
Under review as a conference paper at ICLR 2024

GPT IS BECOMING A TURING MACHINE:
HERE ARE SOME WAYS TO PROGRAM IT

Anonymous authors
Paper under double-blind review

ABSTRACT

We demonstrate that, through appropriate prompting, GPT-3 can be triggered
to perform iterative behaviours necessary to execute (rather than just write or
recall) programs that involve loops, including several popular algorithms found in
computer science curricula or software developer interviews. We trigger execution
and description of iterations by regimenting self-attention (IRSA) in one (or a
combination) of three ways: 1) Using strong repetitive structure in an example
of an execution path of a target program for one particular input, 2) Prompting
with fragments of execution paths, and 3) Explicitly forbidding (skipping) self-
attention to parts of the generated text. On a dynamic program execution, IRSA
leads to larger accuracy gains than replacing the model with the much more
powerful GPT-4. IRSA has promising applications in education, as the prompts
and responses resemble student assignments in data structures and algorithms
classes. Our findings hold implications for evaluating LLMs, which typically target
the in-context learning: We show that prompts that may not even cover one full task
example can trigger algorithmic behaviour, allowing solving problems previously
thought of as hard for LLMs, such as logical puzzles. Consequently, prompt design
plays an even more critical role in LLM performance than previously recognized.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; Rae et al., 2021; Chowdhery et al., 2022;
OpenAI, 2023) are trained on large text datasets, which typically include descriptions of procedures
and even computer programs (Chen et al., 2021). Their performance on complex reasoning tasks
remains limited even with advanced prompting methods, e.g. Chain-of-Thought (CoT) (Shwartz
et al., 2020; Zelikman et al., 2022; Nye et al., 2021; Wei et al., 2022; Wang et al., 2022b; Zhou
et al., 2022; Creswell et al., 2022; Wang et al., 2022a; Liu et al., 2022; Kojima et al., 2022; Li et al.,
2022a). This implies that despite their size, current LLMs are unlikely to execute algorithms or solve
problems such as logical deduction and logical grid puzzles in BIG-bench Lite (Srivastava et al.,
2022), that require many (or iterated) reasoning steps in a direct, savant-like manner.

LLMs generate tokens in order, each based on previous tokens in the sequence, whether these are
part of the prompt or have just been generated by the LLM itself. Such self-attention could allow an
LLM to use all previously generated tokens as the store of information needed for tracking reasoning
steps, states, etc.1. Such use of generated tokens would resemble a classical Turing Machine with
its memory tape Turing (1936). In principle, a non-trivial recurrent transformer model with infinite
attention could be Turing-complete and capable of executing arbitrary routines, as long as the attention
mechanism can be controlled stringently enough. But, even in relatively simple settings, LLMs appear
to resist strict controls. Slight changes in prompts can yield dramatically different responses Liu et al.
(2021); Malkin et al. (2022); Shi et al. (2023), because many recurrent patterns in the training data are
encoded into a single model, and learned patterns overlap and vary in the context size. Thus it is easy
to mislead with a prompt with accidental alphabetical or numerical ordering, or some undetectable
semantic bias (Zhao et al., 2021; Lu et al., 2022; Min et al., 2022).

In Section 2, we introduce much stricter attention controls that instruct LLMs to unroll reasoning
steps of a procedure with the initially undetermined length, and decide when the solution is found:

1This is likely contributing to the success of CoT prompting, in addition to such prompts’ explanatory value.

1

Under review as a conference paper at ICLR 2024

Iteration by Regimenting Self-Attention (IRSA). The basic way to achieve such deliberate self-
attention control is through highly structured prompting with an example of execution path for one
example, as illustrated for Bubble Sort algorithm in Prompt 1, which encourages an LLM to output
not just the sorted sequence but also the swap count (response in Prompt A.1 in Appendix), which is
a challenging task to solve in a savant manner. We further explore fragmented prompting which
combines multiple fragments of execution paths, as well as the strategy of skipping parts of generated
text when performing self-attention. We also discuss interpreter/compiler prompts that can translate
an algorithm in a high-level programming language into an IRSA prompt that GPT-3 can execute.

We present results on a wide range of algorithms taught in computer science curricula and used to
test software engineers in coding interviews, including string manipulations, dynamic programming,
and stack operations in Section 3. Our findings point to broader applications for LLMs in software
engineering and education Gao et al. (2022); Parisi et al. (2022); Schick et al. (2023); Mialon et al.
(2023). More pressingly, they point out a critical issue in evaluating in-context learning of LLMs,
suggesting that current evaluations may underestimate LLMs’ abilities if prompts can combine natural
language instructions with algorithmic iterative reasoning. The sensitivity of the performance to
prompt design may be amplified by the iterative reasoning triggered by the prompt, which will then
beg the question: If one LLM beats another on a task, is it simply because we have not found the
right prompt for the second model? E.g., IRSA increases the performance of GPT-3 family on logical
deduction puzzles from 32% to 76%. The discussion in the Appendix also includes an experiment
with GPT-4 OpenAI (2023) on a well-known dynamic programming task showing that even the latest
member in the family cannot consistently execute code without prompting in IRSA style.

2 ITERATION BY REGIMENTING SELF ATTENTION (IRSA):
EXPLAIN LIKE I’M FIVE AUTOREGRESSIVE

Prompt 1, triggering an execution of the Bubble Sort algorithm on an arbitrary input sequence,
illustrates the basics of IRSA. For one input sequence, the prompt shows all state changes and
explains each change before it occurs. The explanation is colloquial, but the structure of it is
both rigid and repetitive, strictly regimenting the attention to the rules (corresponding to program
instructions) and state changes. This strategy hardens the attention sufficiently to facilitate disciplined
procedural reasoning, while leaving non-regimented content open to interpretation. (Sorting a
sequence of 4 integers is demonstrated, but the same prompt can also be used to sort characters
alphabetically or animals by size, and be applied to both shorter and longer input lists.)

IRSA could be thought of as an instance of Chain-of-Thought prompting. However, a significant
distinction lies in the number of reasoning steps, which is limited and fixed in usual CoT applications,
and the thorough annotation of steps in the order of reasoning, which is especially important in
the treatment of conditionals: Instead of specifying the effect of a state change (swapping two
elements), and then explaining why it was done (because the two were out of order), the ’why’ is
given first. While either order may be equally explanatory in prompt, the difference becomes evident
in generation, when LLM attempts to follow the prompt’s blueprint. If the explanation follows
making a choice in the prompt, then the generation will follow the same pattern: make a cognitive
leap to decide on a move, then rationalize that choice. In IRSA, instead, the reasoning comes first,
and it is further segmented into substeps, so that new tokens inform the future choices as soon as
possible: Check if 2<3. Is it true? triggers evaluation, and then generated next token
No or Yes triggers copying the pattern from the prompt leading to swapping the elements (or not).
Similarly, a new iteration is triggered by first recalling the value of the swap flag.

The structure of the prompt acknowledges the LLM’s autoregressive nature, and does not require big
reasoning leaps in generation. Instead the LLM is instructed to use the generated token stream as a
memory tape that triggers the desired behaviour. Interestingly, as LLMs can make educated guesses
on how to follow any recipe, one can instruct with various levels of detail. Here, the investigation of
the swap flag happens after all pairs have been visited, as we expect that an LLM may infer how to do
the same in generation. In contrast, in Prompt A.4 the state includes the iterator i, which is checked
after each state transition to detect when the time for deciding on the next iteration has come.

Examples of basic IRSA for single loop programs can be seen in Prompts A.5 and A.6, and for double
loop programs in Prompts 1, A.4, and 2. In each of these examples, a single prompt is provided for
a task, which, when combined with a new instance of the task, trigger the execution of an iterative
algorithm, with potentially an unknown number of iterations until the stopping condition is met.

2

Under review as a conference paper at ICLR 2024

Prompt 1. Bubble Sort: The prompt describes iterative state evolution, including counting swaps,
and making the determination when to stop. Playground link (use with 0 temperature)
Problem: 2, 3, 1, 5
EXECUTION

Prep
Length of the list: 4
Number of consecutive pairs: 3
a=[2 3 1 5]
set n_swaps=0
EndPrep
Iteration:

set swap_flag=false. The state is:
State: a=[2 3 1 5], n_swaps=0, swap_flag=false EndState
Pair a[1,2] = [2 3] Check if 2<3. Is it true? Yes.

Because of that, we leave state as is
State: a=[2 3 1 5], n_swaps=0, swap_flag=false
Pair a[2,3]= [3 1] Check if 3<1. Is it true? No.

Thus, we swap_flag=true, increase n_swaps by one,
and in the latest a=[2 3 1 5]
swap 3 and 1 to get into state:

State: a=[2 1 3 5], n_swaps=1, swap_flag=true EndState
Pair a[3,4]= [3 5] Check if 3<5. Is it true? Yes.

Because of that, we leave state as is
State: a=[2 1 3 5], n_swaps=1, swap_flag=true EndState
swap_flag is true, so do another iteration

Iteration:
set swap_flag=false. The state is:
State: a=[2 1 3 5], n_swaps=1, swap_flag=false EndState
Pair a[1,2] = [2 1] Check if 2<1. Is it true? No.

Thus, we set swap_flag=true, increase n_swaps by one,
and in the latest a=[2, 1, 3, 5]
swap 2 and 1 to get into state:

State: a=[1 2 3 5], n_swaps=2, swap_flag=true EndState
Pair a[2,3] = [2 3] Check if 2<3. Is it true? Yes.

Because of that, we leave state as is
State: a=[1 2 3 5], n_swaps=2, swap_flag=true EndState
Pair a[3,4] = [3 5] Check if 3<5. Is it true? Yes.

Because of that, we leave state as is
State: a=[1 2 3 5], n_swaps=2, swap_flag=true EndState
swap_flag is true, so do another iteration

Iteration:
set swap_flag=false. The state is:
State: a=[1 2 3 5], n_swaps=2, swap_flag=false EndState
Pair a[1,2] = [1 2] Check if 1<2. Is it true? Yes.

Because of that, we leave state as is
State: a=[1 2 3 5], n_swaps=2, swap_flag=false EndState
Pair a[2,3] = [2 3] Check if 2<3. Is it true? Yes.

Because of that, we leave state as is
State: a=[1 2 3 5], n_swaps=2, swap_flag=false EndState
Pair a[3,4] = [3 5] Check if 3<5. Is it true? Yes.

Because of that, we leave state as is
State: a=[1 2 3 5], n_swaps=2, swap_flag=false EndState
swap_flag is false, so stop the iteration

Final List: 1, 2, 3, 5
Number of swaps: 2
END OF EXECUTION

Problem: 0, 3, 8, 5, 6
EXECUTION

3

https://platform.openai.com/playground/p/TBXnrq1eEreegSknw8wpXh9e?model=code-davinci-002

Under review as a conference paper at ICLR 2024

Prompt 2. Logical deduction puzzle IRSA prompt. Playground link (use with 0 temperature)
PUZZLE: The following objects need to be ordered. obj1 is the biggest. obj2 is smaller than obj3.
obj1 is bigger than obj2. QUESTION: Which object is the biggest?
START
Parsing step:

Items: obj1, obj2, obj3
Numbe of items: 3
Statement 1: obj1 is the biggest.
Statement 2: obj2 is smaller than obj3.
Statement 3: obj1 is bigger than obj2.

Scoring identification step:
Scores will refer to size.
Since we have 3 items, let’s assume that the biggest gets a score of 3 pounds
and the smallest gets the score of 1 pound.

Translation step:
Available variable names: x, y, z, a, b, c
Map item scores of ’obj1’, ’obj2’, ’obj3’ to variable names x, y, z
obj1 score is x; obj2 score is y; obj3 is z;
Statement 1: ’x’ is the biggest.
Statement 2: ’y’ is smaller than ’z’.
Statement 3: ’x’ is bigger than ’y’.

Initialization step:
Words used to qualify the realtionsips: smaller, bigger, biggest
Orientation step:

the biggest: refers to the score of 3
smaller: refers to smaller score
bigger: refers to larger score

Initialize so that all scores are different numbers between 1 and 3
Score_assignment_A:
x=2, y=3, z=1

Iterative reasoning
Iteration 1:

update_flag=false
Statement 1: ’x’ is the biggest, meaning: x should be 3
In Score_assignment_A, x is 2
x is not what it should be, so we need to make a change, so we set update_flag=true and we need to make a swap.
In the statement there is only one variable and it is x. We need to find another. We want x to be 3,
but we see that in Score_assignment_A that 3 is assigned to y, so we swap values of x and y to make
Score_assignment_B:
x=3, y=2, z=1
Statement 2: ’y’ is smaller than ’z’, meaning: y<z
In Score_assignment_B, y is 2 and z is 1, so y<z maps to 2<1
2<1 is false, so we need to make a change, so we set update_flag=true and we need ot make a swap.
In the statement there are two variables and those are y and z so we swap in Score_assignment_B to make
Score_assignment_C:
x=3, y=1, z=2
Statement 3: ’ x’ is bigger than ’y’, meaning x>y
In Score_assignment_C, x is 3 and y is 1, so x>y maps to 3>1
3>1 is true, so we don’t need to make a change.

End of iteration. Since update_flag is true, we need more iterations.
Iteration 2:

update_flag=false
Statement 1: ’x’ is the biggest, meaning: x=3
In Score_assignment_C, x is 3, so x=3 maps to 3=3
3=3 is true, so we don’t need to make a change.
Statement 2: ’y’ is smaller than z, meaning: y<z
In Score_assignment_C, y is 1 and z is 2, so y<z maps to 1<2
1<2 is true, so we don’t need to make a change.
Statement 3: ’x’ is bigger than y, meaning x>y
In Score_assignment_C, x is 3 and y is 1, so x>y maps to 3>1
3>1 is true, so we don’t need to make a change.

End of iteration. Since update_flag is false, we have finished all iterations and found the correct order.
The correct score assignment is the last (Score_assignment_C):
x=3, y=1, z=2
Reverse translation step:
Map items ’obj1’, ’obj2’, ’obj3’ to variable names x, y, z
so we replace x by obj1, y by obj2, and z by obj3 to get size scores:
obj1 has the score 3; obj2 has the score 1; obj3 has the score 2

Question: Which object is the biggest?
Answer: obj1
Sorting all by score starting with obj1:
with score 3, obj1
with score 2, obj3
with score 1, obj2
END

PUZZLE: On a shelf, there are five books: a gray book, a red book, a purple book, a blue book, and a black book.
The red book is to the right of the gray book. The black book is to the left of the blue book.
The blue book is to the left of the gray book. The purple book is the second from the right.
QUESTION: Which is leftmost?
START

4

https://platform.openai.com/playground/p/xAOcPKewG2yK4bEwQbz8lzuj?model=code-davinci-002

Under review as a conference paper at ICLR 2024

2.1 USING IRSA TO REASON OVER LOGICAL PUZZLES.

In addition to program execution, iterative reasoning is required in solving a number of NLP word
prolems, (e.g., Srivastava et al. (2022)). The BIG-bench Logical Deduction task requires ordering
several objects given their pairwise relationships in natural language (e.g., a robin is standing on a
branch to the right of a raven, but a sparrow is the left-most). Even for a small number of objects,
LLMs struggle to solve such puzzles in zero- or few-shot settings, much like how human solvers
cannot just see the correct answer instantly without scratch paper. This task is not solved well by
LLMs without external search/reasoning/inference algorithms, such as ThinkSum Ozturkler et al.
(2023). However, a variant of BubbleSort algorithm adapted to this problem and shown in Prompt 2
can be used to solve 76% of these puzzles. The prompt first translates the problem into a canonical
form, and then, in IRSA style, describes an iterative swapping procedure that rearranges the objects.

2.2 FRAGMENTED PROMPTING.

Another way to trigger iterative behaviour is through fragmented prompting, illustrated in Prompt
3), and which relies on complete state specification and fragmentation. Prompt 3 does not fully
cover the entire execution path of any single example. Instead, it follows the first three state changes2

for the sequence 2, 3, 1, 5, and then stops in the middle of a sentence. Then it shows 6 additional
fragments of execution paths for different problems.

Interestingly, this prompt triggers iterative behaviour, where the language model accurately executes
the algorithm on a given input and outputs END OF EXECUTION when the termination condition is
met. Viewing this prompt as an instance of in-context learning, it is challenging to classify it in usual
terms. It goes beyond 0-shot learning as it contains explanations specific to the algorithmic sorting
task. Yet, as opposed to what the few-shot CoT prompting might do, it does not work out any single
example of array sorting. Instead, it provides fragments of patterns that can be stitched together to
execute the algorithm (and GPT-3 CODE-DAVINCI-002 does execute it correctly for new inputs).

The potential advantage of such fragmented prompting is that the prompt can be shorter and include a
greater variety of situations that may be encountered in new problems. A potential disadvantage is that
the language model may get confused by the fragmentation and start hallucinating new independent
fragments. In this case, we managed to avoid that by having the first fragment starting from the start
of execution, going through several state transitions, and ending mid-sentence. Because of this, when
a new problem is given, the language model starts running the execution path from the beginning,
and later refers to various cases in the prompt for guidance on how to proceed.

2.3 SKIP ATTENTION.

Prompt 3 also illustrates the idea of attention skipping. Whether using a single-execution or a
fragmented prompt, if the state in the <state>*</state> structure is complete, the attention
mechanism can generate the next token without attending to all the generated text. It is sufficient to
attend to the prompt and the text generated after and including the last state.

If the skipping is implemented on the server side, akin to stop word functionality, then skipping
unnecessary attention saves computation: The state of the model at the end of the prompt is cached
and used to continue processing from the latest generated <state> marker, ignoring the text
generated in-between. Skip-to-state can also be implemented on the client side, iteratively updating
the original prompt by concatenating the latest <state>*</state> structure to the original
prompt and calling the generative model with </state> as a stop sequence (We did the latter in our
experiments). In both cases, the skip-to-state strategy should increase the number of tokens that can
be generated, as self-attention, which grows linearly with the generated text, is the primary cause for
the token limitations. Skip-to-state strategy keeps the self-attention cost constant. As IRSA requires
the unrolling of potentially long iterative algorithms, these savings are important. For example,
running a dynamic program that keeps track of 2D matrices is only practical in this manner. (See
also Schuurmans (2023) on an external memory approach to dealing with limited attention length.
Here we deal with it by skipping parts of generated text, instead). Another advantage of skip-to-state
attention is that by only attending to the necessary information, the generative model is less likely to

2The full execution path in this style is shown in Prompt A.4.

5

Under review as a conference paper at ICLR 2024

Prompt 3. Fragments: An incomplete path for the first few Buble Sort state transitions for one
sequence is followed by state transitions involving different sequences at different execution points.
Initial part of the response is marked green. Skip attention: The part of the response up to the last
state is not needed to continue the generation. Only the prompt, the last <state>*</state>, and
the text after it are necessary to generate the next token. Playground link (use with 0 temperature)

A
tt

en
d

Problem: 2, 3, 1, 5
EXECUTION

Length of the list: L=4
Number of pairs: P=3
a=[2 3 1 5]
set n_swaps=0. set i=P=3. set swap_flag=true.

<state> a=[2 3 1 5] i=3 P=3 n_swaps=0 swap_flag=true </state>
Since i=3 and P=3, i and P are equal, so this iteration is done, but swap_flag is true,
so we need another iteration
Iteration:

set swap_flag=false. set i=0. The state is:
<state> a=[2 3 1 5] i=0 P=3 n_swaps=0 swap_flag=false </state>
Since i=0 and P=3, these two are different, so we continue
a[i]=a[0]=2 a[i+1]=a[1]=3
Because 2<3 is true we keep state as is and move on by increasing i
<state> a=[2 3 1 5] i=1 P=3 n_swaps=0 swap_flag=false </state>
Since i=1 and P=3, these two are different, so we continue
a[i]=a[1]=3 a[i+1]=a[2]=1
Because 3<1 is false we set swap_flag=true,increase n_swaps by one, and in a=[2 3 1 5]
swap 3 and 1, and increase i, and keep P as is to get
<state> a=[2 1 3 5] i=2 P=3 n_swaps=1 swap_flag=true </state>
Since i=2 and

<state> a=[6 5 8 9 1 2] i=2 P=5 n_swaps=5 swap_flag=false </state>
Since i=2 and P=5 i and P are different, so we continue
a[i]=a[2]=8 a[i+1]=a[3]=9
Because 8<9 is true we we keep state as is and move on by increasing i
<state> a=[6 5 8 9 1 2] i=3 P=5 n_swaps=5 swap_flag=false </state>

<state> a=[9 1] i=0 P=1 n_swaps=2 swap_flag=true </state>
Since i=0 and P=1 i and P are different, so we continue
a[i]=a[0]=9 a[i+1]=a[1]=1
Because 9<1 is false we set swap_flag=true,increase n_swaps by one, and in a=[9 1] swap 9 and 1
and increase i, and keep P as is to get
<state> a=[1 9] i=1 P=1 n_swaps=3 swap_flag=true </state>

<state> a=[6 7 3 5] i=3 P=3 n_swaps=7 swap_flag=false </state>
Since i=3 and P=3 i and P are equal, so this iteration is done, swap_flag is false, so stop

Final List: 6, 7, 3, 5
Number of swaps: 7
END OF EXECUTION

<state> a=[3 5 6 8] i=3 P=3 n_swaps=1 swap_flag=true </state>
Since i=3 and P=3 i and P are equal, so this iteration is done, but swap_flag is true,
so we need another iteration

Iteration:
sset swap_flag=false. set i=0. The state is:
<state> a=[3 5 6 8] i=0 P=3 n_swaps=1 swap_flag=false </state>

<state> a=[2 8 1 3 5 7 4] i=1 P=6 n_swaps=5 swap_flag=false </state>
Since i=1 and P=6 i and P are different, so we continue
a[i]=a[1]=8 a[i+1]=a[2]=1
Because 8<1 is false we set swap_flag=true,increase n_swaps by one, and in a=[2 8 1 3 5 7 4]
swap 8 and 1 and increase i, and keep P as is to get
<state> a=[2 1 8 3 5 7 4] i=2 P=6 n_swaps=6 swap_flag=true </state>

<state> a=[4 8] i=0 P=1 n_swaps=7 swap_flag=true </state>
Since i=0 and P=1 i and P are different, so we continue
a[i]=a[0]=4 a[i+1]=a[1]=8
Because 4<8 is true we we keep state as is and move on by increasing i
<state> a=[4 8] i=1 P=1 n_swaps=7 swap_flag=true </state>

Problem: 3, 1, 8, 9, 6
EXECUTION

D
on

’t
at

te
nd

Length of the list: L=5
Number of pairs: P=4
a=[3 1 8 9 6]
set n_swaps=0. set i=P=4. set swap_flag=true.

<state> a=[3 1 8 9 6] i=4 P=4 n_swaps=0 swap_flag=true </state>
Since i=4 and P=4 i and P are equal, so this iteration is done, but swap_flag is true,
so we need another iteration

Iteration:
set swap_flag=false. set i=0. The state is:

A
tt

en
d

<state> a=[3 1 8 9 6] i=0 P=4 n_swaps=0 swap_flag=false </state>
Since i=

6

https://platform.openai.com/playground/p/R10IV9sCAfyU1D4dpiwZys4b?model=code-davinci-002

Under review as a conference paper at ICLR 2024

get confused by accidental patterns created in its own generated text. (See more in Section A.3 and
Figure A.2.)

2.4 GPT AS A MACHINE LANGUAGE: PROMPTING TO INTERPRET/COMPILE A PROGRAM.

A general-purpose computer can execute algorithms that convert the text of a program into its machine
code. Analogously, we designed IRSA prompts that turn code in some language into an execution
path that can then be used in prompting (Section A.1). We used a “GPT compiler” for an invented
programming language in Prompt A.2 to generate an IRSA-like execution path for the double-loop
DP algorithm for the longest common subsequence problem, providing an LCS IRSA-prompt.

3 EXPERIMENTS

Our experiments include the following evaluations:

• Basic IRSA: Prompting with highly structured single execution path examples (Table 1). As opposed
to CoT prompts providing multiple steps of reasoning shown for a few examples, IRSA prompts
use single example designed to trigger iterative reasoning that is repeated until the stop condition
is reached and the solution is found, and the execution path example for each task is deliberately
chosen to be out-of-distribution (e.g., the Bubble Sort prompt features a worked-out example of
sorting a four-number sequence in just three passes, while the dataset consists of five-number
sequences requiring 2 to 5 iterations and up to 20 state transitions, with varying complexity across
problems). Thus in terms of information they provide, these prompts can be seen as somewhere
between single-shot and zero-shot prompts.

• Skip-to-state IRSA: Prompting as above, but with additional forced attention skipping. In this
approach, the LLM is forced to attend only to the prompt and the last generated state as it iterates
through the input to find the solution (illustrated at the end of Prompt 3). We also evaluate fragmented
prompts (Table 2), where the prompt does not consist of a single complete execution path for an
example, but instead shows several state-to-state transitions for different inputs.

• Interpretation of new code. As discussed in Sections 2.4, A.1, IRSA style prompting can take
code in a high level language as the input and produce IRSA-like annotated execution paths, which
will then also include the result of the execution in the end. We compare IRSA with the few-shot
prompts in Nye et al. (2021) on interpreting and executing 100 synthetic Python programs (Table 3).

Baselines. To make fair comparisons and avoid unnecessary recomputation, we reused existing
baselines from Srivastava et al. (2022) wherever possible, denoted by an asterisk (*): Logical
deduction, Balanced parenthesis, and Longest common subsequences for long sequences. We created
our own datasets and ran baselines for the following tasks: Bubble sort, Longest substring without
repeating characters, and Longest common subsequence for short sequences. We include the best
result from Srivastava et al. (2022) for the GPT family, as our experiments were mainly conducted
using GPT-3. Our baselines included zero or few (5) shot prompting with or without relevant code
added to the description of the task in the prompt (e.g. Prompt A.11). Few shot baselines were made
with 5 different random choices of examples to be included in the prompt. The ’Guessing’ strategy
refers to picking the most frequently correct answer for a given task as a guess for each problem in
the task, which is different from truly random guessing. Few-shot prompting could prime the answers
to pick the most frequently seen answer, even when no understanding of the problem occurs, which
makes our ’Guessing’ strategy more reflective of the task difficulty.

Models. We have briefly experimented with different members of the GPT-3 family, but ran complete
experiments with CODE-DAVINCI-002 for two reasons: TEXT-DAVINICI-002 and 003 often produced
qualitatively similar results, and experimentation with the CODE-DAVINCI-002 was easier due to
better combination of token quota and availability. Having been tuned on code, this model may have
slight advantages over models tuned for more natural language tasks. Nevertheless, as we show in
the experiments and discuss in Section A.3, without IRSA, CODE-DAVINCI-002 cannot solve the
problems discussed here, even when it can generate the code that could. To induce iterative reasoning
in LLMs, it appears that attention needs to be highly regimented through strong structure, and possibly
additional attention control, such as the skip-to-state strategy we described in Section 2.3. This also
applies to GPT-4 OpenAI (2023): In Section A.3.3 in Appendix, we show that prompting GPT-4 with
straight-forward Prompts A.12, A.13, A.14 does not match the performance of IRSA in GPT-3.

Datasets. We test on a mix of reasoning tasks and challenging programming tasks included in
computer science curricula and coding interviews for software engineers:

7

Under review as a conference paper at ICLR 2024

Table 1: IRSA compared with in-context learning baselines, and with the strategy of always guessing
the most frequent answer. (*) denotes the best result for GPT-3 from the BIG-bench.

Task IRSA Baseline Guessing

Bubble sort
- Prompt 1 0.74 0.27 0.23

- Prompt A.4 1.00 0.27 0.23

Longest substring 1.00 0.60 0.59

Logical deduction 0.76 0.32∗ 0.2

Parentheses 0.96 0.56∗ 0.5

Bubble sort. We created a dataset of 100 random non-repeating digit sequences of length 5. The task
is to predict the number of swaps needed to sort the sequence.

Longest substring without repeating characters. A classical coding interview question: Given a
string of letters, find the length of the longest contiguous substring such that no letter appears more
than once. We created a dataset of 100 random strings of length 7.

Logical deduction Srivastava et al. (2022). We include this task (Section 2.1) in experiments to
emphasize the broad importance of triggering iteration in LLMs responses. Enabling LLMs to execute
iterative algorithms through effective prompting could help solve numerous reasoning problems. In
particualr, this task that involves solving a puzzle about an order of items/objects/persons, such as
books on the shelf, birds on a branch, cars, golfers, etc., given several clues. We focus on a subtask
involving 5 items, with varying sets of items and the types of ordering across the puzzles. While
in-context learning with LLMs consistently solves less than 35% of puzzles, a recent combination of
GPT-3 and probabilistic reasoning Ozturkler et al. (2023) was able to solve 77% of the puzzles. We
reach a similar performance through IRSA, without an additional external reasoning mechanism.

Valid parentheses Srivastava et al. (2022) from the cs-algorithms challenge in BIG-bench. The
goal is to evaluate LLMs ability to perform reasoning equivalent to the classical stack manipulations
needed to check if a sequence of parentheses of different types is balanced. LLMs (including GPT)
tend to do the same as chance (50%), except for PaLM with 3 shots, which gets around 75% accuracy.

Longest common subsequence (long) Srivastava et al. (2022) from the BIG-bench cs-algorithms
challenge involves solving a classical dynamic programming problem. Defining a subsequence to be
a sequence of symbols one could get by skipping arbitrary stretches in the original sequence, the task
is to find the length of the longest subsequence common to two given sequences. LLMs do not do
much better than chance on this task (∼10%).

Longest common subsequence (short). We created this dataset in the same manner as the above
one, but limiting sequence lengths to be at most 6. This allows us to evaluate IRSA on more cases,
ensuring it does not run out-of-memory (tokens) in generation .

Synthetic Python programs. We generated and evaluated 100 random programs involving arithmetic
operations and (possibly nested) while and if statements as in Bieber et al. (2020); Nye et al. (2021).

Basic IRSA results. Summary is provided in Table 1. In Bubble Sort evaluations we show the
results using Prompt 1 (74%), and Prompt A.4 (100%). The latter tracks the full state including a loop
iterator. Note that while the execution path for the prompt example 2, 3, 1, 5 requires 3 iterations of
the outer loop and 3 iterations in each inner loop, the dataset, with sequences of length 5, requires four
iterations in the inner loop and a variable number of iterations of the outside loop – anywhere from 2
to 5 – and yet the model can execute the correct number of iterations based on the stoppage criterion.
For the logical deduction puzzles, we used Prompt 2. even though the iterative reasoning logic there
is faulty as it may enter an infinite loop. When that happens, the generation runs out of tokens and
we simply used the answer after the 4th iteration in evaluation. Section A.3 suggests the potential
for creating more effective prompts. Nevertheless, this prompt still leads to state-of-the-art results,
comparable only with Ozturkler et al. (2023), which uses an external reasoning mechanism. The
longest substring without repeating characters problems is solved with IRSA Prompt A.5 explained
in Section A.2). To address the parentheses problem, we used Prompt A.6 in Section A.2.1.

8

Under review as a conference paper at ICLR 2024

Table 2: IRSA with skip-attention, Bubble Sort and Longest Common Subsequence problems.
Fragmented prompting, Bubble Sort problems. (*) denotes the best GPT result in BIG-bench

Baselines Bubble Sort LCS-S LCS-L

0-shot 0.20 0.09 0.14∗

0-shot + code 0.20 0.11 -
few shot 0.25±0.05 0.07±0.01 0.16∗

few shot + code 0.23±0.03 0.06±0.02 -
Guessing 0.23 0.44 0.10

IRSA skip-to-state

single path 0.95 0.93 0.28

7 fragments 0.99±0.02 - -
13 fragments 0.97±0.03 - -
19 fragments 0.99±0.02 - -
25 fragments 0.97±0.03 - -

Table 3: Interpretation of 100 synthetic Python programs with arithmetics, if clauses and nested loops
Interpreter Prompts 1-shot 2-shot 3-shot

Execution trace in Nye et al. (2021) 0.55 0.54 0.59

IRSA 0.85 0.86 0.91

Skip-to-state attention results. The longest common subsequence (LCS) problem requires a state
including a M ×N matrix with solutions for all prefixes of the two sequences of lengths M and N .
Without skip-to-state attention (Section 2.3), the API calls can run out of tokens. Using the approach
described in Section 2.4, A.1, we compiled an execution path in Prompt A.3, and then used it to
induce IRSA on LCS short (LCS-S) and LCS long (LCS-L) problems. Even with skip attention, the
state was too large to fit the token limit for most of the problems in LCS-L from BIG-bench. Yet,
IRSA with skip attention still beats the state-of-the-art significantly (Table 2). On shorter problems in
LCS-S, where IRSA with skip-attention does not run out of tokens, the performance was a respectable
93%. Note that GPT-4, without IRSA, only has 69% accuracy on LCS-S (Section A.3.3).

We tested fragmented prompting of Bubble Sort execution (Table 2). For each selected number of
fragments – 7, 13, 19, 25 – at least one of five randomly generated prompts achieved 100% accuracy.
These prompts followed the format in Prompt 3, starting with the few state transitions from the
beginning for the sequence [2, 3, 1, 5] and then listing additional 6, 12, 18, or 24 fragments. Bubble
Sort has 6 different transitions, and fully balanced instruction listing one, two, three, or four of
each type, with a random sequence in the state, leads to a slightly better performance than having
a completely randomly chosen execution path fragments. These six basic transitions, illustrated in
Prompt 3, involve two ways of ending an iteration depending on the swap flag and four ways of
changing the state: two possibilities for inequality being true or not, combined with two possible
previous values of the swap flag. We found that the prompt sensitivity causes different prompts to fail
for different test cases: Each of the fragmented prompt collections yields 100% as an ensemble.

Interpretation of random programs. Table 3 compares the scratchpad prompts in Nye et al. (2021)
(Prompt A.8) – which show execution traces for three programs, but without the reasoning logic
for state transitions and if and while triggered jumps – with the corresponding IRSA-style prompts
(Prompt A.9) on interpretation of 100 Python programs. (Section A.1).

4 CONCLUSION

We demonstrated that GPT-3 can be triggered to execute iterative algorithms, including double
loops, with variable termination conditions. This has consequences discussed in Appendix (Section
A.3). For example, IRSA may find applications in sofware engineering and education. If LLMs
are programmable (in addition to being natural language translators and analyzers), their evaluation
probably needs to be rethought, esp. in cases where models are expected to make inferences for
which we have algorithms, because in-context learning would cover prompts designed to execute
them (Section A.3). Regimenting self-attention for a given task may require a level of effort (Section
A.3.2, but even GPT-4 cannot execute programs consistently without IRSA (Section A.3.3).

9

Under review as a conference paper at ICLR 2024

REFERENCES

Yoshua Bengio. The consciousness prior. arXiv preprint arXiv:1709.08568, 2017.

David Bieber, Charles Sutton, Hugo Larochelle, and Daniel Tarlow. Learning to execute
programs with instruction pointer attention graph neural networks. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 8626–8637. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/62326dc7c4f7b849d6f013ba46489d6c-Paper.pdf.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. Neural Information Processing
Systems (NeurIPS), 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio
Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments with gpt-4,
2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. PaLM:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large
language models for interpretable logical reasoning. arXiv preprint arXiv:2205.09712, 2022.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. arXiv preprint arXiv:2211.10435, 2022.

Anirudh Goyal and Yoshua Bengio. Inductive biases for deep learning of human cognition. arXiv
preprint arXiv:2011.15091, 2020.

Daniel Kahneman. Thinking, fast and slow. Macmillan, 2011.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. arXiv
preprint arXiv:2210.02406, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. On the
advance of making language models better reasoners. arXiv preprint arXiv:2206.02336, 2022a.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022b.

10

https://proceedings.neurips.cc/paper_files/paper/2020/file/62326dc7c4f7b849d6f013ba46489d6c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/62326dc7c4f7b849d6f013ba46489d6c-Paper.pdf
https://arxiv.org/abs/2107.03374

Under review as a conference paper at ICLR 2024

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for gpt-3? arXiv preprint arXiv:2101.06804, 2021.

Zihan Liu, Mostofa Patwary, Ryan Prenger, Shrimai Prabhumoye, Wei Ping, Mohammad Shoeybi,
and Bryan Catanzaro. Multi-stage prompting for knowledgeable dialogue generation. In Findings
of the Association for Computational Linguistics: ACL 2022, pp. 1317–1337, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.104. URL
https://aclanthology.org/2022.findings-acl.104.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. In Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 8086–8098, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.acl-long.556. URL https://aclanthology.org/2022.acl-long.
556.

Nikolay Malkin, Zhen Wang, and Nebojsa Jojic. Coherence boosting: When your pretrained language
model is not paying enough attention. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 8214–8236, 2022.

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru, Roberta
Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, et al. Augmented
language models: a survey. arXiv preprint arXiv:2302.07842, 2023.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv
preprint arXiv:2202.12837, 2022.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114,
2021.

OpenAI. Gpt-4 technical report, 2023.

Batu Ozturkler, Nikolay Malkin, Zhen Wang, and Nebojsa Jojic. Thinksum: Probabilistic reasoning
over sets using large language models. In Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics, 2023.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language models.
arXiv preprint arXiv:2303.09014, 2023.

Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models. arXiv preprint
arXiv:2205.12255, 2022.

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. The impact of ai on developer
productivity: Evidence from github copilot, 2023. URL https://arxiv.org/abs/2302.
06590.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. arXiv preprint arXiv:2210.03350,
2022.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training Gopher. arXiv preprint arXiv:2112.11446, 2021.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. arXiv preprint arXiv:2302.04761, 2023.

Dale Schuurmans. Memory augmented large language models are computationally universal. arXiv
preprint arXiv:2301.04589, 2023.

11

https://aclanthology.org/2022.findings-acl.104
https://aclanthology.org/2022.acl-long.556
https://aclanthology.org/2022.acl-long.556
https://arxiv.org/abs/2302.06590
https://arxiv.org/abs/2302.06590

Under review as a conference paper at ICLR 2024

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed Chi, Nathanael Schärli,
and Denny Zhou. Large language models can be easily distracted by irrelevant context. arXiv
preprint arXiv:2302.00093, 2023.

Vered Shwartz, Peter West, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Unsupervised
commonsense question answering with self-talk. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 4615–4629, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.373. URL
https://aclanthology.org/2020.emnlp-main.373.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Pro-
ceedings of the London Mathematical Society, 2(42):230–265, 1936. URL http://www.cs.
helsinki.fi/u/gionis/cc05/OnComputableNumbers.pdf.

Amos Tversky and Daniel Kahneman. Judgment under uncertainty: Heuristics and biases: Biases in
judgments reveal some heuristics of thinking under uncertainty. Science, 185(4157):1124–1131,
1974.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Rationale-augmented
ensembles in language models. arXiv preprint arXiv:2207.00747, 2022a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Self-consistency
improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171, 2022b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Eric Zelikman, Yuhuai Wu, and Noah D Goodman. STaR: Bootstrapping reasoning with reasoning.
arXiv preprint arXiv:2203.14465, 2022.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In International Conference on Machine Learning, pp.
12697–12706. PMLR, 2021.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables complex reasoning in
large language models. arXiv preprint arXiv:2205.10625, 2022.

A APPENDIX

A.1 GPT AS A MACHINE LANGUAGE: PROMPTING TO INTERPRET/COMPILE A PROGRAM.

A general-purpose computer can execute algorithms that convert the text of a program into its machine
code. Analogously, we can design prompts with instructions on how to turn code in some language
into execution paths that can then be used in prompting.

An example is shown in Prompt A.2 (Appendix), where several examples of hypothetical syntax
for transforming states are given, including setting values of variables and matrices, printing them,

12

https://aclanthology.org/2020.emnlp-main.373
http://www.cs.helsinki.fi/u/gionis/cc05/OnComputableNumbers.pdf
http://www.cs.helsinki.fi/u/gionis/cc05/OnComputableNumbers.pdf

Under review as a conference paper at ICLR 2024

a single loop program execution, and the detailed_max function that breaks down steps and
explains them. Then, the double loop dynamic programming algorithm for finding the longest
common subsequence (LCS) is also presented in this new language. This prompt successfully triggers
the correct execution of the algorithm, complete with detailed explanations and state transitions
(green shaded in Prompt A.3). This can then be used as a prompt to execute the LCS algorithm on
arbitrary inputs (Section 3). We should note that GPT-3 is still sensitive to small alterations in text,
and Prompt A.2 does not always lead to good interpretations of the algorithm. The performance
may depend on accidental deceptive patterns and inconsistencies in the prompt, as well as the input.
Nevertheless, once the output has been verified as correct, the Prompt A.2 together with the response
in Prompt A.3 became the prompt – IRSA ’machine code’ for GPT — to execute (mostly correctly)
the LCS algorithm for new inputs, as long as they are appended in the same format:

LCS:
Input: <seq1> <seq2> End of input
LCS Prep:

Most of the main paper is concerned with executing IRSA prompts, assuming that such prompts are
written correctly for a given program to be executed on arbitrary inputs. I.e. IRSA is tested as a way
of programming GPT, which may be involved in prompting techniques for reasoning problems, or
an entry point to procedural instructions for those who are not trained as programmers (yet). The
experiments are also meant to demonstrate that GPT is capable of disciplined execution of a given
program.

If instead we want to turn a high-level programming language into IRSA for some input – which
will then contain the output at the end, too – the testing wold need to involve interpretation of many
programs given in that programming language, as attempted in Bieber et al. (2020); Nye et al. (2021).
To demonstrate that IRSA is a good programming strategy to writing its own compilers, we chose
the task studied in Nye et al. (2021), where random synthetic python programs and their execution
traces were used to train and evaluate transformer models. As we do not tune models, but study the
instruction strategies, we compare with the in-context learning task proposed in Nye et al. (2021).
They used a ’scratchpad prompt’ (their Appendix C) with three examples of Python code with its
execution trace to trigger generation of similar traces for synthetic Python programs. We used the
same three examples and modified the prompt with an IRSA-style explanation between each line and
state pair in the trace so that it follows the IRSA recipe, but is still in the few-shot format, rather than
in gradual and fragmented format of Prompt A.2.

As in Nye et al. (2021), we generated random Python programs following the recipe in Bieber et al.
(2020) in their Supplemental material B, Figure 6, to include arithmetic manipulation of the input
variable v0 as well as if statements involving it, and the (possibly nested) while loops with additional
counter variables with randomly chosen names from v1-v9. We additionally limited the complexity
of the dataset to include 0-2 control structures, although those structures could be consecutive or
nested and they need not be the same. Here is a sample program:

def f(v0):
v0 -= 0
v0 *= 1
v2 = 1
while (v2 > 0):

v2 -= 1
v0 -= 2
if (v0 % 10 < 3):

v0 += 3
v0 += 2

v0 -= 3
v0 += 3
return v0

output = f(9)

We tested scratchpad (Prompt A.8) and its IRSA version (Prompt A.9) with the first, the first two, and
all three examples described in Appendix C of Nye et al. (2021). As we see in Table 3, in terms of

13

Under review as a conference paper at ICLR 2024

generating the correct output for 100 random programs, the number of shots affects the accuracy of
interpretation much less than the prompting style: The error rate for IRSA is on the order of ∼10%,
while for the scratchpad it is ∼40%. Although the few-shot trace approach is sufficient for simple
arithmetic manipulations of variables, it struggles more when it comes to executing control structures,
which have multiple reasoning steps: when to test the condition, whether the condition is met, and
where to go next to continue the trace. With a simple trace, these three components must be inferred
implicitly, but the addition of the IRSA-style annotation explicitly outlines how to approach each of
those steps in an auto-regressive fashion rather than making logical leaps.

A.2 THE LONGEST SUBSTRING WITHOUT REPEATING CHARACTERS

To solve the longest substring without repeating characters problems with basic IRSA, we developed
Prompt A.5 based on the 1-index version of the following single-pass algorithm. Interestingly, this
algorithm trades computation for memory by creating one variable per unique letter in the sequence
for storing the location where the letter was last seen in the sequence during the pass (last_ind):

s contains the given string
last_ind = {}
m_len = 0

window start
st_ind = 0

for i in range(0, len(s)):
if s[i] in last_ind:

st_ind=max(st_ind,last_ind[s[i]]+1)

Update result if window is longer
m_len = max(m_len, i-st_ind + 1)

Update last index of the character
last_ind[s[i]] = i

return m_len

A.2.1 BALANCED PARENTHESES

To address the parentheses problem, we used the single execution path that demonstrates stack
operations for determining whether the sequence is balanced or not. The beginning and the end
are shown in Prompt A.6. For brevity, we have omitted certain portions (represented by ellipses).
Note that creating long prompts is made easier by GPT’s completion capabilities, i.e., by starting
with a description of a few steps and asking the model to finish it. Wherever we want the prompt to
differ from the model’s guess, we erase the generated text from that point and continue typing our
correction/instruction and try to autocomplete again. (See also Sections A.3, A.1 in the Appendix).
But interestingly, as discussed in Section 2.2 on fragmented prompting, parts of the execution paths
can be omitted: Prompt A.6 as is, with the ellipsis instead of 10 steps in the algorithm, still achieves
91% accuracy!

A.3 FULL DISCUSSION SECTION

Iteration by Regimenting Self-Attention (IRSA) is a technique for triggering code execution in GPT-3
models. Note that the goal is different from the goal of Alphacode Li et al. (2022b) and Copilot Chen
et al. (2021); Peng et al. (2023), which are meant to write the code, without necessarily understanding
what it outputs. While there are indeed examples of rather impressive code generation and even,
anecdotally, execution path generation using minimal prompting in the latest Codex and GPT-3
models, the lack of control in current LLMs prevents the consistent achievement of these feats with
precision, which is why the code generation applications involve humans in the loop. For instance, as
illustrated in zero-shot bubble sort code Prompt A.10, when relying on Codex alone to attempt code
execution, the generated samples are intuitively close to the correct solution, but a bit off, preventing
correct execution. IRSA, on the other hand, can produce consistently accurate outputs.

14

Under review as a conference paper at ICLR 2024

In algorithm design, trading computation for memory use is a recurrent idea. IRSA as a technique for
LLM inference can be seen in a similar light: We could train a bigger model on more data, with atten-
tion spanning deeper into the past tokens, hoping that it could answer a simple yet computationally
complex query in just a couple of tokens directly; or we can devise a prompting strategy instructing
a smaller LLM to use its token stream as a memory tape, allowing it to reach similar functionality
with increased token usage. By triggering and controlling iterative behaviour, we can, in principle,
execute arbitrary algorithms, which further raises interesting questions: What are the consequences
of LLMs becoming Turing-complete? And how difficult is it to program via IRSA? Will larger GPT
models become capable of executing programs correctly without IRSA? Based on our experience in
designing the prompts we showed here, we speculate on these three questions in this section.

A.3.1 POSSIBLE CONSEQUENCES

(Teaching) Coding. The integration of LLMs’ code generation capabilities with IRSA leads to
innovative applications in code generation. Some of it is implied in the interpreter/compiler Prompt
A.2, which instructs GPT how to interpret and execute code. Following these ideas, exploring program
verification and automatic debugging could be a promising direction. Another obvious application
of IRSA is in computer science education, where we often expect students to execute programs on
paper to determine what the state will be at some point during the execution. Furthermore, IRSA may
also point to new ways of programming by example.

Adversarial applications. Any time a computational medium is Turing-complete, a variety of
malicious uses may become possible, such as creating and executing malware, exploiting system
vulnerabilities, conducting cryptographic attacks, causing resource exhaustion, etc. Thus we should
be aware of the double-edged sword with the increased versatility and computational power of GPT
models.

In-context learning and LLM evaluation. Prompting with IRSA must be considered a zero- or
one-shot learning technique, analogous to chain-of-thought prompting. If, via IRSA, LLMs can
be disciplined with a regimented prompt to execute arbitrary algorithms involving (double) loops,
they may be able to solve arbitrary problems NLP researchers can compose, incorporating natural
language understanding and iterative reasoning like belief propagation, constraint satisfaction, search,
etc. This renders many of the hard BIG-bench tasks easier than they initially appear, as already
suggested by Suzgun et al. (2022) using classical CoT prompting. Many CoT results can be further
improved with IRSA (as logical deductions with Prompt 2).

However, triggering such iterative behaviour may still be hampered by the same sensitivity of in-
context learning to accidental misleading patterns, already observed in classical prompting (Lu et al.,
2022; Zhao et al., 2021), where there may exist a “fantastical” crafting of the prompt that significantly
improves the accuracy of the task. In fact, iterative reasoning may further amplify the fantastical
choices. Thus, if one LLM successfully solves a hard logical reasoning task using a suitable prompt
while another does not, this might imply that the optimal prompt has not yet been found. In fact, it
would not be surprising if better prompts are eventually found that enable the LLM we used here
(GPT-3, CODE-DAVINCI-002) to solve all tasks with 100% accuracy. Thus, evaluating LLMs on their
in-context learning abilities is of questionable value: Some of the hard tasks in BIG-bench may be
better suited to evaluating the skills of prompt engineers rather than the LLMs themselves.

Hybrid models – LLMs as translators. If LLMs are Turing-complete and can transform problems
described in natural language into algorithmically solvable programs, the decision to let them execute
the program or not becomes a practical matter of computational cost. With the apparent magic of
savant-like guessing gone, it is much more practical to run the algorithms on a classical computer, an
approach taken by, for example, Ozturkler et al. (2023) where the external computational mechanism
performs probabilistic inference, or Khot et al. (2022) that involves external control flows, and
many other recent published and unpublished experiments combining LLMs with external calls
and tools Parisi et al. (2022); Gao et al. (2022); Yao et al. (2022); Press et al. (2022); Schick et al.
(2023); Paranjape et al. (2023). Such hybrid models could separate the higher level reasoning
“System 2” – to use an analogy with models of human cognitive processes (Tversky & Kahneman,
1974; Kahneman, 2011) – from the lower-level “knee-jerk reaction” reasoning “System 1”, however
savant-like it might be. In such systems, LLMs can dramatically improve traditional artificial
intelligence algorithms simply by translating the problems into an appropriate form: see Prompt A.7
where the logical deduction task is solved by creating a call to the Solve command in Wolfram

15

Under review as a conference paper at ICLR 2024

language (Mathematica) for an example. The artificial intelligence community is increasingly
interested in researching such systems, e.g., (Bengio, 2017; Goyal & Bengio, 2020), and the developer
community is already developing and deploying hybrid language models (Bing-ChatGPT integration,
for instance).

Self-attention control in training and inference. To paraphrase an old adage on parenting, re-
searchers have spent a lot of effort teaching GPTs to pay attention to everything in the text, and
now IRSA is an attempt to stop it from attending to everything. We accomplish it both by drawing
attention with a strong repetitive structure and by brute force through skip attention (Section 2.3).
More flexible ways of determining what the model should attend to may be needed both in model
building and inference.

A.3.2 PITFALLS OF PROGRAMMING IN GPT-3

Prompts we experimented with induce single loop or double loop program execution. Generally,
controlling double loop algorithms, such as Bubble Sort and Longest Common Subsequence, is more
challenging. The difficulty lies not in understanding the double loop logic, but rather in the increased
probability of running into some of the problems described below. These problems are not always
obvious, but can result in a wide range of accuracies achieved by seemingly similar prompts. For
example, the two prompt designs for Bubble Sort both worked surprisingly well, but showed a big
gap in performance between them (74% and 100%). Here are some tips for attempting IRSA.

Keep a complete state. While it is often possible to instruct by analogy without fully accounting
for all decisions, keeping the full state (i.e., showing it repeatedly after each transition) is usually
preferable. For example, Prompt 3 contains the iterator variable in the state, while Prompt 1 does not.
Not only does keeping full state help regiment the attention, but it makes fragmented prompting and
skip-to-state attention possible.

Explain why before the instruction, not after. LLMs are autoregressive, which makes
them easier to prompt in order: from left to right. Thus, instead of instructing with
‘We now swap 4 and 2 because 2<4’, we instruct with:

Because 4<2 is false we swap 4 and 2

Then later in generation, e.g., ‘Becasue 5<3 is’ will trigger generation of token false and it,
in turn, will trigger generation of ‘we swap’, and so on.

To illustrate this numerically, we generated 100 random Python programs with a single if/else
statement with a condition of the form (z - y) % 10 + 1 > 5 and a simple command x = 1
or x = 2 in each branch respectively. The dataset contained an equal number of programs where
each branch was entered. We tested two prompts that differed only in the order of the answer (x = 1
or 2) and the reasoning. The prompts contained the same 4 examples, two that enter the if branch and
two that enter the else branch, in the following format with either answer first:

z = 11
y = 27
if (z - y) % 10 + 2 > 8:

x = 1
else:

x = 2
Execute:
{x = 2}
because
z - y = 11 - 27 = -16
-16 % 10 = ?
-16 is negative, so the result is 10 - 6
-16 % 10 = 4
4 + 2 = 6
Therefore,
(z - y) % 10 + 2 = 6
6 > 8 is false

16

Under review as a conference paper at ICLR 2024

or reasoning first:

z = 11
y = 27
if (z - y) % 10 + 2 > 8:

x = 1
else:

x = 2
Execute:
because
z - y = 11 - 27 = -16
-16 % 10 = ?
-16 is negative, so the result is 10 - 6
-16 % 10 = 4
4 + 2 = 6
Therefore,
(z - y) % 10 + 2 = 6
6 > 8 is false
{x = 2}

(IRSA recipe requires entering the reasoning first in the prompt). Although the token length and
information in the prompts are identical, with just the order being switched, the generation is very
different. When the answer is generated first, the model must make a guess (x = 1 or 2) and then
rationalize that guess, whereas when the reasoning is generated first, the model has the benefit of
that reasoning in generating its answer. On 100 programs using 4-shot prompts, this leads to 52%
accuracy for the answer-first prompt and 99% for the reasoning-first prompt. This is crucial for
control structures like if statements and while loops that inform what is executed next through
multiple layers of indirection because the prompt needs to instruct the LLM to react at the right time
in the right way.

Empirical entropy in generation can be reduced by IRSA prompting. GPT models are conditional
token samplers, trained to approximate the training data distribution. In generation, the token
distribution depends both on the temperature parameter and the previous tokens in the stream. With
careful IRSA prompting, we expect the generator to be not only more accurate, but also more certain.
This should be characteristic of all autoregressive models, though better ones may be more robust to
prompt design pitfalls discussed here.

To test, we further simplified the example above and ran an experiment using both
text-davinci-003 and gpt-4 with two almost identical 2-shot prompts for evaluating 20
expressions of the form (a +- b) % 10 + c.

The two prompts contain identical information, differing only in two characters in total. They both
explain the reasoning steps needed to reach the answer. As in the previous ablation, one prompt
shows the answer first, followed by an explanation, which then repeats the answer. Concertely, the
prompt contains two examples in this form:

(12 + 24) % 10 + 1 = 7
12 + 24 = 36
36 % 10 = ?
36 is positive so
36 % 10 = 6
(12 + 24) % 10 + 1 = 7
[DONE]

We refer to this prompting style as "guess then rationalize," because when a model is prompted with
examples in this form followed by a new problem, it immediately generates the answer as the very
first token after =, possibly helped with making that leap by the explanations in the prompt, but before
generating its own problem-specific reasoning/explanation, and finally confirming or correcting the
answer with its last generated token. As we show below, the model sometimes fails to use detailed
explanations to make a correct initial guess and then the confirmation bias often gets the better of the
model at the end, even if the generated reasoning should lead to a different conclusion.

17

Under review as a conference paper at ICLR 2024

The second style of prompting in this ablation differs from the first in just one character per example:
Instead of having the correct final answer (here, 7) both at the beginning and at the end, the example
contains the question mark at the beginning:

(12 + 24) % 10 + 1 = ?
12 + 24 = 36
36 % 10 = ?
36 is positive so
36 % 10 = 6
(12 + 24) % 10 + 1 = 7
[DONE]

We refer to such prompting as "reason then answer," because when a model is prompted with examples
in this form, it generates the question mark first, instead of an answer, regardless of the problem, then
generates the explanation (or reasoning) and then generates the answer without being burdened by a
concrete initial guess, which may be incorrect. In other words, the attention is regimented to focus on
the reasoning only, developing the answer in a linear fashion.

We tested both styles of prompting with prompts containing the same two worked-out examples, one
containing (a + b) and one with (a - b) in the expression, the first example explaining how
to evaluate modulo of a positive number and the other of a negative number. (Modulo of a negative
number alone often "confuses" GPT models unless there are instructions in the prompt). Each prompt
is tested on the same test set of 20 randomly generated expressions. Each test expression is added to
the prompt and evaluated 20 times at each of the five different temperatures, allowing us to compute
both the average accuracy and empirical entropy over the 20 answers (which for both prompting
techniques are found as the last token in generation).

As opposed to the previous ablation, where similar expression evaluations were part of making
a decision in an if block, here we focused on evaluation of the expression alone, and made the
reasoning/explanation parts of both prompts shorter by one step: the last addition (6+1=7 in the
example above). When a model is following such instructions, it may insert that step in its generation
anyhow, or it may follow the recipe and just write the original expression and the answer by performing
that last addition "in its head," if it "decides" to do so. Both prompting styles require this mental
leap, but it is harder in case of "guess then reason" prompting style. Because of the repetition of the
problem at the end, when the last token (the answer) is being generated, the model’s attention is drawn
to the first token generated right after the expression (the initial guess in "guess then rationalize" or the
question mark in "reason then answer"). And the attention is also drawn to the worked out evaluation
of the modulo operation, to which a number is to be added to produce the correct answer. In the
"reason then answer" case, the attention to the uninformative question mark does not compete with
the attention to the reasoning, but in the "guess then rationalize" case it does. Thus, we hypothesized
that the entropy of the generations would differ significantly.

Indeed, as we show in Fig A.1, running the same expression 20 times, the entropy increases for
the "guess then rationalize" prompt on both GPT3 and GPT4 as the temperature increases, and the
accuracy stays low, at less than 40% for GPT3 and just above 60% for GPT4. For the "reason then
answer" prompt, both GPT3 and GPT4 have consistently near-zero entropy (sitting at 0 for GPT4)
and a near 100% accuracy (sitting at 100% for GPT4). The style of forcing the reasoning before
determining an answer sufficiently regiments the attention to reduce the effect of temperature (and
potentially other sources of uncertainty due to training data) while still maintaining high accuracy.

As the previous ablation, this experiment illuminates the advantages of IRSA over the original
scratchpad prompting that we numerically demonstrated in the main text (Table 3). But, it also further
demonstrates how IRSA prompting can create correct long execution traces where any single token
could ruin the answer. Even though GPT is a statistical model, where the sampling of each can derail
the generation into a "hallucination", regimented attention can dramatically reduce the uncertainty,
here created through variation of the temperature, but also inherently present in the model even
at zero temperature due to the large training data falling into many different categories and often
containing contradictions. The experiment also demonstrates that although most of our experiments
are performed with GPT-3 family, the newest (for now) GPT-4 also benefits from IRSA (see also
Section A.3.3)

18

Under review as a conference paper at ICLR 2024

Figure A.1: The average entropy and correctness calculated across 20 trials of 20 expressions on both
GPT3 and GPT4 with either a guess first or reason first prompt. We show that the reason first prompt
leads to low entropy and high accuracy regardless of model and temperature, while the guess first
prompt leads to increased entropy as temperature increases and lower accuracy.

Avoid unnecessary variation, follow strong structure. We used the term regimenting attention
in the naming of the technique to emphasize that strong structure is even more important in IRSA
than in other prompting applications. It is usually crucial to order the variables in the state always in
the same order, utilize the same keywords to designate the state, use the same language to explain
the transitions, and ensure consistent capitalization, punctuation, and even spacing/tabulation. We
experimented with several variants of the Bubble Sort prompt, and even when using the same worked-
out example, the accuracy can vary dramatically (Although better models are more forgiving than the
older ones).

Generate as much of the prompt with LLM itself. One way to create such a strong structure is
to let the model continue the prompt we are designing after every few lines (going back to correct
the incorrectly generated continuation). The model is more likely to stay faithful to the pattern
human started than the human is (with spacing, typos, and so on). Because of this, using the
interpreter/compiler Prompt A.2 to create an LCS execution path to serve as a prompt is a safer way
of generating an IRSA-inducing prompt (as long as we verify that the exemplary execution path is
correct).

Overlapping patterns can be problematic. When generating the next token, an LLM has to bal-
ance many influences of patterns both in the prompt and the so-far generated text. For example, in
the LCS algorithm execution Prompt A.3, the model has to balance the long-range self-attention
when deciding the next token after C[1,1]= with the short-range influences, which make the
token 1 most likely after two 1s in a row regardless of the longer context. At times, short-range
influences prevail and cause an incorrect execution. But, long-range self-attention can also inap-
propriately overrule correct short-range reasoning. For instance, when generating based on the
Bubble Sort Prompt 3, the model generates repetitive text that includes many statements of the
form ‘Because n<m is true/false ...,’ which can create strong pattern overruling local
evaluation of the next inequality. To demonstrate that, we evaluated the likelihood of the next token
after ‘Because 2<1 is’ for different lengths of context preceding this text. The context had
between 1 and 15 lines of text in the form ‘Because 2<m is true we ...’ with m ∈ [3..9]
randomly chosen, e.g.

Because 2<3 is true we ...

19

Under review as a conference paper at ICLR 2024

Because 2<7 is true we ...
Because 2<5 is true we ...
Because 2<1 is

As we show in Fig A.2, although the preceding context is correct when evaluating the inequal-
ities, the log odds of an incorrect evaluation of 2<1 increase by over six orders of magnitude
with the length of this context. The longer this context is, the more it reinforces the pattern
‘Because 2< ... true’: If 2 was smaller than a variety of numbers, then it is smaller than 1,
too! Furthermore, there is a large variation due to the random selection of m in the examples in
the context, indicating a variety of other patterns that drive the generation (The figure shows the
band between the maximum and minimum log odds over 20 runs). For the contexts of length 7 the
odds of picking true over false become roughly even. IRSA can drive probabilities to be so
taut that rerunning the same API call with zero temperature can sometimes return a different result
(The code behind the API presumably always adds a very small constant to log probabilities before
sampling). Skip-to-state strategy in Section 2.3 is thus less sensitive to patterns that result from
program execution.

2 4 6 8 10 12 14
-4

-3

-2

-1

0

1

2

3

4

Figure A.2: The difference between GPT Codex log probabilities of tokens true and false after
‘Because 2<1 is’, which was preceded by a long context of variable length (x-axis). The context
contains between 1 and 15 lines of text comparing number 2 with randomly chosen larger numbers
and declaring, e.g., Because 2<6 is true ... We show the band between the maximum and
minimum log odds over 20 trials, as well as the mean of the difference. When the preceding context
does not have too many comparisons of 2 with larger numbers, the model overwhelmingly prefers
the correct evaluation false, but when the context is longer than 7 statements, the model usually
prefers true.

This fragility further emphasizes the difficulty in evaluating LLMs on in-context learning tasks:
Improving accuracy may simply be a matter of spending more time designing a prompt (becoming a
GPT whisperer). Still, getting GPT to execute the algorithms studied here was not excessively hard,
and it may even become easier on newer models.

A.3.3 AND WHAT ABOUT GPT-4?

A recent qualitative analysis of GPT-4 abilities Bubeck et al. (2023) includes one example of detailed
execution of a Python program for one input (in their Fig. 3.7). The LCS algorithm is well-known, so
would the newer and better GPT-4 model execute it correctly and consistently across different inputs?
In Prompt A.12, we show a prompt that simply asks GPT-4 to show the LCS algorithm, execute it, and
report the result. On our LCS-S dataset, using this prompt design and sampling with zero temperature,
GPT-4 gets the correct answer 49% of the times, just slightly better than the ’Guessing’ baseline
(Table 1). An alternative prompt shown in Prompt A.13, asks for intermediate steps of execution to
be shown before the answer is generated, moving the prompting strategy closer to IRSA. This prompt
can be thought of as a version of Prompt A.2, but lighter and more straightforward, expecting GPT-4
to be able to show program execution without strict specifications. This prompt leads to the accuracy
of 69% on LCS-S, still behind IRSA result with codex (93%, Table 2). To illustrate why this may
be, in Prompt A.14 we show the same prompt asking for intermediate steps, but for a different input.
The inputs in Prompts A.13 and A.14 were processed differently, even though everything else in the

20

Under review as a conference paper at ICLR 2024

prompts was the same, and API calls were made with zero temperature. In one case, only the initial
and end states of the “dp” matrix are shown, while in the other, several steps (but not all!) are shown.
Therefore, it seems that GPT-4 is still hard to control without regimenting self-attention more strictly.

A.4 FULL SET OF PROMPTS

Here we list the prompts used in all tasks and discussed above. The caption of each prompt contains
a saved link to the OpenAI playground.

21

Under review as a conference paper at ICLR 2024

Prompt A.1. Response (shaded green) to Prompt 1, whose ending part is shown.

...
State: a=[1 2 3 5], n_swaps=2, swap_flag=false EndState
swap_flag is false, so stop the iteration

Final List: 1, 2, 3, 5
Number of swaps: 2
END OF EXECUTION

Problem: 0, 3, 8, 5, 6
EXECUTION

Prep
Length of the list: 5
Number of consecutive pairs: 4
a=[0 3 8 5 6]
set n_swaps=0
EndPrep
Iteration:

set swap_flag=false. The state is:
State: a=[0 3 8 5 6], n_swaps=0, swap_flag=false EndState
Pair a[1,2] = [0 3] Check if 0<3. Is it true? Yes.

Because of that, we leave state as is
State: a=[0 3 8 5 6], n_swaps=0, swap_flag=false EndState
Pair a[2,3] = [3 8] Check if 3<8. Is it true? Yes.

Because of that, we leave state as is
State: a=[0 3 8 5 6], n_swaps=0, swap_flag=false EndState
Pair a[3,4] = [8 5] Check if 8<5. Is it true? No.

Thus, we set swap_flag=true, increase n_swaps by one,
and in the latest a=[0 3 8 5 6]
swap 8 and 5 to get into state:

State: a=[0 3 5 8 6], n_swaps=1, swap_flag=true EndState
Pair a[4,5] = [8 6] Check if 8<6. Is it true? No.

Thus, we set swap_flag=true, increase n_swaps by one,
and in the latest a=[0 3 5 8 6]
swap 8 and 6 to get into state:

State: a=[0 3 5 6 8], n_swaps=2, swap_flag=true EndState
swap_flag is true, so do another iteration

Iteration:
set swap_flag=false. The state is:
State: a=[0 3 5 6 8], n_swaps=2, swap_flag=false EndState
Pair a[1,2] = [0 3] Check if 0<3. Is it true? Yes.

Because of that, we leave state as is
State: a=[0 3 5 6 8], n_swaps=2, swap_flag=false EndState
Pair a[2,3] = [3 5] Check if 3<5. Is it true? Yes.

Because of that, we leave state as is
State: a=[0 3 5 6 8], n_swaps=2, swap_flag=false EndState
Pair a[3,4] = [5 6] Check if 5<6. Is it true? Yes.

Because of that, we leave state as is
State: a=[0 3 5 6 8], n_swaps=2, swap_flag=false EndState
Pair a[4,5] = [6 8] Check if 6<8. Is it true? Yes.

Because of that, we leave state as is
State: a=[0 3 5 6 8], n_swaps=2, swap_flag=false EndState
swap_flag is false, so stop the iteration

Final List: 0, 3, 5, 6, 8
Number of swaps: 2
END OF EXECUTION

22

Under review as a conference paper at ICLR 2024

Prompt A.2. Interpreter/Compiler prompt that can execute LCS algorithm. Playground link (use 0
temperature)
Matrix C contains values, e.g:
C[0,0]=1 C[0,1]=6 C[0,2]=11 C[0,3]=16 C[0,4]=21
C[1,0]=2 C[1,1]=7 C[1,2]=12 C[1,3]=17 C[1,4]=22

To query a value:
Show(C[1,2])
<state> C[1,2]=12 </state>

Query an undefined variable
Show(a)
<state> a=0 </state>

To set a value:
C[0,1]:=8
C[0,1] was 6. Now C[0,1]=8.
a:=5
a was 0. Now a=5.

To query multiple variables:
Show(a, C[0:1,0:4])
<state>
a=5
C[0,0]=1 C[0,1]=8 C[0,2]=11 C[0,3]=16 C[0,4]=21
C[1,0]=2 C[1,1]=7 C[1,2]=12 C[1,3]=17 C[1,4]=22
</state>

Program:
N:=1
for i from 0 to N

C[i,i]=-3
Execute:
i:=0
C[0,0]:=-3
i:=1
C[1,1]:=-3
Finished with i=N, so done with i loop

Show(C)
<state>
C[0,0]=-3 C[0,1]=8 C[0,2]=11 C[0,3]=16 C[0,4]=21
C[1,0]=2 C[1,1]=-3 C[1,2]=12 C[1,3]=17 C[1,4]=22
</state>

Program:
if a<C[0,4]

C[0,0]:=5
else

C[0,1]:=2
Execute:
Check if a<C[0,1]? a is 5 C[0,1] is 8 Is 5<8?...

... Yes. C[0,0]:=5
Done

Show(C[0,0])
<state> C[0,0]=5 </state>

Program:
C[0,2]:=detailed_max(C[0,3],C[0,4])
Execute:
C[0,3] is 16, C[0,4] is 21. C[0,2] is the greater of...

...them. C[0,2]:=21
Done

LCS:
Input: TA ATA End of input
LCS Prep:
a[1]=T a[2]=A
b[1]=A b[2]=T b[3]=A
M=2 N=3

LCS program:
Show(a,b,M,N)
for i from 1 to M

for j from 1 to N
if a[i]==b[j]

C[i,j]:=C[i-1,j-1]+1
else

C[i,j]:=detailed_max(C[i,j-1],C[i-1,j])
Show(i, j, M, N, C[0:i,0:N])

Show(’END’)
Execute:

23

https://platform.openai.com/playground/p/zCvCyEvZv21fQ7944009aFb3?model=code-davinci-002
https://platform.openai.com/playground/p/zCvCyEvZv21fQ7944009aFb3?model=code-davinci-002

Under review as a conference paper at ICLR 2024

Prompt A.3. In response to Prompt A.2, the model returns the correct LCS execution path shown
here
...

Execute:

<state>
a[1]=T a[2]=A
b[1]=A b[2]=T b[3]=A
M=2 N=3
</state>
i:=1
j:=1
Check if a[1]==b[1]? a[1] is T b[1] is A Is T==A?...

... No. C[1,1]:=detailed_max(C[1,0],C[0,1])

... C[1,0] is 0, C[0,1] is 0. C[1,1] is the greater of

...them. C[1,1]:=0
<state>
i=1 j=1 M=2 N=3
C[0,0]=0 C[0,1]=0 C[0,2]=0 C[0,3]=0
C[1,0]=0 C[1,1]=0 C[1,2]=0 C[1,3]=0
</state>
j:=2
Check if a[1]==b[2]? a[1] is T b[2] is T Is T==T?...

... Yes. C[1,2]:=C[0,1]+1

... C[0,1] is 0. C[1,2]:=1
<state>
i=1 j=2 M=2 N=3
C[0,0]=0 C[0,1]=0 C[0,2]=0 C[0,3]=0
C[1,0]=0 C[1,1]=0 C[1,2]=1 C[1,3]=0
</state>
j:=3
Check if a[1]==b[3]? a[1] is T b[3] is A Is T==A?...

... No. C[1,3]:=detailed_max(C[1,2],C[0,3])

... C[1,2] is 1, C[0,3] is 0. C[1,3] is the greater of

...them. C[1,3]:=1
<state>
i=1 j=3 M=2 N=3
C[0,0]=0 C[0,1]=0 C[0,2]=0 C[0,3]=0
C[1,0]=0 C[1,1]=0 C[1,2]=1 C[1,3]=1
</state>
i:=2
j:=1
Check if a[2]==b[1]? a[2] is A b[1] is A Is A==A?...

... Yes. C[2,1]:=C[1,0]+1

... C[1,0] is 0. C[2,1]:=1
<state>
i=2 j=1 M=2 N=3
C[0,0]=0 C[0,1]=0 C[0,2]=0 C[0,3]=0
C[1,0]=0 C[1,1]=0 C[1,2]=1 C[1,3]=1
C[2,0]=0 C[2,1]=1 C[2,2]=0 C[2,3]=0
</state>
j:=2
Check if a[2]==b[2]? a[2] is A b[2] is T Is A==T?...

... No. C[2,2]:=detailed_max(C[2,1],C[1,2])

... C[2,1] is 1, C[1,2] is 1. C[2,2] is the greater of

...them. C[2,2]:=1
<state>
i=2 j=2 M=2 N=3
C[0,0]=0 C[0,1]=0 C[0,2]=0 C[0,3]=0
C[1,0]=0 C[1,1]=0 C[1,2]=1 C[1,3]=1
C[2,0]=0 C[2,1]=1 C[2,2]=1 C[2,3]=0
</state>
j:=3
Check if a[2]==b[3]? a[2] is A b[3] is A Is A==A?...

... Yes. C[2,3]:=C[1,2]+1

... C[1,2] is 1. C[2,3]:=2
<state>
i=2 j=3 M=2 N=3
C[0,0]=0 C[0,1]=0 C[0,2]=0 C[0,3]=0
C[1,0]=0 C[1,1]=0 C[1,2]=1 C[1,3]=1
C[2,0]=0 C[2,1]=1 C[2,2]=1 C[2,3]=2
</state>
<state>
END
</state>

24

Under review as a conference paper at ICLR 2024

Prompt A.4. Full single path execution path prompt using the state description as in the fragmented
Prompt 3. Playground link (use with 0 temperature)
Problem: 2, 3, 1, 5
EXECUTION

Length of the list: L=4
Number of pairs: P=3
a=[2 3 1 5]
set n_swaps=0. set i=P=3. set swap_flag=true.

<state> a=[2 3 1 5] i=3 P=3 n_swaps=0 swap_flag=true </state>
Since i=3 and P=3, i and P are equal, so this iteration is done, but swap_flag is true,
so we need another iteration
Iteration:

set swap_flag=false. set i=0. The state is:
<state> a=[2 3 1 5] i=0 P=3 n_swaps=0 swap_flag=false </state>
Since i=0 and P=3, these two are different, so we continue
a[i]=a[0]=2 a[i+1]=a[1]=3
Because 2<3 is true we keep state as is and move on by increasing i
<state> a=[2 3 1 5] i=1 P=3 n_swaps=0 swap_flag=false </state>
Since i=1 and P=3, these two are different, so we continue
a[i]=a[1]=3 a[i+1]=a[2]=1
Because 3<1 is false we set swap_flag=true,increase n_swaps by one, and in a=[2 3 1 5] swap 3 and 1,
and increase i, and keep P as is to get
<state> a=[2 1 3 5] i=2 P=3 n_swaps=1 swap_flag=true </state>
Since i=2 and P=3, these two are different, so we continue
a[i]=a[2]=3 a[i+1]=a[3]=5
Because 3<5 is true we keep state as is and move on by increasing i
<state> a=[2 1 3 5] i=3 P=3 n_swaps=1 swap_flag=true </state>
Since i=3 and P=3, these two are equal, so this iteration is done, but swap_flag is true,
so we need another iteration

Iteration:
set swap_flag=false. set i=0. The state is:
<state> a=[2 1 3 5] i=0 P=3 n_swaps=1 swap_flag=false </state>
Since i=0 and P=3, these two are different, so we continue
a[i]=a[0]=2 a[i+1]=a[1]=1
Because 2<1 is false we set swap_flag=true,increase n_swaps by one, and in a=[2 1 3 5] swap 2 and 1,
and increase i, and keep P as is to get
<state> a=[1 2 3 5] i=1 P=3 n_swaps=2 swap_flag=true </state>
Since i=1 and P=3, these two are different, so we continue
a[i]=a[1]=2 a[i+1]=a[2]=3
Because 2<3 is true we keep state as is and move on by increasing i
<state> a=[1 2 3 5] i=2 P=3 n_swaps=2 swap_flag=true </state>
Since i=2 and P=3, these two are different, so we continue
a[i]=a[2]=3 a[i+1]=a[3]=5
Because 3<5 is true we keep state as is and move on by increasing i
<state> a=[1 2 3 5] i=3 P=3 n_swaps=2 swap_flag=true </state>
Since i=3 and P=3, these two are equal, so this iteration is done, but swap_flag is true,
so we need another iteration

Iteration:
set swap_flag=false. set i=0. The state is:
<state> a=[1 2 3 5] i=0 P=3 n_swaps=2 swap_flag=false </state>
Since i=0 and P=3, these two are different, so we continue
a[i]=a[0]=1 a[i+1]=a[1]=2
Because 1<2 is true we keep state as is and move on by increasing i
<state> a=[1 2 3 5] i=1 P=3 n_swaps=2 swap_flag=false </state>
Since i=1 and P=3, these two are different, so we continue
a[i]=a[1]=2 a[i+1]=a[2]=3
Because 2<3 is true we keep state as is and move on by increasing i
<state> a=[1 2 3 5] i=2 P=3 n_swaps=2 swap_flag=false </state>
Since i=2 and P=3, these two are different, so we continue
a[i]=a[2]=3 a[i+1]=a[3]=5
Because 3<5 is true we keep state as is and move on by increasing i
<state> a=[1 2 3 5] i=3 P=3 n_swaps=2 swap_flag=false </state>
Since i=3 and P=3, these two are equal, so this iteration is done, but swap_flag is false, so we are done

Final List: 1, 2, 3, 5
Number of swaps: 2
END OF EXECUTION

Problem: 3, 6, 8, 2, 7
EXECUTION

25

https://platform.openai.com/playground/p/NEpblKDY5x5YaRsLLTxXTx4l?model=code-davinci-002

Under review as a conference paper at ICLR 2024

Prompt A.5. Prompt that triggers execution of the search for the longest substring without repeating
characters. Playground link (use 0 temperature)
Input: s = c, b, c, a, b, b
START
Unique letters: a, b, c
Define variables last_a=0, last_b=0, last_c=0
Length of sequence s: L=6
Because L is 6, the needed number of iterations is 6
set st_ind=1
st m_len=0
set i=1
Iteration 1:

s(1) is c, so use last_c
last_c is 0, so nothing to do here.
max(m_len, i-st_ind+1) is max(0, 1-1+1) which is...
...max(0,1)=1, so we set m_len=1
since i is 1, and the letter is c, set last_c=1
increase i by one
i=2, st_ind=1, m_len=1, last_a=0, last_b=0, last_c=1

End of iteration 1. But we need to do 6 iterations,...
...so we do another one
Iteration 2:

s(2) is b, so use last_b
last_b is 0, so nothing to do here.
max(m_len, i-st_ind+1) is max(1, 2-1+1) which is...
...max(1, 2)=2, so we set m_len=2
since i is 2, and the letter is b, set last_b=2
increase i by one
i=3, st_ind=1, m_len=2, last_a=0, last_b=2, last_c=1

End of iteration 2. But we need to do 6 iterations,...
...so we do another one
Iteration 3:

s(3) is c, so use last_c
last_c is greater than 0, so we reason...
...max(st_ind, last_c+1) is max(1, 2)=2...
...so we set st_ind=2
max(m_len, i-st_ind+1) is max(2, 3-2+1) which is...
...max(2, 2)=2, so we set m_len=2
since i is 3, and the letter s(3) is c, set last_c=3
increase i by one
i=4, st_ind=2, m_len=2, last_a=0, last_b=2, last_c=3

End of iteration 2. But we need to do 6 iterations,...
...so we do another one
Iteration 4:

s(4) is a, so use last_a
last_a is 0, so nothing to do here.
max(m_len, i-st_ind+1) is max(2, 4-2+1) which is...
...max(2, 3)=3, so we set m_len=3
since i is 4, and the letter s(4) is a, set last_a=4
increase i by one
i=5, st_ind=2, m_len=3, last_a=4, last_b=2, last_c=3

End of iteration 4. But we need to do 6 iterations,...
...so we do another one
Iteration 5:

s(5) is b, so use last_b
last_b is greater than 0, so we reason...
...max(st_ind, last_b+1) is max(2, 2+1) which is...
...max(2, 3)=3 so we set st_ind=3
max(m_len, i-st_ind+1) is max(3, 5-3+1) which is...
...max(3, 3)=3, so we set m_len=3
since i is 5, and the letter s(5) is b, set last_b=5
increase i by one
i=6, st_ind=3, m_len=3, last_a=4, last_b=5, last_c=3

End of iteration 5. But we need to do 6 iterations,...
...so we do another one
Iteration 6:

s(6) is b, so use last_b
last_b is greater than 0, so we reason...
...max(st_ind, last_b+1) is max(3, 5+1) which is...
...max(3, 6)=6 so we set st_ind=6
max(m_len, i-st_ind+1) is max(3, 6-6+1) which is...
...max(3, 1)=3, so we set m_len=3
since i is 6, and the letter s(6) is b, set last_b=6
increase i by one
i=7, st_ind=6, m_len=3, last_a=4, last_b=6, last_c=3

End of iteration 6. We needed to do 6 iterations,...
...so we are done

The solution is: m_len=3
END

Input: s = p, w, w, k, e, p, z
START

26

https://platform.openai.com/playground/p/0i2eLLI1xnjy9txtx5j4gZgR?model=code-davinci-002

Under review as a conference paper at ICLR 2024

Prompt A.6. Prompt that triggers evaluation of parentheses using a stack. Full prompt in playground,
and Prompt as here (with 10 steps missing) in playground. Meant to be used with 0 temperature.
input:) [{ }] ({ }) [({ })] } {
input wriritten as a sequence of symbols:
s= ’)’, ’[’, ’{’, ’}’, ’]’, ’(’, ’{’,’}’, ’)’, ’[’,
’(’, ’{’, ’}’, ’)’,’]’, ’}’, ’{’
length(s)= 17
stack is initialized as empty
i=0
there is nothing in stack, so push s(0)= ’)’ on stack
stack=)
are the last two symbols an open and a closed
parenthesis of the same type? No. Stack stays same.
i=1
we push s(1)=’[’ on the stack
stack=) [
are the last two symbols an open and a closed
parenthesis of the same type? No. Stack stays same.
i=2
we push s(2)=’{’ to the stack
stack=) [{
are the last two symbols an open and a closed
parenthesis of the same type? No. Stack stays same.
i=3
we push s(3)=’}’ to the stack
stack=) [{ }
are the last two symbols an open and a closed
parenthesis of the same type? Yes, they are { },
opening then closing.
We pop the last two symbols from the stack.
stack=) [
i=4
we push s(4)=’]’ to the stack
stack=) []
are the last two symbols an open and a closed
parenthesis of the same type? Yes, they are [],
opening then closing.
We pop the last two symbols from the stack
stack=)
i=5
we push s(5)=’(’ to the stack
stack=) (

...

i=15
we push s(15)=’}’ to the stack
stack=) }
are the last two symbols an open and a closed
parenthesis of the same type? No. Stack stays same.
i=16
we push s(16)=’{’ to the stack
stack=) } {
are the last two symbols an open and a closed
parenthesis of the same type? No. Stack stays same.
i=17
we have reached the end of the input string.
If the stack has some parenthesis left in it,
the sequence is invalid, otherwise,
if the stack is empty, it is valid.
Sequence is: invalid
END

input:

27

https://platform.openai.com/playground/p/xovdKeaBx0Gq7hDmSfoUsYEg?model=code-davinci-002
https://platform.openai.com/playground/p/yUfZNSxZCn6nqryido2Tdeus?model=code-davinci-002

Under review as a conference paper at ICLR 2024

Prompt A.7. A prompt (white background) for translating logical deduction puzzles from BIG-bench
into a Wolfram language (Mathematica) call. The response from GPT-3 Codex is shown green-shaded.
Playground link (use 0 temperature)
Puzzle: The following objects need to be ordered. obj1 is the biggest. obj2 is smaller than obj3.
obj1 is bigger than obj2.

Question: Which object is the biggest?

Parsing step:
Items: obj1, obj2, obj3
Numbe of items: 3
Statement 1: obj1 is the biggest.
Statement 2: obj2 is smaller than obj3.
Statement 3: obj1 is bigger than obj2.

Scoring identification step:
Scores will refer to size.
Since we have 3 items, let’s assume that the biggest gets a score of 3 pounds and the smallest gets
the score of 1 pound.

Translation step:
Available variable names: x, y, z, a, b, c
Map item scores of ’obj1’, ’obj2’, ’obj3’ to variable names x, y, z
obj1 score is x; obj2 score is y; obj3 is z;
Statement 1: ’x’ is the biggest.
Statement 2: ’y’ is smaller than ’z’.
Statement 3: ’x’ is bigger than ’y’.
Domain constraints: 1<=x<=3, 1<=y<=3, 1<=z<=3
Statemets as a set of inequalities or equalities: x==3, y<z, x>y
All varaibles are different: x!=y, x!=z, y!=z

Call to WolframAlpha:
Solve[{1<=x<=3, 1<=y<=3, 1<=z<=3, x==3, y<z, x>y, x!=y, x!=z, y!=z }, {x, y, z}, Integers]

END

Puzzle: A fruit stand sells five fruits: kiwis, pears, peaches, loquats, and apples.
The loquats are more expensive than the kiwis. The pears are more expensive than the peaches.
The apples are more expensive than the loquats. The apples are less expensive than the peaches.

Question: Which is the most expensive?

Parsing step:
Items: kiwis, pears, peaches, loquats, apples
Numbe of items: 5
Statement 1: The loquats are more expensive than the kiwis.
Statement 2: The pears are more expensive than the peaches.
Statement 3: The apples are more expensive than the loquats.
Statement 4: The apples are less expensive than the peaches.

Scoring identification step:
Scores will refer to price.
Since we have 5 items, let’s assume that the most expensive gets a score of 5 dollars
and the least expensive gets the score of 1 dollar.

Translation step:
Available variable names: x, y, z, a, b, c
Map item scores of ’kiwis’, ’pears’, ’peaches’, ’loquats’, ’apples’ to variable names x, y, z, a, b
kiwis score is x; pears score is y; peaches is z; loquats is a; apples is b;
Statement 1: ’a’ is more expensive than ’x’.
Statement 2: ’y’ is more expensive than ’z’.
Statement 3: ’b’ is more expensive than ’a’.
Statement 4: ’b’ is less expensive than ’z’.
Domain constraints: 1<=x<=5, 1<=y<=5, 1<=z<=5, 1<=a<=5, 1<=b<=5
Statemets as a set of inequalities or equalities: a>x, y>z, b>a, b<z
All varaibles are different: x!=y, x!=z, x!=a, x!=b, y!=z, y!=a, y!=b, z!=a, z!=b, a!=b

Call to WolframAlpha:
Solve[{1<=x<=5, 1<=y<=5, 1<=z<=5, 1<=a<=5, 1<=b<=5, a>x, y>z, b>a, b<z, x!=y, x!=z, x!=a, x!=b,
y!=z, y!=a, y!=b, z!=a, z!=b, a!=b}, {x, y, z, a, b}, Integers]

28

https://platform.openai.com/playground/p/n1Uo1tpHK7plGTAqYpZyydvu?model=code-davinci-002

Under review as a conference paper at ICLR 2024

Prompt A.8. The Nye et al. (2021) execution trace prompt for interpreting synthetic Python programs.
For two- and three-shot traces, the additional examples were added in the gray shaded area. 1-shot
Playground link, 2-shot Playground link, 3-shot Playground link (use 0 temperature)
Consider the following Python function:

def f(v0):
v0 += 0
v4 = 2
while v4 > 0:

v4 -= 1
v0 *= 2

return v0

output = f(6)

What is the execution trace?

[BEGIN]

state: {}
line: def f(v0):
state: {"f": "<callable_object f>"}
line: output = f(6)
state: {"v0": 6}
line: v0 += 0
state: {"v0": 6}
line: v4 = 2
state: {"v0": 6, "v4": 2}
line: while v4 > 0:
state: {"v0": 6, "v4": 2}
line: v4 -= 1
state: {"v0": 6, "v4": 1}
line: v0 *= 2
state: {"v0": 12, "v4": 1}
line: while v4 > 0:
state: {"v0": 12, "v4": 1}
line: v4 -= 1
state: {"v0": 12, "v4": 0}
line: v0 *= 2
state: {"v0": 24, "v4": 0}
line: while v4 > 0:
state: {"v0": 24, "v4": 0}
line: return v0
state: {"f": "<callable_object f>", "output": 24}

[DONE]

...

Consider the following Python function:

29

https://platform.openai.com/playground/p/a1d9RXpU0MbPxHE6mFUoYpkK?model=text-davinci-003
https://platform.openai.com/playground/p/a1d9RXpU0MbPxHE6mFUoYpkK?model=text-davinci-003
https://platform.openai.com/playground/p/pIjAj3Npbk1KPacGtBVg0RO7?model=text-davinci-003
https://platform.openai.com/playground/p/kQgRbXJ1y381BQB4X2E3q79m?model=text-davinci-003

Under review as a conference paper at ICLR 2024

Prompt A.9. The execution trace prompts with IRSA-style explanations added in between line
and state for interpreting synthetic Python programs. For two- and three-shot traces, the additional
examples were added in the gray shaded area. 1-shot Playground link, 2-shot Playground link, 3-shot
Playground link (use 0 temperature)
Consider the following Python function:

def f(v0):
v0 += 0
v4 = 2
while v4 > 0:

v4 -= 1
v0 *= 2

return v0

output = f(6)

What is the execution trace?

[BEGIN]

state: {}
line: def f(v0):
explanation: definition of function f that takes an initial value for the variable v0
state: {"f": "<callable_object f>"}
line: output = f(6)
explanation: execute the code under the definition of function f and initialize variable v0 with initial value 6
state: {"v0": 6}
line: v0 += 0
explanation: v0 += 0 means v0 = v0 + 0. v0 is 6, so v0 + 0 = 6 + 0 = 6. Now v0 is 6
state: {"v0": 6}
line: v4 = 2
explanation: initialize variable v4 with initial value 2
state: {"v0": 6, "v4": 2}
line: while v4 > 0:
explanation: Check v4 > 0. v4 was 2. Is 2 > 0? Yes, so we enter the while loop
state: {"v0": 6, "v4": 2}
line: v4 -= 1
explanation: v4 -= 1 means v4 = v4 - 1. v4 is 2, so v4 - 1 = 2 - 1 = 1. Now v4 is 1
state: {"v0": 6, "v4": 1}
line: v0 *= 2
explanation: v0 *= 2 means v0 = v0 * 2. v0 is 6, so v0 * 2 = 6 * 2 = 12. Now v0 is 12
state: {"v0": 12, "v4": 1}
line: while v4 > 0:
explanation: Check v4 > 0. v4 was 1. Is 1 > 0? Yes, so we enter the while loop
state: {"v0": 12, "v4": 1}
line: v4 -= 1
explanation: v4 -= 1 means v4 = v4 - 1. v4 is 1, so v4 - 1 = 1 - 1 = 0. Now v4 is 0
state: {"v0": 12, "v4": 0}
line: v0 *= 2
explanation: v0 *= 2 means v0 = v0 * 2. v0 is 12, so v0 * 2 = 12 * 2 = 24. Now v0 is 24
state: {"v0": 24, "v4": 0}
line: while v4 > 0:
explanation: Check v4 > 0. v4 was 0. Is 0 > 0? No, so we are done with the loop
state: {"v0": 24, "v4": 0}
line: return v0
explanation: Return the current value of v0, which is 24, to replace the initial function call
state: {"f": "<callable_object f>", "output": 24}

[DONE]

...

Consider the following Python function:

30

https://platform.openai.com/playground/p/QMTY5m3bUu6FkCoB7JF5Ng6u?model=text-davinci-003
https://platform.openai.com/playground/p/6FoqYKDcTGNsNoYrwL9iuJx7?model=text-davinci-003
https://platform.openai.com/playground/p/1UZH5kh0jhS0sripilgtObly?model=text-davinci-003
https://platform.openai.com/playground/p/1UZH5kh0jhS0sripilgtObly?model=text-davinci-003

Under review as a conference paper at ICLR 2024

Prompt A.10. A zero-shot code prompt (white background) which, when temperature is carefully
chosen may trigger code execution (shaded green) by Codex. Although the sequence gets sorted, the
execution goes awry after that. Importantly, the number of swaps is not tracked, even though the
code contains appropriate instructions. In contrast, IRSA prompts consistently and repeatedly trigger
correct program execution. See also Prompts A.13 and A.14 for examples of inconsistent behaviour
of GPT-4 with zero-shot code prompting.
Here is the code for Bubble Sort algorithm that keeps track of the number of needed swaps:
def bubbleSort(arr):

n = len(arr)
initiate the number of swaps to 0
n_swaps=0;
Traverse through all array elements
for i in range(n):

Last i elements are already in place
for j in range(0, n-i-1):

traverse the array from 0 to n-i-1
Swap if the element found is greater
than the next element
if arr[j] > arr[j+1] :

arr[j], arr[j+1] = arr[j+1], arr[j]
n_swaps = n_swaps+1

Problem: 8, 7, 6, 4, 9
EXECUTION:

i=0
j=0
8 > 7
7, 8, 6, 4, 9
j=1
8 > 6
7, 6, 8, 4, 9
j=2
8 > 4
7, 6, 4, 8, 9
j=3
8 > 9
7, 6, 4, 8, 9
j=4
i=1
j=0
7 > 6
6, 7, 4, 8, 9
j=1
7 > 4
6, 4, 7, 8, 9
j=2
7 > 8
6, 4, 7, 8, 9
j=3
i=2
j=0
6 > 4
4, 6, 7, 8, 9
j=1
6 > 7
4, 6, 7, 8, 9
j=2
i=3
j=0
4 > 6
4, 6, 7, 8, 9
j=1
i=4
j=0
i=5
j=0
i=6
j=0
i=7
j=0
i=8
...

31

Under review as a conference paper at ICLR 2024

Prompt A.11. An example of a baseline prompt design. Prompts with and without the code, shaded
in gray, were used. Zero shot prompts omitted the examples, also shaded in gray. Other than the
(buggy) algorithm we adopted for the logical deduction puzzle, the algorithms we tested are known
to Codex, and we based the codes used in the prompts on the ones generated by Codex itself.

Python3 program to find the length
of the longest substring
without repeating characters in string s
the maximum length of such a substring will be returned in m_len

def longestUniqueSubsttr(s):
last index of every character
last_idx = {}
m_len = 0
starting index of current
window to calculate m_len
start_idx = 0
for i in range(0, len(s)):

Find the last index of str[i]
Update start_idx (starting index of current window)
as maximum of current value of start_idx and last
index plus 1
if s[i] in last_idx:

start_idx = max(start_idx, last_idx[s[i]] + 1)

Update result if we get a larger window
m_len = max(m_len, i-start_idx + 1)
Update last index of current char.
last_idx[s[i]] = i

return m_len

What would the algorithm above, which looks for the longest substring with non repeating characters
compute for a given problem? Use this format:

Input: s = ...
START
The solution is: m_len= ...
END

Input: s = a, a, c, a, d, b, b
START
The solution is: m_len=4
END

Input: s = b, b, a, a, d, b, b
START
The solution is: m_len=3
END

Input: s = c, a, d, c, b, c, a
START
The solution is: m_len=4
END

Input: s = a, c, b, a, c, d, d
START
The solution is: m_len=4
END

Input: s = b, b, d, d, a, d, b
START
The solution is: m_len=3
END

Input: s = a, c, d, c, a, c, a
START

32

Under review as a conference paper at ICLR 2024

Prompt A.12. Given the non-shaded text as a prompt, GPT-4 (0 temperature) returns the green
shaded response.

We need to compute the longest common subsequence for two sequences

s1=bccba
s2=ccaa

using the dynamic programming algorithm. Show the python code for the algorithm, and then execute it.
Finally, output the length of the longest common subsequence bracketed with <answer> and </answer>.

Here’s the Python code for the dynamic programming algorithm to find the longest common subsequence:

‘‘‘python
def longest_common_subsequence(s1, s2):

m = len(s1)
n = len(s2)
dp = [[0] * (n + 1) for _ in range(m + 1)]

for i in range(1, m + 1):
for j in range(1, n + 1):

if s1[i - 1] == s2[j - 1]:
dp[i][j] = dp[i - 1][j - 1] + 1

else:
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])

return dp[m][n]

s1 = "bccba"
s2 = "ccaa"
lcs_length = longest_common_subsequence(s1, s2)
print(f"<answer>{lcs_length}</answer>")
‘‘‘

Now, let us execute the code and find the length of the longest common subsequence:

‘‘‘python
s1 = "bccba"
s2 = "ccaa"
lcs_length = longest_common_subsequence(s1, s2)
print(f"<answer>{lcs_length}</answer>")
‘‘‘

Output:

‘‘‘
<answer>3</answer>
‘‘‘

33

Under review as a conference paper at ICLR 2024

Prompt A.13. Given the non-shaded text as a prompt, GPT-4 (0 temperature) returns the green
shaded response. The prompt attempts to trigger tracking steps of program execution, but only the
initial and final matrix are shown.

We need to compute the longest common subsequence for two sequences

s1=bccba
s2=ccaa

using the dynamic programming algorithm. Show the python code for the algorithm, and then write down its
execution with intermediate steps. Finally, output the length of the longest common subsequence bracketed
with <answer> and </answer>.

Here’s the Python code for the dynamic programming algorithm to find the longest common subsequence:

‘‘‘python
def longest_common_subsequence(s1, s2):

m = len(s1)
n = len(s2)
dp = [[0] * (n + 1) for _ in range(m + 1)]

for i in range(1, m + 1):
for j in range(1, n + 1):

if s1[i - 1] == s2[j - 1]:
dp[i][j] = dp[i - 1][j - 1] + 1

else:
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])

return dp[m][n]

s1 = "bccba"
s2 = "ccaa"
print(longest_common_subsequence(s1, s2))
‘‘‘

Now let us s go through the execution with intermediate steps:

1. Initialize the ’dp’ table with dimensions (m+1) x (n+1), where m and n are the lengths of
s1 and s2, respectively. The table will look like this:

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2. Iterate through the table, comparing characters from s1 and s2. Update the table based
on the dynamic programming formula:

0 0 0 0 0
0 0 1 1 1
0 1 1 1 1
0 1 2 2 2
0 1 2 2 2
0 1 2 2 3

3. The length of the longest common subsequence is in the bottom-right cell of the table, which is 3.

So, the length of the longest common subsequence is <answer>3</answer>.

34

Under review as a conference paper at ICLR 2024

Prompt A.14. Given the same non-shaded text as in Prompt A.13 as a prompt, just for a different
input, GPT-4 (0 temperature) returns the green shaded response that this time does list more (but
not all!) intermediate steps. This style of prompting GPT-4 reaches accuracy of 69% on LCS-S,
compared to 93% achieved with IRSA in GPT-3.

We need to compute the longest common subsequence for two sequences

s1=aaca
s2=abab

using the dynamic programming algorithm. Show the python code for the algorithm, and then write down its
execution with intermediate steps. Finally, output the length of the longest common subsequence bracketed
with <answer> and </answer>.

Here is the Python code for the dynamic programming algorithm to compute the longest common subsequence:
‘‘‘python
def longest_common_subsequence(s1, s2):

m = len(s1)
n = len(s2)

dp = [[0]*(n+1) for _ in range(m+1)]

for i in range(m+1):
for j in range(n+1):

if i == 0 or j == 0:
dp[i][j] = 0

elif s1[i-1] == s2[j-1]:
dp[i][j] = dp[i-1][j-1] + 1

else:
dp[i][j] = max(dp[i-1][j], dp[i][j-1])

return dp[m][n]

s1 = "aaca"
s2 = "abab"
result = longest_common_subsequence(s1, s2)
print(result)
‘‘‘
Here is the execution with intermediate steps:

1. Initialize the ’dp’ table with dimensions (m+1) x (n+1). For the given sequences, it will look like:

0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

2. Fill in the ’dp’ table by iterating through each cell and apply the algorithm rules:

For i, j = 1, 1: s1[i-1] != s2[j-1], so dp[i][j] = max(dp[i-1][j], dp[i][j-1]) = max(0, 0) = 0
0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

For i, j = 1, 2: s1[i-1] != s2[j-1], so dp[i][j] = max(dp[i-1][j], dp[i][j-1]) = max(0, 0) = 0
0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

For i, j = 1, 3: s1[i-1] == s2[j-1], so dp[i][j] = dp[i-1][j-1] + 1 = 0 + 1 = 1
0 0 0 0 0

0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Continue filling in the table with the same rules:

0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 1 1 0
0 0 1 1 2 0

3. The value in the bottom-right cell contains the length of the longest common subsequence:

<answer>2</answer>

35

	Introduction
	Iteration by Regimenting Self Attention (IRSA): Explain like I'm five autoregressive
	Using IRSA to reason over logical puzzles.
	Fragmented prompting.
	Skip attention.
	GPT as a machine language: Prompting to interpret/compile a program.

	Experiments
	Conclusion
	Appendix
	GPT as a machine language: Prompting to interpret/compile a program.
	The longest substring without repeating characters
	Balanced parentheses

	Full discussion section
	Possible consequences
	Pitfalls of programming in GPT-3
	And what about GPT-4?

	Full set of prompts

