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Abstract

A precise understanding of why units in an artificial network respond to certain
stimuli would constitute a big step towards explainable artificial intelligence. One
widely used approach towards this goal is to visualize unit responses via activation
maximization. These synthetic feature visualizations are purported to provide
humans with precise information about the image features that cause a unit to be
activated — an advantage over other alternatives like strongly activating natural
dataset samples. If humans indeed gain causal insight from visualizations, this
should enable them to predict the effect of an intervention, such as how occluding
a certain patch of the image (say, a dog’s head) changes a unit’s activation. Here,
we test this hypothesis by asking humans to decide which of two square occlusions
causes a larger change to a unit’s activation. Both a large-scale crowdsourced
experiment and measurements with experts show that on average the extremely
activating feature visualizations by Olah et al. [40] indeed help humans on this task
(68± 4% accuracy; baseline performance without any visualizations is 60± 3%).
However, they do not provide any substantial advantage over other visualizations
(such as e.g. dataset samples), which yield similar performance (66±3% to 67±3%
accuracy). Taken together, we propose an objective psychophysical task to quantify
the benefit of unit-level interpretability methods for humans, and find no evidence
that a widely-used feature visualization method provides humans with better “causal
understanding” of unit activations than simple alternative visualizations.

1 Introduction

It is hard to trust a black-box algorithm, and it is hard to deploy an algorithm if one does not trust
its output. Many of today’s best-performing machine learning models, deep convolutional neural
networks (CNNs), are also among the most mysterious ones with regards to their internal information
processing. CNNs typically consist of dozens of layers with hundreds or thousands of units that
distributively process and aggregate information until they reach their final decision at the topmost
layer. Shedding light onto the inner workings of deep convolutional neural networks has been a
long-standing quest that has so far produced more questions than answers.

One of the most popular tools for explaining the behavior of individual network units is to visualize
unit responses via activation maximization [16, 33, 38, 35, 39, 36, 54, 15]. The idea is to start with
an image (typically random noise) and iteratively change pixel values to maximize the activation
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Figure 1: How useful are feature visualizations to interpret the effects of interventions? A: “Causal”
synthetic feature visualizations. B: Human experiment. Given strongly activating reference
images (e.g. synthetic or natural), a human participant chooses which out of two manipulated images
activates a unit more. Note that this trial is made up — real trials are often more difficult. C: Core
result. While participants are above chance for all visualization types, synthetic images only provide
a substantial advantage over no references and not over other alternatives such as natural references.

of a particular network unit via gradient ascent. The resulting synthetic images, called feature
visualizations, often show interpretable structures, and are believed to isolate and highlight exactly
those features that “cause” a unit’s response [40, 50]. Some of the synthetic feature visualizations
appear quite intuitive and precise. As shown in Fig. 1A, they might facilitate distinguishing whether,
for example, a unit responds to just an eye or a whole dog’s face.

However, other aspects cast a more critical light on feature visualization’s “causality”: Generating
these synthetic images typically involves regularization mechanisms [36, 33, 38, 35], which may
influence how faithfully they visualize what “causes” a network unit’s activation. Furthermore, to
obtain a complete description of a mathematical function, one generally needs more information than
just knowing its extrema. In view of this, it is an open question how well a unit can be characterized by
simply visualizing the arguments of its maxima. Finally, a crucial unknown factor is whether humans
are able to obtain a causal understanding of CNN activations from these synthetic visualizations.

Given these points, we develop a psychophysical experiment to test whether feature visualizations
by Olah et al. [40] indeed allow humans to gain a causal understanding of a unit’s behavior. Our
task is based on the reasoning that being able to predict the effect of an intervention is at the heart of
causal understanding. Understanding the causal relation between variables implies an understanding
of how changes in one variable affect another one [45]. In our proposed experiment, this means
that participants can predict the effect of an intervention — in form of an image manipulation —
if they know the causal relation between image features and a unit’s activations. Our experiment
tests whether synthetic feature visualizations indeed provide information about such causal relations.
Specifically, we ask humans which of two manipulated images activates a CNN unit more strongly.
The interventions we test are obtained by placing an occlusion patch at two different locations in
an image. Taken together, this experiment probes the purported explanation method’s advantage of
causality in a counterfactual-inspired prediction set-up [14].

Besides feature visualizations, other visualization methods have been used to gain an understanding
of the inner workings of CNNs. In this experiment, we additionally test alternatives based on natural
dataset examples and compare them with feature visualizations. This is particularly interesting
because dataset examples are often assumed to provide less “causal” information about a unit’s
response as they might contain misleading correlations [40]. To continue the example above, dog
eyes usually co-occur with dog faces; thus, separating the influence of one image feature from the
other one using natural exemplars might be challenging.

Our data shows that:

• Synthetic feature visualizations provide humans with some helpful information about the most
important patch in an image — but not much more information than no visualizations at all.

• Dataset samples as well as other combinations and types of visualizations are similarly helpful.
• How easily the most important patch is identifiable depends on the unit, the images as well as the

relative activation strength attributed to the patch.
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2 Related Work

Feature visualizations are a widely used method to understand the learned representations and
decision-making mechanisms of CNNs [33, 38, 35, 39, 36, 54, 15, 40, 37]. As such, several works
leverage this method to study InceptionV1 [42, 41, 8, 43, 50, 9, 58, 59, 46] and other networks
[6, 21, 20]; others create interactive tools [61, 44, 52] or introduce analysis frameworks [65]. In
contrast, some researchers question whether this synthetic visualization technique, first introduced
by Erhan et al. [16], is too intuition-driven [27], and how representative the appealing visualizations
in publications are [26]. Further, as already mentioned above, the engineering of the loss function
may influence their faithfulness [36, 33, 38, 35]. Another challenge is generating diverse feature
visualizations to represent the different aspects that one single unit may respond to [42, 36]. Finally,
our recent human evaluation study [5] found that while these synthetic images do provide humans
with helpful information in a forward simulation-inspired task, simple natural dataset examples are
even more helpful.

Human evaluation studies are extensively used to quantify various aspects of interpretability. As
an alternative to pure mathematical approximations [2, 66, 57, 63], researchers not only evaluate
the understandability of explanation methods in psychophysical studies [7, 34, 5], but also trust
in these methods [28, 64]) as well as the human cognitive load necessary for parsing explanations
[1] or whether humans would follow an explained model decision [47, 13, 48]. A recent study
even demonstrates that metrics of the explanation quality computed with human judgment are more
insightful than those without [4].

Which image elicits higher activation?

Strongly Activating Images
Strongly Activating Image

1 2 31 2 3
more confidentmore confident

Figure 2: Schematic visualization of an example trial in our psy-
chophysical experiment. For a certain network unit, participants are
shown several maximally activating images. While the ones on the left
serve as reference images, the ones on the right serve as query images:
The top one is a natural maximally activating image and the bottom
ones are copies of said image with square occlusions at different loca-
tions. The task is to select the image that activates the given network
unit more strongly. Participants answer by clicking on the number
below the corresponding image according to their confidence level
(1: not confident, 2: somewhat confident, 3: very confident). Correct
answer: right image.

Counterfactuals are a pop-
ular paradigm for both
creating as well as eval-
uating explanation meth-
ods. Intuitively, they pro-
vide answers to the ques-
tion “what should I change
to achieve a different out-
come?” — in the context
of machine learning expla-
nation methods, usually the
smallest, realistic change
to a data point is of inter-
est. As examples, coun-
terfactual explanation meth-
ods have been developed for
vision- [22] and language-
based [62] models as well
as for model-agnostic sce-
narios [51]. Further, they
are set into context of the
EU General Data Protec-
tion Regulation [60]. Us-
tun et al. [56] investigate
feasible and least-cost coun-
terfactuals, while Mahajan
et al. [32] and Karimi et al.
[25] take feature interactions into account. To evaluate — rather than create — explanation methods,
researchers often follow the “counterfactual simulation” task introduced by Doshi-Velez and Kim
[14]: Humans are given an input, an output, and an explanation and are then asked “what must be
changed to change the method’s [model’s] prediction to a desired output?” Doshi-Velez and Kim
[14]. Based on this task, Lucic et al. [30] test their new explanation method and Hase and Bansal
[24] compare different explanation methods to each other.

In this project, we design a counterfactual-inspired task to evaluate how well feature visualizations
support causal understanding of CNN activations. This is the first study to apply such a paradigm
to understanding the causes of individual units’ activations. In order to scale the experiments, we
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simplify our task by having participants choose between two intervention options, rather than having
them freely determine interventions themselves.

3 Methods

We run an extensive psychophysical experiment with more than 12, 000 trials distributed over 323
crowdsourced participants on Amazon Mechanical Turk (MTurk) and two experts (the two first
authors).1 For more details than provided below, please see Appx. Sec. A.1.

Design Principles Overall, our experimental design choices aim at (1) the best performance
possible, meaning that we select images that make the signal as clear as possible; (2) generality over
the network, meaning that we randomly sample units of different layers and branches (testing all
units would be too costly); and (3) easy extendability, meaning that we choose a between-participant
design (each participant sees only one reference image condition) so that other visualizations methods
can be added to the comparisons in the future.

3.1 Psychophysical Task

If feature visualizations indeed support causal understanding of CNN activations, this should enable
humans to predict the effect of an intervention, such as how occluding an image region changes
a unit’s activation. Based on this idea, we employ a two-alternative forced choice task (chance
performance: 50%) where human observers are presented with two different occlusions in an image,
and asked to estimate which of them causes a smaller change to the given unit’s activation (see Fig. 2
for an example trial). More specifically, participants choose the query image that they believe to also
elicit a strong activation given a set of 9 reference images. Such references could for instance consist
of synthetic feature visualizations of a certain unit (purportedly “causal”), or alternative visualizations.
To summarize, the task requires humans to first identify the shared aspect in the reference images
and to then choose the query image in which that aspect is more visible. Since we do not make
any assumptions about whether participants are familiar with machine learning, we avoid asking
participants about activations of a unit in the CNN. Instead, we explain that an image would be
“favored” by a machine, and the task is to select the image which is “more favored”. The complete
set of instructions shown to participants can be found in Appx. Fig. 9 and 10. In addition to each
participant’s image choice, the subjective confidence level and reaction time are also recorded.

3.2 Stimulus Generation

To generate stimuli, we follow Olah et al. [40] and use an InceptionV1 network [53] trained on
ImageNet [12, 49]. Throughout this paper, we refer to a CNN’s channel as a “unit” and imply taking
the spatial average of all neurons in one channel.2 We test units sampled from 9 layers and 2 Inception
module branches (namely 3× 3 and POOL). For more details on the generation procedures of the
respective stimuli, see Appx. A.1.2.

We use five different types of reference images:

• Synthetic references: The synthetic images are the optimization results of the feature visualization
method by Olah et al. [40] with the channel objective for 9 diverse images.

• Natural references: The reference images are the most strongly activating3 dataset samples from
ImageNet [12, 49].

• Mixed references: This is a combination of the previous two conditions: the 5 most strongly
activating natural and 4 synthetic reference images are used. The motivation is that this condition
combines the advantages of both worlds — namely precise information from feature visualizations
and easily understandable natural images — and, thus, has the potential to give rise to higher
performance in the task. Jointly looking at these two visualization types is common in practice
[40].

1Code and data are available at github.com/brendel-group/causal-understanding-via-visualizations.
2Other papers might refer to a channel as a “feature map”, e.g. [5].
3To reduce compute requirements, we use a random subset of the training set (≈ 50%).
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• Blurred references: To increase the informativeness of natural images for this task, we modify
them by blurring everything but a single patch. This patch is chosen in the same way as in the
maximally activating query image (see below). Consequently, this method cues participants to the
most important image feature. In a way, these images can be seen as an approximate inverse of the
maximally activating query image and might improve performance on our task.

• No references: This is a control condition in which participants do not see any reference images
and have to solve the task purely based on query images.

To generate query images, we place a square patch of 90× 90 pixels of the average RGB color of
the occluded pixels into a most strongly activating image chosen from ImageNet. The location of
the occlusion patch is chosen such that the activation of the manipulated image is either minimal or
maximal among all possible occlusion locations. These images then yield the distractor and target
query images respectively.

3.3 Structure of the Psychophysical Experiment

We test the five different reference image types as separate experimental conditions. In each condition,
we collect data from a total of 50 different MTurk participants, each assigned to a single Human
Intelligence Task (HIT) consisting of an instruction block, a variable number of practice blocks
and a main block. The instructions extensively explain a hand-crafted example trial (see Appx.
Fig. 9 and 10). The blocks of 4 practice trials each - which are randomly sampled from a pool of 10
trials - have to be repeated until reaching 100% performance; except in the none condition, as there is
no obvious ground truth due to the absence of reference images. Finally, 18 main trials follow that
are randomly interleaved with a total of 3 obvious catch trials. While feedback is provided during
practice trials, no feedback is provided in the other trials. At the end, participants can share comments
via an optional free-text field. Across all conditions, all participants see the same query images for
the instruction, practice and catch trials. In contrast, the query images differ across participants in
the main trials: In each reference image condition, we test 10 different sets of query images, each
responded to by 5 different MTurk participants, hence 50 HITs per condition. The order of the
main and catch trials per participant is randomly arranged, and identical across conditions. Each
MTurk participant takes part in only one reference image condition (i.e. reference images are a
between-participants factor). For more details, see Appx. Sec. A.1.4.

3.4 Ensuring High-Quality Data in an Online Experiment

To ensure that the data we collect in our online experiment is of high quality, we take two measures:
(1) We integrate hidden checks which were set before data collection. Only if a participant passes
all five of them do we include his/her data in our analysis. First, these exclusion criteria comprise a
performance threshold on the practice trials as well as a maximum number of blocks a participant
may attempt. Further, they include a performance threshold for catch trials, a minimum image choice
variability as well as a minimum time spent on both the instructions and the whole experiment. For
more details, see Appx. Sec. A.1.1. (2) Our previous human evaluation study in a well-controlled
lab environment found that natural reference images are more informative than synthetic feature
visualizations when choosing which of two different images is more highly activating for a given unit
[5]. We replicate this main finding on MTurk based on a subset of the originally tested units (see
Appx. A.3) which indicates that the experiment’s environment does not influence this task’s outcome.
Our decision to leverage a crowdsourcing platform is further corroborated by our result in Borowski
et al. [5], that there is no significant difference between expert and lay performance.

3.5 Baselines

In order to both set MTurk participants’ performance into context as well as evaluate different
strategies participants could use to perform our task, we further evaluate a few baselines.

• Expert Baseline: The two first authors answer all 18 trials in all 5 reference conditions on all 10
image sets. As they are familiar with the task design and are certainly engaged, this data serves as
an upper human bound.

• Center Baseline: In natural images from ImageNet, important objects are likely to be closer to the
center of the image. If participants were biased to assume that units respond to objects, a potential
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strategy to decide which occluding patch produces a smaller effect on the unit’s activation would
therefore be to choose the image with the most eccentric occlusion. The Center Baseline model
performs this strategy for all images.

• Primary Object Baseline: The Center Baseline is not a perfect measurement of an object-biased
strategy because primary objects can appear away from the center. To account for this, the two first
authors and the last author manually label all trials, choosing the image for which the occlusion
hides as little information as possible from the most prominent object in the scene. In approximately
one third of the trials (58/180), the authors’ confidence ratings are very low (reflecting e.g. the
absence of a primary object); in these cases we repeatedly replace the decisions by random binomial
choices. Thus, in the results, we report the estimated expected values, but cannot perform a by-trial
analysis. For more details, see Appx. Sec. A.1.3.

• Variance Baseline: Another assumption participants might make is that a patch in a low-contrast
region, e.g. a blue sky, is unlikely to have a large effect on the unit’s activation. This baseline
selects the query image whose content is less affected by the introduction of the occlusion patch.
To simulate this, we calculate the standard deviation over the occluded pixels and choose the one
of the lower standard deviation.

• Saliency Baseline: As a complement to the baselines above, this baseline selects the query image
whose original pixels hidden by the occlusion patch have a lower probability of being looked at by
the participants. This simulates that participants select the image with a patch that occludes less
prominent information and is estimated with the saliency prediction model DeepGaze IIE [29]. For
more details, see Appx. Sec. A.1.3.

4 Results

The results shown in this section are based on 7350 4 trials from MTurk participants, who passed all
exclusion criteria, and experts distributed over five conditions. In all figures, Synthetic refers to the
purportedly “causal”, activation-maximizing feature visualizations, Natural to ImageNet samples,
Mixed to the combined presentation of synthetic and natural images, Blur to the blurred images, and
None to the condition with no reference images at all. Further, error bars indicate two standard errors
above and below the participant-mean over network units and image sets, unless stated otherwise.

4.1 No Significant Advantage of Synthetic Feature Visualizations
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Figure 3: A: Task accuracy. On average, humans reach the same per-
formance regime with any visualization method. This holds for both lay
participants on MTurk (darker colors) as well as experts (brighter colors).
B: Reaction times. MTurk participants need several seconds to answer a
trial, indicating that they carefully make their decision. For more details
see Appx. Fig. 13.

If feature visualizations
provide humans with use-
ful information about the
image features causing
high unit activations and
other visualizations do
not, participants’ accu-
racy in our task should
be higher given feature vi-
sualizations than for all
other visualization types
or no reference images.
This is only partly what
we find: On average, ac-
curacy for feature visual-
izations is slightly higher
than when no reference
images are given (67±4%
vs. 60 ± 3%). However,
the accuracy for feature visualizations is not significantly higher than for other visualization methods
(see Fig. 3A, dark bars). For the latter, MTurk participants reach between 66 ± 3% and 67 ± 5%
depending on the visualization type. Statistically, only the condition without reference images is

4(18 main + 3 catch trials)×50 MTurk participants ×5 conditions + (18 main + 3 catch trials)×20 expert
measurements ×5 conditions.
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different from all other conditions (p < 0.05, Mann-Whitney U test). Taken together, these findings
suggest that all visualization methods are similarly helpful for humans in our counterfactual-inspired
task, and that they only seem to offer a small improvement over no visualizations at all.

4.1.1 MTurk Participants Carefully Make Their Choices

Similar performances for various conditions such as those found in Fig. 3A might suggest that
participants would not give their best when doing our experiment. However, several aspects speak
against this: (1) Measurement of the two first authors, i.e. experts who designed and thus clearly
understand the task, and certainly engage during the experiment, again show very similar performance
(see Fig. 3A, bright bars): This estimated upper bound is just 1− 6% better than MTurk participant
performance. (2) With our strict exclusion criteria, we check for doubtful participant behavior
and only include data from participants who pass all five criteria. (3) Reaction times per trial (see
Fig. 3B) lie between ≈ 4 s and ≈ 9 s. This, as well as the fact that participants take longer for
the conditions with references than for the None condition, suggest that they carefully make their
decisions. (4) Several MTurk participants’ comments in an optional free-text field indicate that
they engage in the task: “[...] I did my best”, “It was engaging”, “interesting task”. (5) Trial-by-
trial responses between MTurk participants are more similar than expected by chance (see Fig. 4B
discussed below), which suggests that humans use the available information.

4.1.2 Simple Baselines Can Reach the Same Above-Chance Performance Regime
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Figure 4: A: Baseline performances. Simple baselines can reach
above chance level.5 B, C: Decision consistency. The mean and two
standard errors of the mean of Cohen’s kappa averaged over partici-
pants and image sets quantifies the pairwise consistency of decision
patterns.6 While they vary across participants, they are higher between
conditions with natural references and highest between the Saliency
Baseline and other conditions. For more details, see Appx. Fig 15.

Decision-making strategies
can be diverse. To set hu-
man performance into con-
text, we evaluate several
simple strategies as base-
lines: How high is per-
formance if one always
chooses the query image
with an unoccluded center
(Center Baseline) or pri-
mary object (Object Base-
line)? Or such that the more
varying or salient image re-
gion is unoccluded (Vari-
ance and Saliency Base-
line)? Fig. 4A shows that
these strategies have vary-
ing performances with the
best ones — namely the Ob-
ject and Variance baselines
— reaching 63 ± 1% and
63%, respectively. Since al-
ready these simple heuris-
tics, which do not require
reference visualizations, can reach the same performance regime as participants, the additional
advantage of visualizations (reaching just up to 4% better performance) appears limited.

4.2 By-trial Decisions Show Systematic but Fairly Low Agreement

While accuracy is the most common metric to evaluate task performance, it does not suffice to
compare two systems’ decision-making processes [31, 19, 18]. Instead, a quantitative trial-by-trial
error analysis is necessary to ascertain or distinguish strategies. Here, we use Cohen’s kappa [10] to

5Only the Object Baseline has an error bar because in trials with, e.g. no clear primary object, we replace
decisions by random binomial choices. The reported values are the estimated expectation value and standard
deviation.

6There is no data for the Object Baseline because about one third of the trials do not have a clear answer
from the three author responses. For more details, see Appx. A.1.3.
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calculate the degree of agreement in classification while taking the expected chance agreement into
account. A value of 1 corresponds to perfect agreement, while a value of 0 corresponds to as much
agreement as would be expected by chance. Negative values indicate systematic disagreement.

In Fig. 4B and C, we plot consistency between MTurk participants of the same and different reference
conditions as well as between MTurk participants and baselines. Since Cohen’s kappa only allows for
comparisons of two decision makers, we compute this statistic for all possible pairs across image sets,
and report the mean over participants and image sets and two standard errors of the mean. All values
between participants as well as between participants and baselines are in an intermediate regime (up
to 0.40). This suggests that there is systematic agreement, but also quite some room for subjective
decisions. Among participant-baseline comparisons, highest agreement is found for the saliency
baseline7 , while lowest agreement is found for the Center Baseline. Within participant to participant
comparisons, decision strategies for conditions involving unmodified natural images (Natural, Mixed)
are more similar to each other as well as slightly more similar to other strategies than the Synthetic,
Blur or None condition to other strategies. Within the Synthetic condition, participants are relatively
inconsistent. We hypothesize that due to the fact that humans are more familiar with natural images,
they use more consistent information from these types of reference images and, thus, their decisions
are more similar.

4.3 Performance Varies across Units, Image Sets and Activation Differences, but Less So for
Reference Conditions

Having found that feature visualizations do not offer an overall advantage over other techniques, we
now ask: Is performance similar across units, query images and their activation differences?

Units and Image Sets As evident from Fig. 5, performance varies by unit, but usually not much by
reference condition: While only one unit (layer 2, POOL) is clearly below chance level, many units
reach around average performance and a few units stand out with high performances (e.g. layer 8,
POOL). Further, the five reference conditions are relatively close to each other for most units. Finally,
on the image set level, we observe fairly high variance - probably partly due to the limited number of
participants per image set (see Appx. Fig. 14).

Fig. 6 further illustrates the different difficulty levels as well as the strong unit- and image-dependency:
For the shown easy unit (Fig. 6A), the (presumably yellow-black) feature is fairly clearly identifiable
and visible in the diverse reference and query images. In contrast, for the shown difficult unit
(Fig. 6B), the unit’s feature selectivity is unclear not only in the reference but also in the query
images.

Activation Differences We hypothesize that our task might be easier if the difference in activations
between the two interventions of the query images is larger. In Fig. 7A and B, we plot by-image-set
performance against the relative activation differences, i.e. the difference between activations elicited
by the two manipulated images normalized by the unperturbed query image’s activation. The figure
shows that even though we select query images as the most strongly activating images for a unit, the
relative activation differences vary widely. Furthermore, human performance indeed tends to increase
with higher relative activation difference, confirming our hypothesis. This trend is stronger in the
POOL than in the 3× 3 branch as quantified by the Spearman’s rank correlations in Fig. 7C.

5 Discussion & Conclusions

Explanation methods such as feature visualizations have been criticized as intuition-driven [27], and
it is unclear whether they allow humans to gain a precise understanding of which image features
“cause” high activation in a unit. Here, we propose an objective psychophysical task to quantify how
well these synthetic images support causal understanding of CNN units. Through a time- and cost-
intensive evaluation (based on 24, 439 trials taking more than 81 participant hours including all pilot
and reported experiments), we put this widespread intuition to a quantitative test. Our data provides
no evidence that humans can predict the effect of an image intervention (occlusion) particularly well
when supported with feature visualizations. Instead, human performance is only moderately above a

7From a different perspective, this result can be seen as a confirmation that the CNN learned to look at the
“important” part of the image for downstream classification.
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baseline condition where humans are not shown any visualization at all, and similar to that of other
visualization methods such as simple dataset samples. Further, by-trial decisions show systematic
but fairly low agreement between participants. Finally, task performance depends on the unit choice,
image selections and activation differences between query images. These results add quantitative
evidence against the generally-assumed usefulness of feature visualizations for understanding the
causes of CNN unit activations.

Our counterfactual-inspired task is the first quantitative evaluation of whether feature visualizations
support causal understanding of unit activations, but it is certainly not the only possible way to
evaluate causal understanding. For example, our interventions are constrained to occlusions of a fixed
size and shape, imposing an upper limit on the precision with which the occlusions can cover the part
of the image that is most responsible for driving a unit’s activation. Future work could explore more
complex intervention techniques, extend our study to more units of InceptionV1 as well as to different
networks, and investigate additional visualization methods. Thanks to the between-participant design,
new conditions can be added to the data without the requirement to re-run already collected trials.

Taken together, the empirical results of our quantitative evaluation method indicate that the widely
used visualization method by Olah et al. [40] does not provide causal understanding of CNN
activations beyond what can be obtained from much simpler baselines. This finding is contrary
to wide-spread community intuition and reinforces the importance of testing falsifiable hypotheses in
the field of interpretable artificial intelligence [27]. With increasing societal applications of machine
learning, the importance of feature visualizations and interpretable machine learning methods is
likely to continue to increase. Therefore, it is important to develop an understanding of what we
can — and cannot — expect from explainability methods. We think that human benchmarks, like the
one presented in this study, help to expose a precise notion of interpretability that is quantitatively
measurable and comparable to competing methods or baselines. The paradigm we developed in
this work can be easily adapted to account for other notions of causality and, more generally,
interpretability as well. For the future, we hope that our task will serve as a challenging test case to
steer further development of feature visualizations.
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