureMatcher in pymatgen with default
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Figure 6: Visualizations comparison of the ab-initio generated structures from CrysBFN and DiffCSP.

Table 5: Results on Perov-5 and MP-20 with error bars.

Perov-5 MP-20
Match rate (%)1 RMSE| Match rate (%)1 RMSE|]
CDVAE (Xie et al} 2021) 45314049  0.1123+0.0026  33.93+0.15  0.106940.0018
DiffCSP (Jiao et al.|[2023) 52.354+0.26  0.0778+0.0030  51.8940.30  0.0611+0.0015
CrysBFN 54.584+0.13  0.0691+0.0011  64.33+0.24  0.044540.0010

parameters, a generated crystal is considered: 1) unique if it does not match any other generated
samples; and 2) novel if it does not match any crystals in the training set, following prior practices
(Zeni et al), 2023} Miller et al., [2024). The stability evaluation procedure follows the approach
in |Gruver et al| (2024). Specifically, we use M3GNet (Chen & Ongl [2022)) for pre-relaxations
and perform DFT calculations only on meta-stable samples predicted by M3GNet
(Eqan < 0.1) and regard it as stable if EPFT < 0. This is because DFT calculations are significantly
more computationally expensive. Finally, a sample is considered stable, unique, and novel (S.U.N.) if
it satisfies all three conditions. The results are reported in Tab. [}

Table 6: Uniqueness, novelty, and stability experimental results comparison on ab initio generation
task on MP-20 dataset.

Method Unique / % Novel/ % Metastable / % Stable/ % S.U.N. Rate/ %
DiffCSP (Jiao et al.|[2023) 96.11 90.95 37.91 12.16 9.44
FlowMM (Miller et al., [2024) 94.79 91.63 32.77 9.23 8.31
CrysBFN 95.29 92.37 45.91 15.82 12.16

E SAMPLING EFFICIENCY COMPARISON TO ODE SAMPLERS

We do not include FlowMM in Fig.[4] due to its larger parameter size which makes the comparison
based on NFE unfair. Nonetheless, we present the comparison among them in Fig.[/|and find that
FlowMM fails in extremely small NFE (20 steps) settings with only 16.18% match rate, while
CrysBFN enjoys 60.02% match rate with 10 steps and consistently achieves the best sampling quality.
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Table 7: Ablation study results of entropy-conditioning mechanism across datasets.

Perov-5 MP-20 MPTS-52
Match ratef RMSE| Match rate RMSE| Match ratet RMSE|

w/o entropy conditioning 51.33 0.0753 52.16 0.0631 13.41 0.1547
CrysBFN 54.69 0.0636 64.35 0.0433 20.52 0.1038
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Figure 7: Experimental results on MP-20 with different Number of Function Evaluations (NFE) i.e.
number of network forward passes including FlowMM. Note that FlowMM has a larger parameter
size resulting in a less fair comparison.

F DETAILED DISCUSSION OF RELATED WORKS

Discovering new functional materials has been a long-standing scientific problem. Recently, data-
driven approaches have been seen as a promising solution to address this challenge (2022).

Two-stage crystal generation methods based on implicit crystal representations One line of
approaches indirectly generates crystals in the implicit representation space. Prior practices in-
cludes transforming crystals into human-designed fingerprint FTCP (Ren et al., [2021)), 3D voxels

images (Hoffmann et al.| 2019), 2D images (Noh et al., 2019), 3D electron-density maps

et al} 2020), video-like representation (Yang et al., [2023), embedded atom density
2019) in StructRepDiff (Sinha et al., 2024). However, their generation quality is hampered by the

encoding and reconstruction processes, which may not be fully reversible or fail to respect physical
symmetries such as rotational and translational invariance. For example, 3D voxel grids
2019) and 3D density maps (Court et al.,[2020) are invariant to periodic transformations but

not to £(3) transformations(Zhang et al.,[2023), and the video-like representation (Yang et al.,[2023)
is not invariant to permutation, rotation, translation, and periodic transformations.

Direct crystal generation methods Direct material generation in sample space could bypass the
above reversibility problem. Prior works (Nouira et al.| 2018}, [Kim et al., 2020) employ Generative
Adversarial Networks (Goodfellow et all,[2020) to generate crystal structures, while their methods fail
to respect crystal geometric invariance. Inspired by the success of Diffusion models on images
et al, [2020b} [Song et al, 20204} [Song & Ermon), [2019), the multi-step generation paradigm has
been introduced into generative modeling of atom systems including molecular conformations
[2023). The geometric invariance of the generation path can be guaranteed by designing a
Markov chain with an invariant prior and equivariant transitions 2021). CDVAE
2021), its CSP adaptation Cond-CDVAE and SyMat (Luo et al.| [2024b),
generate crystalline materials levearging E/(3)-equivariant graph neural network models (Klipfel
let all 2023}, [Gasteiger et al.l [2021)) on 3D multi-edge graphs. Utilizing VAE models, they generate
lattice parameters, randomly initialize atom coordinates, and iteratively refine these coordinates using
score-matching models Song & Ermon|(2019). With the fractional coordinate system, DiffCSP
2023) firstly introduces the periodic E(3) equivariance of crystals and designs an equivariant
diffusion crystal generation model based on periodic diffusion [2022). Subsequently,
FlowMM (Miller et al} [2024) recently introduced Riemannian Flow Matching
[2023) for the task of crystal generation, offering improved sampling efficiency, albeit at the expense
of quality.
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We argue that such struggles of balancing between sampling quality and efficiency stems from the
lack of proper guidance on each transition from noise prior to data distribution especially for crystals,
where thermodynamically stable materials represent only a small fraction in the search space
2024). For example, early generation states x;_; with low confidence should be preserved less
than the later ones to get the next state z;. From the perspective of Bayesian updates, BFN
provides a framework to accurately update each m;_; according to its confidence
parameter ;, the effectiveness of which has been proved in (2023)). However, periodicity
is not considered in|Graves et al|(2023) and incorporating it into BFN is non-trivial without desirable
distributions with mathematical properties like Gaussian. To address above issues, in this paper,
we build a Bayesian flow almost from scratch, identifying and tackling the non-additive accuracy
via introducing a novel entropy conditioning mechanism, theoretical reformulations of BFN, a fast
sampling algorithm, ezc. We demonstrate the effectiveness of the guidance of entropy in Tab. [3]and
Tab. [7]and its higher sampling effiency and quality in Figs.[dand[7}

Additionally, recently various techniques have also been introduced to boost the performance tailored
for crystal generation considering crystal’s inductive bias, including [Jiao et al] (2024)); [Cao et al.
(2024)); [AT4Science et al.| (2023) which incorporate the space group constraint into the generation
process. Recently, EquiCSP proposed to utilize a periodic CoM-free noising method
and introduce lattice permutation invariance loss. Those techniques are orthogonal to the proposed
method in this paper.
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Algorithm 1 Training Procedure

25:
26:

: Require: number of stepsn € R, 01 € R, 81 e R, of", ... of e R,

: Input: atom types A, fractional coordinates F', lattice parameter L, length of vocabulary K
: Sample i ~ U{1,n},t +
: # sampling from Bayesian flow distribution of lattice

(i=1)

s pr ~ N(YLAR (1 —47)D)
: # sampling from Bayesian flow distribution of atom type

ﬂA «— /Blt2

s ya~N(B(Kex —1KD),BKI)

: 04 « softmax(y’,)

: # sampling from Bayesian flow distribution of fractional coordinates
: yl’y27~~.ayz(7,UM(F O‘f) UM(FaazF)

tmy < atan2(307_, ajcosy;, >0 a;siny )

: # calculate the acaumulaled accuracy i.e. entropy

. % [ . T

PG ||[Zj=1 Q;j COSYy,, Zj:l a;jsiny;]" |2

: # use network t() do inter-dependency modeling across dimensions conditioning on entropy
:OM ([LL,G mz,cl)

: \I/L(ag\:llati—l) \IJF(BZ 1,1 ) lI/F(ez 15 ti— 1)<7\II(GM t)

: # calculate the losses of all m()ddlllle\

it e 5t (231)

tya~N(a(Kex —1KD),aKI)

t La<nlnN (yu | of (Kea—1),0{KI)

= (S0 (k05N (45 | ot (Ken — 1), 0 KT) )

D Lp e nal D cos(F — bp(0M,ti21)))

¢ Io(a F)
2
Lr=1 (1 _o_f/n) |lL—¥ oMt 1)

21/17,
Minimize L4 + Lr + L1,
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Algorithm 2 Sampling Procedure

Require: number of steps n € R, length of vocabulary K, o1 € RT, 81 e RT,of, ..., af e RT
# initialize the prior parameters
Ko, po <1
0o < #=1ixn
mo < U(O,l),Co +~—0
fori < 1,--- ,ndo
te =L
# use network to do inter-dependency modeling across dimensions of all modalities
oM (Mi—l,ai—l,mi—l,ci—l)
WL (0M), tim1), Wr (0, i), Ur(0, tio1) = W(OM, 1)
if i < n then
# do Bayesian update for lattice parameter
al « GIZZ/n(l - Jf/n)
yi s N(W (0, tior), 2o 1)

7 al

|

pi—1mi—1tal yt
Pi—1+DtiL
Pi < pi—1 + ar
# do Bayesian update for fractional coordinates
F 3 M F
y NUM(WF(eiflati—l)yai )
m; atanZ(oef siny +c¢;i_1 sinm;_1,al cosy +eci_1 cos mi_1)
ci + |[[af siny +ci—1sinmi_1,af cosy +ci—1 cosmi_1]" |2
# do Bayesian update for atom types
A ;—
af < B (577)
yA~ N (Ozf‘ (Kex —1),0{* K1)
A
0/ — e 02'_1
0; —
end if
end for
A~ \I/A(Oﬁfl, tn—1) # sample from the final probability prediction
Return A, Up (021,60 1), UL(07" 1,80 1)

Hi <

9/
>k 0
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