
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEOL: REWARD-GATED ONLINE PLASTICITY FOR
SCALABLE NEUROEVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

NeuroEvolution of Augmenting Topologies (NEAT) excels at discovering neu-
ral architectures and weights for control tasks (Stanley & Miikkulainen, 2002a).
However, direct-encoding forces evolution to discover each connection strength
individually; in high-dimensional weight spaces, this yields weak credit assign-
ment and poor scaling on large continuous-control problems (Stanley et al., 2009;
Peng et al., 2018). We propose NeuroEvolutionary Online Learning (NEOL),
which decouples learning signals: the outer loop uses NEAT for topology
search, while an inner, reward-modulated local plasticity rule (Hebbian, Oja, or
BCM (Hebb, 1949; Oja, 1982; Bienenstock et al., 1982)) adapts synaptic weights
online within episodes. Under fixed interaction budgets and multiple seeds across
four standard control benchmarks spanning discrete and continuous action spaces,
NEOL achieves higher final returns, tighter variability, and better sample effi-
ciency than pure NEAT; gains are most pronounced in continuous control. These
improvements are statistically significant (Wilcoxon rank-sum tests), and abla-
tions indicate that benefits persist even when standard genetic weight mutation
is reduced or disabled, evidencing a division of labour between structural evolu-
tion and online synaptic credit assignment. A simple, gradient-free separation of
topology search and reward-gated online plasticity reliably boosts performance
and robustness, offering a practical template for linking neuroevolution with on-
line learning and a scalable path toward more adaptive neuroevolutionary agents.

1 INTRODUCTION

NeuroEvolution employs evolutionary operators, rather than gradient descent, to optimise neural
network architectures and parameters (Miikkulainen, 2025; Miikkulainen et al., 2024; Stanley et al.,
2019; Khan et al., 2010; Yao, 1999; Angeline et al., 1994). It has been applied to biologically
inspired models for lifelong learning (Kudithipudi et al., 2022), reinforcement learning (RL) prob-
lems (Xue et al., 2024; Chalumeau et al., 2023; Co-Reyes et al., 2021; Khadka & Tumer, 2018;
Stanley & Miikkulainen, 2002b), and even domains such as optimising land-use planning policies
to reduce carbon emissions (Young et al., 2025). Among NeuroEvolution methods, NeuroEvolution
of Augmenting Topologies (NEAT) is a landmark approach: it jointly discovers network topology
and weights and is particularly effective on tasks that require structural innovation (Stanley & Mi-
ikkulainen, 2002a; 2004).

However, relying solely on evolution for weight optimisation poses a major challenge in high-
dimensional spaces: mutation-based perturbations provide weak credit assignment, leading to poor
sample efficiency and a tendency to converge to local optima in complex continuous control (Stanley
et al., 2009). Moreover, networks evolved in a standard offline NeuroEvolution pipeline, where a
population is evolved on a task and then fixed for deployment, often struggle with real-time inter-
action and sequential decision making (Agogino et al., 2000; Bellman, 1966; Sutton et al., 1998).
These limitations have motivated hybrid approaches that combine evolutionary structure search with
more direct procedures for weight adaptation (Peng et al., 2018).

Several such hybrids have been explored. HyperNEAT (Stanley et al., 2009) exploits geometric
regularities by mapping task structure onto network topology, shifting difficulty from dimensionality
to problem structure (Stanley et al., 2009). Nevertheless, subsequent studies report that HyperNEAT
can underperform NEAT on some large-scale problems, including Atari games, and struggle when

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the state–action mapping is highly discontinuous (the “fracture” issue) (Hausknecht et al., 2014;
Kohl & Miikkulainen, 2009). Other works combine NEAT with value-based or policy-gradient RL.
For example, Whiteson et al. (2005) integrated Q-learning with NEAT, but demonstrated results only
on a single control domain (Robot Auto Racing Simulator), leaving scalability uncertain. Peng et al.
(2018) proposed NEAT with Policy Gradient Search (NEAT-PGS), where RL is typically used to
pre-train policy networks, NEAT evolves a feature network, and the policy is then further trained
given the evolved features.

These observations raise a natural question: can we use NeuroEvolution to directly train policy
networks for game-playing tasks, avoiding long and potentially unstable training chains while still
achieving robust performance? Early work by Agogino et al. (2000) explored online evolution of
each agent’s policy using a fixed 8-5-2 feedforward architecture (single hidden layer, no recurrence,
no evolving topology). While this design is lightweight and fast for online evolution, it limits ap-
plicability to more general and higher-dimensional tasks, and its evaluation focused on a simplified
“mini-Warcraft II” benchmark, where agents with 8 sensors navigate a small 2D map to reach gold
mines while avoiding a single enemy.

Since then, advances in meta learning, deep learning, reinforcement learning, and computational
resources have made it feasible for NeuroEvolution to evolve far more complex network topologies
and to scale neural networks substantially (Stanley et al., 2019). At the same time, this scalabil-
ity amplifies a long-standing weakness: mutation-driven local search over high-dimensional weight
spaces provides poor credit assignment and is sample inefficient. A natural response is to sepa-
rate concerns across time horizon: let evolution discover structure over generations, and let online
interaction adapt weights within episodes. In particular, if we decompose policy learning into (i)
evolutionary search over topology and (ii) online weight adaptation from interaction feedback, we
can exploit structural exploration while using reward signals to provide immediate, local credit as-
signment, improving optimisation and sample efficiency in NeuroEvolution. However, instantiating
this separation in a principled and effective way is non-trivial. Therefore, this paper aims to answer:

(1) How should we decompose policy learning, specifically for NEAT, so that direct online training
becomes more robust in terms of rewards and more sample efficient?

(2) How should we design the online learning mechanism and propagate reward signals to weights
so that interaction feedback is incorporated effectively during training?

Contribution. This paper addresses open challenges in robustness and sample efficiency for pol-
icy learning in NEAT by decomposing training into weight updates and topology updates and by
propagating reward signals. We develop a NeuroEvolution Online Learning (NEOL) framework.
To the best of our knowledge, although many RL and other methods have been proposed in the
context of NeuroEvolution (Co-Reyes et al., 2021; Miconi et al., 2019; Stanley et al., 2009; White-
son et al., 2005; Agogino et al., 2000), this is the first use of online learning via synaptic plasticity
within NEAT training. We provide extensive experimental evidence that NEOL methods are com-
petitive with standard NEAT in cumulative rewards over the time horizon and in sample efficiency.
Specifically, using environments taken from the RL literature, we compare three online learning
methods based on synaptic plasticity, including the Hebbian rule, Oja’s rule, and the BCM rule.
These findings highlight the potential of online learning via synaptic plasticity for NeuroEvolution
in interactive RL environments and clarify the role of online learning in effective game-playing.

2 PRELIMINARIES AND BACKGROUND

First, we provide a formal formulation of sequential decision making by using the Markov Decision
Process (MDP). Given an MDP defined by a tuple ⟨S,A,P,R, γ, T ⟩ where S is the state space, A
is the action space, γ ∈ [0, 1] is the discount factor, R : S × A → R is the reward function and
P : S × A → S is the transistion function. In this paper, we consider an online RL setting where
the agent can interact with the environment repeatedly until a certain time horizon T by using a
policy π : S → A. Such an agent’s policy is usually represented by a neural net. Then, the goal
of the entire learning process is to find an optimal policy π∗ such that it can maximise the expected

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

discounted long-term rewards:

π∗ ∈ argmax
π

Eπ

(
T∑

t=0

γtR (st, at) | s0, a0

)
.

As a special setting for NeuroEvolution, this paper directly refers to the cumulative reward as the
fitness of the policy at time horizon T , i.e., f(π, T) :=

∑T
t=0 γ

tR (st, at), st, s0 ∈ S, at, a0 ∈ A.

Learning in Games. Learning in games is a fundamental challenge in machine learning and ar-
tificial intelligence, with wide-ranging applications from board games to robust optimisation and
agents’ game-playing (Silver et al., 2016; Schrittwieser et al., 2020). In this context, games broadly
refer to strategic interactions among players and environments, which may be adversarial or collab-
orative. A particularly rich setting emerges in reinforcement learning problems, including classical
control tasks and gridworld tasks, where the goal is to succeed against strategic environments, train
effective policies, and achieve high cumulative rewards for agents (Co-Reyes et al., 2021; Khadka
& Tumer, 2018; Salimans et al., 2017; Moriarty et al., 1999; Sutton et al., 1998).

Online Learning via Synaptic Plasticity. Online learning employs a sequential protocol in which
the learner repeatedly predicts, receives feedback, and immediately updates its hypothesis, aiming
to minimise cumulative regret even under non-stationary or adversarial scenarios (Shalev-Shwartz,
2011). Unlike batch learning, updates are performed incrementally on a per-example basis without
revisiting the entire data set, which naturally suits streaming data and continual adaptation (Shalev-
Shwartz, 2011). Mammalian brains support effective online learning, adapting as experience un-
folds. A core mechanism underpinning this capability is synaptic plasticity, which denotes activity-
dependent changes in synaptic efficacy and has long been regarded as a cellular substrate of learning
and memory (the plasticity–memory hypothesis) (Martin et al., 2000; Takeuchi et al., 2014). More
precisely, long-term potentiation and long-term depression (LTP/LTD) are widely observed in mam-
malian excitatory synapses and support experience-dependent circuit remodelling and behavioural
learning (Malenka & Bear, 2004; Nicoll, 2017). Spike-timing dependent plasticity (STDP) refines
Hebbian learning by making synaptic changes depend on the precise millisecond timing between
pre- and postsynaptic spikes, and has been demonstrated across species and brain areas (Caporale &
Dan, 2008; Sjöström & Gerstner, 2010; Feldman, 2012).

At the behavioural time scale, many forms of plasticity are modulated by a third factor (for ex-
ample, neuromodulators such as dopamine or acetylcholine), yielding three-factor learning rules
that enable reward-gated and behaviourally relevant credit assignment (Frémaux & Gerstner, 2016;
Gerstner et al., 2018; Frémaux et al., 2010). Coupling a global reward signal with local activity
correlations enables online reinforcement learning and distal credit assignment without backpropa-
gating gradients through time (Seung, 2003; Florian, 2007; Xie & Seung, 2004). In machine learn-
ing, differentiable formulations of plasticity and neuromodulation have improved fast adaptation in
few-shot and continual settings, demonstrating practical benefits of embedding synapse-level online
learning in artificial neural networks (Miconi et al., 2018; 2019).

Let x denote presynaptic activity, y postsynaptic activity, w a synaptic weight, and η > 0 a learning
rate.

HEBBIAN RULE. Hebb’s postulate states that the connection between two neurons strengthens
when they are coactive (“cells that fire together wire together”), yielding a simple local, correlation-
based weight update (Hebb, 1949; Caporale & Dan, 2008):

∆w = η x y. (1)

While biologically plausible and fully local, pure Hebbian updates are unstable without additional
constraints, as weights can diverge (Caporale & Dan, 2008).

OJA’S RULE. Oja introduced a Hebbian update with an implicit normalisation term that prevents
divergence and aligns the weight vector with the first principal component under stationary in-
puts (Oja, 1982):

∆w = η y (x− y w). (2)
This modification stabilises learning and endows the single neuron with a principled PCA interpre-
tation (Oja, 1982).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

BCM RULE. The Bienenstock–Cooper–Munro (BCM) theory proposes a sliding, activity-
dependent threshold that separates LTD from LTP and supports the emergence of selectivity while
maintaining homeostasis (Bienenstock et al., 1982):

∆w = η y (y − θ)x, θ̇ = α
(
y2 − θ

)
, (3)

where θ is a slow-moving threshold tracking recent activity and α > 0 controls its timescale (Bi-
enenstock et al., 1982).

Bridging Evolutionary Computation and Online Learning. The idea of combining population-
based search with lifelong learning is a foundational aim for achieving adaptive intelli-
gence (Schmidhuber, 1987; Holland, 1992; Miikkulainen, 2025). However, early attempts to evolve
synaptic plasticity rules directly within NeuroEvolution faced a key limitation: expanding the ge-
netic search space often hindered learning rather than helping (Stanley et al., 2003). A notable
advance was neuromodulation, in which reward-like signals gate local Hebbian updates. This ap-
proach proved highly effective, enabling networks to solve dynamic, reward-based tasks that were
intractable for both fixed-weight and non-modulated plastic networks (Soltoggio et al., 2008). This
success helped establish a powerful paradigm: an outer loop of evolution that designs an inner
loop online learner (Soltoggio et al., 2018). This two-timescale approach has since been explored
from multiple angles. To address challenges such as deceptive search landscapes and scalability,
diversity-driven methods such as novelty search (Lehman & Stanley, 2008; 2011) and indirect en-
codings such as adaptive HyperNEAT have been developed (Risi, 2012). From a meta optimisation
perspective, methods such as Population-Based Training (PBT) have provided practical validation
for using asynchronous evolutionary search to supervise and adapt inner learning dynamics on-
line (Jaderberg et al., 2017). More recently, this paradigm has been extended further. Hebbian meta
learning has evolved synapse-specific rules that allow agents to adapt rapidly in complex reinforce-
ment learning tasks (Najarro & Risi, 2020). Going further, research has shown that evolution can
discover or refine entire RL algorithms from scratch, yielding domain agnostic solutions with strong
generalisation (Co-Reyes et al., 2021). In this paper, we provide a systematic empirical study across
multiple game benchmarks that contrasts pure NEAT with reward-modulated plasticity NEAT, and
compares several online rules (Hebbian, Oja, BCM). Our results show that modulated NEAT con-
sistently outperforms pure NEAT, especially in continuous action spaces.

3 NEUROEVOLUTIONARY ONLINE LEARNING

In this section we present the NeuroEvolutionary Online Learning (NEOL) framework. We begin
with a high-level overview, then describe the decoupled update strategy for weights and topology
in Section 3.1, and finally detail the main algorithm in Section 3.2. Additional components are
provided in Appendix A.

3.1 DECOUPLING UPDATES FOR WEIGHT AND TOPOLOGY

We maintain a population of network architectures, each encoded as a genome. The flowchart in
Fig. 1 shows a generational loop in which evolution and evaluation are interleaved to progressively
improve solutions. Unlike standard NEAT, which mutates both topology and weights offline between
episodes and evaluates policies with fixed weights during rollouts, NEOL decouples the two update
processes. During each individual rollout, synaptic plasticity performs online weight adaptation
driven by reward feedback; only after the rollout are topological changes applied by evolutionary
variation. This separation places credit assignment for weights on the interaction timescale while
reserving structural innovation for the generational timescale, improving sample use and stabilising
search (see Section 4).

The process begins with population network structure initialisation (top left, red box in Fig. 1), which
creates the initial set of parent networks. The population then enters the main neuroevolution loop
(large yellow box). At the start of each generation, the current parents produce offspring through
variation (left panel). Variation mutates topology by adding or removing nodes and connections, as is
standard in neuroevolution. Each offspring is then evaluated in the individual rollout phase (centre
panel). During the rollout, the agent interacts with the environment: the network outputs actions
and receives rewards in a closed loop. A key feature of our approach is online weight adaptation,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Generation 0 Best Individual

NeuroEvolution Loop

Final
Network Structure

Population Network
Structure Initialisation

Variation

OffspringParents Weight-updated
Offspring

Online weight adapt

Individual rollout

Action

Final
Offspring

SelectionCumulative
Reward

Reward

Figure 1: Overview of the NeuroEvolution Online Learning (NEOL) algorithm. The procedure
starts by initialising a population of network structures. In each generation, variation operators
produce offspring from the current parents. Each offspring is evaluated in an individual rollout,
during which its weights adapt online through reward-modulated plasticity (illustrated by the colour
shift from blue to orange). The cumulative reward from the rollout is used as the fitness for selection
to form the next generation. The best individual found over the population determines the final
network structure, including its adapted weights and evolved topology.

where reward-modulated plasticity rules (for example, Hebbian or BCM) update connection weights
within the episode. This adaptation is depicted in the figure by connections changing from cool
to warm colours. After the rollout, performance is summarised as the cumulative reward, which
serves as fitness for selection (right panel). Based on these fitness scores, weight updated offspring
are selected to become the parents of the next generation, closing the loop. The best performing
individual across all generations is tracked, and its architecture, together with the adapted weights
and evolved topology, is reported as the final network structure (top right, green box) when the
algorithm terminates.

3.2 PROPOSED ALGORITHM

Algorithm 1 NeuroEvolutionary Online Learning (NEOL)

Input: Generations: G ∈ N>0; Population size: P ∈ N>0; NeuroEvolution config: Θ0 (Described
in Algorithm 3). Parameters for fitness evaluation: Episodes N ∈ N>0; Max steps Tmax ∈ N>0;
Learning rule L ∈ {Hebb, Oja, BCM}; Plasticity rate η ∈ R>0; Reward scaling β ∈ R>0;
Environment env.

Output: Best evolved genome g∗.
1: P = INITIALISEPOPULATION(Θ0, P)
2: for gen ∈ {1, . . . , G} do
3: for all genome gi ∈ P do
4: gi.fitness = ONLINEROLLOUT(gi,L, η, β,N, Tmax, env) ▷ See Algorithm 2
5: P = REPRODUCE(P) ▷ For NEAT: See Algorithm 3 and 4
6: return best genome g∗ from final population P

Algorithm 1 implements a two-timescale procedure. A population of size P is initialised from Θ0.
In each generation, every genome gi is evaluated by Algorithm 2; its mean episodic return becomes
its fitness. After evaluation, NEAT reproduction performs selection and topological variation to
produce the next population. Across generations, the best genome among the population is tracked;
after G generations, the algorithm returns g∗.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 in Appendix A evaluates one genome with online weight adaptation. For each episode,
a network phenotype is created from g, the environment is reset, and the agent interacts for at
most Tmax steps. At step t, the network proposes â, which is clipped to a and applied to obtain
(s′, r,done). A reward-scaled signal rscaled drives plastic updates according to L at rate η using only
local pre and post activities together with rscaled. The fitness is the mean return over N episodes.

4 EXPERIMENTS

4.1 EXPERIMENT SETUPS

Benchmark Environments. We evaluate on four standard Gymnasium environments spanning
diverse reward structures and action spaces. (1) CartPole-v1 (Farama Foundation, b): con-
trol a cart on a frictionless track to balance an upright pole. The agent receives a dense reward
of +1 per timestep until failure (the pole falls, the cart leaves the bounds, or the time limit is
reached). The action space is discrete with two choices (apply force left or right), making it a low-
dimensional control task. (2) LunarLander-v2 (Farama Foundation, d): a 2D lunar module must
soft land at the (0, 0) pad using a main engine and two side thrusters. Rewards are densely shaped
(proximity, velocity, and orientation towards landing conditions yield higher rewards; bonuses for
landing legs; penalties for engine usage; terminal reward +100 for a safe landing and −100 for
a crash). The action space is discrete with four choices, again a low-dimensional control task.
(3) BipedalWalker-v3 (Farama Foundation, a): a 2D Box2D biped must walk across uneven
terrain (normal and hardcore variants). Rewards are dense (forward progress, −100 for falling,
torque penalties). The action space is continuous and four-dimensional, [−1, 1]4, making it a low-
dimensional continuous control task. (4) Hopper-v3 (Farama Foundation, c): a MuJoCo one-
legged hopper applies torques at three joints to hop forward. The total reward is a dense combi-
nation of healthy reward, forward progress, and control cost. The action space is continuous and
three-dimensional, [−1, 1]3, a low-dimensional continuous control task. Environment implemen-
tations follow the Gymnasium reference; physics backends are Box2D for LunarLander and
BipedalWalker, and MuJoCo for Hopper.

Algorithm Protocol. Initial policies at generation 0 are configured via NEAT with a minimal topol-
ogy mapping observations directly to actions. The network topology expands during evolution using
standard genetic operators of NEAT. Hidden unit activation functions are set in the configuration,
while output units use tanh. Before activation, the summed input to each neuron is clipped to a
maximum absolute value of 50.0. For continuous control, the final tanh output is hard clipped to
[−1, 1]. For discrete action spaces, the policy selects the action corresponding to the output neuron
with the highest activation (argmax). The inner loop of online plasticity (Hebb, Oja, or BCM) is
reward-modulated and runs at every step of an episode. The agent’s fitness is the mean total return
over N evaluation episodes (where N corresponds to repeat per GEN in our code). After each
local weight update, the new weight value is clipped to a maximum absolute value of 10.0. We
primarily use a Lamarckian inheritance scheme in which in-episode weight updates are written back
to the genome at the end of the episode (WRITE BACK=True); we also include an ablation where
inheritance is disabled (WRITE BACK=False). The use of standard genetic weight mutation is
controlled by the WM MODE parameter, which can disable mutation, enable it via the configuration,
or set a specific probability.

Experimental Configuration and Evaluation. To ensure fair comparison across population sizes
P ∈ {50, 100, 200, 300}, we fixed a total interaction budget of B environment steps per experiment.
Each agent’s fitness was averaged over N evaluation episodes. For analysis convenience, all runs
used G = 500 generations. For NEOL agents, the key inner loop hyperparameter (the learning rate
lr) was selected via a grid search over {2.5 × 10−4, 2.5 × 10−3, 2.5 × 10−2, 2.5 × 10−1}. For
statistical validation, each unique configuration (algorithm, hyperparameters, and population size)
was evaluated over 30 independent random seeds.

4.2 EMPIRICAL ANALYSIS ON THE CONVERGENCE OF BEST FITNESS

To systematically evaluate the role of online neural plasticity in evolutionary processes, we con-
ducted a comprehensive comparison against NEAT. This comparison pitted the standard NEAT
method against our NEOL framework, which integrates online plasticity rules (Hebb, Oja, and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

BCM). The results clearly demonstrate that the NEOL framework exhibits substantial advantages
across multiple test environments.

0 100 200 300 400 500
Generation

200

400

B
es

t F
itn

es
s

Cartpole: OL vs NEAT

0 100 200 300 400 500
Generation

0

100

200

300

B
es

t F
itn

es
s

Lunar: OL vs NEAT

0 100 200 300 400 500
Generation

1000

2000

3000

B
es

t F
itn

es
s

Hopper: OL vs NEAT

0 100 200 300 400 500
Generation

0

100

200

B
es

t F
itn

es
s

BipedalWalker: OL vs NEAT

BCM Hebb Oja NEAT
Algorithm

480

490

500

510

520

B
es

t F
itn

es
s

BCM Hebb Oja NEAT
Algorithm

300

310

320

330

B
es

t F
itn

es
s

BCM Hebb Oja NEAT
Algorithm

1500

2000

2500

3000

3500

B
es

t F
itn

es
s

BCM Hebb Oja NEAT
Algorithm

0

50

100

150

200

250

300

B
es

t F
itn

es
s

Figure 2: Performance comparison of NEOL with the standard NEAT across four environments
(CartPole-v1, LunarLander-v2, Hopper-v3, and BipedalWalker-v3). Top row:
convergence plots showing fitness over generations. Bottom row: boxplots of final-generation
fitness distributions. BCM, Hebb, and Oja learning rules are shown in blue, orange, and green,
respectively, while standard NEAT is shown in red.

In the simpler CartPole task, all methods rapidly converge to the maximum fitness, serving as a suc-
cessful sanity check. However, in the more complex environments, significant performance dispari-
ties emerge. As shown in the convergence plots (Figure 2, top row), the NEOL variants consistently
achieve higher final fitness scores than standard NEAT. The boxplots (Figure 2, bottom row) and
standard deviations (Table 1) further reveal that while standard NEAT struggles, often resulting in
a high variance and numerous low-performing outliers, the NEOL methods achieve a superior me-
dian performance. Notably, in Lunar Lander, NEOL not only outperforms NEAT but also exhibits a
tighter fitness distribution, indicating higher learning reliability in terms of smaller variance.

The observed performance gains are not coincidental. We confirmed their statistical significance us-
ing a one-sided Wilcoxon rank-sum test, with the alternative hypothesis that NEOL variants achieve
higher fitness than NEAT. As detailed in Table 5, we reject the null hypothesis at a significance level
of p < 0.05 for all NEOL variants across all three complex tasks. This provides strong evidence that
the integration of online learning is the source of the performance improvement.

These results lead to the conclusion that the reward-modulated online learning serves as a more ef-
fective mechanism for policy fine-tuning in NeuroEvolution than relying on structural search alone.
In our framework, the outer loop of evolution discovers promising network topologies, while the
inner loop of online plasticity provides an efficient, gradient-free mechanism for credit assignment
and rapid weight optimisation within an agent’s lifetime. This demonstrates that online plasticity is
not merely an incremental add-on but can act as a powerful core component of neuroevolutionary
systems, enhancing both final performance and learning reliability, even in the absence of traditional
weight mutation operators.

Table 1: Best final-generation fitness (mean ± standard deviation (SD)), Bold marks the highest
fitness per task; underline marks the runner-up.

Task BCM Hebb Oja NEAT

CartPole 500.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00

Lunar Lander 324.34 ± 3.86 323.35± 3.67 323.53± 4.19 311.77± 8.18

Hopper 2983.82 ± 479.79 2819.89± 577.33 2900.94± 562.16 2680.22± 603.53

Bipedal Walker 217.39± 82.82 233.30 ± 62.42 227.10± 81.96 183.36± 71.82

4.3 EMPIRICAL ANALYSIS ON SAMPLE EFFICIENCY

Sample efficiency is one of the important concepts in RL algorithms (Yarats et al., 2021; D’Oro
et al., 2023; Xue et al., 2024). In this paper, we also aim to evaluate the efficiency of the proposed

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

algorithm when interacting with any given environment in an online manner. First, we need to define
a proper metric: what is sample efficiency in the context of NEOL?

Inspired and adapted from a similar learning speed metric (Peng et al., 2018) and a QD-score Area-
Under-Curve (AUC) (Xue et al., 2024), we consider the following: given M , a total number of
samples or a total number of interactions with an environment Env until time horizon T ,

SCORE :=

T∑
t=1

Eπ(f (π, t))

M
≈

T∑
t=1

1

M

 1

n

n∑
j=1

f (πj , t)

 ,

where n is the number of independent runs we conduct and f(π, t) :=
∑t

τ=0 γ
τREnv (sτ , aτ). In

this paper, n = 30 and M is the multiple of the number of generations and the population. SCORE
measures how many expected cumulative rewards per sample we obtain in the training process, and
it is roughly the area under the best fitness curve. It measures the optimisation efficiency of an
NEOL algorithm. However, the expectation Eπ(f (π, t)) is hard to compute in practice, and thus
we use a simple Monte Carlo (Kalos & Whitlock, 2009; Owen, 2013) to approximate the value of
SCORE at each time step.

Table 2: Sample Efficiency SCORE (mean ± SD) at fixed population size pop = 300. For plastic
methods (BCM, Hebb, Oja), we use the best learning rate per task; NEAT uses its pop = 300 runs.
Values shown with three significant figures (a eb ≡ a× 10b). Bold marks the highest value per task;
underline marks the runner-up. Higher SCORE implies higher sample efficiency.

Task BCM Hebb Oja NEAT

CartPole 7.43 e−1± 1.09 e−2 7.46 e−1± 9.08 e−3 7.47 e−1 ± 8.55 e−3 7.44 e−1± 1.10 e−2

Lunar Lander 4.51 e−1± 1.22 e−2 4.51 e−1± 6.65 e−3 4.52 e−1 ± 7.93 e−3 4.37 e−1± 7.29 e−3

Hopper 3.77 ± 6.26 e−1 3.61± 6.35 e−1 3.75± 6.81 e−1 3.22± 6.73 e−1

Bipedal Walker 2.56 e−1± 1.10 e−1 1.96 e−1± 1.39 e−1 2.60 e−1 ± 1.18 e−1 1.74 e−1± 9.38 e−2

Table 2 summarises the SCORE metric at a fixed population size (pop = 300). Online learning
via synaptic plasticity consistently improves sample efficiency over NEAT. Oja attains the best or
second-best SCORE on three tasks (CartPole, Lunar Lander, Bipedal Walker), while BCM narrowly
leads on Hopper with Oja a close second. The corresponding Wilcoxon rank-sum tests against
NEAT (Table 6) confirm these gains: all plasticity rules are statistically significant on Lunar Lander
and Hopper; on Bipedal Walker, significance holds for BCM and Oja; on CartPole, no significant
differences appear owing to saturation. Overall, these results indicate that NEOL improves not only
asymptotic fitness but also the sample efficiency with which good policies are discovered.

4.4 ABLATION STUDIES

0 100 200 300 400 500
Generation

200

400

B
es

t F
itn

es
s

Cartpole: OL VS NEAT (w/o)

0 100 200 300 400 500
Generation

0

100

200

300

B
es

t F
itn

es
s

Lunar: OL VS NEAT (w/o)

0 100 200 300 400 500
Generation

1000

2000

3000

B
es

t F
itn

es
s

Hopper: OL VS NEAT (w/o)

0 100 200 300 400 500
Generation

0

100

200

B
es

t F
itn

es
s

Bipedal Walker: OL VS NEAT (w/o)

BCM Hebb Oja NEAT (w/o)
Algorithm

480

490

500

510

520

B
es

t F
itn

es
s

BCM Hebb Oja NEAT (w/o)
Algorithm

300

310

320

330

B
es

t F
itn

es
s

BCM Hebb Oja NEAT (w/o)
Algorithm

1500

2000

2500

3000

B
es

t F
itn

es
s

BCM Hebb Oja NEAT (w/o)
Algorithm

0

50

100

150

200

250

300

B
es

t F
itn

es
s

Figure 3: Ablation study comparing NEOL with NEAT (w/o), where NEAT (w/o) corresponds to
disabling the weight-modulation mechanism by setting the learning rate lr = 0. Top row: con-
vergence plots showing fitness over generations. Bottom row: boxplots of final-generation fitness
distributions. BCM, Hebb, and Oja learning rules are shown in blue, orange, and green, respectively,
while NEAT (w/o) is shown in red.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Ablation on final fitness. We ablate the online learning component by disabling weight modu-
lation in NEAT (“NEAT (w/o)”, achieved by setting the learning rate η = 0) while keeping all
other settings identical. Figure 3 contrasts convergence (top row) and final-generation fitness dis-
tributions (bottom row) across CartPole, Lunar Lander, Hopper, and Bipedal Walker. In CartPole,
all methods rapidly reach the performance ceiling, as expected. In Lunar Lander and Hopper, the
NEOL variants (BCM, Hebb, Oja) converge faster and attain higher asymptotic fitness than NEAT
(w/o). The boxplots further indicate higher medians, tighter interquartile ranges, and markedly fewer
low-performing outliers for NEOL, evidencing improved stability. On the Bipedal Walker, NEOL
likewise yields a higher and more reliable final performance, with reduced variance relative to NEAT
(w/o). Taken together, these results isolate the contribution of online synaptic plasticity: removing
it degrades both the attained fitness and the robustness of learning.

Ablation on sample efficiency. We also evaluate sample efficiency under the same ablation. Ta-
ble 8 reports the SCORE metric, showing consistent gains for NEOL over NEAT (w/o) across the
non-trivial tasks. These improvements align with the faster rise of the NEOL learning curves in
Figure 3, indicating that online plasticity not only improves the final outcome but also accelerates
progress towards strong policies with fewer evaluations.

Summary. Across tasks, the ablation confirms that the online learning mechanism is the key factor
of the observed improvements: it increases asymptotic fitness, tightens performance distributions,
and enhances sample efficiency, whereas removing it (NEAT (w/o)) leads to slower convergence,
lower final fitness, and greater variability.

5 CONCLUSION AND DISCUSSION

This work addresses the core challenge of weak credit assignment in NeuroEvolution by decoupling
optimisation across two timescales. We introduced NeuroEvolution Online Learning (NEOL), in
which an outer generational search discovers effective network topologies via NEAT (Stanley &
Miikkulainen, 2002a), while an inner, within-lifetime phase rapidly adapts synaptic weights. To
propagate reward for this adaptation, we employed local, biologically plausible, reward-modulated
plasticity rules: Hebb (Hebb, 1949), Oja (Oja, 1982), and BCM (Bienenstock et al., 1982) as a sim-
ple and effective mechanism for online credit assignment. To the best of our knowledge, this is a
first step towards integrating online learning via synaptic plasticity into NeuroEvolution (i.e., NEAT)
within a general NEOL framework. Our contribution clarifies a principled separation between struc-
tural search and local weight adaptation for credit assignment in neuroevolutionary systems.

Across benchmarks, NEOL consistently outperforms pure NEAT in final performance, reliability,
and sample efficiency, with the largest gains in continuous control tasks where standard NeuroEvo-
lution often struggles. By fixing the learning rules rather than meta-evolving them, our minimal
design isolates the benefit of plasticity and contrasts with approaches that evolve the rules them-
selves (for example, EPANN (Soltoggio et al., 2018)) or rely on complex, global updates (for ex-
ample, NEAT+RL hybrids (Peng et al., 2018)). These results indicate a strong synergy between
evolutionary structural search and local online learning.

Despite the promising potential of our results, our work has some limitations. Although rigorous
statistical tests were used to verify our empirical results, our proposed method lacks a theoretical
guarantee, like evolutionary reinforcement learning algorithms (Lin, 2025; Qian et al., 2024; Buz-
dalov et al., 2013). Performance can be sensitive to task characteristics and hyperparameters, and
our empirical evaluation would benefit from broader coverage to strengthen external validity.

Future work could focus on both theoretical and practical extensions of the general NEOL frame-
work. From a theoretical perspective, it remains a challenging open problem to establish conditions
under which NEOL enjoys provable convergence rates, sample efficiency bounds, or regret guaran-
tees. On the practical side, extending NEOL with richer mutation operators, additional crossover,
non-elitist selection mechanisms, and alternative synaptic plasticity rules may further enhance per-
formance in complex settings. Scaling NEOL to larger benchmarks will enable systematic compar-
isons against state-of-the-art reinforcement learning and other hybrid NeuroEvolution–RL methods,
yielding a clearer picture of when and how online plasticity most effectively boosts NeuroEvolution.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We have no ethical concerns to declare.

REPRODUCIBILITY STATEMENT

We provide an anonymous GitHub repository at https://anonymous.4open.science/r/
NeuroEvolution_Online_Learning_NEOL-41F7/Tasks/BW/ojaNEATRL.py, con-
taining all source code and environment specifications required to run our experiments from scratch.
To preserve double blind anonymity, we do not include raw configuration files in the submission. In-
stead, all model/algorithm settings and training protocols (including NEOL components, optimiser
choices, schedules, population size, mutation/crossover rates, selection pressure, etc.) are fully enu-
merated in the paper, see Section 3, Section 4, and Appendix A.2. Readers can launch from scratch
with an arbitrary random seed and reproduce our tables/figures within expected stochastic variation.

Computational Consideration: We provide sufficient information on the computer resources used
for each experiment, specifically describing the use of a general-purpose computing cluster with Ice
Lake and Cascade Lake nodes. For each job, it specifies the type of compute worker (e.g., single
CPU with 60+cores and 100+G memory), and the execution time (up to 12 days).

REFERENCES

Adrian Agogino, Kenneth Stanley, and Risto Miikkulainen. Online interactive neuro-evolution.
Neural Processing Letters, 11(1):29–38, 2000.

Peter J Angeline, Gregory M Saunders, and Jordan B Pollack. An evolutionary algorithm that
constructs recurrent neural networks. IEEE transactions on Neural Networks, 5(1):54–65, 1994.

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

Elie L. Bienenstock, Leon N. Cooper, and Paul W. Munro. Theory for the development of neu-
ron selectivity: orientation specificity and binocular interaction in visual cortex. The Journal of
Neuroscience, 2(1):32–48, 1982.

Maxim Buzdalov, Arina Buzdalova, and Anatoly Shalyto. A first step towards the runtime analy-
sis of evolutionary algorithm adjusted with reinforcement learning. In 2013 12th International
Conference on Machine Learning and Applications, volume 1, pp. 203–208, 2013.

Natalia Caporale and Yang Dan. Spike timing–dependent plasticity: A hebbian learning rule. Annual
Review of Neuroscience, 31:25–46, 2008.

Felix Chalumeau, Raphael Boige, Bryan Lim, Valentin Macé, Maxime Allard, Arthur Flajolet, An-
toine Cully, and Thomas PIERROT. Neuroevolution is a competitive alternative to reinforcement
learning for skill discovery. In The Eleventh International Conference on Learning Representa-
tions, 2023. URL https://openreview.net/forum?id=6BHlZgyPOZY.

John D Co-Reyes, Yingjie Miao, Daiyi Peng, Esteban Real, Quoc V Le, Sergey Levine, Honglak
Lee, and Aleksandra Faust. Evolving reinforcement learning algorithms. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
0XXpJ4OtjW.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and
Aaron Courville. Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Bar-
rier. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=OpC-9aBBVJe.

Farama Foundation. Bipedal walker — gymnasium documentation. https://gymnasium.
farama.org/environments/box2d/bipedal_walker/, a. Accessed: 2025-09-21.

Farama Foundation. Cart pole — gymnasium documentation. https://gymnasium.farama.
org/environments/classic_control/cart_pole/, b. Accessed: 2025-09-21.

10

https://anonymous.4open.science/r/NeuroEvolution_Online_Learning_NEOL-41F7/Tasks/BW/ojaNEATRL.py
https://anonymous.4open.science/r/NeuroEvolution_Online_Learning_NEOL-41F7/Tasks/BW/ojaNEATRL.py
https://openreview.net/forum?id=6BHlZgyPOZY
https://openreview.net/forum?id=0XXpJ4OtjW
https://openreview.net/forum?id=0XXpJ4OtjW
https://openreview.net/forum?id=OpC-9aBBVJe
https://gymnasium.farama.org/environments/box2d/bipedal_walker/
https://gymnasium.farama.org/environments/box2d/bipedal_walker/
https://gymnasium.farama.org/environments/classic_control/cart_pole/
https://gymnasium.farama.org/environments/classic_control/cart_pole/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Farama Foundation. Hopper — gymnasium documentation. https://gymnasium.farama.
org/environments/mujoco/hopper/, c. Accessed: 2025-09-21.

Farama Foundation. Lunar lander — gymnasium documentation. https://gymnasium.
farama.org/environments/box2d/lunar_lander/, d. Accessed: 2025-09-21.

Daniel E. Feldman. The spike-timing dependence of plasticity. Neuron, 75(4):556–571, 2012.

Răzvan V. Florian. Reinforcement learning through modulation of spike-timing–dependent synaptic
plasticity. Neural Computation, 19(6):1468–1502, 2007.

Nicolas Frémaux and Wulfram Gerstner. Neuromodulated spike-timing-dependent plasticity, and
theory of three-factor learning rules. Frontiers in Neural Circuits, 9:85, 2016.

Nicolas Frémaux, Henning Sprekeler, and Wulfram Gerstner. Functional requirements for reward-
modulated spike-timing–dependent plasticity. Journal of Neuroscience, 30(40):13326–13337,
2010.

Wulfram Gerstner, Marco Lehmann, Vasiliki Liakoni, Dane Corneil, and Johanni Brea. Eligibility
traces and plasticity on behavioral time scales: Experimental support of neohebbian three-factor
learning rules. Frontiers in Neural Circuits, 12:53, 2018.

Matthew Hausknecht, Joel Lehman, Risto Miikkulainen, and Peter Stone. A neuroevolution ap-
proach to general atari game playing. IEEE Transactions on Computational Intelligence and AI
in Games, 6(4):355–366, 2014.

Donald O. Hebb. The Organization of Behavior: A Neuropsychological Theory. John Wiley & Sons,
New York, 1949.

John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence. Complex Adaptive Systems. MIT
Press, Cambridge, MA, April 1992.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue, Aja
Huang, Trevor Harley, et al. Population based training of neural networks. arXiv preprint, 2017.

Malvin H Kalos and Paula A Whitlock. Monte Carlo Methods. John Wiley & Sons, 2009.

Shauharda Khadka and Kagan Tumer. Evolution-guided policy gradient in reinforcement learning.
Advances in Neural Information Processing Systems, 31, 2018.

Maryam Mahsal Khan, Gul Muhammad Khan, and Julian F Miller. Evolution of neural networks
using cartesian genetic programming. In IEEE congress on evolutionary computation, pp. 1–8.
IEEE, 2010.

Nate Kohl and Risto Miikkulainen. Evolving neural networks for strategic decision-making prob-
lems. Neural Networks, 22(3):326–337, 2009.

Dhireesha Kudithipudi, Mario Aguilar-Simon, Jonathan Babb, Maxim Bazhenov, Douglas Black-
iston, Josh Bongard, Andrew P Brna, Suraj Chakravarthi Raja, Nick Cheney, Jeff Clune, et al.
Biological underpinnings for lifelong learning machines. Nature Machine Intelligence, 4(3):196–
210, 2022.

Joel Lehman and Kenneth O. Stanley. Exploiting open-endedness to solve problems through the
search for novelty. In Proceedings of the 11th International Conference on Artificial Life (ALIFE
XI), 2008.

Joel Lehman and Kenneth O. Stanley. Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary Computation, 19(2):189–223, 2011.

Shishen Lin. Randomised optimism via competitive co-evolution for matrix games with bandit feed-
back. In Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence
(IJCAI-25), 2025.

11

https://gymnasium.farama.org/environments/mujoco/hopper/
https://gymnasium.farama.org/environments/mujoco/hopper/
https://gymnasium.farama.org/environments/box2d/lunar_lander/
https://gymnasium.farama.org/environments/box2d/lunar_lander/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Robert C. Malenka and Mark F. Bear. Ltp and ltd: An embarrassment of riches. Neuron, 44(1):
5–21, 2004.

Stephen J. Martin, Paul D. Grimwood, and Richard G. M. Morris. Synaptic plasticity and memory:
An evaluation of the hypothesis. Annual Review of Neuroscience, 23:649–711, 2000.

Thomas Miconi, Kenneth O. Stanley, and Jeff Clune. Differentiable plasticity: Training plastic
neural networks with backpropagation. In Jennifer Dy and Andreas Krause (eds.), Proceed-
ings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pp. 3559–3568. PMLR, 2018. URL https://proceedings.
mlr.press/v80/miconi18a.html.

Thomas Miconi, Aditya Rawal, Jeff Clune, and Kenneth O. Stanley. Backpropamine: Training
self-modifying neural networks with differentiable neuromodulated plasticity. In International
Conference on Learning Representations (ICLR), 2019. URL https://openreview.net/
forum?id=r1lrAiA5Ym.

Risto Miikkulainen. Neuroevolution insights into biological neural computation. Science, 387
(6735), 2025.

Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink, Olivier Francon, Bala
Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, et al. Evolving deep neural networks.
In Artificial intelligence in the age of neural networks and brain computing, pp. 269–287. Elsevier,
2024.

David E Moriarty, Alan C Schultz, and John J Grefenstette. Evolutionary algorithms for reinforce-
ment learning. Journal of Artificial Intelligence Research, 11:241–276, 1999.

Elias Najarro and Sebastian Risi. Meta-learning through hebbian plasticity in random networks. In
Advances in Neural Information Processing Systems (NeurIPS), 2020.

Roger A. Nicoll. A brief history of long-term potentiation. Neuron, 93(2):281–290, 2017.

Erkki Oja. A simplified neuron model as a principal component analyzer. Journal of Mathematical
Biology, 15(3):267–273, 1982.

Art B Owen. Monte Carlo Theory, Methods and Examples, 2013.

Yiming Peng, Gang Chen, Harith Singh, and Mengjie Zhang. Neat for large-scale reinforcement
learning through evolutionary feature learning and policy gradient search. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO ’18), pp. 490–497, New York, NY,
USA, 2018. ACM.

Chao Qian, Ke Xue, and Ren-Jian Wang. Quality-diversity algorithms can provably be helpful
for optimization. In Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence (IJCAI-24), 2024.

Sebastian Risi. Towards Evolving More Brain-Like Artificial Neural Networks. PhD thesis, Univer-
sity of Central Florida, 2012.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning: On learning how to learn.
Diploma thesis, Technische Universität München, Institut für Informatik, Munich, Germany,
1987.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering Atari,
Go, Chess and Shogi by Planning with a Learned Model. Nature, 588(7839):604–609, 2020.

H. Sebastian Seung. Learning in spiking neural networks by reinforcement of stochastic synaptic
transmission. Neuron, 40(6):1063–1073, 2003.

12

https://proceedings.mlr.press/v80/miconi18a.html
https://proceedings.mlr.press/v80/miconi18a.html
https://openreview.net/forum?id=r1lrAiA5Ym
https://openreview.net/forum?id=r1lrAiA5Ym

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in
Machine Learning, 4(2):107–194, 2011.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the Game of Go with Deep Neural Networks and Tree Search. Nature, 529(7587):484–489, 2016.

Per Jesper Sjöström and Wulfram Gerstner. Spike-timing dependent plasticity. Scholarpedia, 5(2):
1362, 2010.

Andrea Soltoggio, Kenneth O. Stanley, and Risto Miikkulainen. Evolutionary advantages of neuro-
modulated plasticity in dynamic, reward-based scenarios. In Proceedings of the 11th International
Conference on Artificial Life (ALIFE XI), 2008.

Andrea Soltoggio, Kenneth O. Stanley, and Sebastian Risi. Born to learn: The inspiration, progress,
and future of evolved plastic artificial neural networks. Neural Networks, 108:48–67, 2018.

Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topolo-
gies. Evolutionary Computation, 10(2):99–127, 2002a.

Kenneth O Stanley and Risto Miikkulainen. Efficient reinforcement learning through evolving neu-
ral network topologies. In Proceedings of the 4th Annual Conference on genetic and evolutionary
computation, pp. 569–577, 2002b.

Kenneth O Stanley and Risto Miikkulainen. Competitive coevolution through evolutionary com-
plexification. Journal of artificial intelligence research, 21:63–100, 2004.

Kenneth O. Stanley, Bobby D. Bryant, and Risto Miikkulainen. Evolving adaptive neural networks
with and without adaptive synapses. In Proceedings of the 2003 IEEE Congress on Evolutionary
Computation (CEC 2003), 2003.

Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. A hypercube-based encoding for evolv-
ing large-scale neural networks. Artificial life, 15(2):185–212, 2009.

Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing neural networks
through neuroevolution. Nature Machine Intelligence, 1(1):24–35, 2019.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Tatsuya Takeuchi, Adrian J. Duszkiewicz, and Richard G. M. Morris. The synaptic plasticity and
memory hypothesis: Encoding, storage and persistence. Philosophical Transactions of the Royal
Society B, 369(1633):20130288, 2014.

Shimon Whiteson, Peter Stone, Kenneth O Stanley, Risto Miikkulainen, and Nate Kohl. Automatic
feature selection in neuroevolution. In Proceedings of the 7th annual conference on Genetic and
evolutionary computation, pp. 1225–1232, 2005.

Xiao-Jing Xie and H. Sebastian Seung. Learning in neural networks by reinforcement of irregular
spiking. Physical Review E, 69(4):041909, 2004.

Ke Xue, Ren-Jian Wang, Pengyi Li, Dong Li, Jianye Hao, and Chao Qian. Sample-efficient quality-
diversity by cooperative coevolution. In The Twelfth International Conference on Learning Rep-
resentations, 2024.

Xin Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–1447, 1999.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improv-
ing sample efficiency in model-free reinforcement learning from images. In Proceedings of the
aaai conference on artificial intelligence, volume 35, pp. 10674–10681, 2021.

Daniel Young, Olivier Francon, Elliot Meyerson, Clemens Schwingshackl, Jacob Bieker, Hugo
Cunha, Babak Hodjat, and Risto Miikkulainen. Discovering effective policies for land-use plan-
ning with neuroevolution. Environmental Data Science, 4:e30, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

CONTENTS

1 Introduction 1

2 Preliminaries and Background 2

3 NeuroEvolutionary Online Learning 4

3.1 Decoupling Updates for Weight and Topology . 4

3.2 Proposed Algorithm . 5

4 Experiments 6

4.1 Experiment setups . 6

4.2 Empirical Analysis on the Convergence of Best Fitness 6

4.3 Empirical Analysis on Sample Efficiency . 7

4.4 Ablation Studies . 8

5 Conclusion and Discussion 9

A Appendix 14

A.1 The Usage of LLM . 15

A.2 Configuration for experiments . 15

A.2.1 Best configurations (used for the fitness in Table 1 and Table 5) 15

A.2.2 Configurations (used for the fitness in Table 7 and Table 8) 15

A.3 Algorithm Pseudo-Code . 15

A.4 Statistical Tests for Comparison on Best Fitness and Sample Efficiency Score . . . 18

A.5 Additional Tables for Ablation Studies . 19

A.6 More Experiment Results on the Final Best Fitness 20

A.7 More Experiment Results on the Sample Efficiency SCORE 22

A.8 Summary of More Experiment Results . 24

A.8.1 Best Fitness . 24

A.8.2 Sample Efficiency . 24

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.1 THE USAGE OF LLM

We disclose our concrete use of large language models (LLMs) in line with the ICLR policy. LLMs
are not authors; the human authors take full responsibility for all content. We mainly use LLM for
writing assistance. We used LLM to polish and reorganise author-written text for academic style in
academic English. Our prompt instructed the model to:

Correct spelling, grammar, clarity, concision, and overall
readability;
First return a polished paragraph,
then a markdown table enumerating each edit with justification;
Preserve citation strings exactly as written;
Avoid unnecessary \emph{};
Present the paragraph’s intended logic before rewriting to ensure
coherence.

These outputs were treated as suggestions; final language and structure were decided by the authors
after review. No claims, proofs, or empirical results originated from the LLM. Also, we use LLM for
helping with debugging and visualisation assistance. We used LLM to (i) explain error messages,
(ii) suggest small code fixes, and (iii) draft the scripts for result visualisation (e.g., plotting scripts).
All suggested code was reviewed, adapted or re-implemented where non-trivial, and covered by
tests. Algorithmic design, hyperparameters, and reported results were chosen by the authors.

A.2 CONFIGURATION FOR EXPERIMENTS

A.2.1 BEST CONFIGURATIONS (USED FOR THE FITNESS IN TABLE 1 AND TABLE 5)

Table 3: Best configurations used for the fitness results in Table 1 and Table 5. For plastic methods
(BCM, Hebb, Oja), we report population size and learning rate; NEAT has no learning rate.

Task BCM Hebb Oja NEAT

Cartpole pop=50, lr=0.00025 pop=50, lr=0.00025 pop=50, lr=0.00025 pop=50
Lunar Lander pop=300, lr=0.25 pop=300, lr=0.00025 pop=300, lr=0.0025 pop=300
Hopper pop=300, lr=0.025 pop=300, lr=0.00025 pop=300, lr=0.0025 pop=300
Bipedal Walker pop=300, lr=0.00025 pop=200, lr=0.00025 pop=300, lr=0.00025 pop=100

A.2.2 CONFIGURATIONS (USED FOR THE FITNESS IN TABLE 7 AND TABLE 8)

Table 4: Configurations used for the ablation fitness results in Table 7 and Table 8. NEAT (w/o)
disables weight modulation by setting the learning rate to zero.

Task BCM Hebb Oja NEAT (w/o)

Cartpole pop=50, lr=0.00025 pop=50, lr=0.00025 pop=50, lr=0.00025 pop=50
Lunar Lander pop=300, lr=0.25 pop=300, lr=0.00025 pop=300, lr=0.0025 pop=300
Hopper pop=300, lr=0.025 pop=300, lr=0.00025 pop=300, lr=0.0025 pop=300
Bipedal Walker pop=300, lr=0.00025 pop=300, lr=0.00025 pop=300, lr=0.00025 pop=300

A.3 ALGORITHM PSEUDO-CODE

The online update follows one of the following local rules, where x and y denote pre- and post
activities, w is a synaptic weight, and θ is a slow activity-dependent threshold in BCM:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

WEIGHT UPDATE(x, y, w, r, β, ηw) :=


w + ηw · βr · y · (x− y · w) if reward-based Oja update
w + ηw · x · y · βr if reward-based Hebb update
w + ηwy(y − θ)xβr if reward-based BCM update
w otherwise.

Algorithm 2 Online Rollout

Input: Genome: g; Learning rule: L; Plasticity rate: η; Reward scaling factor: β; Episodes: N ;
Max steps: Tmax; Environment: env. (Defined in Algorithm 1)

Output: Average episode reward (fitness).
1: episode rewards = []
2: for episode ∈ {1, . . . , N} do
3: net = CREATENETWORKFROMGENOME(g)
4: s = env.reset() ▷ Reset state
5: Rep = 0
6: for t ∈ {1, . . . , Tmax} do
7: â = net.forward(s) ▷ Generate the action from policy network
8: a = clip(â,−1, 1)
9: (s′, r, done) = env.step(a) ▷ Get the state and reward after apply the action

10: rscaled = r · β
11: net.WEIGHT UPDATE(L, η, rscaled) ▷ Update weight with specific learning rule
12: Rep = Rep + r
13: s = s′

14: if done then break
15: episode rewards.append(Rep)
16: return Average cumulative episode rewards

Algorithm 3 Sepciate (NEAT) (Stanley & Miikkulainen, 2002a)

Input: Population with raw fitness: P; NEAT config ΘNEAT (compatibility coeffs c1, c2, c3, thresh-
old δt, survival threshold ρ, elitism E, stagnation limit Gstag, min species size, etc.).

Output: Species set S; population P with adjusted fitness.
1: S = ∅ ▷ if previous species exist, reuse their representatives
2: for genome g ∈ P do
3: Compute compatibility distance to each representative rs:

δ(g, rs) = c1
E +D

N
+ c3 · |wg − wrs |

4: Assign g to argmins δ(g, rs) if mins δ ≤ δt; else create a new species with g.
5: for species s ∈ S do
6: Sort members by raw fitness (desc), record champion.
7: Update s’s best-so-far and stagnant counter; mark for removal if > Gstag (optionally keep

global best).
8: Remove stagnant species; ensure each remaining species has ≥ 1 member.
9: (Explicit sharing) For each species s and g ∈ s:

fadj(g) =
f(g)

|s|
, F adj(s) =

1

|s|
∑
g∈s

fadj(g).

10: return (S,P).

Algorithm 3 performs speciation and fitness adjustment for NEAT. Genomes are assigned to species
by compatibility distance with coefficients c1, c2, c3 and threshold δt. Using excess and disjoint
gene counts E and D, the number of matched genes N , and the mean absolute weight difference,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 4 Reproduce (NEAT) (Stanley & Miikkulainen, 2002a)

Require: Species set S and adjusted fitness F adj(s) computed by Alg. 3.
Input: Population P with adjusted fitness; NEAT config Θ0 (elitism E, survival threshold ρ, cross-

over prob. pc, add-connection mℓ, add-node mn, weight-mutation mode WM MODE); target size
P .

Output: Next-generation population Pnew.
1: A =

∑
s∈S F adj(s)

2: for each s ∈ S do
3: spawn(s) = max(min species size, round(P · F adj(s)/A))

4: Renormalise spawn(·) so that
∑

s spawn(s) = P
5: Pnew = ∅
6: for each species s ∈ S do
7: Sort members of s by raw fitness (descending)
8: Copy top E elites of s to Pnew

9: spawn(s) = spawn(s)− E
10: if spawn(s) > 0 then
11: K = ⌈ρ · |s|⌉
12: U = top-K members of s ▷ parent pool
13: while spawn(s) > 0 do
14: spawn(s) = spawn(s)− 1
15: Sample p1 ∼ U
16: With probability pc, sample p2 ∼ U ; otherwise set p2 = p1
17: offspring = CROSSOVERALIGNED(p1, p2) ▷ align by innovation numbers
18: if rand < mℓ then
19: ADDCONNECTION(offspring)
20: if rand < mn then
21: ADDNODE(offspring)
22: if WM MODE = off then
23: NOWEIGHTMUTATION(offspring)
24: else if WM MODE = config then
25: MUTATEWEIGHTSBYCONFIG(offspring,Θ0)
26: else
27: MUTATEWEIGHTSWITHPROB(offspring, p)
28: Append offspring to Pnew

29: return Pnew

the distance to a species representative rs is

δ(g, rs) = c1
E +D

N
+ c3 |wg − wrs |.

Within each species, members are ranked by raw fitness, champions are tracked, and species that
stagnate beyond Gstag may be removed except for a possible global best safeguard. Explicit fitness
sharing is applied:

fadj(g) =
f(g)

|s|
, F adj(s) =

1

|s|
∑
g∈s

fadj(g).

Algorithm 4 generates the next population under speciated reproduction. Let A =
∑

s F
adj(s) be

the sum of adjusted fitness across species. Each species receives an offspring budget

spawn(s) = max

(
min species, round

(
P

F adj(s)

A

))
,

renormalised so that the counts sum to P . Elites E are copied unchanged. The remaining offspring
are bred from the top ρ fraction within each species. Parents are selected, crossover is applied
with probability pc using historical innovation numbers for alignment, and structural mutations are
applied with probabilities mℓ (add connection) and mn (add node). Weight mutation is controlled

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

by WM MODE, which can disable weight mutation, use configuration defaults, or apply a specified
probability p. The resulting offspring across all species form the next population consumed by
Algorithm 1.

A.4 STATISTICAL TESTS FOR COMPARISON ON BEST FITNESS AND SAMPLE EFFICIENCY
SCORE

Table 5: Wilcoxon rank-sum test: p-values for Bipedal Walker, Hopper, and Lunar Lander, compar-
ing each OL method (BCM, Hebb, Oja) against NEAT. For each task and method, we use the best
configuration selected by means of final-generation best across 30 seeds, and test the final best val-
ues. The null hypothesis is that the two configurations yield samples from the same distribution; the
alternative hypothesis is that the OL method tends to achieve the larger best-fitness than NEAT. Bold
entries indicate p < 0.05 (rejecting the null at the 5% level). Cartpole is omitted because all methods
achieve 500.0 exactly in the end. Values shown with three significant figures (a eb ≡ a× 10b).

Task BCM vs NEAT Hebb vs NEAT Oja vs NEAT

Lunar Lander 1.202 e−8 3.352 e−8 4.686 e−8

Hopper 1.680 e−3 5.746 e-2 1.501 e−2

Bipedal Walker 4.033 e−3 3.006 e−4 1.004 e−3

Table 6: Wilcoxon rank-sum test: p-values for CartPole, Bipedal Walker, Hopper, and Lunar Lander,
comparing each OL method (BCM, Hebb, Oja) against NEAT. For each task and method, we use the
best configuration selected by means of final-generation best across 30 seeds, and test the final best
values. The null hypothesis is that the two configurations yield samples from the same distribution;
the alternative hypothesis is that the OL method tends to achieve larger best-fitness than NEAT. Bold
entries indicate p < 0.05 (rejecting the null at the 5% level). Values shown with three significant
figures (a eb ≡ a× 10b).

Task BCM vs NEAT Hebb vs NEAT Oja vs NEAT

CartPole 5.19 e-1 6.62 e-1 5.93 e-1
Lunar Lander 1.20 e−8 2.03 e−9 2.44 e−9

Hopper 1.89 e−4 8.68 e−3 5.61 e−5

Bipedal Walker 9.52 e−4 3.95 e-1 1.11 e−3

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.5 ADDITIONAL TABLES FOR ABLATION STUDIES

In this ablation study, we keep NEOL unchanged and ablate only the pure NEAT baseline by dis-
abling genetic weight mutation. The ablated counterpart is denoted NEAT (w/o). This setting is
equivalent to setting the online rate of online learning to zero (fixing the weight mutation of NEAT
means there is only evolutionary topology search remaining), and isolates whether online plasticity
inside NEOL can substitute for, or complement, evolutionary weight mutation.

From Table 7, we compare standard NEOL (BCM, Hebb, Oja) with the ablated pure NEAT baseline
(NEAT (w/o)). On Cartpole, all methods reach the optimum and are indistinguishable. On Lunar
Lander, every NEOL rule yields a higher mean than NEAT (w/o), with BCM at 324.34, Oja at
323.53, and Hebb at 323.35, versus 312.50 for NEAT (w/o); the standard deviation for NEOL is
small, indicating reliable convergence. On Hopper, the gap is significant: BCM, Oja, and Hebb
achieve 2983.82, 2900.94, and 2819.89, respectively, compared with 2296.57 for NEAT (w/o), with
difference shown and well-separated means. On Bipedal Walker, NEOL still leads in the mean
(Hebb 233.30, Oja 227.10, BCM 217.39) over NEAT (w/o) (194.91), but standard deviations are
wide for all configurations, suggesting that although Bipedal Walker is a harder task for all the
algorithms, every NEOL is still robust. With weight mutation disabled in the counterpart, reward-
modulated online plasticity is sufficient to recover and surpass final optimisation on Lunar Lander
and Hopper tasks.

Table 7: Ablation study comparing NEOL with NEAT (w/o) on best final-generation fitness (mean ±
SD) for each task and method using each method’s best hyperparameters. NEAT (w/o) corresponds
to disabling the weight-modulation mechanism by setting the learning rate lr = 0. Bold marks the
highest fitness per task; underline marks the runner-up.

Task BCM Hebb Oja NEAT (w/o)

Cartpole 500.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00

Lunar Lander 324.34 ± 3.86 323.35± 3.67 323.53± 4.19 312.50± 8.97

Hopper 2983.82 ± 479.79 2819.89± 577.33 2900.94± 562.16 2296.57± 740.56

Bipedal Walker 217.39± 82.82 233.30 ± 62.42 227.10± 81.96 194.91± 92.83

From Table 8, we compare standard NEOL (BCM, Hebb, Oja) with the ablated NEAT baseline
without weight mutation (NEAT (w/o)) on SCORE. On CartPole, all methods are effectively indis-
tinguishable, with Oja slightly highest (7.47×10−1) and NEAT (w/o) a close second (7.46×10−1).
On Lunar Lander, every NEOL rule improves over NEAT (w/o) (4.29×10−1), with Oja best
(4.52×10−1) and BCM runner-up (4.51×10−1); the values of standard deviation are small across
NEOL (except BCM), indicating stable gains. On Hopper, the advantage is obvious: BCM achieves
the top SCORE (3.77 ± 6.26×10−1) with Oja close behind (3.75 ± 6.81×10−1), both well above
NEAT (w/o) (3.05±9.33×10−1); standard deviations are moderate but the means remain separated.
On Bipedal Walker, Oja leads (2.60×10−1) with BCM runner-up (2.56×10−1) and NEAT (w/o)
trailing (2.43×10−1); advantage is substantial for all methods (except Hebb), suggesting promising
potential for online learning methods. Overall, even when evolutionary weight mutation is disabled
in the counterpart, reward-modulated online plasticity in NEOL improves sample efficiency on the
non-trivial tasks, while CartPole remains saturated.

Table 8: Ablation study comparing NEOL with NEAT (w/o) on sample efficiency SCORE (mean ±
SD) for each task and method using each method’s best hyperparameters. NEAT (w/o) corresponds
to disabling the weight-modulation mechanism by setting the learning rate lr = 0. Bold marks the
highest fitness per task; underline marks the runner-up.

Task BCM Hebb Oja NEAT (w/o)

Cartpole 7.43 e−1± 1.09 e−2 7.46 e−1± 9.09 e−3 7.47 e−1 ± 8.55 e−3 7.46 e−1± 9.59 e−3

Lunar Lander 4.51 e−1± 1.22 e−2 4.51 e−1± 6.65 e−3 4.52 e−1 ± 7.93 e−3 4.29 e−1± 1.36 e−2

Hopper 3.77 ± 6.26 e−1 3.61± 6.35 e−1 3.75± 6.81 e−1 3.05± 9.33 e−1

Bipedal Walker 2.56 e−1± 1.10 e−1 1.96 e−1± 1.39 e−1 2.60 e−1 ± 1.18 e−1 2.43 e−1± 1.18 e−1

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.6 MORE EXPERIMENT RESULTS ON THE FINAL BEST FITNESS

(a) BCM

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

500.0 500.0 500.0 500.0

500.0 500.0 500.0 500.0

500.0 500.0 500.0 500.0

500.0 500.0 500.0 500.0

420

440

460

480

500
(b) Hebb

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

500.0 500.0 500.0 500.0

489.6 500.0 496.3 500.0

500.0 500.0 500.0 500.0

500.0 500.0 500.0 500.0

420

440

460

480

500

(c) Oja

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

419.3 434.5 442.7 469.2

480.6 484.1 484.6 493.2

493.8 500.0 500.0 500.0

500.0 500.0 500.0 500.0

420

440

460

480

500
(d) Standard NEAT

50 100 200 300
Population size

500.0 500.0 500.0 500.0
450

500

Figure 4: Heatmap comparison of NEOL algorithms (BCM, Hebb, Oja) against standard NEAT in
CartPole-v1. Values represent the empirical mean of the final best fitness over 30 seeds.

(a) BCM

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

292.1 318.0 321.8 324.3

298.5 307.8 321.0 322.2

291.9 318.4 321.2 322.5

289.5 319.0 321.8 323.0
220

240

260

280

300

320
(b) Hebb

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

277.8 292.6 302.5 309.0

300.9 312.8 319.2 321.2

288.9 307.4 322.0 321.2

291.8 318.8 321.3 323.4
220

240

260

280

300

320

(c) Oja

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

270.8 286.5 294.1 296.3

298.2 311.2 316.0 318.0

307.0 317.5 318.8 323.5

285.0 318.1 321.6 323.2
220

240

260

280

300

320
(d) Standard NEAT

50 100 200 300
Population size

288.7 308.5 308.6 311.8
250

300

Figure 5: Heatmap comparison of NEOL algorithms (BCM, Hebb, Oja) against standard NEAT in
LunarLander-v2. Values represent the empirical mean of the final best fitness over 30 seeds.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) BCM

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

1234.0 1711.0 2227.2 2634.6

1364.5 1994.9 2671.5 2983.8

1378.3 1967.2 2684.8 2931.7

1412.9 2195.6 2826.4 2717.4
1500

2000

2500

(b) Hebb

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

1206.0 1420.4 2245.3 2398.7

1298.7 1980.5 2572.7 2808.2

1331.6 1724.0 2562.9 2687.9

1480.3 1768.0 2713.6 2819.9
1500

2000

2500

(c) Oja

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

1192.3 1558.0 2260.6 2476.9

1424.5 2088.0 2536.2 2722.9

1290.7 1798.4 2746.6 2900.9

1331.1 1911.0 2594.4 2773.5
1500

2000

2500

(d) Standard NEAT

50 100 200 300
Population size

1637.3 2354.9 2562.9 2680.2

1500

2000

2500

Figure 6: Heatmap comparison of NEOL algorithms (BCM, Hebb, Oja) against standard NEAT in
Hopper-v3. Values represent the empirical mean of the final best fitness over 30 seeds.

(a) BCM

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

115.8 158.3 142.7 151.4

164.3 174.2 199.3 160.4

202.4 201.8 200.2 201.1

206.1 200.0 190.9 217.4
100

125

150

175

200

225

(b) Hebb

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

93.5 104.4 96.4 97.3

162.2 172.4 187.8 156.4

179.4 210.6 164.9 162.9

169.5 195.5 233.3 172.9
100

125

150

175

200

225

(c) Oja

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

92.2 88.6 94.4 89.1

137.5 179.0 178.9 142.5

193.0 211.5 200.2 159.1

168.5 158.1 209.0 227.1
100

125

150

175

200

225

(d) Standard NEAT

50 100 200 300
Population size

180.2 183.4 131.5 149.6

100

150

200

Figure 7: Heatmap comparison of NEOL algorithms (BCM, Hebb, Oja) against standard NEAT in
BipedalWalker-v3. Values represent the empirical mean of the final best fitness over 30 seeds.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A.7 MORE EXPERIMENT RESULTS ON THE SAMPLE EFFICIENCY SCORE

(a) BCM

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

0.118 0.232 0.487 0.743

0.122 0.232 0.488 0.743

0.117 0.229 0.487 0.741

0.119 0.232 0.486 0.742

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Hebb

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

0.113 0.222 0.485 0.735

0.114 0.223 0.484 0.741

0.122 0.228 0.487 0.746

0.117 0.228 0.490 0.742

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) Oja

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

0.096 0.186 0.430 0.664

0.115 0.217 0.482 0.734

0.117 0.226 0.488 0.744

0.118 0.228 0.488 0.747

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) Standard NEAT

50 100 200 300
Population size

N
E

AT
w

m
O

N

0.120 0.230 0.486 0.744

0.25

0.50

Figure 8: Heatmap comparison of NEOL algorithms (BCM, Hebb, Oja) against standard NEAT in
CartPole-v1. Values represent the Sample Efficiency SCORE over 30 seeds.

(a) BCM

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

0.048 0.122 0.287 0.450

0.049 0.118 0.288 0.447

0.048 0.122 0.287 0.451

0.047 0.122 0.287 0.451
0.1

0.2

0.3

0.4

(b) Hebb

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

0.050 0.117 0.274 0.433

0.055 0.122 0.284 0.449

0.048 0.120 0.285 0.451

0.050 0.121 0.289 0.451
0.1

0.2

0.3

0.4

(c) Oja

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

0.053 0.114 0.268 0.423

0.054 0.123 0.283 0.447

0.051 0.123 0.286 0.452

0.048 0.123 0.286 0.450
0.1

0.2

0.3

0.4

(d) Standard NEAT

50 100 200 300
Population size

N
E

AT
w

m
O

N

0.051 0.119 0.278 0.437
0.2

0.4

Figure 9: Heatmap comparison of NEOL algorithms (BCM, Hebb, Oja) against standard NEAT in
LunarLander-v2. Values represent the Sample Efficiency SCORE over 30 seeds.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) BCM

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

0.259 0.645 1.844 3.297

0.278 0.707 2.080 3.774

0.287 0.729 2.093 3.748

0.296 0.718 2.291 3.433
1

2

3

(b) Hebb

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

0.252 0.596 1.759 2.881

0.275 0.685 2.061 3.608

0.282 0.659 2.087 3.443

0.293 0.625 2.196 3.599
1

2

3

(c) Oja

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

0.258 0.612 1.705 3.022

0.287 0.736 2.003 3.467

0.274 0.692 2.222 3.754

0.279 0.707 2.126 3.584
1

2

3

(d) Standard NEAT

50 100 200 300
Population size

N
E

AT
w

m
O

N

0.304 0.784 1.970 3.222

1

2

3

Figure 10: Heatmap comparison of NEOL algorithms (BCM, Hebb, Oja) against standard NEAT in
Hopper-v3. Values represent the Sample Efficiency SCORE over 30 seeds.

(a) BCM

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

0.014 0.053 0.111 0.184

0.023 0.058 0.149 0.181

0.028 0.065 0.157 0.235

0.029 0.064 0.145 0.256 0.05

0.10

0.15

0.20

0.25

0.30
(b) Hebb

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

0.011 0.032 0.069 0.110

0.022 0.059 0.146 0.189

0.025 0.070 0.127 0.169

0.023 0.062 0.180 0.196 0.05

0.10

0.15

0.20

0.25

0.30

(c) Oja

50 100 200 300
Population size

0.25

0.025

0.0025

0.00025

Le
ar

ni
ng

 ra
te

0.010 0.026 0.073 0.107

0.018 0.058 0.140 0.160

0.028 0.068 0.148 0.180

0.023 0.047 0.160 0.260 0.05

0.10

0.15

0.20

0.25

0.30
(d) Standard NEAT

50 100 200 300
Population size

N
E

AT
w

m
O

N

0.024 0.056 0.093 0.174
0.1

0.2

0.3

Figure 11: Heatmap comparison of NEOL algorithms (BCM, Hebb, Oja) against standard NEAT in
BipedalWalker-v3. Values represent the Sample Efficiency SCORE over 30 seeds.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

A.8 SUMMARY OF MORE EXPERIMENT RESULTS

Parameter Setting. The heatmaps in Figure 4,Figure 5,Figure 6,Figure 7, Figure 8, Figure 9,
Figure 10, Figure 11 report a parameter sweep over population size {50, 100, 200, 300} and learning
rates {2.5× 10−4, 2.5× 10−3, 2.5× 10−2, 2.5× 10−1} for the three NEOL variants (BCM, Hebb,
Oja) alongside the standard NEAT baseline. Each pixel shows the empirical mean of the final best
fitness over 30 seeds; the vertical axis is the plasticity learning rate, and the horizontal axis is the
population size. Because NEAT has no learning rate, it appears as a single row per environment.

A.8.1 BEST FITNESS

On CartPole-v1 (Figure 4). All methods reach the task ceiling and remain flat across most settings
in best fitness. BCM and Hebb saturate at 500 for every population size and plasticity rate on our
heatmap, indicating that structural search alone or in combination with offline updates is sufficient
on this easy, discrete–action benchmark. Oja exhibits a mild instability only at the largest plasticity
rates and smallest populations (top row, leftmost columns), where the mean final best fitness drops
below the ceiling, but recovers as the rate is reduced or the population increases. The NEAT baseline
sits at the ceiling for all population sizes.

On LunarLander-v2 (Figure 5). The three NEOL variants consistently dominate the NEAT row
and exhibit a smooth improvement with population size. BCM is the most robust to the plasticity
learning rate: means above 320 are obtained for populations 200–300 across a wide range of rates,
and the best cell is attained at population 300. Hebb is more sensitive to the learning rate: very
large learning rates combined with small populations depress performance, while learning rates in
[2.5 × 10−4, 2.5 × 10−3] recover and surpass 320 as the population grows. Oja shows a similar
pattern, with its best region again in the bottom half of the grid and larger populations. The NEAT
row improves slightly with population, but remains roughly 10–15 points below the strongest NEOL
settings.

On Hopper-v3 (Figure 6). For BCM and Oja the surface rises sharply with population and peaks at
intermediate plasticity learning rates (2.5 × 10−3 or 2.5 × 10−2), reaching mean final best fitness
near or above 2.9k at population 300. Very small learning rates underfit and very large rates overfit
or destabilise, producing a characteristic ridge across the middle rows. Hebb benefits from the same
scaling trends but remains below BCM and Oja over most of the grid, particularly at small popu-
lations or extreme rates. Standard NEAT also scales with population but plateaus several hundred
points below the best NEOL cells, indicating that online weight adaptation contributes materially
beyond structural search in this domain. Continuous control displays a pronounced interaction be-
tween population size and plasticity rate.

On BipedalWalker-v3 (Figure 7). NEOL improves upon NEAT across broad regions. Hebb at-
tains the highest cell in the grid at population 200 with the smallest plasticity learning rate, and
degrades rapidly as the learning rate increases, especially at small populations. Oja and BCM dis-
play more gradual trends: performance climbs with population size and is best in the lowest–rate
row, with Oja’s peak at population 300 and BCM’s at population 300 as well. The NEAT row is
comparatively flat and non–monotonic in population, with means concentrated around 130–180 and
no configuration matching the top NEOL cells. These results suggest that modest, reward–gated
plasticity combined with sufficient population–level exploration is beneficial, whereas aggressive
learning rates are detrimental in this environment.

A.8.2 SAMPLE EFFICIENCY

On CartPole-v1 (Figure 8). All methods are highly sample–efficient once population size is moder-
ate, with scores climbing toward the upper bound of the metric. BCM and Hebb form broad plateaus
that peak at population 300 (around 0.74), matching or slightly edging the NEAT row. Oja shows
a mild degradation only at the largest plasticity rates and smallest populations (top–left cells), but
recovers as the rate is reduced or the population increases. The NEAT baseline improves steadily
with population (from ≈ 0.12 at 50 to ≈ 0.74 at 300).

On LunarLander-v2 (Figure 9). The three NEOL variants consistently dominate the NEAT row at
matched populations and improve smoothly with population size. BCM shares a similar pattern to
the other two methods: very large rates coupled with small populations reduce efficiency, while rates

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

in [2.5 × 10−4, 2.5 × 10−3] recover as the population grows. NEAT improves with population but
remains a few points below the strongest NEOL settings (peaking around ≈ 0.437).

On Hopper-v3 (Figure 10). BCM and Oja exhibit steep gains with population and peak at intermedi-
ate plasticity learning rates (2.5× 10−3–2.5× 10−2), reaching the highest sample–efficiency scores
in the grid (near ∼ 3.7 at population 300). Very small learning rates underfit and very large rates
destabilise, producing a ridge of best performance across the middle rows. Hebb follows the same
scaling trend but remains below BCM and Oja over most of the grid. Standard NEAT also benefits
from larger populations yet plateaus well below the best NEOL cells (around ∼ 3.2), indicating a
clear advantage from online weight adaptation beyond standard offline search.

On BipedalWalker-v3 (Figure 11). NEOL improves upon NEAT across broad regions, with absolute
scores lower than Hopper but similar relative trends. Oja and BCM increase steadily with population
and perform best in the lowest–rate row, peaking at population 300 (Oja ≈ 0.26, BCM ≈ 0.26).
Hebb reaches its best cells only with low rates and larger populations and degrades rapidly as the
learning rate increases, especially at small populations. The NEAT row is comparatively flat and
never reaches the top NEOL cells (max ≈ 0.17).

Across environments, larger populations consistently improve both sample efficiency and final best
fitness for NEOL, reflecting stronger structural exploration and better coverage of favourable topolo-
gies that can then be fine–tuned online. Modest, reward–gated plasticity further strengthens these
gains, whereas aggressive learning rates are either unnecessary on saturated, discrete tasks or harm-
ful on fragile continuous–control tasks. Among plasticity rules, BCM and Oja yield the smoothest
and most robust behaviour on the continuous–control benchmarks, while Hebb is markedly more
rate–sensitive. The single–row NEAT baseline trails the best NEOL settings wherever the task is not
trivially solved, supporting the claim that reward–modulated online weight adaptation complements
evolutionary topology search.

25

	Introduction
	Preliminaries and Background
	NeuroEvolutionary Online Learning
	Decoupling Updates for Weight and Topology
	Proposed Algorithm

	Experiments
	Experiment setups
	Empirical Analysis on the Convergence of Best Fitness
	Empirical Analysis on Sample Efficiency
	Ablation Studies

	Conclusion and Discussion
	Appendix
	The Usage of LLM
	Configuration for experiments
	Best configurations (used for the fitness in Table 1 and Table 5)
	Configurations (used for the fitness in Table 7 and Table 8)

	Algorithm Pseudo-Code
	Statistical Tests for Comparison on Best Fitness and Sample Efficiency Score
	Additional Tables for Ablation Studies
	More Experiment Results on the Final Best Fitness
	More Experiment Results on the Sample Efficiency Score
	Summary of More Experiment Results
	Best Fitness
	Sample Efficiency

