
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Every Language Model Has a Forgery-Resistant
Signature

Anonymous authors
Paper under double-blind review

Abstract

The ubiquity of closed-weight language models with public-facing APIs has
generated interest in forensic methods, both for extracting hidden model details
(e.g., parameters) and for identifying models by their outputs. One successful
approach to these goals has been to exploit the geometric constraints imposed
by the language model architecture and parameters. In this work, we show that a
lesser-known geometric constraint—namely, that language model outputs lie on the
surface of a high-dimensional ellipse—functions as a signature for the model and
can be used to identify the source model of a given output. This ellipse signature
has unique properties that distinguish it from existing model-output association
methods like language model fingerprints. In particular, the signature is hard to
forge: without direct access to model parameters, it is practically infeasible to
produce log-probabilities (logprobs) on the ellipse using currently known methods.
Secondly, the signature is naturally occurring, since all1 language models have
these elliptical constraints. Thirdly, the signature is self-contained, in that it is
detectable without access to the model inputs or the full weights. Finally, the
signature is compact and redundant, as it is independently detectable in each
logprob output from the model. We evaluate a novel technique for extracting the
ellipse from small models and discuss the practical hurdles that make it infeasible
for production-scale models. Finally, we use ellipse signatures to propose a protocol
for language model output verification, analogous to cryptographic symmetric-key
message authentication systems.

1 Introduction

The proliferation of closed-weight language models has incentivized the development of methods for
language model forensics, i.e., post hoc methods to learn about language models and their outputs with
limited access. Recent work in this area has introduced methods to exploit linear constraints imposed
by the model architecture to identify the source of generations through a limited API (Finlayson
et al., 2024; Yang & Wu, 2024). These methods use model constraints as a type of signature, where
one can verify that an output came from a specific language model by simply checking that the
output (typically, the model’s output log probability vector) satisfies the model’s constraints. Thus the
signature functions as a type of watermark or fingerprint (Xu et al., 2025b; Liu et al., 2024).

Another, lesser-known constraint can also function as a model signature: the constraint that model
outputs lie on a high-dimensional ellipse (a hyperellipsoid) (Carlini et al., 2024, Appendix G). Model
outputs can be verified by checking that they lie on the model ellipse. In this work, we explain the
ellipse constraints and show how they can be used to identify the model that generated an output.

We find that ellipse signatures have a set of four unique properties, which differentiate them from
previous signatures and other model identification methods. In combination, these properties fill a new
niche in the landscape of output verification systems. We emphasize that signatures are not necessarily
better than other methods, rather their properties make them more suitable in specific situations. First,
ellipse signatures are forgery-resistant, i.e., the signature is hard to fake for closed-weight2 models.
This differentiates the ellipse signature from previously known linear signatures (Finlayson et al.,

1More precisely, this applies to models with a final normalization layer, which encompass virtually all widely
used language models today.

2As opposed to open-weight models with publicly-released parameters.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

LM

Language model 𝐴

Model 𝐴 ellipse

LM
Language model 𝐵

Logit outputs

Figure 1: Language model logits are subject to constraints that force them to lie on a high-dimensional
ellipse. This constitutes a signature because we can identify which model generated an output by
checking which ellipse it lies on. Among other unique properties, we show that ellipse signatures
are forgery-resistant because it is computationally hard in practice to generate signed logits without
access to the model parameters.

2024; Yang & Wu, 2024). Second, ellipse signatures are naturally occurring, because virtually all
modern language models have a unique ellipse constraint and therefore sign their outputs. In contrast,
many watermark and fingerprinting methods require the model or inference provider to proactively
implement the system (e.g., Zeng et al., 2025; Cui et al., 2025). Third, ellipse signatures are self-
contained: output detection does not require access to the model parameters or input. Self-containment
is useful for situations where a provider wants a trusted third party to be able to verify outputs from
their private language model without giving away the model parameters or prompt. Finally, the ellipse
signature is compact and redundant because the signature is present and detectable in any single
generation step.3 Consequently, a single generation step is sufficient to identify the generating model.
This property is unique because many existing output identification methods require outputs from
multiple generation steps to gather evidence of the generator’s identity (e.g., Kirchenbauer et al.,
2023).

The most interesting and least obvious property of ellipse signatures is their forgery resistance
(Section 3). We define forgery as generating logprobs that conform to the model constraints without
direct access to the model parameters. Previously studied linear signatures (Finlayson et al., 2024;
Ying et al., 2012) can be forged by extracting the linear constraints from the model API and generating
logprobs to satisfy them. In comparison, ellipse extraction from API-protected language models is
extremely difficult, and thus forgery is much harder. Ellipse extraction is difficult for at least two
reasons: it is expensive, with 𝑂 (𝑑3 log 𝑑) query complexity in an OpenAI-like API, and actually
fitting the ellipse has 𝑂 (𝑑6) time complexity. We demonstrate these challenges by implementing a
new ellipse-specific extraction method and testing it on small models. We are not aware of any ellipse
forgery method that avoids having to fit the ellipse, though we cannot at this time mathematically rule
out the possibility. For this reason, we adopt the term “forgery resistance” rather than “unforgeability”.

The forgery resistance of ellipse signatures, coupled with the relative ease of verifying outputs on the
ellipse, presents an intriguing opportunity for an output verification system. We propose a system
analogous to cryptographic message authentication (Pass & Shelat, 2010), where the model ellipse
functions as the secret key. Parties with access to secret language model parameters (including the
ellipse parameters) can generate logprobs that can in turn be verified only by those who also have
access to the secret ellipse (Section 4). We argue that such a system has implications for model
forensics, regulation, and accountability for opaque choices made by language model providers.

2 Language model ellipses are signatures

We set up the mathematical formulation of the language model ellipse and show how it functions as a
signature. To begin, let us assume that our language model has a typical architecture, like the one
shown in Figure 2.4 In particular, we are interested in models with a vocabulary size 𝑣 much larger
than their hidden size 𝑑, that have a final sequence of layers consisting of a normalization, followed
by a linear layer ℝ𝑑 → ℝ𝑣 .

3By “single generation step”, we mean the probabilities of every next-token candidate in the vocabulary.
4Transformer diagram credit Vaswani et al. (2017); Negrinho (2020).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Input
Embedding

Output
Embedding

Add & Norm

Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Masked
Multi-Head

Attention

Add & Norm

Feed
Forward

Add & Norm

Feed
Forward

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Probabilities

𝑁×

𝑁×

Positional
Encoding

Positional
Encoding

Input

Neural net

Norm Maps to sphere surface

Linear Stretches & rotates sphere

Softmax

Output probabilities

Figure 2: A typical language model’s final layers consist of normalization followed by a linear (or
affine) transformation. Normalization has the effect of mapping the representations onto the surface
of a sphere, while the linear layer stretches and rotates this sphere, resulting in an ellipse.

2.1 Language model outputs lie on an ellipse

Language model outputs lie on an ellipse because the penultimate model layer normalizes the
activations before projecting them linearly into ℝ𝑣 . Model architects tend to choose one of two
normalization schemes: the root-mean-square (RMS) norm (Zhang & Sennrich, 2019) or the layer
norm (Ba et al., 2016). We will focus on the RMS norm because it is simpler, though we revisit the
layer norm in Appendix E for completeness. The RMS norm is formally defined as

RMSNorm(𝒙) = 𝒙√︁
𝜀 + 𝔼[𝒙2]

, (1)

where 𝜀 is a small, positive term added to prevent division by zero. We note that the magnitude of
the normalized output is

√
𝑑. For pedagogical reasons, we will proceed with a simplified, scaled

RMS norm without an 𝜀 term norm(𝒙) = 𝒙/
√︁
𝑑 · 𝔼[𝒙2] , so that the normalized outputs will have

magnitude 1. Normalization has the property of mapping inputs onto the surface of a 𝑑-dimensional
sphere because it sets the magnitude to 1 while preserving the direction. To simplify notation, we
will denote norm(𝒙) as 𝒙̂. It is also common to apply a learned element-wise affine transformation
after normalizing, by multiplying by 𝜸 ∈ ℝ𝑑 then adding a bias term 𝜷 ∈ ℝ𝑑 , so that the output is
𝜸 ⊙ 𝒙̂ + 𝜷. We call the output of the normalization layer the (final) hidden state of the model.

To obtain a logit vector from the hidden state, the model multiplies the hidden state by the unembedding
matrix 𝑾. Because the normalized representations 𝒙̂ lie on a sphere, and 𝑾 (𝜸 ⊙ 𝒙̂ + 𝜷) is an affine
transformation, the logits lie on the surface of a 𝑑-dimensional ellipse. It is important to note that
the ellipse, like the sphere, is 𝑑-dimensional, even if it is projected into a 𝑣-dimensional space. The
𝑑-dimensional ellipse inhabits ℝ𝑣 in the same way that comet’s 2D elliptical orbit inhabits 3D space.

Finally, language model APIs usually return log-probabilities (logprobs), i.e., log softmax(𝑾 (𝜸 ⊙ 𝒙̂ +
𝜷)), rather than logits. Since the softmax function is invariant to scalar addition, the logprobs remain
unchanged if we assume that the logits are centered, i.e., 𝑪𝑾 (𝜸 ⊙ 𝒙̂ + 𝜷) where 𝑪 = 𝑰 − 1

𝑣 . This
simplifying assumption makes recovering logits from logprobs possible, since 𝑪 log softmax(𝑾 (𝜸 ⊙
𝒙̂ + 𝜷)) = 𝑪𝑾 (𝜸 ⊙ 𝒙̂ + 𝜷). Appendix A gives a more in-depth explanation of this assumption.

2.2 Language model ellipses are signatures

The model ellipse can be interpreted as a signature that associates outputs to the language model that
produced them. To verify that a model produced an output, one can check its distance to the model’s
ellipse. If it is on the ellipse, it likely came from the model; otherwise, it almost certainly did not,
since both in theory and practice the likelihood of an output falling on the intersection of two ellipses
is extremely low. To measure the distance of a logprob ℓ to the ellipse, we inspect the magnitude of the
ellipse’s inverse affine transform applied to the logprob, i.e., (𝑾+𝑪+𝑪ℓ − 𝜷)/𝜸, where ·+ denotes a
pseudoinverse. If the logprob came from the model, then this transformation should map the logprob

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Olmo 2 Olmo 2 (300) Llama 3.1 Qwen 3 GPT OSS
10−6

10−2

102

Target model

Av
g.

di
sta

nc
e

to
el

lip
se

Olmo 2 7B
Olmo 2 (300) 7B

Llama 3.1 8B
Qwen 3 8B

GPT OSS 20B

Figure 3: Mean distance to the model ellipse for logprobs generated from several open-weight models,
projected onto each other’s output spaces. Small distances indicate that the outputs are on the target
model ellipse, and therefore came from the target model. Standard errors, shown as shaded regions,
are mostly too narrow to see.

back onto the unit sphere. Thus, we can interpret the deviation of the magnitude from 1 as a distance
from the ellipse (in a linearly transformed space).5

To evaluate the effectiveness of language model signatures at identifying language model outputs, we
generate a set of logprob outputs from four popular open-weight language models: Olmo 2 7B (OLMo
et al., 2025), Llama 3.1 (Grattafiori et al., 2024), Qwen 3 8B (Yang et al., 2025), and gpt oss (OpenAI
et al., 2025). Since most of these models have different vocabularies and column spaces, we find a set
of tokens that are common to all language models, then map each model’s outputs onto the column
space of each other model such that the cross-entropy between the original and projected outputs is
minimized for the shared tokens. This essentially copies the linear signature of the target model onto
the logprobs generated by another model. Finally, we apply the inverse affine transform and check the
distance of the logprobs to the unit sphere for each model. Plotting these distances in Figure 3, we
indeed find that the generating model always has the smallest distance to the unit sphere by several
orders of magnitude. We also include the second-to-last Olmo 2 checkpoint (300) to compare with
Olmo 2. We find that even in this case, the ellipse signature cleanly identifies the generating model.

As mentioned in Section 1, ellipse signatures have several unique properties that set them apart from
existing output verification systems. In particular, ellipse signatures are naturally occurring because
all modern language models have a final normalization layer; they are self-contained because the
signature-checking procedure does not depend on the model input or parameters (except 𝑾, 𝜸, and 𝜷);
and they are compact and redundant because every single logprob output bears the ellipse signature.

2.3 Comparison to existing methods

To understand the niche that ellipse signatures fill, it is worthwhile to consider the breadth of existing
methods for identifying models by their outputs, and how they differ from ellipse signatures. Many of
these methods fall under the umbrella of language model fingerprinting, though we do not consider
the ellipse signature itself to be a fingerprint because it lacks certain properties, namely robustness
and stealthiness (Xu et al., 2025b, Section 2.3). Note that differences in properties do not make one
method “better” than another—we highlight differences to show model ellipses and the compared
methods are useful in different scenarios. Various methods and their properties are summarized in
Table 2 in Appendix B. We are unaware of any existing model identification systems that exhibit all
of the ellipse signature properties simultaneously.

Text-based watermarks (Liu et al., 2024), a subclass of fingerprint methods, inject signals into the text
generation process that can later be used to identify the generating model. This is usually accomplished
via sampling strategies (e.g., Kirchenbauer et al., 2023; Christ et al., 2024; Hou et al., 2024) which
are sometimes distilled back into the model (Xu et al., 2025a, e.g.,). Watermarks are not naturally
occurring, since they require intentional implementation on the model provider side. They are also
not compact, since they require gathering statistical evidence over many generation steps.

One common approach to fingerprinting is to train backdoors into language models so that the model
responds to specific inputs in a way that reveals its identity (e.g., Li et al., 2022). These are neither

5Appendix H discusses of how logit transformations like temperature affect this result.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

naturally occurring, nor self-contained, since they require special training, and require control over
the model input in order to elicit the identifying response.

Some methods use naturally occurring fingerprints in output text to identify the generating language
model. These include analysis of patterns in chain-of-thought outputs (Ren et al., 2025), as well
as more straightforward training of classifiers for the task (Mitchell et al., 2023). Though closer in
nature to ellipse signatures due to their natural occurrence, these are not compact because they require
multiple generation steps to identify the generating model.

Sun et al. (2024) propose a zero-knowledge proof for language models (zkLLM), which can guarantee
that a language model produced an output without sharing any model details, making it self-contained
and hard to forge (with strong guarantees). While this method gives much stronger guarantees about
how an output was produced than a model ellipse, it comes with the drawback that it makes inference
much more expensive. Naturally occurring model ellipses on the other hand, do not.

The most similar method to ours is the method proposed by Finlayson et al. (2024) and expanded
upon by Yang & Wu (2024), which uses a linear signature to identify models. The main difference
between ellipse signatures and linear signatures is that only linear signatures are easy to forge while
ellipse signatures are hard, as we will show in the next section.

3 Ellipse forgery is hard

In the context of model signatures, forgery means generating new outputs that conform to the
model constraints without direct access to the model parameters. Formally, given a set of model
outputs 𝑥1, . . . , 𝑥𝑛 and a black box signature verifying function 𝑓 such that 𝑓 (𝑥𝑖) = 1 for all 𝑥𝑖 , forgery
requires producing a new output 𝑥 which passes verification, i.e., 𝑓 (𝑥) = 1. In the case of the ellipse
signature, 𝑓 (𝑥) = 1 if and only if 𝑥 is on the model ellipse.

Linear signatures (Finlayson et al., 2024; Yang & Wu, 2024) are easy to forge, due to results by
Finlayson et al. (2024); Carlini et al. (2024). Their methods can forge a linear signature by extracting
the linear constraints from an API, then producing new logprobs that satisfy those linear constraints
(as we did in §2). In this section, we will demonstrate that, while it is possible to forge an ellipse
signature by extracting the ellipse constraint from an API, it is practically infeasible for sufficiently
large models using current known methods. Ellipse signature forgery resistance therefore relies on
the idea that, as far as we are aware, there is no known method to produce new points on an ellipse
without first fitting an ellipse to the known points. Here, we will make the same API assumptions used
in Carlini et al. (2024); Finlayson et al. (2024); Nazir et al. (2025); Morris et al. (2024), where the
API allows users to specify a prompt and then returns logprobs for a fixed set of at least 𝑑 tokens at
every generation step. These assumptions are reasonable, given that OpenAI’s Completions and Chat
Completions APIs meet the criteria, specifically because the logit_bias parameter allows users to
find the logprob of any token, as shown in Morris et al. (2024).

Carlini et al. (2024) present a method for extracting the ellipse from model outputs. The general idea
is to use a fitting algorithm to find the ellipse that these outputs lie on. The parameters of the ellipse
of best fit correspond to the singular values, rotation, and bias values in the model’s final layer. We
summarize the procedure in Algorithm 1 and present a more comprehensive overview in Appendix C.
We then show that ellipse extraction is hard for at least two reasons. First, the query complexity of
extracting enough logprobs from an API to determine the ellipse is 𝑂 (𝑑3 log𝑣 𝑑), and second, the
time complexity of the algorithm for fitting an ellipse to the outputs is 𝑂 (𝑑6).

3.1 Ellipse fitting errors from smoothing

In theory, for normalization layers like RMS and layer norms, the 𝜀 term in the denominator can
cause issues for recovering the model parameters. Instead of enforcing ∥𝒙∥2 = 1, these layers enforce
∥𝒙∥2 < 1, meaning that outputs fall within the interior of the ellipse, instead of on the surface. This
effect decreases for larger models (see Appendix G), and in practice, can cause ellipse fitting to fail.

In our own experiments, we found that the SVD-based ellipse fitting from Carlini et al. (2024) would
sometimes fail for smaller models because the parameter 𝑬 output by the fitting algorithm was not
positive definite. The failure stems from the fact that SVD-based fitting is not ellipse-specific. The
algorithm fits a quadric surface to the points, which may or may not be an ellipse, especially in the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Get output layer parameters of a language model.
function Get parameters( logprobs ℓ1, . . . , ℓ𝑛 ∈ ℝ𝑣 )

𝑾𝑯 =
[
ℓ1 · · · ℓ𝑛

] ∈ ℝ𝑣×𝑛 ⊲ Create matrix from logprob outputs
𝑑 = rank(𝑪𝑾𝑯) ⊲ Find embedding size of model
𝑨 = 𝑰1:𝑑 ⊲ Choose a down-projection
𝑨− = 𝑪𝑾𝑯(𝑨𝑪 (𝑾𝑯)1:𝑑)−1 ⊲ Solve for up-projection
𝑬, 𝒃 = EllipsoidFit(𝑨𝑪ℓ1, . . . , 𝑨𝑪ℓ𝑛) ⊲ Solve for ellipse
𝑼,𝚺, _ = svd(Cholesky(𝑬−1)) ⊲ Convert ellipse to affine form
return 𝑨− ,𝚺,𝑼, 𝒃 ⊲ Return up-projection, stretch, rotation, and bias.

end function

0 20 40 60

−4

−2

0

2

Bias

True
Predicted

0 20 40 60

100

102

Singular values

0 20 40 60
0

𝜋
2

Rotation

Figure 4: The predicted and true values for bias and singular values, and the angles between columns
of the predicted and true rotation matrices for a 1 million-parameter model. The angles must lie in the
range [0, 𝜋], and the true rotation matrix columns have angle 0 with themselves. Our predictions are
highly accurate, demonstrating robustness to normalization smoothing in ellipse fitting algorithms.

presence of noise from the 𝜀 term. To guarantee the validity of our recovered ellipse, we turn to
ellipse-specific fitting algorithms. We use fast algorithms for multidimensional ellipse fitting using
semidefinite programming (Calafiore, 2002; Ying et al., 2012), in particular the ellipse fitting method
from Ying et al. (2012), which is straightforward to implement, fast, and stable. We further detail our
implementation in Appendix F. In general, we find that smoothing does not hurt ellipse fitting for
models of sufficient size, confirming an observation from Carlini et al. (2024).

We test our ellipse-specific method on a small, pretrained, open-source model. In particular, we use
a 1-million-parameter language model with an embedding size of 64 and a final layer norm with
𝜀 = 1 × 10−5 (Black et al., 2022; Eldan & Li, 2023). We obtain outputs from the model using the Pile
dataset (Gao et al., 2020), then use the outputs to fit an ellipse and compare the predicted and true
parameters. Figure 4 visually demonstrates their high similarity. As expected, we observe a consistent,
slight underestimation of the model’s singular values due to 𝜀 smoothing.

To measure the benefits of using more outputs to fit the ellipse, we quantify the similarity between the
estimated and true rotation, stretch, and bias for varying numbers of outputs in Figure 5. We measure
bias and stretch similarity using mean squared error (MSE). For the rotation similarity between the
predicted rotation 𝑼 and true rotation 𝑼∗, we use the geodesic distance tr(𝑼⊤𝑼∗). Overall, we find
that using more output samples generally improves parameter predictions, but has diminishing returns
as irreducible error due to 𝜀 begins to dominate.

0 20,000 40,000
10−2

100

102

0.0157

Samples

D
ist

an
ce

Stretch (MSE)

0 20,000 40,000

0.146

Samples

Bias (MSE)

0 20,000 40,000

0.312

Samples

Rotation (geodesic distance)

Figure 5: Distance between predicted and true parameters for bias, stretch, and rotation (lower is
better). Fitting the ellipse to more samples improves the predictions, though with diminishing returns.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model Hidden size 𝑑 Vocab size Samples for Ellipsoid Ellipse ($)
pythia-70m 512 50,304 131,327
babbage-002 1536a 101,281 1,180,415 1056
gpt-3.5-turbo 4650b 101,281 10,813,574 150,699
llama-3-70b-instruct 8192 128,256 33,558,527 16,487,421c

a Confirmed size from Carlini et al. (2024).
b Estimated size upper limit from Finlayson et al. (2024).
c Hypothetical cost based on inference cost for gpt-4-turbo.

Table 1: Models, their sizes, the number of samples required to ascertain their output ellipse, and
the cost of the samples, based on OpenAI inference pricing on September 16, 2025. The number of
samples required grows quadratically with the hidden size of the model, and the price grows cubically.

3.2 The sample cost of model ellipse recovery is super-cubic

Recovering the ellipse of an LM requires 𝑂 (𝑑2) outputs. An ellipse is a special case of a quadric
surface (or simply quadric), which has the general equation

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=𝑖

𝑄𝑖, 𝑗𝑥𝑖𝑥 𝑗 +
𝑑∑︁
𝑖=1

𝑃𝑖𝑥𝑖 = 1, (2)

where the symmetric matrix 𝑸 ∈ ℝ𝑑×𝑑 and 𝑷 ∈ ℝ𝑑 are parameters. An ellipse has the property that
𝑸 is positive definite. The set of vectors 𝒙 ∈ ℝ𝑑 that satisfy this equation form the ellipse surface.
Since the total number of terms in the above equation is 𝑑 (𝑑 + 3)/2, and the equation for a quadric is
linear in its parameters, a set of 𝑂 (𝑑2) points is required in the general case to uniquely define an
ellipse. In fact, in the worst case Ω(𝑑2) samples are required to find even a single new (not in the set
of samples) point on the ellipse, since if the samples are in general position then for every point not in
the samples there is an ellipse that includes the samples but not the point.

For a model with an RMS-norm and a modest embedding size 𝑑 = 29 = 512, we would need at least
217 + 3 · 28 = 131,840 outputs. For Llama 3 8B, the embedding size is 212 = 4096, and we would
need 8,394,752 outputs. This quadratic growth makes finding a model’s ellipse from its outputs much
more expensive than extracting the model’s column space, which only requires 𝑂 (𝑑) samples.

In order to minimize cost, an attacker typically sends a single prefix token to an LM API for each
sample. However, as the required number of samples surpasses the vocabulary size of the model
it becomes necessary to send multi-token prefixes to the model in order to expand the number of
unique prefixes. The number of tokens per sample grows logarithmically with the number of samples
required, or 𝑂 (log 𝑑). This would bring the overall API cost to 𝑂 (𝑑2 log 𝑑) queries.

If the API only reveals a constant number of token logprobs per query, as has been the case historically
for many API providers, the attacker needs to send multiple queries to recover the full logprob vector.
Here, the attacker can save on cost by collecting 𝑑 full logprobs, then only collecting logprobs for the
same subset of 𝑑 tokens for subsequent outputs, solving for the missing logprobs numerically later
on. Even so, the attacker will still make 𝑂 (𝑑) queries per sample. In all, this means that the cost of
discovering the model ellipse grows at a rate of 𝑂 (𝑣𝑑 + 𝑑3 log 𝑑), where the 𝑣𝑑 term accounts for the
cost of collecting the initial 𝑑 full logprobs.

Since the cost grows super-cubically with the embedding size of the model, current API pricing makes
it prohibitively expensive to obtain the ellipse of many popular LMs, as shown in Table 1. Though
OpenAI’s cheapest and smallest available generative model, babbage-002, would cost about $1000
to attack, gpt-3.5-turbo would cost over $150,000. A 70B-scale model with inference cost similar
to gpt-4-turbo would cost over $16 million.

3.3 Ellipsoid fitting takes sextic time

Obtaining sufficient samples from an API-protected language model is only the first step in finding
the model ellipse. It turns out that the second step, fitting an ellipse to the samples, is prohibitively
expensive computationally. Both the SVD-based and ellipse-specific fitting methods discussed in
the previous section typically require 𝑂 (𝑑6) time, the time required to solve 𝑂 (𝑑2) equations of

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

0

5,000

10,000

15,000
Llama 3 70B

(16,167 years)

Llama 2 8B
(254 years)

OpenAI Babbage 002
(4 years)

Dimension 𝑑

Ti
m

e
(y

ea
rs

)

0 100 200
0
5

10
15

(m
in

ut
es

)

Figure 6: Extrapolated running time of our implementation of the ellipse extraction algorithm from
Ying et al. (2012). We extract ellipses from several models with different hidden sizes (blue). Fitting a
degree-6 polynomial to these points, we can extrapolate to guess at the time required to extract the
parameters of larger, more popular models.

𝑂 (𝑑2) variables (Carlini et al., 2024). Faster methods, such as those based on Strassen’s algorithm
(≈ 𝑂 (𝑛2.807)), are possible in the non-ellipse-specific case, but the absolute lower bound for such
speedups is 𝑂 (𝑛2) (whether this bound is tight is an open question in computer science), which still
leaves us with a complexity at least 𝑂 (𝑑4). The best known ellipse-specific method still requires
𝑂 (𝑑6) time and 𝑂 (𝑑4) space (Lin & Huang, 2016).

To evaluate the real-world practicality of ellipse fitting, we implement the algorithm from Lin &
Huang (2016), and record the solving times for ellipses in dimensions ranging from 8 to 256. The
times in Figure 6 are obtained by running the algorithm using 64 CPUs.6 Extrapolating the best-fit
polynomial of degree 6, recovering parameters from a typical 70 billion parameter model would take
thousands of years.7

We leave it as an open question as to whether there exists a fast algorithm for generating new outputs
on an unknown model ellipse based on samples. We ourselves tried a handful of optimizations to speed
up ellipse fitting, such as parallelization on GPUs and approximation. Unfortunately, the memory
requirements of ellipse fitting makes GPU acceleration infeasible for sufficiently large models, and
approximation methods catastrophically degraded the accuracy of our recovered ellipse parameters.

4 Ellipse signatures are message authentication codes

The hardness of extracting ellipses, combined with the cheapness of checking logprobs against the
ellipse, creates a type of one-way function on which to base a verification system for model outputs.
In particular, we can interpret the model ellipse as a secret key, and the logprob outputs as a message
in analogy to cryptographic message authentication systems (Pass & Shelat, 2010).

In such systems, a signer sends a message along with a message authentication code (MAC) to a
verifier. The verifier can use the MAC to confirm the authenticity of the message. This process works
as follows: first the signer generates a secret key and shares it with the verifier. To send a verifiable
message, the signer generates a tag from the key and message, e.g., by hashing their concatenation,
and sends the message and tag to the verifier. The verifier can confirm the authenticity of the message
by replicating the tag with their own copy of the secret key, e.g., by again hashing the concatenation
of the key and message.

In the case of the model ellipse, the ellipse typically is chosen via the model training, but could also
be chosen by sampling a random ellipse. Signing occurs when the model generates logprobs. The
logprobs contain both the message (information about the next-token distribution) and the tag, which
is encoded in the logprob’s position in ℝ𝑣 . To verify the message, someone with the secret model
ellipse can verify that the logprob’s position is on the ellipse.

The security of a MAC hinges on the infeasibility of forgery. For a MAC, forgery means producing
message-tag pairs that pass verification (and have not previously been generated) without access to

6We run our experiments on amd epyc 7643 48-core processors.
7Such extrapolations should be taken with a grain of salt—these numbers are intended only to give intuition.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Secret key

Message

Key

Tag
Generates

Alice

Key

Message Tag
Generates

Tag Same?

Bob

Sends

Secret LM

Logprobs

LM
Inference

Alice

Ellipse

LogprobsSends

On ellipse?

Bob

Figure 7: A cryptographic message authentication system (left) uses a shared secret key to validate
messages. The message author, Alice, signs the message by generating a tag from the message and a
secret key. After receiving the message and tag, Bob verifies the message by generating another tag
with his copy of the key. If the received and generated tags match, the message is authentic. In our
proposed verification system (right), the ellipse functions as a secret key, and logprobs take the role of
messages. The tag is encoded in the position of the logprobs in 𝑅𝑣 , and can be verified by checking
that they lie on the secret ellipse.

the secret key. For the ellipse signature, a would-be forger’s task is to efficiently produce a logprob
that lies on the model ellipse. The most obvious forgery attack would be to steal the model ellipse
by collecting outputs, solving for the ellipse, then using the ellipse to produce new logprobs. As
discussed in Section 3, this is impractically hard for production-size language models of today.

Because ellipse verification guarantees only that individual logprob vectors came from a specific
model, it is possible that an attacker could create a plausible token sequence 𝒈 of length 𝑛 by saving a
collection of logprob outputs from a target model, then piecing them together in a sequence ℓ (1) · · · ℓ (𝑛)
such that the top token from each logprob corresponds to a token in 𝒈, i.e., arg max𝑖 ℓ (𝑖)𝑗 = 𝑔 𝑗 . There
are two potential defenses against this type of attack. The first would be to give the verifier access to
a database of all outputs ever produced by the provider. At scale, this might be prohibitively costly
to maintain. A second deterrent to this kind of attack is that logprobs have been shown to contain a
large amount of information about their prefix (Morris et al., 2024; Nazir et al., 2025), meaning it is
possible to train language model inverters that reliably reconstruct the prefix of all logprob outputs.
If the verifier finds that the inverter assigns low likelihood to the first half of the sequence when
conditioned on the second half, then it is likely that the sequence has been tampered with.

A message authentication protocol for language models can be a tool for language model accountability.
As a hypothetical scenario, suppose that language model providers are required by law to share their
ellipse with a trusted third party. Then, if a user receives a harmful output from the model and sues
for damages and the provider denies generating the output, the third party can provide convincing
evidence about which party is correct due to the forgery-resistant property of language model ellipses.

5 Discussion and conclusion

Because of their unique properties, ellipse signatures fill a new niche in the space of language model
verification methods. This combination of their features is especially promising for doing language
model forensics, since ellipse signatures can be used to identify any model with high certainty, even if
the output provider did not intend to sign their outputs.

Ellipse signatures for language models can be improved on at least three fronts. First, the hardness of
forging ellipses is only polynomial, far from a cryptographic security guarantee. It is likely possible
to identify other constraints on model outputs that give stronger guarantees. Second, our proposed
ellipse signature protocol requires that the API provides logprobs. As of this writing, OpenAI is the
only major commercial provider that allows access to logprobs, and even this access is limited to
a handful of models through ad hoc querying workarounds. Lastly, the ellipse signature does not
have the desirable property of being difficult to remove (often a goal for model fingerprints), since
modifying the model outputs or parameters erases the signature by breaking or changing the ellipse
constraints. Future work could explore other kinds of signatures for language models, which are hard
to remove. We hope that ellipse signatures will offer an exciting new avenue for research into such
signatures, which will greatly impact language model security, accountability, and forensics.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

References
Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. ArXiv, abs/1607.06450,

2016. URL https://api.semanticscholar.org/CorpusID:8236317.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu
Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-NeoX-20B: An
open-source autoregressive language model. In Proceedings of the ACL Workshop on Challenges &
Perspectives in Creating Large Language Models, 2022. URL https://arxiv.org/abs/2204.
06745.

G. Calafiore. Approximation of n-dimensional data using spherical and ellipsoidal primitives. IEEE
Trans. Syst. Man Cybern. Part A, 32:269–278, 2002.

Nicholas Carlini, Daniel Paleka, Krishnamurthy Dvĳotham, Thomas Steinke, Jonathan Hayase,
A. F. Cooper, Katherine Lee, Matthew Jagielski, Milad Nasr, Arthur Conmy, Eric Wallace, David
Rolnick, and Florian Tramèr. Stealing part of a production language model. In Proceedings
of the 41st International Conference on Machine Learning, volume 235 of Proceedings of
Machine Learning Research, pp. 5680–5705, Vienna, Austria, July 2024. PMLR. URL https:
//proceedings.mlr.press/v235/carlini24a.html.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In Shipra
Agrawal and Aaron Roth (eds.), Proceedings of Thirty Seventh Conference on Learning Theory,
volume 247 of Proceedings of Machine Learning Research, pp. 1125–1139. PMLR, 30 Jun–03 Jul
2024. URL https://proceedings.mlr.press/v247/christ24a.html.

Xinyue Cui, Johnny Wei, Swabha Swayamdipta, and Robin Jia. Robust data watermarking in language
models by injecting fictitious knowledge. In Robin Jia, Eric Wallace, Yangsibo Huang, Tiago
Pimentel, Pratyush Maini, Verna Dankers, Johnny Wei, and Pietro Lesci (eds.), Proceedings
of the First Workshop on Large Language Model Memorization (L2M2), pp. 190–204, Vienna,
Austria, August 2025. Association for Computational Linguistics. ISBN 979-8-89176-278-7. doi:
10.18653/v1/2025.l2m2-1.15. URL https://aclanthology.org/2025.l2m2-1.15/.

Ronen Eldan and Yuan-Fang Li. Tinystories: How small can language models be and still speak coherent
english? ArXiv, abs/2305.07759, 2023. URL https://api.semanticscholar.org/CorpusID:
258686446.

Matthew Finlayson, Xiang Ren, and Swabha Swayamdipta. Logits of api-protected llms leak
proprietary information. In Proceedings of the Conference on Language Modeling (COLM
2024), Philadelphia, PA, USA, October 2024. COLM Organization Committee. URL https:
//openreview.net/forum?id=oRcYFm8vyB. Conference on Language Modeling.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile: An 800gb
dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Aaron Grattafiori et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.
21783.

Abe Hou, Jingyu Zhang, Tianxing He, Yichen Wang, Yung-Sung Chuang, Hongwei Wang, Lingfeng
Shen, Benjamin Van Durme, Daniel Khashabi, and Yulia Tsvetkov. SemStamp: A semantic
watermark with paraphrastic robustness for text generation. In Kevin Duh, Helena Gomez, and
Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
Long Papers), pp. 4067–4082, Mexico City, Mexico, June 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.naacl-long.226. URL https://aclanthology.org/2024.
naacl-long.226/.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein.
A watermark for large language models. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th

10

https://api.semanticscholar.org/CorpusID:8236317
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745
https://proceedings.mlr.press/v235/carlini24a.html
https://proceedings.mlr.press/v235/carlini24a.html
https://proceedings.mlr.press/v247/christ24a.html
https://aclanthology.org/2025.l2m2-1.15/
https://api.semanticscholar.org/CorpusID:258686446
https://api.semanticscholar.org/CorpusID:258686446
https://openreview.net/forum?id=oRcYFm8vyB
https://openreview.net/forum?id=oRcYFm8vyB
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://aclanthology.org/2024.naacl-long.226/
https://aclanthology.org/2024.naacl-long.226/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 17061–17084. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/
v202/kirchenbauer23a.html.

Yiming Li, Yang Bai, Yong Jiang, Yong Yang, Shu-Tao Xia, and Bo Li. Untargeted back-
door watermark: Towards harmless and stealthy dataset copyright protection. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 13238–13250. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
55bfedfd31489e5ae83c9ce8eec7b0e1-Paper-Conference.pdf.

Zhouchen Lin and Yameng Huang. Fast multidimensional ellipsoid-specific fitting by alternating
direction method of multipliers. IEEE Transactions on Pattern Analysis and Machine Intelligence,
38(5):1021–1026, 2016. doi: 10.1109/TPAMI.2015.2469283.

Aiwei Liu, Leyi Pan, Yĳian Lu, Jingjing Li, Xuming Hu, Xi Zhang, Lĳie Wen, Irwin King, Hui
Xiong, and Philip Yu. A survey of text watermarking in the era of large language models.
ACM Comput. Surv., 57(2), November 2024. ISSN 0360-0300. doi: 10.1145/3691626. URL
https://doi.org/10.1145/3691626.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn.
Detectgpt: Zero-shot machine-generated text detection using probability curvature. In International
conference on machine learning, pp. 24950–24962. PMLR, 2023.

John Xavier Morris, Wenting Zhao, Justin T Chiu, Vitaly Shmatikov, and Alexander M Rush. Language
model inversion. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=t9dWHpGkPj.

Murtaza Nazir, Matthew Finlayson, John X. Morris, Xiang Ren, and Swabha Swayamdipta. Better
language model inversion by compactly representing next-token distributions. In Proceedings of
the 39th Conference on Neural Information Processing Systems (NeurIPS 2025), San Diego, CA,
USA and Mexico City, Mexico, dec 2025. Neural Information Processing Systems Foundation.
URL https://openreview.net/forum?id=FZp6cheXt2. poster.

Renato Negrinho. Sane Tikz. https://github.com/negrinho/sane_tikz, 2020.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia,
Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira
Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri,
Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill,
Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman
Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm, Michael
Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2 olmo 2 furious,
2025. URL https://arxiv.org/abs/2501.00656.

OpenAI et al. gpt-oss-120b & gpt-oss-20b model card, 2025. URL https://arxiv.org/abs/
2508.10925.

Rafael Pass and Abhi Shelat. A course in cryptography (lecture notes). https://www.cs.cornell.
edu/courses/cs4830/2010fa/lecnotes.pdf, 2010. Cornell University, CS 4830, Fall 2010.

Zhenzhen Ren, GuoBiao Li, Sheng Li, Zhenxing Qian, and Xinpeng Zhang. Cotsrf: Utilize
chain of thought as stealthy and robust fingerprint of large language models, 2025. URL
https://arxiv.org/abs/2505.16785.

Haochen Sun, Jason Li, and Hongyang Zhang. zkllm: Zero knowledge proofs for large language models.
In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications
Security, CCS ’24, pp. 4405–4419, New York, NY, USA, 2024. Association for Computing
Machinery. ISBN 9798400706363. doi: 10.1145/3658644.3670334. URL https://doi.org/
10.1145/3658644.3670334.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, 2017. URL https://api.semanticscholar.org/CorpusID:13756489.

11

https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/55bfedfd31489e5ae83c9ce8eec7b0e1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/55bfedfd31489e5ae83c9ce8eec7b0e1-Paper-Conference.pdf
https://doi.org/10.1145/3691626
https://openreview.net/forum?id=t9dWHpGkPj
https://openreview.net/forum?id=FZp6cheXt2
https://github.com/negrinho/sane_tikz
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925
https://www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf
https://www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf
https://arxiv.org/abs/2505.16785
https://doi.org/10.1145/3658644.3670334
https://doi.org/10.1145/3658644.3670334
https://api.semanticscholar.org/CorpusID:13756489


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiaojun Xu, Yuanshun Yao, and Yang Liu. Learning to watermark LLM-generated text via
reinforcement learning. In The 1st Workshop on GenAI Watermarking, 2025a. URL https:
//openreview.net/forum?id=dTlCMiEOdk.

Zhenhua Xu, Xubin Yue, Zhebo Wang, Qichen Liu, Xixiang Zhao, Jingxuan Zhang, Wenjun Zeng,
Wengpeng Xing, Dezhang Kong, Changting Lin, and Meng Han. Copyright protection for large
language models: A survey of methods, challenges, and trends. ArXiv, abs/2508.11548, 2025b.
URL https://api.semanticscholar.org/CorpusID:280671745.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu,
Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men,
Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren,
Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang,
Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu.
Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Zhiguang Yang and Hanzhou Wu. A fingerprint for large language models. ArXiv, abs/2407.01235,
2024. URL https://api.semanticscholar.org/CorpusID:270869924.

Xianghua Ying, Li Yang, and H. Zha. A fast algorithm for multidimensional ellipsoid-specific fitting
by minimizing a new defined vector norm of residuals using semidefinite programming. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 34:1856–1863, 2012.

Boyi Zeng, Lizheng Wang, Yuncong Hu, Yi Xu, Chenghu Zhou, Xinbing Wang, Yu Yu, and Zhouhan
Lin. Huref: human-readable fingerprint for large language models. In Proceedings of the 38th
International Conference on Neural Information Processing Systems, NIPS ’24, Red Hook, NY,
USA, 2025. Curran Associates Inc. ISBN 9798331314385.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in neural information
processing systems, 32, 2019.

Yiming Zhang, Nicholas Carlini, and Daphne Ippolito. Effective prompt extraction from language
models. In First Conference on Language Modeling, 2024. URL https://openreview.net/
forum?id=0o95CVdNuz.

A Centered logits also lie on an ellipse

The centering operation on a vector subtracts the mean value of the vector entries, so that the sum of
the entries is 0. Centering a vector 𝒙 ∈ ℝ𝑑 can be computed as 𝒙 −∑𝑑

𝑖=1 𝑥𝑖/𝑑, which is sometimes
denoted as 𝒙−𝔼[𝒙]. Centering is a linear operation, since 𝒙−𝔼[𝒙] = (𝑰− 1

𝑑 )𝒙. We will call the matrix
associated with this operation 𝑪 = 𝑰 − 1

𝑑 . The softmax function softmax(𝒙) = exp 𝒙/∑𝑑
𝑖=1 exp 𝑥𝑖 has

a special relationship with centering. First, since the softmax function is invariant to scalar addition,
i.e., softmax(𝒙) = softmax(𝒙 + 𝑐), it follows (by substituting 𝔼[𝒙] for 𝑐) that it is also invariant to
centering, i.e., softmax(𝒙) = softmax(𝑪𝒙). Secondly, centering the log of a softmax is equivalent to
centering, i.e., 𝑪 log softmax(𝒙) = 𝑪𝒙.

This property is useful because language model APIs typically only give log-probabilities (logprobs),
not logits. While we cannot recover the logits from logprobs directly, centering the logprobs gives us
the same result as centering the logits. Thus, when observing outputs from an LM API, we may have
access only to centered logits 𝑪𝑾 (𝜸 ⊙ 𝒙̂ + 𝜷). Luckily, because 𝑪 is linear, these outputs also lie on
the surface of an ellipse.

B Comparison to existing verification systems

Language model watermark methods (Liu et al., 2024) leave telltale signs in model-generated text that
can be detected later on. For instance, Kirchenbauer et al. (2023) restrict language model sampling

12

https://openreview.net/forum?id=dTlCMiEOdk
https://openreview.net/forum?id=dTlCMiEOdk
https://api.semanticscholar.org/CorpusID:280671745
https://arxiv.org/abs/2505.09388
https://api.semanticscholar.org/CorpusID:270869924
https://openreview.net/forum?id=0o95CVdNuz
https://openreview.net/forum?id=0o95CVdNuz


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Method Examples Naturally
occurring

Self con-
tained

Compact Forgery
resistant

Text-based
watermark

(Kirchenbauer et al., 2023;
Hou et al., 2024)

No Yes No Yes

Backdoor
fingerprint

(Li et al., 2022) No No - -

Natural fin-
gerprint

(Ren et al., 2025) Yes - No -

Cryptographic (Sun et al., 2024) No Yes Yes Yes
Linear sig-
nature

(Finlayson et al., 2024; Yang
& Wu, 2024)

Yes Yes Yes No

Ellipse sig-
nature

Yes Yes Yes Yes

Table 2: Summary of different model attribution methods and their properties. Some method classes
may include both methods with and methods without specific properties, in which case we assign the
label “-”.

to specific subsets of the vocabulary at each generation step using a deterministic rule, and use
hypothesis testing to verify that text has been watermarked. Christ et al. (2024) develop a variant
of this type of method that is undetectable except to those who have a secret key. These methods
require that the model provider implement specific decoding schemes at generation time, and require
a sufficiently long generation to accumulate evidence that a text has been watermarked. In contrast,
ellipse-based verification requires no changes on the provider side, and each generation step of the
model independently bears the model’s signature, meaning that a generation of length 1 is sufficient
to identify the source model.

Similarly, since our system is analogous to a MAC system, one might ask if the method would not
be improved by using a proper MAC system with hard cryptographic guarantees. Indeed this is the
case, except for the fact that, once again, implementing a MAC system requires changes on the API
provider side, whereas ellipse-based verification does not.

Fingerprints for language models are a diverse set of methods, usually considered distinct from
watermarks, because they are generally incorporated into the model weights themselves during
training, and are designed to be hard to detect and hard to erase. The most similar fingerprinting
methods to our ellipse-based verification are those that identify naturally occurring fingerprints (Zeng
et al., 2025, e.g.,), including one based on the proposed model identification method from Finlayson
et al. (2024) which uses the uniqueness of the linear subspace spanned by the columns of the softmax
matrix (Yang & Wu, 2024). The main difference between our method and the latter is somewhat
subtle: in the Yang & Wu (2024) method, it is be easy to copy the fingerprint from one model onto
another, even when access is limited to the API, allowing one model to pose as another. Our ellipse
method guarantees that it is computationally difficult to “steal” the ellipse of an API model.

Finally, one might consider an alternative input verification method, similar to ours, where the verifier
has access to the model. The verifier can then check that outputs from the API matches the output from
their own model for any specific input. The main drawback of this method is that the verifier needs
access to the whole model, as well as the input. One can imagine a situation where the model provider
does not wish to reveal all model parameters, or has a proprietary system message that they do not
wish to share (though best practice dictates that prompts should not be considered secrets (Zhang
et al., 2024; Morris et al., 2024; Nazir et al., 2025)). In these cases, it may be preferable to use an
ellipse-based validation scheme, since it only requires revealing parameters from the final layers.

C How to extract an ellipse

Here we will show how to recover the ellipse parameters from model outputs. The general idea will
be to collect model outputs, then use a fitting algorithm to find the ellipse that the outputs lie on. The
parameters of the ellipse of best fit will correspond to the model parameters. The procedure described
in this section is summarized in Algorithm 1.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Typical form

Isolated operations

Pre-norm ℝ𝑑 Normalized ℝ𝑑

Normalize

Hidden ℝ𝑑

Stretch 𝜸 & bias 𝜷

Logit ℝ𝑣

Linear 𝑾

Probability ℝ𝑣

Softmax

Rotated ℝ𝑑

Rotate𝑽⊤

Ellipse ℝ𝑑

Stretch 𝚺, rotate𝑼 , & bias 𝒃

Cannonical logit ℝ𝑣

Linear 𝑨−

Linear 𝑨

Softmax
Center Log & center

Figure 8: An overview of the intermediate representations in both traditional (gray) and our
own (yellow) parameterization of the final LM layers. Representations (boxes) are annotated the
functions that map between them (arrows), as well as the space in which they reside (blue tags). Our
method recovers the parameters 𝚺, 𝑼, 𝒃, and 𝑨− , which in turn give us access to the cannonical
logit, ellipse, and rotated representations. Notably, the rotated representation that we recover is a pure
rotation of the normalized representation.

In order to recover the rotations, scales, and bias in the model’s output layer, we will reformulate
the model in a way that exposes these operations. We illustrate this reparameterization in Figure 8.
Typically, the final layers have the form

𝒙 ↦→ softmax(𝑾 (𝜸 ⊙ 𝒙̂ + 𝜷)), (3)

with an unembedding matrix𝑾 and element-wise affine transform 𝜸, 𝜷 ∈ ℝ𝑑 applied to the normalized
input 𝒙̂. We can reparameterize the argument to the softmax with an equivalent affine transformation
of 𝒙̂

𝒙 ↦→ softmax(𝑨− (𝑼𝚺𝑽⊤𝒙̂ + 𝒃)), (4)
where 𝑨− ∈ ℝ𝑣×𝑑 is a matrix, 𝑼,𝑽⊤ ∈ ℝ𝑑×𝑑 are unitary (i.e., rotation) matrices, 𝚺 ∈ ℝ𝑑×𝑑 is a
diagonal (i.e., scaling) matrix, and 𝒃 ∈ ℝ𝑑 . We claim that our formulation in Equation (4) is equivalent
to Equation (3) when, for a chosen full-rank matrix 𝑨 ∈ ℝ𝑑×𝑣 , we have that 𝑼,𝚺,𝑽⊤ is the singular
value decomposition of 𝑨𝑪𝑾 ⊙ 𝜸, 𝒃 is 𝑨𝑪𝑾𝜷, and 𝑨− is a generalized inverse of 𝑨, computed as
𝑪𝑾 (𝑨𝑪𝑾)−1 (proof in Appendix D).

Our re-parameterization is useful because it isolates distinct operations on the LM representations. The
output is first rotated by 𝑽⊤, scaled along the axis directions by 𝚺, rotated again by 𝑼, translated by 𝒃,
then projected into a higher dimensional space by 𝑨− . In the original formulation, these operations
all occur implicitly via 𝑪𝑾 ⊙ 𝜸 and 𝑪𝑾𝜷.

Because model outputs are on a 𝑑-dimensional ellipse in 𝑣 dimensional space, we will first project
them back down to 𝑑 dimensions before fitting an ellipse to them. For simplicity’s sake, we choose
the down-projection matrix 𝑨 ∈ ℝ𝑑×𝑣 to be the first 𝑑 rows of the identity matrix 𝑰1,...,𝑑 because
multiplying by this amounts to truncating a vector after 𝑑 entries.

Now we can solve for our first parameter 𝑨− , the up-projection matrix that restores down-projected
vectors to their full dimension. We begin by collecting 𝑑 logprob outputs from the model and centering
them. These outputs come from some unknown hidden states 𝒉1, . . . , 𝒉𝑑 ∈ ℝ𝑑 , which we consider
to be stacked into a matrix 𝑯 ∈ ℝ𝑑×𝑑 , meaning our collected outputs are 𝑪𝑾𝑯. We are looking
for 𝑨− such that 𝑨−𝑨𝑪𝑾 = 𝑪𝑾. This can be solved by inverting the down-projected outputs
𝑨− = 𝑪𝑾𝑯(𝑨𝑪𝑾𝑯)−1 = 𝑪𝑾 (𝑨𝑪𝑾)−1.

Next, we turn our attention to finding the remaining parameters 𝑼, 𝚺, and 𝒃, which we will do by
collecting a sufficient number of outputs, projecting them onto ℝ𝑑 , and fitting an ellipse to them.
Ellipsoid fitting algorithms generally return parameters 𝑬 ∈ ℝ𝑑×𝑑 and 𝒃 ∈ ℝ𝑑 , where 𝑬 is symmetric
and positive-definite. The ellipse is the set of points that satisfy (𝒙 − 𝒃)⊤𝑬 (𝒙 − 𝒃) = 0. We can
obtain our model parameters as 𝒃 = 𝒃 and 𝑬−1 = (𝑼𝚺) (𝑼𝚺)⊤, using Cholesky and singular value
decomposition to find the latter. The parameter𝑼 obtained by this method is not unique, since rotating
an ellipse 𝜃 degrees in one direction yields the same surface as rotating it 180 − 𝜃 degrees in the
opposite direction. Nevertheless, we make it unique by specifying an arbitrary constraint that the
columns of 𝑼 all have a positive value in their first nonzero entry.

Thus we have a method to obtain all the parameters of our LM’s output layers (except 𝑽⊤, which the
ellipse is invariant to).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

∑
𝑖 𝑥

2
𝑖 = 𝑑

∑
𝑖 𝑥𝑖 = 0

Figure 9: An illustration of the layer norm output space (left), which is shown as the thick ring at the
intersection of the plane perpendicular to 1 (due to centering) and a sphere (due to normalization). To
reduce the dimension of the representation, we can apply an isometric transform that rotates 1 to align
with an axis (right), then drop that axis.

D Proof of equivalent reparameterization

Proof. Our goal is to prove that
softmax(𝑾 (𝜸 ⊙ 𝒙̂ + 𝜷)) = softmax(𝑨−𝑼𝚺𝑽⊤𝒙̂ + 𝒃)

when 𝑼,𝚺,𝑽⊤ = svd(𝑨𝑪𝑾 ⊙ 𝜸), 𝒃 = 𝑪𝑾𝜷, and 𝑨− = 𝑪𝑾 (𝑨𝑪𝑾)−1, where 𝑨 ∈ ℝ𝑑×𝑣 .
softmax(𝑾 (𝜸 ⊙ 𝒙̂ + 𝜷)) (5)
= softmax((𝑾 ⊙ 𝜸)𝒙̂ +𝑾𝜷) Distribute 𝑾 (6)
= softmax (𝑪 ((𝑾 ⊙ 𝜸)𝒙̂ +𝑾𝜷)) Softmax invariant (7)
= softmax ((𝑪𝑾 ⊙ 𝜸)𝒙̂ + 𝑪𝑾𝜷) Distribute 𝑪 (8)
= softmax ((𝑪𝑾 ⊙ 𝜸)𝒙̂ + 𝒃) Substitute 𝒃 (9)

= softmax
(
(𝑪𝑾 (𝑨𝑪𝑾)−1𝑨𝑪𝑾 ⊙ 𝜸)𝒙̂ + 𝒃

)
(𝑨𝑪𝑾)−1 (𝑨𝑪𝑾) = 𝑰 (10)

= softmax
(
𝑨−𝑼𝚺𝑽⊤𝒙̂ + 𝒃

)
Substitutions (11)

□

E Parameter recovery for layer norm models

Up to this point, we have considered models with RMS-like norms, but the details of parameter
recovery become slightly more involved when the model uses a layer norm function. The layer norm
function consists of centering and normalization

layernorm(𝒙) = 𝒙 − 𝔼[𝒙]√︁
𝜀 + Var[𝒙]

,

where Var[𝒙] is the variance of the entries of 𝒙. In this setting, the ellipse lives in a 𝑑 − 1-dimensional
space due to the fact that the layer norm centers the input before normalizing. The centering operation
maps the input onto a plane by enforcing that

∑𝑑
𝑖=1 𝑥𝑖 = 0, and the normalization maps it onto the

closest point on the sphere by enforcing that
∑𝑑

𝑖=1 𝑥
2
𝑖 = 𝑑. Figure 9 shows how the output space of the

layer norm is a two-dimensional sphere (i.e., a circle) when 𝑑 = 3. A consequence of this is that the
bias term in ℝ𝑑 now “lifts” the ellipse off the plane on which it resides into a 𝑑-dimensional space.

To account for this, we modify our reparameterization as shown in Figure 10. In particular, we first
project the sphere into ℝ𝑑−1 to apply the linear ellipse transformation, then lift the ellipse into ℝ𝑑

to apply the bias term. Our projection onto ℝ𝑑−1 is an isometric linear transformation which first
applies a rotation that maps the vector 1 to the vector (

√
𝑑, 0, 0, . . . , 0) (as shown in Figure 9) and

then drops the first entry, which will always be zero for any centered input. Because it is an isometric
transformation, the projected representations are still on a sphere. When it comes time to apply the
bias, we apply an up-projection 𝒀 before adding 𝒃.

When recovering an unknown 𝒃 from a set of layer norm logprobs, we modify our algorithm to
account for our reformulation. The key idea is to subtract a point on the biased ellipse from every
other point so that their new plane intersects the origin. We can then apply a down-projection as we
have done before by simply dropping an axis. We find the matrix 𝒀 that inverts this axis dropping in
the same way that we found 𝑨− .

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2 Get output layer parameters of a language model with a layer norm.
function Get parameters( logprobs ℓ1, . . . , ℓ𝑛 ∈ ℝ𝑣 )

𝑾𝑯 =
[
ℓ1 · · · ℓ𝑛

] ∈ ℝ𝑣×𝑛 ⊲ Create matrix from logprob outputs
𝑑 = rank(𝑪𝑾𝑯) ⊲ Find embedding size of model
𝑨 = 𝑰𝑣1:𝑑 ⊲ Choose a down-projection
𝑨− = 𝑪𝑾𝑯(𝑨𝑪 (𝑾𝑯)1:𝑑)−1 ⊲ Solve for up-projection
𝒃1 = 𝑨𝑪ℓ1
𝒁 = 𝑰𝑑1:𝑑−1
𝒀 = (𝑨𝑪𝑾𝑯 − 𝒃1) (𝒁(𝑨𝑪 (𝑾𝑯)2:𝑑 − 𝒃1))−1

𝑬, 𝒃2 = EllipsoidFit(𝒁(𝑨𝑪ℓ1 − 𝒃1), . . . , 𝒁(𝑨𝑪ℓ𝑛 − 𝒃1)) ⊲ Solve for ellipse
𝒃 = 𝒃1 + 𝒀𝒃2 ⊲ Solve for 𝒃
𝑼,𝚺, _ = svd(Cholesky(𝑬−1)) ⊲ Convert ellipse to affine form
return 𝑨− ,𝒀 ,𝚺,𝑼, 𝒃

end function

Pre-norm ℝ𝑑 Normalized ℝ𝑑

Normalize

Hidden ℝ𝑑

Stretch 𝜸 & bias 𝜷

Logit ℝ𝑣

Linear 𝑾

Probability ℝ𝑣

softmax

Sphere ℝ𝑑−1

Isometric

Rotated ℝ𝑑−1

Rotate𝑽⊤

Ellipse ℝ𝑑−1

Stretch 𝚺 & rotate𝑼

Biased ellipse ℝ𝑑 Cannonical logit ℝ𝑣

Linear𝒀 & bias 𝒃 Linear 𝑨

Linear 𝑩

softmaxCenter

Figure 10: Model representations and mappings between them for LMs with a layer norm. Compared
to Figure 8, this model has an ellipse in 𝑑 − 1 dimensions.

F Ellipse extraction implementation

Our implementation is written with cvxpy and uses the mosek solver. To verify the correctness of
our method, we first check that it solves for the exact parameters of a randomly initialized model
with un-smoothed normalization (i.e., without a 𝜀 term in the normalization denominator, as in
Equation (1)). In this setting, our method shows negligible errors (< 1 × 10−15) in recovering the
model parameters. We attribute these small errors to precision limitations.

G Smoothing severity

To get a sense of the severity of fitting problems due to smoothing, we plot a histogram of the norms
of the normalized outputs for pre-trained models with 𝜀 = 1 × 10−5, shown in Figure 11. Fortunately,
we find that the norms are generally clustered tightly around a point near 1. Notably, for larger models,
this clustering becomes even tighter and closer to 1, likely because the smoothing term has less
effect. Thus, in accordance with Carlini et al. (2024), we find that our method works fairly well if we

0.988 0.99 0.992 0.994 0.996 0.998 1

GPT NeoX 1M

0 0.5 1

Plot area

0.999985 1

Llama 3 8B

Figure 11: The distribution of L2 norms of hidden states 𝒙̂ from two pre-trained language models
with hidden sizes 64 (GPT NeoX) and 4096 (Llama 3). Both distributions are concentrated near the
maximum norm of 1, more so for the larger model.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

simply ignore this potential source of error, so long as our fitting method is ellipse-specific and we
oversample points from the model, or when the model is large enough in size. By ignoring 𝜀, we
expect that our recovered scaling terms will be slight underestimates.

H Logit transformations

Language model APIs may sometimes apply transformations to logits or model parameters which
may affect the signature.

Top-𝑘 truncation for 𝑘 < 𝑑 (𝑘 > 𝑑 has no effect on the ellipse) means that outputs will still fall within
(though no longer on) the down-projected signature in that specific top-𝑘 direction. This hurts the
usefulness of the signature, but if you see an output outside the ellipse projection you know the output
came from a different model.

Temperature, i.e., scaling the logits before applying the softmax, so long as it remains constant, has
the effect that the ellipse will be scaled, meaning that the outputs will not be on the ellipse, but they
will all be exactly the same distance from it, allowing a verifier to still detect the signature.

Quantization/mixed precision, an efficient inference strategy where some model weights are converted
to lower precision, should have no effect on ellipse signatures since the language model head is
generally not quantized.

17


	Introduction
	Language model ellipses are signatures
	Language model outputs lie on an ellipse
	Language model ellipses are signatures
	Comparison to existing methods

	Ellipse forgery is hard
	Ellipse fitting errors from smoothing
	The sample cost of model ellipse recovery is super-cubic
	Ellipsoid fitting takes sextic time

	Ellipse signatures are message authentication codes
	Discussion and conclusion
	Centered logits also lie on an ellipse
	Comparison to existing verification systems
	How to extract an ellipse
	Proof of equivalent reparameterization
	Parameter recovery for layer norm models
	Ellipse extraction implementation
	Smoothing severity
	Logit transformations

