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ABSTRACT

NeuroEvolution of Augmenting Topologies (NEAT) excels at discovering neu-
ral architectures and weights for control tasks (Stanley & Miikkulainen, 2002a).
However, direct-encoding forces evolution to discover each connection strength
individually; in high-dimensional weight spaces, this yields weak credit assign-
ment and poor scaling on large continuous-control problems (Stanley et al., 2009;
Peng et al., 2018). We propose NeuroEvolutionary Online Learning (NEOL),
which decouples learning signals: the outer loop uses NEAT for topology
search, while an inner, reward-modulated local plasticity rule (Hebbian, Oja, or
BCM (Hebb, 1949; Oja, 1982; Bienenstock et al., 1982)) adapts synaptic weights
online within episodes. Under fixed interaction budgets and multiple seeds across
four standard control benchmarks spanning discrete and continuous action spaces,
NEOL achieves higher final returns, tighter variability, and better sample effi-
ciency than pure NEAT; gains are most pronounced in continuous control. These
improvements are statistically significant (Wilcoxon rank-sum tests), and abla-
tions indicate that benefits persist even when standard genetic weight mutation
is reduced or disabled, evidencing a division of labour between structural evolu-
tion and online synaptic credit assignment. A simple, gradient-free separation of
topology search and reward-gated online plasticity reliably boosts performance
and robustness, offering a practical template for linking neuroevolution with on-
line learning and a scalable path toward more adaptive neuroevolutionary agents.

1 INTRODUCTION

NeuroEvolution employs evolutionary operators, rather than gradient descent, to optimise neural
network architectures and parameters (Miikkulainen, 2025; Miikkulainen et al., 2024; Stanley et al.,
2019; Khan et al., 2010; Yao, 1999; Angeline et al., 1994). It has been applied to biologically
inspired models for lifelong learning (Kudithipudi et al., 2022), reinforcement learning (RL) prob-
lems (Xue et al., 2024; Chalumeau et al., 2023; Co-Reyes et al., 2021; Khadka & Tumer, 2018;
Stanley & Miikkulainen, 2002b), and even domains such as optimising land-use planning policies
to reduce carbon emissions (Young et al., 2025). Among NeuroEvolution methods, NeuroEvolution
of Augmenting Topologies (NEAT) is a landmark approach: it jointly discovers network topology
and weights and is particularly effective on tasks that require structural innovation (Stanley & Mi-
ikkulainen, 2002a; 2004).

However, relying solely on evolution for weight optimisation poses a major challenge in high-
dimensional spaces: mutation-based perturbations provide weak credit assignment, leading to poor
sample efficiency and a tendency to converge to local optima in complex continuous control (Stanley
et al., 2009). Moreover, networks evolved in a standard offline NeuroEvolution pipeline, where a
population is evolved on a task and then fixed for deployment, often struggle with real-time inter-
action and sequential decision making (Agogino et al., 2000; Bellman, 1966; Sutton et al., 1998).
These limitations have motivated hybrid approaches that combine evolutionary structure search with
more direct procedures for weight adaptation (Peng et al., 2018).

Several such hybrids have been explored. HyperNEAT (Stanley et al., 2009) exploits geometric
regularities by mapping task structure onto network topology, shifting difficulty from dimensionality
to problem structure (Stanley et al., 2009). Nevertheless, subsequent studies report that HyperNEAT
can underperform NEAT on some large-scale problems, including Atari games, and struggle when
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the state–action mapping is highly discontinuous (the “fracture” issue) (Hausknecht et al., 2014;
Kohl & Miikkulainen, 2009). Other works combine NEAT with value-based or policy-gradient RL.
For example, Whiteson et al. (2005) integrated Q-learning with NEAT, but demonstrated results only
on a single control domain (Robot Auto Racing Simulator), leaving scalability uncertain. Peng et al.
(2018) proposed NEAT with Policy Gradient Search (NEAT-PGS), where RL is typically used to
pre-train policy networks, NEAT evolves a feature network, and the policy is then further trained
given the evolved features.

These observations raise a natural question: can we use NeuroEvolution to directly train policy
networks for game-playing tasks, avoiding long and potentially unstable training chains while still
achieving robust performance? Early work by Agogino et al. (2000) explored online evolution of
each agent’s policy using a fixed 8-5-2 feedforward architecture (single hidden layer, no recurrence,
no evolving topology). While this design is lightweight and fast for online evolution, it limits ap-
plicability to more general and higher-dimensional tasks, and its evaluation focused on a simplified
“mini-Warcraft II” benchmark, where agents with 8 sensors navigate a small 2D map to reach gold
mines while avoiding a single enemy.

Since then, advances in meta learning, deep learning, reinforcement learning, and computational
resources have made it feasible for NeuroEvolution to evolve far more complex network topologies
and to scale neural networks substantially (Stanley et al., 2019). At the same time, this scalabil-
ity amplifies a long-standing weakness: mutation-driven local search over high-dimensional weight
spaces provides poor credit assignment and is sample inefficient. A natural response is to sepa-
rate concerns across time horizon: let evolution discover structure over generations, and let online
interaction adapt weights within episodes. In particular, if we decompose policy learning into (i)
evolutionary search over topology and (ii) online weight adaptation from interaction feedback, we
can exploit structural exploration while using reward signals to provide immediate, local credit as-
signment, improving optimisation and sample efficiency in NeuroEvolution. However, instantiating
this separation in a principled and effective way is non-trivial. Therefore, this paper aims to answer:

(1) How should we decompose policy learning, specifically for NEAT, so that direct online training
becomes more robust in terms of rewards and more sample efficient?

(2) How should we design the online learning mechanism and propagate reward signals to weights
so that interaction feedback is incorporated effectively during training?

Contribution. This paper addresses open challenges in robustness and sample efficiency for pol-
icy learning in NEAT by decomposing training into weight updates and topology updates and by
propagating reward signals. We develop a NeuroEvolution Online Learning (NEOL) framework.
To the best of our knowledge, although many RL and other methods have been proposed in the
context of NeuroEvolution (Co-Reyes et al., 2021; Miconi et al., 2019; Stanley et al., 2009; White-
son et al., 2005; Agogino et al., 2000), this is the first use of online learning via synaptic plasticity
within NEAT training. We provide extensive experimental evidence that NEOL methods are com-
petitive with standard NEAT in cumulative rewards over the time horizon and in sample efficiency.
Specifically, using environments taken from the RL literature, we compare three online learning
methods based on synaptic plasticity, including the Hebbian rule, Oja’s rule, and the BCM rule.
These findings highlight the potential of online learning via synaptic plasticity for NeuroEvolution
in interactive RL environments and clarify the role of online learning in effective game-playing.

2 PRELIMINARIES AND BACKGROUND

First, we provide a formal formulation of sequential decision making by using the Markov Decision
Process (MDP). Given an MDP defined by a tuple ⟨S,A,P,R, γ, T ⟩ where S is the state space, A
is the action space, γ ∈ [0, 1] is the discount factor, R : S × A → R is the reward function and
P : S × A → S is the transistion function. In this paper, we consider an online RL setting where
the agent can interact with the environment repeatedly until a certain time horizon T by using a
policy π : S → A. Such an agent’s policy is usually represented by a neural net. Then, the goal
of the entire learning process is to find an optimal policy π∗ such that it can maximise the expected
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discounted long-term rewards:

π∗ ∈ argmax
π

Eπ

(
T∑

t=0

γtR (st, at) | s0, a0

)
.

As a special setting for NeuroEvolution, this paper directly refers to the cumulative reward as the
fitness of the policy at time horizon T , i.e., f(π, T ) :=

∑T
t=0 γ

tR (st, at), st, s0 ∈ S, at, a0 ∈ A.

Learning in Games. Learning in games is a fundamental challenge in machine learning and ar-
tificial intelligence, with wide-ranging applications from board games to robust optimisation and
agents’ game-playing (Silver et al., 2016; Schrittwieser et al., 2020). In this context, games broadly
refer to strategic interactions among players and environments, which may be adversarial or collab-
orative. A particularly rich setting emerges in reinforcement learning problems, including classical
control tasks and gridworld tasks, where the goal is to succeed against strategic environments, train
effective policies, and achieve high cumulative rewards for agents (Co-Reyes et al., 2021; Khadka
& Tumer, 2018; Salimans et al., 2017; Moriarty et al., 1999; Sutton et al., 1998).

Online Learning via Synaptic Plasticity. Online learning employs a sequential protocol in which
the learner repeatedly predicts, receives feedback, and immediately updates its hypothesis, aiming
to minimise cumulative regret even under non-stationary or adversarial scenarios (Shalev-Shwartz,
2011). Unlike batch learning, updates are performed incrementally on a per-example basis without
revisiting the entire data set, which naturally suits streaming data and continual adaptation (Shalev-
Shwartz, 2011). Mammalian brains support effective online learning, adapting as experience un-
folds. A core mechanism underpinning this capability is synaptic plasticity, which denotes activity-
dependent changes in synaptic efficacy and has long been regarded as a cellular substrate of learning
and memory (the plasticity–memory hypothesis) (Martin et al., 2000; Takeuchi et al., 2014). More
precisely, long-term potentiation and long-term depression (LTP/LTD) are widely observed in mam-
malian excitatory synapses and support experience-dependent circuit remodelling and behavioural
learning (Malenka & Bear, 2004; Nicoll, 2017). Spike-timing dependent plasticity (STDP) refines
Hebbian learning by making synaptic changes depend on the precise millisecond timing between
pre- and postsynaptic spikes, and has been demonstrated across species and brain areas (Caporale &
Dan, 2008; Sjöström & Gerstner, 2010; Feldman, 2012).

At the behavioural time scale, many forms of plasticity are modulated by a third factor (for ex-
ample, neuromodulators such as dopamine or acetylcholine), yielding three-factor learning rules
that enable reward-gated and behaviourally relevant credit assignment (Frémaux & Gerstner, 2016;
Gerstner et al., 2018; Frémaux et al., 2010). Coupling a global reward signal with local activity
correlations enables online reinforcement learning and distal credit assignment without backpropa-
gating gradients through time (Seung, 2003; Florian, 2007; Xie & Seung, 2004). In machine learn-
ing, differentiable formulations of plasticity and neuromodulation have improved fast adaptation in
few-shot and continual settings, demonstrating practical benefits of embedding synapse-level online
learning in artificial neural networks (Miconi et al., 2018; 2019).

Let x denote presynaptic activity, y postsynaptic activity, w a synaptic weight, and η > 0 a learning
rate.

HEBBIAN RULE. Hebb’s postulate states that the connection between two neurons strengthens
when they are coactive (“cells that fire together wire together”), yielding a simple local, correlation-
based weight update (Hebb, 1949; Caporale & Dan, 2008):

∆w = η x y. (1)

While biologically plausible and fully local, pure Hebbian updates are unstable without additional
constraints, as weights can diverge (Caporale & Dan, 2008).

OJA’S RULE. Oja introduced a Hebbian update with an implicit normalisation term that prevents
divergence and aligns the weight vector with the first principal component under stationary in-
puts (Oja, 1982):

∆w = η y (x− y w). (2)
This modification stabilises learning and endows the single neuron with a principled PCA interpre-
tation (Oja, 1982).
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BCM RULE. The Bienenstock–Cooper–Munro (BCM) theory proposes a sliding, activity-
dependent threshold that separates LTD from LTP and supports the emergence of selectivity while
maintaining homeostasis (Bienenstock et al., 1982):

∆w = η y (y − θ)x, θ̇ = α
(
y2 − θ

)
, (3)

where θ is a slow-moving threshold tracking recent activity and α > 0 controls its timescale (Bi-
enenstock et al., 1982).

Bridging Evolutionary Computation and Online Learning. The idea of combining population-
based search with lifelong learning is a foundational aim for achieving adaptive intelli-
gence (Schmidhuber, 1987; Holland, 1992; Miikkulainen, 2025). However, early attempts to evolve
synaptic plasticity rules directly within NeuroEvolution faced a key limitation: expanding the ge-
netic search space often hindered learning rather than helping (Stanley et al., 2003). A notable
advance was neuromodulation, in which reward-like signals gate local Hebbian updates. This ap-
proach proved highly effective, enabling networks to solve dynamic, reward-based tasks that were
intractable for both fixed-weight and non-modulated plastic networks (Soltoggio et al., 2008). This
success helped establish a powerful paradigm: an outer loop of evolution that designs an inner
loop online learner (Soltoggio et al., 2018). This two-timescale approach has since been explored
from multiple angles. To address challenges such as deceptive search landscapes and scalability,
diversity-driven methods such as novelty search (Lehman & Stanley, 2008; 2011) and indirect en-
codings such as adaptive HyperNEAT have been developed (Risi, 2012). From a meta optimisation
perspective, methods such as Population-Based Training (PBT) have provided practical validation
for using asynchronous evolutionary search to supervise and adapt inner learning dynamics on-
line (Jaderberg et al., 2017). More recently, this paradigm has been extended further. Hebbian meta
learning has evolved synapse-specific rules that allow agents to adapt rapidly in complex reinforce-
ment learning tasks (Najarro & Risi, 2020). Going further, research has shown that evolution can
discover or refine entire RL algorithms from scratch, yielding domain agnostic solutions with strong
generalisation (Co-Reyes et al., 2021). In this paper, we provide a systematic empirical study across
multiple game benchmarks that contrasts pure NEAT with reward-modulated plasticity NEAT, and
compares several online rules (Hebbian, Oja, BCM). Our results show that modulated NEAT con-
sistently outperforms pure NEAT, especially in continuous action spaces.

3 NEUROEVOLUTIONARY ONLINE LEARNING

In this section we present the NeuroEvolutionary Online Learning (NEOL) framework. We begin
with a high-level overview, then describe the decoupled update strategy for weights and topology
in Section 3.1, and finally detail the main algorithm in Section 3.2. Additional components are
provided in Appendix A.

3.1 DECOUPLING UPDATES FOR WEIGHT AND TOPOLOGY

We maintain a population of network architectures, each encoded as a genome. The flowchart in
Fig. 1 shows a generational loop in which evolution and evaluation are interleaved to progressively
improve solutions. Unlike standard NEAT, which mutates both topology and weights offline between
episodes and evaluates policies with fixed weights during rollouts, NEOL decouples the two update
processes. During each individual rollout, synaptic plasticity performs online weight adaptation
driven by reward feedback; only after the rollout are topological changes applied by evolutionary
variation. This separation places credit assignment for weights on the interaction timescale while
reserving structural innovation for the generational timescale, improving sample use and stabilising
search (see Section 4).

The process begins with population network structure initialisation (top left, red box in Fig. 1), which
creates the initial set of parent networks. The population then enters the main neuroevolution loop
(large yellow box). At the start of each generation, the current parents produce offspring through
variation (left panel). Variation mutates topology by adding or removing nodes and connections, as is
standard in neuroevolution. Each offspring is then evaluated in the individual rollout phase (centre
panel). During the rollout, the agent interacts with the environment: the network outputs actions
and receives rewards in a closed loop. A key feature of our approach is online weight adaptation,
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Figure 1: Overview of the NeuroEvolution Online Learning (NEOL) algorithm. The procedure
starts by initialising a population of network structures. In each generation, variation operators
produce offspring from the current parents. Each offspring is evaluated in an individual rollout,
during which its weights adapt online through reward-modulated plasticity (illustrated by the colour
shift from blue to orange). The cumulative reward from the rollout is used as the fitness for selection
to form the next generation. The best individual found over the population determines the final
network structure, including its adapted weights and evolved topology.

where reward-modulated plasticity rules (for example, Hebbian or BCM) update connection weights
within the episode. This adaptation is depicted in the figure by connections changing from cool
to warm colours. After the rollout, performance is summarised as the cumulative reward, which
serves as fitness for selection (right panel). Based on these fitness scores, weight updated offspring
are selected to become the parents of the next generation, closing the loop. The best performing
individual across all generations is tracked, and its architecture, together with the adapted weights
and evolved topology, is reported as the final network structure (top right, green box) when the
algorithm terminates.

3.2 PROPOSED ALGORITHM

Algorithm 1 NeuroEvolutionary Online Learning (NEOL)

Input: Generations: G ∈ N>0; Population size: P ∈ N>0; NeuroEvolution config: Θ0 (Described
in Algorithm 3). Parameters for fitness evaluation: Episodes N ∈ N>0; Max steps Tmax ∈ N>0;
Learning rule L ∈ {Hebb, Oja, BCM}; Plasticity rate η ∈ R>0; Reward scaling β ∈ R>0;
Environment env.

Output: Best evolved genome g∗.
1: P = INITIALISEPOPULATION(Θ0, P )
2: for gen ∈ {1, . . . , G} do
3: for all genome gi ∈ P do
4: gi.fitness = ONLINEROLLOUT(gi,L, η, β,N, Tmax, env) ▷ See Algorithm 2
5: P = REPRODUCE(P) ▷ For NEAT: See Algorithm 3 and 4
6: return best genome g∗ from final population P

Algorithm 1 implements a two-timescale procedure. A population of size P is initialised from Θ0.
In each generation, every genome gi is evaluated by Algorithm 2; its mean episodic return becomes
its fitness. After evaluation, NEAT reproduction performs selection and topological variation to
produce the next population. Across generations, the best genome among the population is tracked;
after G generations, the algorithm returns g∗.

5
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Algorithm 2 in Appendix A evaluates one genome with online weight adaptation. For each episode,
a network phenotype is created from g, the environment is reset, and the agent interacts for at
most Tmax steps. At step t, the network proposes â, which is clipped to a and applied to obtain
(s′, r,done). A reward-scaled signal rscaled drives plastic updates according to L at rate η using only
local pre and post activities together with rscaled. The fitness is the mean return over N episodes.

4 EXPERIMENTS

4.1 EXPERIMENT SETUPS

Benchmark Environments. We evaluate on four standard Gymnasium environments spanning
diverse reward structures and action spaces. (1) CartPole-v1 (Farama Foundation, b): con-
trol a cart on a frictionless track to balance an upright pole. The agent receives a dense reward
of +1 per timestep until failure (the pole falls, the cart leaves the bounds, or the time limit is
reached). The action space is discrete with two choices (apply force left or right), making it a low-
dimensional control task. (2) LunarLander-v2 (Farama Foundation, d): a 2D lunar module must
soft land at the (0, 0) pad using a main engine and two side thrusters. Rewards are densely shaped
(proximity, velocity, and orientation towards landing conditions yield higher rewards; bonuses for
landing legs; penalties for engine usage; terminal reward +100 for a safe landing and −100 for
a crash). The action space is discrete with four choices, again a low-dimensional control task.
(3) BipedalWalker-v3 (Farama Foundation, a): a 2D Box2D biped must walk across uneven
terrain (normal and hardcore variants). Rewards are dense (forward progress, −100 for falling,
torque penalties). The action space is continuous and four-dimensional, [−1, 1]4, making it a low-
dimensional continuous control task. (4) Hopper-v3 (Farama Foundation, c): a MuJoCo one-
legged hopper applies torques at three joints to hop forward. The total reward is a dense combi-
nation of healthy reward, forward progress, and control cost. The action space is continuous and
three-dimensional, [−1, 1]3, a low-dimensional continuous control task. Environment implemen-
tations follow the Gymnasium reference; physics backends are Box2D for LunarLander and
BipedalWalker, and MuJoCo for Hopper.

Algorithm Protocol. Initial policies at generation 0 are configured via NEAT with a minimal topol-
ogy mapping observations directly to actions. The network topology expands during evolution using
standard genetic operators of NEAT. Hidden unit activation functions are set in the configuration,
while output units use tanh. Before activation, the summed input to each neuron is clipped to a
maximum absolute value of 50.0. For continuous control, the final tanh output is hard clipped to
[−1, 1]. For discrete action spaces, the policy selects the action corresponding to the output neuron
with the highest activation (argmax). The inner loop of online plasticity (Hebb, Oja, or BCM) is
reward-modulated and runs at every step of an episode. The agent’s fitness is the mean total return
over N evaluation episodes (where N corresponds to repeat per GEN in our code). After each
local weight update, the new weight value is clipped to a maximum absolute value of 10.0. We
primarily use a Lamarckian inheritance scheme in which in-episode weight updates are written back
to the genome at the end of the episode (WRITE BACK=True); we also include an ablation where
inheritance is disabled (WRITE BACK=False). The use of standard genetic weight mutation is
controlled by the WM MODE parameter, which can disable mutation, enable it via the configuration,
or set a specific probability.

Experimental Configuration and Evaluation. To ensure fair comparison across population sizes
P ∈ {50, 100, 200, 300}, we fixed a total interaction budget of B environment steps per experiment.
Each agent’s fitness was averaged over N evaluation episodes. For analysis convenience, all runs
used G = 500 generations. For NEOL agents, the key inner loop hyperparameter (the learning rate
lr) was selected via a grid search over {2.5 × 10−4, 2.5 × 10−3, 2.5 × 10−2, 2.5 × 10−1}. For
statistical validation, each unique configuration (algorithm, hyperparameters, and population size)
was evaluated over 30 independent random seeds.

4.2 EMPIRICAL ANALYSIS ON THE CONVERGENCE OF BEST FITNESS

To systematically evaluate the role of online neural plasticity in evolutionary processes, we con-
ducted a comprehensive comparison against NEAT. This comparison pitted the standard NEAT
method against our NEOL framework, which integrates online plasticity rules (Hebb, Oja, and

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

BCM). The results clearly demonstrate that the NEOL framework exhibits substantial advantages
across multiple test environments.
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Figure 2: Performance comparison of NEOL with the standard NEAT across four environments
(CartPole-v1, LunarLander-v2, Hopper-v3, and BipedalWalker-v3). Top row:
convergence plots showing fitness over generations. Bottom row: boxplots of final-generation
fitness distributions. BCM, Hebb, and Oja learning rules are shown in blue, orange, and green,
respectively, while standard NEAT is shown in red.

In the simpler CartPole task, all methods rapidly converge to the maximum fitness, serving as a suc-
cessful sanity check. However, in the more complex environments, significant performance dispari-
ties emerge. As shown in the convergence plots (Figure 2, top row), the NEOL variants consistently
achieve higher final fitness scores than standard NEAT. The boxplots (Figure 2, bottom row) and
standard deviations (Table 1) further reveal that while standard NEAT struggles, often resulting in
a high variance and numerous low-performing outliers, the NEOL methods achieve a superior me-
dian performance. Notably, in Lunar Lander, NEOL not only outperforms NEAT but also exhibits a
tighter fitness distribution, indicating higher learning reliability in terms of smaller variance.

The observed performance gains are not coincidental. We confirmed their statistical significance us-
ing a one-sided Wilcoxon rank-sum test, with the alternative hypothesis that NEOL variants achieve
higher fitness than NEAT. As detailed in Table 5, we reject the null hypothesis at a significance level
of p < 0.05 for all NEOL variants across all three complex tasks. This provides strong evidence that
the integration of online learning is the source of the performance improvement.

These results lead to the conclusion that the reward-modulated online learning serves as a more ef-
fective mechanism for policy fine-tuning in NeuroEvolution than relying on structural search alone.
In our framework, the outer loop of evolution discovers promising network topologies, while the
inner loop of online plasticity provides an efficient, gradient-free mechanism for credit assignment
and rapid weight optimisation within an agent’s lifetime. This demonstrates that online plasticity is
not merely an incremental add-on but can act as a powerful core component of neuroevolutionary
systems, enhancing both final performance and learning reliability, even in the absence of traditional
weight mutation operators.

Table 1: Best final-generation fitness (mean ± standard deviation (SD)), Bold marks the highest
fitness per task; underline marks the runner-up.

Task BCM Hebb Oja NEAT

CartPole 500.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00

Lunar Lander 324.34 ± 3.86 323.35± 3.67 323.53± 4.19 311.77± 8.18

Hopper 2983.82 ± 479.79 2819.89± 577.33 2900.94± 562.16 2680.22± 603.53

Bipedal Walker 217.39± 82.82 233.30 ± 62.42 227.10± 81.96 183.36± 71.82

4.3 EMPIRICAL ANALYSIS ON SAMPLE EFFICIENCY

Sample efficiency is one of the important concepts in RL algorithms (Yarats et al., 2021; D’Oro
et al., 2023; Xue et al., 2024). In this paper, we also aim to evaluate the efficiency of the proposed
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algorithm when interacting with any given environment in an online manner. First, we need to define
a proper metric: what is sample efficiency in the context of NEOL?

Inspired and adapted from a similar learning speed metric (Peng et al., 2018) and a QD-score Area-
Under-Curve (AUC) (Xue et al., 2024), we consider the following: given M , a total number of
samples or a total number of interactions with an environment Env until time horizon T ,

SCORE :=

T∑
t=1

Eπ(f (π, t))

M
≈

T∑
t=1

1

M

 1

n

n∑
j=1

f (πj , t)

 ,

where n is the number of independent runs we conduct and f(π, t) :=
∑t

τ=0 γ
τREnv (sτ , aτ ). In

this paper, n = 30 and M is the multiple of the number of generations and the population. SCORE
measures how many expected cumulative rewards per sample we obtain in the training process, and
it is roughly the area under the best fitness curve. It measures the optimisation efficiency of an
NEOL algorithm. However, the expectation Eπ(f (π, t)) is hard to compute in practice, and thus
we use a simple Monte Carlo (Kalos & Whitlock, 2009; Owen, 2013) to approximate the value of
SCORE at each time step.

Table 2: Sample Efficiency SCORE (mean ± SD) at fixed population size pop = 300. For plastic
methods (BCM, Hebb, Oja), we use the best learning rate per task; NEAT uses its pop = 300 runs.
Values shown with three significant figures (a eb ≡ a× 10b). Bold marks the highest value per task;
underline marks the runner-up. Higher SCORE implies higher sample efficiency.

Task BCM Hebb Oja NEAT

CartPole 7.43 e−1± 1.09 e−2 7.46 e−1± 9.08 e−3 7.47 e−1 ± 8.55 e−3 7.44 e−1± 1.10 e−2

Lunar Lander 4.51 e−1± 1.22 e−2 4.51 e−1± 6.65 e−3 4.52 e−1 ± 7.93 e−3 4.37 e−1± 7.29 e−3

Hopper 3.77 ± 6.26 e−1 3.61± 6.35 e−1 3.75± 6.81 e−1 3.22± 6.73 e−1

Bipedal Walker 2.56 e−1± 1.10 e−1 1.96 e−1± 1.39 e−1 2.60 e−1 ± 1.18 e−1 1.74 e−1± 9.38 e−2

Table 2 summarises the SCORE metric at a fixed population size (pop = 300). Online learning
via synaptic plasticity consistently improves sample efficiency over NEAT. Oja attains the best or
second-best SCORE on three tasks (CartPole, Lunar Lander, Bipedal Walker), while BCM narrowly
leads on Hopper with Oja a close second. The corresponding Wilcoxon rank-sum tests against
NEAT (Table 6) confirm these gains: all plasticity rules are statistically significant on Lunar Lander
and Hopper; on Bipedal Walker, significance holds for BCM and Oja; on CartPole, no significant
differences appear owing to saturation. Overall, these results indicate that NEOL improves not only
asymptotic fitness but also the sample efficiency with which good policies are discovered.

4.4 ABLATION STUDIES
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Figure 3: Ablation study comparing NEOL with NEAT (w/o), where NEAT (w/o) corresponds to
disabling the weight-modulation mechanism by setting the learning rate lr = 0. Top row: con-
vergence plots showing fitness over generations. Bottom row: boxplots of final-generation fitness
distributions. BCM, Hebb, and Oja learning rules are shown in blue, orange, and green, respectively,
while NEAT (w/o) is shown in red.
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Ablation on final fitness. We ablate the online learning component by disabling weight modu-
lation in NEAT (“NEAT (w/o)”, achieved by setting the learning rate η = 0) while keeping all
other settings identical. Figure 3 contrasts convergence (top row) and final-generation fitness dis-
tributions (bottom row) across CartPole, Lunar Lander, Hopper, and Bipedal Walker. In CartPole,
all methods rapidly reach the performance ceiling, as expected. In Lunar Lander and Hopper, the
NEOL variants (BCM, Hebb, Oja) converge faster and attain higher asymptotic fitness than NEAT
(w/o). The boxplots further indicate higher medians, tighter interquartile ranges, and markedly fewer
low-performing outliers for NEOL, evidencing improved stability. On the Bipedal Walker, NEOL
likewise yields a higher and more reliable final performance, with reduced variance relative to NEAT
(w/o). Taken together, these results isolate the contribution of online synaptic plasticity: removing
it degrades both the attained fitness and the robustness of learning.

Ablation on sample efficiency. We also evaluate sample efficiency under the same ablation. Ta-
ble 8 reports the SCORE metric, showing consistent gains for NEOL over NEAT (w/o) across the
non-trivial tasks. These improvements align with the faster rise of the NEOL learning curves in
Figure 3, indicating that online plasticity not only improves the final outcome but also accelerates
progress towards strong policies with fewer evaluations.

Summary. Across tasks, the ablation confirms that the online learning mechanism is the key factor
of the observed improvements: it increases asymptotic fitness, tightens performance distributions,
and enhances sample efficiency, whereas removing it (NEAT (w/o)) leads to slower convergence,
lower final fitness, and greater variability.

5 CONCLUSION AND DISCUSSION

This work addresses the core challenge of weak credit assignment in NeuroEvolution by decoupling
optimisation across two timescales. We introduced NeuroEvolution Online Learning (NEOL), in
which an outer generational search discovers effective network topologies via NEAT (Stanley &
Miikkulainen, 2002a), while an inner, within-lifetime phase rapidly adapts synaptic weights. To
propagate reward for this adaptation, we employed local, biologically plausible, reward-modulated
plasticity rules: Hebb (Hebb, 1949), Oja (Oja, 1982), and BCM (Bienenstock et al., 1982) as a sim-
ple and effective mechanism for online credit assignment. To the best of our knowledge, this is a
first step towards integrating online learning via synaptic plasticity into NeuroEvolution (i.e., NEAT)
within a general NEOL framework. Our contribution clarifies a principled separation between struc-
tural search and local weight adaptation for credit assignment in neuroevolutionary systems.

Across benchmarks, NEOL consistently outperforms pure NEAT in final performance, reliability,
and sample efficiency, with the largest gains in continuous control tasks where standard NeuroEvo-
lution often struggles. By fixing the learning rules rather than meta-evolving them, our minimal
design isolates the benefit of plasticity and contrasts with approaches that evolve the rules them-
selves (for example, EPANN (Soltoggio et al., 2018)) or rely on complex, global updates (for ex-
ample, NEAT+RL hybrids (Peng et al., 2018)). These results indicate a strong synergy between
evolutionary structural search and local online learning.

Despite the promising potential of our results, our work has some limitations. Although rigorous
statistical tests were used to verify our empirical results, our proposed method lacks a theoretical
guarantee, like evolutionary reinforcement learning algorithms (Lin, 2025; Qian et al., 2024; Buz-
dalov et al., 2013). Performance can be sensitive to task characteristics and hyperparameters, and
our empirical evaluation would benefit from broader coverage to strengthen external validity.

Future work could focus on both theoretical and practical extensions of the general NEOL frame-
work. From a theoretical perspective, it remains a challenging open problem to establish conditions
under which NEOL enjoys provable convergence rates, sample efficiency bounds, or regret guaran-
tees. On the practical side, extending NEOL with richer mutation operators, additional crossover,
non-elitist selection mechanisms, and alternative synaptic plasticity rules may further enhance per-
formance in complex settings. Scaling NEOL to larger benchmarks will enable systematic compar-
isons against state-of-the-art reinforcement learning and other hybrid NeuroEvolution–RL methods,
yielding a clearer picture of when and how online plasticity most effectively boosts NeuroEvolution.
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To preserve double blind anonymity, we do not include raw configuration files in the submission. In-
stead, all model/algorithm settings and training protocols (including NEOL components, optimiser
choices, schedules, population size, mutation/crossover rates, selection pressure, etc.) are fully enu-
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A.1 THE USAGE OF LLM

We disclose our concrete use of large language models (LLMs) in line with the ICLR policy. LLMs
are not authors; the human authors take full responsibility for all content. We mainly use LLM for
writing assistance. We used LLM to polish and reorganise author-written text for academic style in
academic English. Our prompt instructed the model to:

Correct spelling, grammar, clarity, concision, and overall
readability;
First return a polished paragraph,
then a markdown table enumerating each edit with justification;
Preserve citation strings exactly as written;
Avoid unnecessary \emph{};
Present the paragraph’s intended logic before rewriting to ensure
coherence.

These outputs were treated as suggestions; final language and structure were decided by the authors
after review. No claims, proofs, or empirical results originated from the LLM. Also, we use LLM for
helping with debugging and visualisation assistance. We used LLM to (i) explain error messages,
(ii) suggest small code fixes, and (iii) draft the scripts for result visualisation (e.g., plotting scripts).
All suggested code was reviewed, adapted or re-implemented where non-trivial, and covered by
tests. Algorithmic design, hyperparameters, and reported results were chosen by the authors.

A.2 CONFIGURATION FOR EXPERIMENTS

A.2.1 BEST CONFIGURATIONS (USED FOR THE FITNESS IN TABLE 1 AND TABLE 5)

Table 3: Best configurations used for the fitness results in Table 1 and Table 5. For plastic methods
(BCM, Hebb, Oja), we report population size and learning rate; NEAT has no learning rate.

Task BCM Hebb Oja NEAT

Cartpole pop=50, lr=0.00025 pop=50, lr=0.00025 pop=50, lr=0.00025 pop=50
Lunar Lander pop=300, lr=0.25 pop=300, lr=0.00025 pop=300, lr=0.0025 pop=300
Hopper pop=300, lr=0.025 pop=300, lr=0.00025 pop=300, lr=0.0025 pop=300
Bipedal Walker pop=300, lr=0.00025 pop=200, lr=0.00025 pop=300, lr=0.00025 pop=100

A.2.2 CONFIGURATIONS (USED FOR THE FITNESS IN TABLE 7 AND TABLE 8)

Table 4: Configurations used for the ablation fitness results in Table 7 and Table 8. NEAT (w/o)
disables weight modulation by setting the learning rate to zero.

Task BCM Hebb Oja NEAT (w/o)

Cartpole pop=50, lr=0.00025 pop=50, lr=0.00025 pop=50, lr=0.00025 pop=50
Lunar Lander pop=300, lr=0.25 pop=300, lr=0.00025 pop=300, lr=0.0025 pop=300
Hopper pop=300, lr=0.025 pop=300, lr=0.00025 pop=300, lr=0.0025 pop=300
Bipedal Walker pop=300, lr=0.00025 pop=300, lr=0.00025 pop=300, lr=0.00025 pop=300

A.3 ALGORITHM PSEUDO-CODE

The online update follows one of the following local rules, where x and y denote pre- and post
activities, w is a synaptic weight, and θ is a slow activity-dependent threshold in BCM:
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WEIGHT UPDATE(x, y, w, r, β, ηw) :=


w + ηw · βr · y · (x− y · w) if reward-based Oja update
w + ηw · x · y · βr if reward-based Hebb update
w + ηwy(y − θ)xβr if reward-based BCM update
w otherwise.

Algorithm 2 Online Rollout

Input: Genome: g; Learning rule: L; Plasticity rate: η; Reward scaling factor: β; Episodes: N ;
Max steps: Tmax; Environment: env. (Defined in Algorithm 1)

Output: Average episode reward (fitness).
1: episode rewards = []
2: for episode ∈ {1, . . . , N} do
3: net = CREATENETWORKFROMGENOME(g)
4: s = env.reset() ▷ Reset state
5: Rep = 0
6: for t ∈ {1, . . . , Tmax} do
7: â = net.forward(s) ▷ Generate the action from policy network
8: a = clip(â,−1, 1)
9: (s′, r, done) = env.step(a) ▷ Get the state and reward after apply the action

10: rscaled = r · β
11: net.WEIGHT UPDATE(L, η, rscaled) ▷ Update weight with specific learning rule
12: Rep = Rep + r
13: s = s′

14: if done then break
15: episode rewards.append(Rep)
16: return Average cumulative episode rewards

Algorithm 3 Sepciate (NEAT) (Stanley & Miikkulainen, 2002a)

Input: Population with raw fitness: P; NEAT config ΘNEAT (compatibility coeffs c1, c2, c3, thresh-
old δt, survival threshold ρ, elitism E, stagnation limit Gstag, min species size, etc.).

Output: Species set S; population P with adjusted fitness.
1: S = ∅ ▷ if previous species exist, reuse their representatives
2: for genome g ∈ P do
3: Compute compatibility distance to each representative rs:

δ(g, rs) = c1
E +D

N
+ c3 · |wg − wrs |

4: Assign g to argmins δ(g, rs) if mins δ ≤ δt; else create a new species with g.
5: for species s ∈ S do
6: Sort members by raw fitness (desc), record champion.
7: Update s’s best-so-far and stagnant counter; mark for removal if > Gstag (optionally keep

global best).
8: Remove stagnant species; ensure each remaining species has ≥ 1 member.
9: (Explicit sharing) For each species s and g ∈ s:

fadj(g) =
f(g)

|s|
, F adj(s) =

1

|s|
∑
g∈s

fadj(g).

10: return (S,P).

Algorithm 3 performs speciation and fitness adjustment for NEAT. Genomes are assigned to species
by compatibility distance with coefficients c1, c2, c3 and threshold δt. Using excess and disjoint
gene counts E and D, the number of matched genes N , and the mean absolute weight difference,
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Algorithm 4 Reproduce (NEAT) (Stanley & Miikkulainen, 2002a)

Require: Species set S and adjusted fitness F adj(s) computed by Alg. 3.
Input: Population P with adjusted fitness; NEAT config Θ0 (elitism E, survival threshold ρ, cross-

over prob. pc, add-connection mℓ, add-node mn, weight-mutation mode WM MODE); target size
P .

Output: Next-generation population Pnew.
1: A =

∑
s∈S F adj(s)

2: for each s ∈ S do
3: spawn(s) = max(min species size, round(P · F adj(s)/A))

4: Renormalise spawn(·) so that
∑

s spawn(s) = P
5: Pnew = ∅
6: for each species s ∈ S do
7: Sort members of s by raw fitness (descending)
8: Copy top E elites of s to Pnew

9: spawn(s) = spawn(s)− E
10: if spawn(s) > 0 then
11: K = ⌈ρ · |s|⌉
12: U = top-K members of s ▷ parent pool
13: while spawn(s) > 0 do
14: spawn(s) = spawn(s)− 1
15: Sample p1 ∼ U
16: With probability pc, sample p2 ∼ U ; otherwise set p2 = p1
17: offspring = CROSSOVERALIGNED(p1, p2) ▷ align by innovation numbers
18: if rand < mℓ then
19: ADDCONNECTION(offspring)
20: if rand < mn then
21: ADDNODE(offspring)
22: if WM MODE = off then
23: NOWEIGHTMUTATION(offspring)
24: else if WM MODE = config then
25: MUTATEWEIGHTSBYCONFIG(offspring,Θ0)
26: else
27: MUTATEWEIGHTSWITHPROB(offspring, p)
28: Append offspring to Pnew

29: return Pnew

the distance to a species representative rs is

δ(g, rs) = c1
E +D

N
+ c3 |wg − wrs |.

Within each species, members are ranked by raw fitness, champions are tracked, and species that
stagnate beyond Gstag may be removed except for a possible global best safeguard. Explicit fitness
sharing is applied:

fadj(g) =
f(g)

|s|
, F adj(s) =

1

|s|
∑
g∈s

fadj(g).

Algorithm 4 generates the next population under speciated reproduction. Let A =
∑

s F
adj(s) be

the sum of adjusted fitness across species. Each species receives an offspring budget

spawn(s) = max

(
min species, round

(
P

F adj(s)

A

))
,

renormalised so that the counts sum to P . Elites E are copied unchanged. The remaining offspring
are bred from the top ρ fraction within each species. Parents are selected, crossover is applied
with probability pc using historical innovation numbers for alignment, and structural mutations are
applied with probabilities mℓ (add connection) and mn (add node). Weight mutation is controlled
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by WM MODE, which can disable weight mutation, use configuration defaults, or apply a specified
probability p. The resulting offspring across all species form the next population consumed by
Algorithm 1.

A.4 STATISTICAL TESTS FOR COMPARISON ON BEST FITNESS AND SAMPLE EFFICIENCY
SCORE

Table 5: Wilcoxon rank-sum test: p-values for Bipedal Walker, Hopper, and Lunar Lander, compar-
ing each OL method (BCM, Hebb, Oja) against NEAT. For each task and method, we use the best
configuration selected by means of final-generation best across 30 seeds, and test the final best val-
ues. The null hypothesis is that the two configurations yield samples from the same distribution; the
alternative hypothesis is that the OL method tends to achieve the larger best-fitness than NEAT. Bold
entries indicate p < 0.05 (rejecting the null at the 5% level). Cartpole is omitted because all methods
achieve 500.0 exactly in the end. Values shown with three significant figures (a eb ≡ a× 10b).

Task BCM vs NEAT Hebb vs NEAT Oja vs NEAT

Lunar Lander 1.202 e−8 3.352 e−8 4.686 e−8

Hopper 1.680 e−3 5.746 e-2 1.501 e−2

Bipedal Walker 4.033 e−3 3.006 e−4 1.004 e−3

Table 6: Wilcoxon rank-sum test: p-values for CartPole, Bipedal Walker, Hopper, and Lunar Lander,
comparing each OL method (BCM, Hebb, Oja) against NEAT. For each task and method, we use the
best configuration selected by means of final-generation best across 30 seeds, and test the final best
values. The null hypothesis is that the two configurations yield samples from the same distribution;
the alternative hypothesis is that the OL method tends to achieve larger best-fitness than NEAT. Bold
entries indicate p < 0.05 (rejecting the null at the 5% level). Values shown with three significant
figures (a eb ≡ a× 10b).

Task BCM vs NEAT Hebb vs NEAT Oja vs NEAT

CartPole 5.19 e-1 6.62 e-1 5.93 e-1
Lunar Lander 1.20 e−8 2.03 e−9 2.44 e−9

Hopper 1.89 e−4 8.68 e−3 5.61 e−5

Bipedal Walker 9.52 e−4 3.95 e-1 1.11 e−3
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A.5 ADDITIONAL TABLES FOR ABLATION STUDIES

In this ablation study, we keep NEOL unchanged and ablate only the pure NEAT baseline by dis-
abling genetic weight mutation. The ablated counterpart is denoted NEAT (w/o). This setting is
equivalent to setting the online rate of online learning to zero (fixing the weight mutation of NEAT
means there is only evolutionary topology search remaining), and isolates whether online plasticity
inside NEOL can substitute for, or complement, evolutionary weight mutation.

From Table 7, we compare standard NEOL (BCM, Hebb, Oja) with the ablated pure NEAT baseline
(NEAT (w/o)). On Cartpole, all methods reach the optimum and are indistinguishable. On Lunar
Lander, every NEOL rule yields a higher mean than NEAT (w/o), with BCM at 324.34, Oja at
323.53, and Hebb at 323.35, versus 312.50 for NEAT (w/o); the standard deviation for NEOL is
small, indicating reliable convergence. On Hopper, the gap is significant: BCM, Oja, and Hebb
achieve 2983.82, 2900.94, and 2819.89, respectively, compared with 2296.57 for NEAT (w/o), with
difference shown and well-separated means. On Bipedal Walker, NEOL still leads in the mean
(Hebb 233.30, Oja 227.10, BCM 217.39) over NEAT (w/o) (194.91), but standard deviations are
wide for all configurations, suggesting that although Bipedal Walker is a harder task for all the
algorithms, every NEOL is still robust. With weight mutation disabled in the counterpart, reward-
modulated online plasticity is sufficient to recover and surpass final optimisation on Lunar Lander
and Hopper tasks.

Table 7: Ablation study comparing NEOL with NEAT (w/o) on best final-generation fitness (mean ±
SD) for each task and method using each method’s best hyperparameters. NEAT (w/o) corresponds
to disabling the weight-modulation mechanism by setting the learning rate lr = 0. Bold marks the
highest fitness per task; underline marks the runner-up.

Task BCM Hebb Oja NEAT (w/o)

Cartpole 500.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00

Lunar Lander 324.34 ± 3.86 323.35± 3.67 323.53± 4.19 312.50± 8.97

Hopper 2983.82 ± 479.79 2819.89± 577.33 2900.94± 562.16 2296.57± 740.56

Bipedal Walker 217.39± 82.82 233.30 ± 62.42 227.10± 81.96 194.91± 92.83

From Table 8, we compare standard NEOL (BCM, Hebb, Oja) with the ablated NEAT baseline
without weight mutation (NEAT (w/o)) on SCORE. On CartPole, all methods are effectively indis-
tinguishable, with Oja slightly highest (7.47×10−1) and NEAT (w/o) a close second (7.46×10−1).
On Lunar Lander, every NEOL rule improves over NEAT (w/o) (4.29×10−1), with Oja best
(4.52×10−1) and BCM runner-up (4.51×10−1); the values of standard deviation are small across
NEOL (except BCM), indicating stable gains. On Hopper, the advantage is obvious: BCM achieves
the top SCORE (3.77 ± 6.26×10−1) with Oja close behind (3.75 ± 6.81×10−1), both well above
NEAT (w/o) (3.05±9.33×10−1); standard deviations are moderate but the means remain separated.
On Bipedal Walker, Oja leads (2.60×10−1) with BCM runner-up (2.56×10−1) and NEAT (w/o)
trailing (2.43×10−1); advantage is substantial for all methods (except Hebb), suggesting promising
potential for online learning methods. Overall, even when evolutionary weight mutation is disabled
in the counterpart, reward-modulated online plasticity in NEOL improves sample efficiency on the
non-trivial tasks, while CartPole remains saturated.

Table 8: Ablation study comparing NEOL with NEAT (w/o) on sample efficiency SCORE (mean ±
SD) for each task and method using each method’s best hyperparameters. NEAT (w/o) corresponds
to disabling the weight-modulation mechanism by setting the learning rate lr = 0. Bold marks the
highest fitness per task; underline marks the runner-up.

Task BCM Hebb Oja NEAT (w/o)

Cartpole 7.43 e−1± 1.09 e−2 7.46 e−1± 9.09 e−3 7.47 e−1 ± 8.55 e−3 7.46 e−1± 9.59 e−3

Lunar Lander 4.51 e−1± 1.22 e−2 4.51 e−1± 6.65 e−3 4.52 e−1 ± 7.93 e−3 4.29 e−1± 1.36 e−2

Hopper 3.77 ± 6.26 e−1 3.61± 6.35 e−1 3.75± 6.81 e−1 3.05± 9.33 e−1

Bipedal Walker 2.56 e−1± 1.10 e−1 1.96 e−1± 1.39 e−1 2.60 e−1 ± 1.18 e−1 2.43 e−1± 1.18 e−1

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.6 MORE EXPERIMENT RESULTS ON THE FINAL BEST FITNESS
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(b) Hebb
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Figure 4: Heatmap comparison of NEOL algorithms (BCM, Hebb, Oja) against standard NEAT in
CartPole-v1. Values represent the empirical mean of the final best fitness over 30 seeds.
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(b) Hebb
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(c) Oja
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Figure 5: Heatmap comparison of NEOL algorithms (BCM, Hebb, Oja) against standard NEAT in
LunarLander-v2. Values represent the empirical mean of the final best fitness over 30 seeds.
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(b) Hebb

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

1206.0 1420.4 2245.3 2398.7

1298.7 1980.5 2572.7 2808.2

1331.6 1724.0 2562.9 2687.9

1480.3 1768.0 2713.6 2819.9
1500

2000

2500

(c) Oja
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Figure 6: Heatmap comparison of NEOL algorithms (BCM, Hebb, Oja) against standard NEAT in
Hopper-v3. Values represent the empirical mean of the final best fitness over 30 seeds.
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Figure 7: Heatmap comparison of NEOL algorithms (BCM, Hebb, Oja) against standard NEAT in
BipedalWalker-v3. Values represent the empirical mean of the final best fitness over 30 seeds.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A.7 MORE EXPERIMENT RESULTS ON THE SAMPLE EFFICIENCY SCORE
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Figure 8: Heatmap comparison of NEOL algorithms (BCM, Hebb, Oja) against standard NEAT in
CartPole-v1. Values represent the Sample Efficiency SCORE over 30 seeds.
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Figure 9: Heatmap comparison of NEOL algorithms (BCM, Hebb, Oja) against standard NEAT in
LunarLander-v2. Values represent the Sample Efficiency SCORE over 30 seeds.
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(c) Oja
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Figure 10: Heatmap comparison of NEOL algorithms (BCM, Hebb, Oja) against standard NEAT in
Hopper-v3. Values represent the Sample Efficiency SCORE over 30 seeds.
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(b) Hebb
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Figure 11: Heatmap comparison of NEOL algorithms (BCM, Hebb, Oja) against standard NEAT in
BipedalWalker-v3. Values represent the Sample Efficiency SCORE over 30 seeds.
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A.8 SUMMARY OF MORE EXPERIMENT RESULTS

Parameter Setting. The heatmaps in Figure 4,Figure 5,Figure 6,Figure 7, Figure 8, Figure 9,
Figure 10, Figure 11 report a parameter sweep over population size {50, 100, 200, 300} and learning
rates {2.5× 10−4, 2.5× 10−3, 2.5× 10−2, 2.5× 10−1} for the three NEOL variants (BCM, Hebb,
Oja) alongside the standard NEAT baseline. Each pixel shows the empirical mean of the final best
fitness over 30 seeds; the vertical axis is the plasticity learning rate, and the horizontal axis is the
population size. Because NEAT has no learning rate, it appears as a single row per environment.

A.8.1 BEST FITNESS

On CartPole-v1 (Figure 4). All methods reach the task ceiling and remain flat across most settings
in best fitness. BCM and Hebb saturate at 500 for every population size and plasticity rate on our
heatmap, indicating that structural search alone or in combination with offline updates is sufficient
on this easy, discrete–action benchmark. Oja exhibits a mild instability only at the largest plasticity
rates and smallest populations (top row, leftmost columns), where the mean final best fitness drops
below the ceiling, but recovers as the rate is reduced or the population increases. The NEAT baseline
sits at the ceiling for all population sizes.

On LunarLander-v2 (Figure 5). The three NEOL variants consistently dominate the NEAT row
and exhibit a smooth improvement with population size. BCM is the most robust to the plasticity
learning rate: means above 320 are obtained for populations 200–300 across a wide range of rates,
and the best cell is attained at population 300. Hebb is more sensitive to the learning rate: very
large learning rates combined with small populations depress performance, while learning rates in
[2.5 × 10−4, 2.5 × 10−3] recover and surpass 320 as the population grows. Oja shows a similar
pattern, with its best region again in the bottom half of the grid and larger populations. The NEAT
row improves slightly with population, but remains roughly 10–15 points below the strongest NEOL
settings.

On Hopper-v3 (Figure 6). For BCM and Oja the surface rises sharply with population and peaks at
intermediate plasticity learning rates (2.5 × 10−3 or 2.5 × 10−2), reaching mean final best fitness
near or above 2.9k at population 300. Very small learning rates underfit and very large rates overfit
or destabilise, producing a characteristic ridge across the middle rows. Hebb benefits from the same
scaling trends but remains below BCM and Oja over most of the grid, particularly at small popu-
lations or extreme rates. Standard NEAT also scales with population but plateaus several hundred
points below the best NEOL cells, indicating that online weight adaptation contributes materially
beyond structural search in this domain. Continuous control displays a pronounced interaction be-
tween population size and plasticity rate.

On BipedalWalker-v3 (Figure 7). NEOL improves upon NEAT across broad regions. Hebb at-
tains the highest cell in the grid at population 200 with the smallest plasticity learning rate, and
degrades rapidly as the learning rate increases, especially at small populations. Oja and BCM dis-
play more gradual trends: performance climbs with population size and is best in the lowest–rate
row, with Oja’s peak at population 300 and BCM’s at population 300 as well. The NEAT row is
comparatively flat and non–monotonic in population, with means concentrated around 130–180 and
no configuration matching the top NEOL cells. These results suggest that modest, reward–gated
plasticity combined with sufficient population–level exploration is beneficial, whereas aggressive
learning rates are detrimental in this environment.

A.8.2 SAMPLE EFFICIENCY

On CartPole-v1 (Figure 8). All methods are highly sample–efficient once population size is moder-
ate, with scores climbing toward the upper bound of the metric. BCM and Hebb form broad plateaus
that peak at population 300 (around 0.74), matching or slightly edging the NEAT row. Oja shows
a mild degradation only at the largest plasticity rates and smallest populations (top–left cells), but
recovers as the rate is reduced or the population increases. The NEAT baseline improves steadily
with population (from ≈ 0.12 at 50 to ≈ 0.74 at 300).

On LunarLander-v2 (Figure 9). The three NEOL variants consistently dominate the NEAT row at
matched populations and improve smoothly with population size. BCM shares a similar pattern to
the other two methods: very large rates coupled with small populations reduce efficiency, while rates
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in [2.5 × 10−4, 2.5 × 10−3] recover as the population grows. NEAT improves with population but
remains a few points below the strongest NEOL settings (peaking around ≈ 0.437).

On Hopper-v3 (Figure 10). BCM and Oja exhibit steep gains with population and peak at intermedi-
ate plasticity learning rates (2.5× 10−3–2.5× 10−2), reaching the highest sample–efficiency scores
in the grid (near ∼ 3.7 at population 300). Very small learning rates underfit and very large rates
destabilise, producing a ridge of best performance across the middle rows. Hebb follows the same
scaling trend but remains below BCM and Oja over most of the grid. Standard NEAT also benefits
from larger populations yet plateaus well below the best NEOL cells (around ∼ 3.2), indicating a
clear advantage from online weight adaptation beyond standard offline search.

On BipedalWalker-v3 (Figure 11). NEOL improves upon NEAT across broad regions, with absolute
scores lower than Hopper but similar relative trends. Oja and BCM increase steadily with population
and perform best in the lowest–rate row, peaking at population 300 (Oja ≈ 0.26, BCM ≈ 0.26).
Hebb reaches its best cells only with low rates and larger populations and degrades rapidly as the
learning rate increases, especially at small populations. The NEAT row is comparatively flat and
never reaches the top NEOL cells (max ≈ 0.17).

Across environments, larger populations consistently improve both sample efficiency and final best
fitness for NEOL, reflecting stronger structural exploration and better coverage of favourable topolo-
gies that can then be fine–tuned online. Modest, reward–gated plasticity further strengthens these
gains, whereas aggressive learning rates are either unnecessary on saturated, discrete tasks or harm-
ful on fragile continuous–control tasks. Among plasticity rules, BCM and Oja yield the smoothest
and most robust behaviour on the continuous–control benchmarks, while Hebb is markedly more
rate–sensitive. The single–row NEAT baseline trails the best NEOL settings wherever the task is not
trivially solved, supporting the claim that reward–modulated online weight adaptation complements
evolutionary topology search.
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