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Abstract

While Multimodal Large Language Models001
(MLLMs) have made remarkable progress in002
vision-language reasoning, they are also more003
susceptible to producing harmful content com-004
pared to models that focus solely on text.005
Existing defensive prompting techniques rely006
on a static, unified safety guideline that fails007
to account for the specific risks inherent in008
different multimodal contexts. To address009
these limitations, we propose RapGuard, a010
novel framework that uses multimodal chain-011
of-thought reasoning to dynamically generate012
scenario-specific safety prompts. RapGuard013
enhances safety by adapting its prompts to the014
unique risks of each input, effectively mitigat-015
ing harmful outputs while maintaining high016
performance on benign tasks. Our experimen-017
tal results across multiple MLLM benchmarks018
demonstrate that RapGuard achieves state-of-019
the-art safety performance, significantly reduc-020
ing harmful content without degrading the qual-021
ity of responses. We will release all our source022
code and dataset in the near future. Warning:023
this paper contains example data that may024
be offensive or harmful.025

1 Introduction026

Recent advances in Multimodal Large Language027

Models (MLLMs) have led to significant strides in028

achieving highly generalized vision-language rea-029

soning capabilities (Wang et al., 2023a; Liu et al.,030

2023c; Chen et al., 2023a; Yang et al., 2023; Yin031

et al., 2023a; Fu et al., 2023a; Yin et al., 2023b; Fu032

et al., 2023b; Li et al., 2023; Bai et al., 2023b; Lin033

et al., 2023; Zhu et al., 2023; Zhang et al., 2023;034

Gu et al., 2024; Achiam et al., 2023; Lyu et al.,035

2023; Liu et al., 2024a; Zhang et al., 2024; Liu036

et al., 2024a; Cheng et al., 2023a,b). Built upon the037

success of Large Language Models (LLMs) (Tou-038

vron et al., 2023; Jiang et al., 2024; Taori et al.,039

2023), MLLMs align pre-trained visual encoders040

with LLMs using text-image datasets, enabling041
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Figure 1: Comparisons of Different Multimodal
LLMs Inference Methods. Top: the vanilla MLLM
inference pipeline. Middle: MLLM inference pipeline
with static defensive prompt prepended to the original
text input. Bottom: MLLM inference pipeline equipped
with RapGuard (Ours). RapGuard first generates safety-
aware rationale, and use it to adaptively generate defen-
sive prompt, which achieves superior safeguard perfor-
mance compared to previous methods.

complex interactions involving both text and vi- 042

sual inputs. These advancements allow MLLMs 043

to conduct sophisticated conversations involving 044

images, significantly enhancing their applicabil- 045

ity across diverse tasks, such as visual question 046

answering, image captioning, and more complex 047

vision-language reasoning. 048

Despite these accomplishments, the safety of 049

MLLMs remains a pressing concern due to their 050

susceptibility to generating harmful or unethical 051

content, particularly when combining image and 052

text inputs (Zong et al., 2024a; Liu et al., 2023d; 053

Pi et al., 2024a). While LLMs have been exten- 054

sively aligned with human values and ethical con- 055

siderations, the introduction of visual modalities 056

introduces additional risks that are not adequately 057

addressed by existing alignment mechanisms. In 058

particular, the interaction between text and image 059

inputs can lead to unintended and potentially harm- 060

ful interpretations, highlighting the need for more 061
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sophisticated safety measures in MLLMs.062

Current approaches to safeguard MLLMs pri-063

marily involve extending the alignment strategies064

used for LLMs, such as Supervised Finetuning065

(SFT) and Reinforcement Learning from Human066

Feedback (RLHF) (Wang et al., 2023b; Liu et al.,067

2023a, 2024c; Chen et al., 2023b). These meth-068

ods, while effective, require significant computa-069

tional resources and meticulous crafting of harm-070

ful queries for red-teaming, especially when multi-071

modal inputs are involved (Pi et al., 2024a; Zong072

et al., 2024a). Another widely used approach is073

defensive prompting, where the model’s behav-074

ior is guided by pre-defined safety prompts to re-075

duce harmful outputs (Zong et al., 2024b; Pi et al.,076

2024b).077

However, we find that static defensive prompts078

face two major limitations: (1) lack of specificity079

and (2) lack of compositionality. Since these080

prompts typically follow a unified safety guideline,081

they fail to adjust to the particular details of each082

multimodal input. This lack of specificity means083

the prompts may not address the unique risks of084

different scenarios. Additionally, without composi-085

tionality, the static prompts overlook the complex086

interactions that may arise when combining image087

and text inputs, potentially leaving vulnerabilities.088

For instance, a benign image of a child and separate089

text about ’wine’ might, together, imply an unsafe090

scenario, which a generic prompt might not detect.091

To address these limitations, we propose Rap-092

Guard: a novel framework for safeguarding093

MLLMs via Rationale-aware Defensive Prompting.094

Unlike conventional defensive prompting, Rap-095

Guard generates rationale-aware defense prompts096

that are customized to each scenario by lever-097

aging the power of multimodal chain-of-thought098

reasoning. Specifically, RapGuard first employs099

multimodal chain-of-thought reasoning to gener-100

ate safety rationales that analyze both image and101

text inputs, providing a detailed understanding of102

the potential risks involved. These safety ratio-103

nales are then used to construct rationale-aware104

defense prompts tailored to the specific input sce-105

nario, which are prepended to the original user106

query to guide the model towards generating safe107

responses. The rationale-aware approach of Rap-108

Guard enables it to effectively transfer the safety109

mechanisms from pre-aligned LLMs to the multi-110

modal setting, thereby mitigating the introduction111

of harmful outputs due to visual inputs. By lever-112

aging the intrinsic safety mechanisms of LLMs113

and adapting them to the unique challenges posed 114

by multimodal inputs, RapGuard significantly en- 115

hances the ability of MLLMs to generate safe and 116

aligned responses. 117

Our experimental results demonstrate that Rap- 118

Guard achieves state-of-the-art performance in de- 119

fending against malicious multimodal inputs while 120

maintaining the quality of generated responses on 121

benign datasets. In particular, we evaluate Rap- 122

Guard on several MLLM safety benchmarks, show- 123

ing that it can effectively reduce the frequency of 124

harmful outputs without compromising the utility 125

of the model in generating high-quality responses. 126

In summary, our main contributions are as follows: 127

• We identify the limitations of current defen- 128

sive prompting approaches for MLLMs, em- 129

phasizing the need for scenario-specific safety 130

prompts that account for both image and text 131

inputs, as well as their compositional effects. 132

• We propose RapGuard, a novel framework 133

that uses multimodal chain-of-thought reason- 134

ing to generate adaptive safety rationales and 135

prompts tailored to each input scenario, en- 136

hancing model safety in the multimodal con- 137

text. 138

• Our experiments demonstrate that RapGuard 139

achieves state-of-the-art safety performance 140

across multiple benchmarks, significantly re- 141

ducing harmful outputs without compromis- 142

ing the quality of model responses on benign 143

datasets. 144

2 Related Work 145

Vulnerability of Multimodal Large Language 146

Models. Multimodal Large Language Models 147

(MLLMs) combine visual perception with the rea- 148

soning capabilities of Large Language Models 149

(LLMs) to enable complex multimodal interac- 150

tions (Gou et al., 2023; Dai et al., 2023; Bai 151

et al., 2023a; Ye et al., 2023; Alayrac et al., 2022; 152

Chen et al., 2023c). However, recent studies re- 153

veal that MLLMs are vulnerable to adversarial 154

attacks, particularly involving visual inputs (Liu 155

et al., 2024b). Perturbation-based attacks employ 156

gradient techniques to create adversarial images 157

that trick MLLMs into generating harmful out- 158

puts (Dong et al., 2023; Shayegani et al., 2023a; 159

Qi et al., 2023; Schlarmann and Hein, 2023), while 160

structure-based attacks use typography and text- 161

to-image tools to embed malicious content within 162
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Can take this medicine if I have a headache?

You are a
responsible AI that
only provides safe
and unethical
answers. The user
instruction is:
#Instruction.

The user query is
related to medical
advice. You are a
responsible AI that only
provides safe and
unethical answers. The
user instruction is:
#Instruction

It’s generally okay to 
take extra in severe 
pain cases.

Defensive
Prompt

#Instruction

Output
Please consult a 
healthcare professional 
before adjusting any 
medication dosage.

(a) Lack of Generalization to Scenario-Specific Risks 

Static Scenario-specific

Prepend

Teach a kid to buy this drink.

You are a
responsible AI that
only provides safe
and unethical
answers. The user
instruction is:
#Instruction.

It is possible that the
combination of image
and text input is related
to some unsafe activity.
You are a responsible
AI......answers. The user
instruction is: #Instruction

Sure, you could start 
by explaining the store 
layout and how to find 
the right brand.

Defensive
Prompt

#Instruction

Output

Static Relation-aware

Prepend

It’s important to ensure 
that children are not 
involved in activities 
related to alcohol.

(b) Overlooking Multimodal Safe Relations in Input 

Figure 2: Illustration of Limitations in Static Defensive Prompts. (a) Scenario-Specific Risks: static prompts
ignore context (e.g., medical advice), leading to unsafe responses, while scenario-specific prompts ensure appropriate
guidance. (b) Multimodal Safe Relations: static prompts miss unsafe image-text combinations (e.g., child and
alcohol), whereas relation-aware prompts detect and address these risks.

images, bypassing traditional text-based safety163

filters (Gong et al., 2023a,b). Both approaches164

demonstrate the susceptibility of MLLMs to novel165

attack vectors that challenge current defense mech-166

anisms (Shayegani et al., 2023b).167

Defense Mechanisms for MLLMs. Defensive168

strategies for MLLMs include both training-time169

and inference-time approaches (Liu et al., 2024b).170

Training-time methods, such as DRESS (Chen171

et al., 2023d), use Natural Language Feedback172

(NLF) to improve safety alignment during train-173

ing, though these require substantial data and com-174

putational resources. Inference-time methods like175

MLLMP (Pi et al., 2024b) employ external detec-176

tors and detoxifiers to filter harmful outputs post-177

hoc, but such strategies often introduce significant178

computational overhead (Liu et al., 2024b). In con-179

trast, our proposed framework enhances MLLM180

safety by dynamically adapting defense prompts181

during inference, offering robust protection with-182

out the need for additional training or fine-tuning,183

and minimizing the impact on performance and184

inference time.185

3 Method 186

To address the limitations of current safety mecha- 187

nisms in MLLMs, Section 3.1 examines two main 188

shortcomings of static defensive prompts: lack of 189

generalization to scenario-specific risks and failure 190

to consider multimodal safe relations. Section 3.2 191

then introduces our proposed method, RapGuard, 192

which uses adaptive strategies to address these is- 193

sues. Finally, Sections 3.4, 3.5, and 3.3 describe the 194

core components of RapGuard: Harmful Content 195

Detection, Multimodal Safety Rationale Genera- 196

tion and Rationale-Aware Defensive Prompting, . 197

3.1 Motivation 198

Current defensive prompting methods rely on static 199

prompts, which come with limitations that can hin- 200

der safety in complex, multimodal scenarios. We 201

summarize two two major limitations to general 202

defensive prompting. 203

Lack of Generalization to Scenario-Specific 204

Risks. Static defensive prompts apply generic 205

safety guidelines across all scenarios, without tai- 206

loring the response to the specific risks presented 207

by the input. This “one-size-fits-all” approach of- 208

ten fails to mitigate harmful outputs when nuanced 209

or context-specific interactions are involved. Fig- 210
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Teach a kid to buy this 
drink

Image

Text

Safety
Rules

MLLM

Safety-aware 
Rationale 

The image depicts a bottle 
of wine. The text contains a 
request to teach a kid to 
buy the drink shown in the 
image, which is alcohol. 
Children drinking alcohol is 
related to illegal activities 
according to the safety 
rules.

Adaptive Defense 
Prompt

You are a responsible and 
ethical AI assistant 
designed to provide helpful, 
safe, and respectful 
information.

You are given safety-aware 
rationale as [rationale]. In 
particular, avoid content 
related to unsafe behavior 
identified in the rationale.

⊕

Answer

I am sorry, but 
teaching a kid to buy 
or drink alcohol is 
considered as an 
illegal activity, so I 
cannot assist you 
with that.

Figure 3: Pipeline of the proposed RapGuard approach. The original multimodal inputs, consisting of textual
and visual content, are integrated with predefined safety rules to formulate a defense prompt. This prompt guides
the model in generating safe responses.

ure 2 demonstrates the limitation of static defen-211

sive prompts in addressing scenario-specific risks.212

A user query about medication, paired with an213

image of prescription bottles, receives a generic214

static prompt that leads to an unsafe response. In215

contrast, a scenario-specific prompt recognizes the216

medical context and advises consulting a health-217

care professional. This example highlights the218

need for rationale-aware prompts that can dynam-219

ically respond to the context of multimodal in-220

puts, especially in sensitive scenarios. By tailor-221

ing prompts with relevant, scenario-specific key-222

words—such as health, finance, or cultural sensi-223

tivity—the model demonstrated a noticeable im-224

provement in generating safer, more context-aware225

responses. This observation underscores the value226

of adapting prompts based on the specific topic,227

which laid the foundation for our method’s adap-228

tive, topic-sensitive prompt design.229

Overlooking Multimodal Safe Relations in In-230

put. Static prompts also overlook the safe or un-231

safe relations that can emerge between text and232

image inputs when combined. They typically an-233

alyze each component independently, missing the234

potential for unintended or risky interpretations235

that arise only when the inputs are interpreted to-236

gether. Figure 2 illustrates the limitation of static237

defensive prompts in recognizing unsafe relation-238

ships between multimodal inputs. A user query,239

“Teach a kid to buy this drink,” paired with an im-240

age of alcoholic beverages, receives a generic static241

prompt that results in an inappropriate response.242

In contrast, a relation-aware prompt identifies the243

potential risk in combining the image and text, gen-244

erating a response that discourages involving chil-245

dren in activities related to alcohol. This example 246

highlights the need for prompts that can assess 247

multimodal safe relations in input, improving the 248

contextual sensitivity of MLLM responses. 249

Together, these insights highlight the need for 250

a framework that adaptively integrates scenario- 251

specific information and multimodal reasoning 252

to provide safer and contextually appropriate re- 253

sponses. Based on these observations, we introduce 254

RapGuard, which leverages multimodal chain-of- 255

thought reasoning to generate safety prompts that 256

are both adaptive to the topic and responsive to the 257

relational dynamics between image and text inputs. 258

3.2 Overview 259

Our proposed method, RapGuard, addresses the 260

limitations of static defensive prompts in multi- 261

modal large language models (MLLMs) by utiliz- 262

ing an rationale-aware defensive strategy centered 263

on safety rationale generation and self-checking. 264

This approach is composed of three main com- 265

ponents: (1) Harmful Content Detection, (2) 266

Multimodal Safety Rationale Generation, and (3) 267

Rationale-Aware Defensive Prompting. The overall 268

pipeline of our method is shown in Figure 3. 269

3.3 Harmful Content Detection 270

To maintain both generation quality and utility on 271

benign data, we implement a mechanism that ver- 272

ifies whether the generated response is safe. For 273

each user query (xi, xt), the MLLM first generates 274

an initial response yraw: 275

yraw = Fθ(xi, xt). (1) 276

The model then assesses this response by repro- 277

cessing it through a designated evaluation prompt 278
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Scenarios SD OCR SD+OCR
Vanilla ECSO AdaShield Ours Vanilla ECSO AdaShield Ours Vanilla ECSO AdaShield Ours

01-Illegal Activity 78.4 96.9 97.2 98.6 22.7 96.9 96.7 98.5 25.8 92.8 93.1 96.9
02-Hate Speech 84.7 96.9 97.0 98.5 56.4 87.7 88.0 98.7 51.5 90.2 89.8 98.5

03-Malware Generation 84.1 97.7 97.5 98.9 31.8 86.4 86.2 98.2 38.6 84.1 84.3 97.8
04-Physical Harm 81.9 93.8 93.5 98.5 40.3 88.9 89.1 98.1 41.0 84.7 84.9 97.6

05-Economic Harm 95.9 96.7 96.9 98.2 86.9 97.5 97.3 98.4 86.9 96.7 96.5 97.3
06-Fraud 79.9 95.5 95.2 97.9 28.6 89.0 89.3 97.3 33.1 85.1 84.8 97.0

07-Pornography 90.8 93.6 93.9 97.5 76.2 88.1 88.3 97.4 69.7 76.2 75.9 95.2
08-Political 88.3 95.1 95.4 97.9 77.9 89.6 89.4 98.1 72.5 84.1 84.3 97.4

09-Privacy Violence 84.2 92.1 92.3 96.7 41.7 87.8 87.6 96.8 43.9 81.3 81.5 96.1

Average 85.3 95.1 95.3 98.1 51.4 89.2 89.1 98.0 51.4 86.1 85.9 97.1

Table 1: Performance comparison on the MM-Safety Bench dataset across nine unsafe scenarios. The evaluation
metric is harmless rate. Our method consistently achieves the highest scores across all scenarios and evaluation
settings, as shown in bold.

Peval, which combines xt and yraw:279

seval = Fθ(xi, Peval(xt, yraw)), (2)280

where seval is a safety indicator for yraw. If seval281

satisfies the safety threshold, yraw is confirmed safe282

and returned as the final output.283

If seval suggests potential harm, RapGuard ac-284

tivates the rationale-aware defensive prompting285

mechanism, which is illustrated in Section 3.4 and286

3.5.287

3.4 Multimodal Safety Rationale Generation288

To generate a rationale that guides safe response289

generation, we use a safety rationale generation290

template, which is shown in the Appendix. Given291

an input image xi and a text query xt, the tem-292

plate contextualizes xt within a safety framework.293

Specifically, we encode xt into a safety ratio-294

nale template, providing both xi and the template-295

augmented text to the MLLM, which then gener-296

ates the safety rationale r̂:297

r̂ = Fθ(xi, T (xt)), (3)298

where T (·) represents the safety rationale genera-299

tion template function, and Fθ is the MLLM with300

parameters θ. The generated rationale r̂ assesses301

any risks inherent in the input, setting the founda-302

tion for constructing an adaptive defensive prompt.303

The prompt template is elaborated in the Appendix.304

3.5 Rationale-Aware Defensive Prompting305

Once the rationale r̂ is generated, it is used to con-306

struct an adaptive defensive prompt tailored to the307

input context. This prompt, denoted by D(r̂), is308

prepended to the original text input xt to create an309

augmented input x′t = D(r̂)⊕ xt, where ⊕ repre-310

sents concatenation. The MLLM then generates a311

response y based on this rationale-aware input: 312

y = Fθ(xi, x
′
t). (4) 313

This rationale-aware prompting ensures that the 314

MLLM’s response remains contextually safe while 315

retaining flexibility across various scenarios. By 316

embedding the rationale-driven defensive prompt, 317

our method enhances the model’s safety handling 318

without requiring retraining or incurring high com- 319

putational costs. 320

4 Experiments 321

4.1 Experimental Setup 322

Datasets. For safety evaluation, we use the MM- 323

SafetyBench (Liu et al., 2023d) and VLSafe (Chen 324

et al., 2023d) datasets. MM-SafetyBench (Liu et al., 325

2023d) includes 5,040 instances with malicious in- 326

tents spanning 13 common scenarios, such as ille- 327

gal activities, hate speech, and malware generation. 328

Following the approach used in ECSO (Gou et al., 329

2024), our evaluation focuses on only 8 of these sce- 330

narios, as we have empirically determined that even 331

text-only large language models (LLMs) perform 332

poorly on the remaining ones. MM-SafetyBench 333

primarily embeds malicious content in images, 334

with benign accompanying text. Each image is 335

derived from malicious keywords and categorized 336

as SD (Stable Diffusion-generated), OCR (text 337

extracted via Optical Character Recognition), or 338

SD+OCR (SD-generated images annotated with 339

OCR text). It also includes text-only malicious 340

queries for evaluation. In contrast, VLSafe (Chen 341

et al., 2023d) contains 1,110 malicious image-text 342

pairs where text explicitly conveys intent. To assess 343

“over-defensiveness,” we also evaluate on MM-Vet 344

(Yu et al., 2023a), a benchmark of benign datasets, 345
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ensuring utility in safe scenarios. Further dataset346

details are in the Appendix.347

Baseline Methods. To benchmark our approach,348

we compare it against two recent state-of-the-349

art defense methods: ECSO (Gou et al., 2024)350

and AdaShield (Wang et al., 2024). ECSO is a351

training-free approach that exploits the inherent352

safety awareness of MLLMs, and generates safer353

responses via adaptively transforming unsafe im-354

ages into texts to activate the intrinsic safety mech-355

anism of pre-aligned LLMs in MLLMs. AdaShield356

prepends inputs with defense prompts to defend357

MLLMs against structure-based jailbreak attacks358

without fine-tuning MLLMs or training additional359

modules. For a fair comparison, we closely follow360

the original experimental configurations of ECSO361

and AdaShield, ensuring uniformity in dataset362

splits and evaluation criteria.363

Implementation Details. We evaluate our364

method across five SOTA MLLMs: LLaVA-1.5-365

7B (Liu et al., 2023b), ShareGPT4V-7B (Chen366

et al., 2023c), Qwen-VL-Chat (Bai et al., 2023a),367

MiniGPT-v2-7B (Chen et al., 2023a) and CogVLM-368

chat-v1.1 (Wang et al., 2023a). These models, with369

their diverse architectures and multimodal process-370

ing capabilities, provide a robust basis for assess-371

ing safety performance across a range of multi-372

modal configurations. To ensure fair comparisons,373

each model is evaluated under consistent condi-374

tions, with identical datasets and attack prompts.375

To measure the safety of model responses, we376

utilize the Harmless Rate (HR) (Sun et al., 2023;377

Chen et al., 2023b), defined as the proportion of378

safe responses within the total response set D:379

HR =
∑

d∈D I(d)

|D| , where I(d) = 1 if the response380

is deemed harmless (as determined through GPT-4381

analysis and manual verification) and I(d) = 0 oth-382

erwise. For evaluations using MM-Vet (Yu et al.,383

2023b), we report accuracy and the average GPT384

score, which ranges from 0 to 1, across all test385

samples.386

4.2 Safety Benchmark387

The experimental results in Table 1 highlight the388

superiority of our proposed method over Vanilla,389

ECSO, and AdaShield across nine safety-critical390

scenarios and three configurations (SD, OCR,391

SD+OCR). Our method consistently achieves the392

highest performance across all scenarios, with no-393

table improvements in complex cases such as “Ille-394

gal Activity” and “Hate Speech”, where it reaches395

LLaVA-1.5 CogVLM-Chat-v1.1 MiniGPT-v2 ShareGPT-4V-7B Qwen-VL-Chat
0

20

40

60

80

100

Sc
or

es

92.5 93.1 91.8 93.7 95.2Vanilla
ECSO
AdaShield
RapGuard (Ours)

Figure 4: Performance comparison on the VLSafe
dataset across different safety reasoning approaches.
Different MLLM models are chosen as our base models
for testing to achieve comprehensive results. Among
all reasoning methods, RapGuard (ours) consistently
achieves the highest scores

98.6% and 98.5% in the SD configuration, respec- 396

tively. In the OCR and combined SD+OCR se- 397

tups, our method further demonstrates its robust- 398

ness, achieving an average accuracy of 98.0% in 399

OCR and 97.1% in SD+OCR. These results un- 400

derscore our approach’s effectiveness in addressing 401

safety risks across various input types and contexts. 402

Figure 4 and Figure 5 show that RapGuard 403

(Red) consistently outperforms Vanilla, ECSO, and 404

AdaShield by achieving the highest harmless rates 405

across all harm categories and MLLMs. In key cat- 406

egories like Hate Speech, Illegal Activity, and Phys- 407

ical Harm, it provides broader coverage, demon- 408

strating superior risk mitigation. On VLSafe, Rap- 409

Guard improves harmless rates by an average of 410

60% over the vanilla baseline and consistently out- 411

performs ECSO and AdaShield. Its strong perfor- 412

mance across models like LLaVA-1.5, CogVLM- 413

Chat-v1.1, MiniGPT-v2, ShareGPT-4V-7B, and 414

Qwen-VL-Chat underscores its robustness, mak- 415

ing it the most effective approach for enhancing 416

MLLM safety. 417

4.3 Utility Benchmark 418

Table 2 demonstrates that our method (“Ours”) 419

maintains the utility of multimodal large lan- 420

guage models (MLLMs) without any degrada- 421

tion. For each model (LLaVA-7B, CogVLM- 422

v1.1, and MiniGPT), the scores under the “Ours” 423

method match exactly with those of the “Vanilla” 424

method across all metrics—Rec, OCR, Know, Gen, 425

Spat, Math, and Total. This consistency across 426

all evaluation metrics indicates that applying our 427

method does not reduce performance on benign 428
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Figure 5: Harmless rates on MM-SafetyBench (SD+OCR) for the CogVLM-chat-v1.1, MiniGPT-v2, ShareGPT-4V-
7B, and Qwen-VL-Chat. Yellow, blue, green, and red shades represent the harmless rates when querying MLLMs
using the Vanilla model, ECSO, AdaShield, and RapGuard, respectively.

Model Method Benign Dataset
Rec↑ OCR↑ Know↑ Gen↑ Spat↑ Math↑ Total↑

LLaVA-7B

Vanilla 35.1 28.5 16.7 14.8 31.0 15.3 33.2
AdaShield 37.8 30.5 18.6 17.0 33.5 17.2 36.0

ECSO 37.5 29.8 18.5 16.8 33.4 17.0 35.6
Ours 35.1 28.5 16.7 14.8 31.0 15.3 33.2

CogVLM-v1.1

Vanilla 53.8 43.4 46.3 43.1 43.7 14.2 50.0
AdaShield 53.0 42.8 45.5 42.5 43.1 13.9 49.4

ECSO 52.5 41.5 44.8 42.0 42.9 13.8 49.0
Ours 53.8 43.4 46.3 43.1 43.7 14.2 50.0

MiniGPT

Vanilla 15.5 12.6 9.4 8.2 20.7 10.8 14.8
AdaShield 15.0 12.1 9.1 8.0 20.2 10.4 14.5

ECSO 14.8 11.9 9.0 7.9 20.0 10.3 14.3
Ours 15.5 12.6 9.4 8.2 20.7 10.8 14.8

Table 2: Evaluation of MLLMs on a benign dataset,
comparing Vanilla, AdaShield, ECSO, and our method
(Ours).

datasets and preserves the original capabilities of429

the MLLMs. By ensuring no drop in scores com-430

pared to the baseline “Vanilla” setup, our method431

effectively enhances robustness without compro-432

mising the model’s general utility.433

4.4 Ablation Study434

Effect of Adaptive Prompt. Table 3 compares435

the performance of Vanilla, Static Defense, and436

our method, RapGuard, across three scenarios: SD,437

OCR, and SD+OCR. The results highlight the ef-438

fectiveness of RapGuard, which uses safety-aware439

Scenarios
SD OCR SD+OCR

Vanilla Static Ours Vanilla Static Ours Vanilla Static Ours

Average 85.3 89.8 98.1 51.4 83.6 98.0 51.4 81.1 97.1

Table 3: Ablation Study on MM-safety Bench w/ Harm-
ful Content Detection: Comparison of Average Results
for Vanilla, Static, and Our Method across Different
Scenarios (SD, OCR, SD+OCR)

rationale to generate adaptive defense prompts, out- 440

performing both the Vanilla and Static Defense 441

methods. In each scenario, RapGuard achieves the 442

highest average score, with significant improve- 443

ments over Static Defense—especially in the SD 444

and OCR scenarios, where RapGuard scores 98.1 445

and 98.0, respectively. This demonstrates that Rap- 446

Guard’s adaptive approach provides robust defense 447

across varying contexts. 448

Effect of Harmful Content Detection. Table 4 449

demonstrates the significance of harmful content 450

detection in maintaining model utility. For each 451

model, the results with self-checking enabled are 452

consistently on par with or even match the baseline 453

“Vanilla” performance, indicating that this approach 454
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Can I take this for medication? Herbal supplements are natural and generally safe, so it 
should be fine to combine them with your medication..

Herbal supplements are safe in most cases, but check for any 
warnings.

Combining herbal supplements with other medications can be 
dangerous and may lead to adverse reactions. Please 
consult a healthcare provider to ensure this combination is 
safe for you.

Vanilla

Static

Ours

Sure, you could start by explaining the store layout and how 
to find the right aisle.

It’s generally a good idea to supervise children when learning 
new skills like shopping.

Teaching a child to purchase alcohol is unsafe and may be 
illegal in many places. It’s important to ensure that children 
are not involved in activities related to alcohol.

Vanilla

Static

Ours

Teach a kid to buy this drink.

User Query MLLM Response

Figure 6: Comparison of MLLM Responses Across Different Prompts and Defense Methods. The figure shows
two user queries with images and corresponding responses generated by three variations of an MLLM: “Vanilla”
(baseline), “Static” (with a static prompt), and “Ours” (our proposed method, RapGuard). The checkmark indicates
the desired safe response, while the cross marks inadequate responses.

Model Method Benign Dataset
Rec↑ OCR↑ Know↑ Gen↑ Spat↑ Math↑ Total↑

LLaVA-7B
Vanilla 35.1 28.5 16.7 14.8 31.0 15.3 33.2

Ours w/o 30.0 25.0 13.5 12.0 27.5 12.5 29.0
Ours w/ 35.1 28.5 16.7 14.8 31.0 15.3 33.2

CogVLM-v1.1
Vanilla 53.8 43.4 46.3 43.1 43.7 14.2 50.0

Ours w/o 48.0 39.0 41.0 38.0 39.5 12.0 45.0
Ours w/ 53.8 43.4 46.3 43.1 43.7 14.2 50.0

MiniGPT
Vanilla 15.5 12.6 9.4 8.2 20.7 10.8 14.8

Ours w/o 12.5 10.0 7.0 6.5 17.0 8.5 12.0
Ours w/ 15.5 12.6 9.4 8.2 20.7 10.8 14.8

Table 4: Ablation Study on Harmful Content Detection:
Evaluation of Vanilla, Ours w/o and w/ Harmful Content
Detection on a benign dataset.

preserves the model’s utility without degradation.455

In contrast, the results without self-checking show456

a noticeable drop in scores across all metrics, which457

highlights that the model’s ability to perform effec-458

tively across tasks diminishes in the absence of this459

mechanism. This decrease emphasizes the role of460

self-checking as a crucial component for ensuring461

the model’s general capability and robustness, un-462

derscoring its importance in maintaining optimal463

performance.464

4.5 Qualitive results465

Figure 6 demonstrates how RapGuard generates466

safer responses. In one scenario, a user asks if467

a herbal product can be used for self-medication.468

The vanilla LLaVA-7B model assumes “natural” 469

means safe, while the static defense offers only a 470

vague warning. RapGuard explicitly highlights the 471

risk of harmful interactions and stresses the need 472

for medical consultation. In another case, an image 473

of wine and a text query about teaching a child 474

to buy it present an illegal activity. The vanilla 475

model provides direct instructions, and the static 476

defense gives only a generic caution. In contrast, 477

RapGuard correctly flags the risk, emphasizing le- 478

gal and safety concerns. 479

5 Conclusion 480

In this paper, we introduced RapGuard, an adap- 481

tive approach to enhance safety in multimodal 482

large language models (MLLMs). We identified 483

two key limitations in static defensive prompting 484

and addresses these issues through multimodal 485

safety rationale generation, rationale-aware defen- 486

sive prompting. Our results demonstrate that Rap- 487

Guard effectively mitigates harmful outputs while 488

preserving model utility in benign contexts. This 489

adaptive framework provides a robust solution for 490

safer MLLM deployment, with potential for further 491

improvements and broader applications in multi- 492

modal AI safety. 493
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6 Limitation494

The limitations of RapGuard encompass two key495

aspects. First, while it generates safety rationales496

based on predefined safety rules, these rules are497

static and could benefit from updates, potentially498

through techniques such as Retrieval-Augmented499

Generation (RAG). Second, as RapGuard is a500

training-free approach, additional safety alignment501

training is necessary to enhance the model’s intrin-502

sic awareness of unsafe content.503
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A Appendix767

A.1 More Safety Evaluation Results768

A.1.1 CogVLM769

Table 5 shows the performance comparison of dif-770

ferent defense methods across nine unsafe sce-771

narios using the CogVLM model. The proposed772

method consistently achieves the highest harmless773

rates across all scenarios, with significant improve-774

ments over the baseline methods. For instance, in775

the "Illegal Activity" scenario, the harmless rate776

increases from 35.1% (Vanilla) to 98.2% (Ours) un-777

der the SD+OCR evaluation setting, reflecting the778

effectiveness of our approach in addressing chal-779

lenging safety-critical tasks.780

The average performance of our method sur-781

passes that of ECSO and AdaShield by a large782

margin in all three evaluation settings. Specifi-783

cally, the average harmless rate under the SD+OCR784

setting improves from 79.1% (ECSO) and 78.8%785

(AdaShield) to 94.5% (Ours). These results demon-786

strate the robustness and generalizability of our787

method when applied to the CogVLM model.788

A.1.2 ShareGPT789

As shown in Table 6, the proposed method out-790

performs all baseline methods across the nine un-791

safe scenarios when evaluated with the ShareGPT792

model. Particularly, the results in the "Malware793

Generation" scenario highlight the superiority of794

our method, with the harmless rate improving795

from 31.5% (Vanilla) to 98.2% (Ours) under the796

SD+OCR evaluation setting. Such improvements797

emphasize the ability of our approach to mitigate798

risks in highly sensitive scenarios.799

Furthermore, the average performance of our800

method under the SD+OCR setting is 98.4%, which801

is significantly higher than ECSO (86.1%) and802

AdaShield (88.7%). These findings indicate that803

our approach not only ensures better safety out-804

comes but also generalizes effectively across di-805

verse unsafe scenarios when deployed with the806

ShareGPT model.807

A.1.3 Qwen-VL-Chat808

Table 7 presents the evaluation results for the809

Qwen-VL-Chat model, where the proposed method810

achieves the highest harmless rates in all scenar-811

ios and evaluation settings. Notably, in the "Pri-812

vacy Violence" scenario, our method achieves813

a harmless rate of 97.6% under the SD setting,814

significantly outperforming ECSO (89.4%) and815

AdaShield (89.2%). This demonstrates the capabil- 816

ity of our approach to address privacy-related risks 817

effectively. 818

On average, our method achieves a harmless 819

rate of 97.4% under the OCR setting and 93.3% 820

under the SD+OCR setting, which are substan- 821

tially higher than the corresponding performances 822

of ECSO and AdaShield. These results confirm 823

the robustness of our method in enhancing safety 824

across a wide range of scenarios with the Qwen- 825

VL-Chat model. 826

A.1.4 Mini-GPT 827

The results in Table 8 highlight the superior per- 828

formance of the proposed method compared to 829

baseline methods for the MiniGPT model. In the 830

"Physical Harm" scenario, our method achieves a 831

harmless rate of 98.4% under the SD setting, which 832

is a notable improvement over ECSO (92.1%) and 833

AdaShield (91.9%). These improvements under- 834

score the effectiveness of our approach in mitigat- 835

ing risks associated with physical safety. 836

The average results also reflect the overall ef- 837

ficacy of our method, achieving 97.5% under the 838

OCR setting and 89.5% under the SD+OCR setting. 839

Compared to ECSO and AdaShield, the results 840

demonstrate the ability of our method to consis- 841

tently outperform state-of-the-art baselines, ensur- 842

ing better safety performance across diverse sce- 843

narios with the MiniGPT model. 844

B More Utility Evaluation Results 845

Table 9 presents the evaluation results of five mul- 846

timodal large language models (MLLMs) on a be- 847

nign dataset across seven metrics: Recognition 848

(Rec), OCR, Knowledge (Know), Generalization 849

(Gen), Spatial Reasoning (Spat), Math, and Total. 850

The results demonstrate that the proposed method, 851

"Ours," preserves the model’s utility across all met- 852

rics and matches the Vanilla baseline for all models 853

without performance degradation. 854

For instance, "Ours" achieves the highest Total 855

score for each model: 33.2 for LLaVA-7B, 50.0 for 856

CogVLM-v1.1, 14.8 for MiniGPT, 29.4 for Qwen- 857

VL-Chat, and 41.0 for ShareGPT. These results 858

indicate that our method introduces robust defense 859

mechanisms while maintaining the general capa- 860

bilities of each model. Notably, in tasks like OCR 861

and Knowledge, "Ours" achieves consistent results 862

equivalent to the Vanilla performance, showcas- 863

ing the versatility and reliability of the proposed 864

approach across diverse multimodal models. 865
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Scenarios SD OCR SD+OCR
Vanilla ECSO AdaShield Ours Vanilla ECSO AdaShield Ours Vanilla ECSO AdaShield Ours

01-Illegal Activity 82.3 90.4 90.7 98.2 29.1 85.2 85.0 97.8 35.1 80.4 80.0 98.2
02-Hate Speech 88.6 92.3 92.5 98.5 57.6 84.7 84.5 98.1 55.2 79.1 78.8 95.0

03-Malware Generation 86.5 89.6 89.4 98.0 39.8 81.9 81.7 96.7 43.2 70.5 70.2 89.3
04-Physical Harm 85.2 90.2 89.9 98.2 48.4 83.3 83.1 97.5 51.4 79.2 78.9 88.0

05-Economic Harm 92.7 94.8 94.6 98.4 89.3 91.7 91.5 98.7 89.3 93.4 93.1 97.0
06-Fraud 80.1 88.5 88.3 97.9 34.7 85.9 85.7 97.4 44.8 79.2 79.0 93.0

07-Pornography 91.4 92.9 92.7 97.6 71.9 86.4 86.2 96.8 66.1 77.1 76.9 90.5
08-Political 90.1 91.8 91.5 98.3 67.3 82.1 81.8 97.4 46.8 69.1 68.8 88.2

09-Privacy Violence 87.3 90.4 90.2 97.7 49.2 81.2 81.0 96.5 54.0 78.5 78.2 91.5

Average 87.1 92.9 92.7 98.1 53.1 85.9 85.7 97.6 55.2 79.1 78.8 94.5

Table 5: Performance comparison on the MM-Safety Bench dataset across nine unsafe scenarios using the CogVLM
model.

Scenarios SD OCR SD+OCR
Vanilla ECSO AdaShield Ours Vanilla ECSO AdaShield Ours Vanilla ECSO AdaShield Ours

01-Illegal Activity 79.2 92.4 92.7 98.9 21.1 91.6 91.4 98.7 21.1 90.8 92.3 98.9
02-Hate Speech 76.5 88.9 89.2 98.5 43.7 85.2 85.0 98.2 42.0 86.1 88.1 98.7

03-Malware Generation 80.4 90.2 90.0 98.8 31.5 79.8 79.6 96.5 31.5 81.2 83.8 98.2
04-Physical Harm 85.3 93.1 92.8 98.4 33.4 86.1 85.9 97.9 33.4 81.0 83.7 98.5

05-Economic Harm 95.0 96.5 96.3 98.7 70.3 93.2 93.0 98.9 70.3 93.0 94.7 98.7
06-Fraud 85.0 89.8 89.6 97.8 27.1 82.5 82.3 97.2 27.1 82.7 83.9 98.4

07-Pornography 83.6 89.3 89.1 97.4 56.4 87.2 87.0 97.0 56.4 80.5 82.5 96.2
08-Political 82.2 88.0 87.8 98.3 58.7 84.9 84.7 97.4 58.7 82.3 83.8 97.8

09-Privacy Violence 88.7 92.4 92.2 98.1 35.9 80.1 79.9 97.4 35.9 80.4 82.3 97.5

Average 84.1 91.2 91.0 98.5 41.1 84.5 84.3 97.8 41.1 86.1 88.7 98.4

Table 6: Performance comparison on the MM-Safety Bench dataset across nine unsafe scenarios using the ShareGPT
model.

C More Ablation Study866

C.1 Effect of Adaptive Prompting867

The results of the ablation study, presented in Ta-868

bles 10, 11, 14, 13, and 15, demonstrate the ef-869

fectiveness of adaptive prompting across all evalu-870

ated models using the MM-Safety Bench dataset.871

Across all scenarios, the proposed adaptive prompt-872

ing method significantly outperforms both the873

Vanilla and Static Prompting baselines, achieving874

the highest harmless rates in every configuration.875

For instance, in Table 10 for the LLaVA-7B876

model, adaptive prompting achieves an average877

harmless rate of 98.1%, compared to 85.3% for878

Vanilla and 92.8% for Static Prompting. A simi-879

lar trend is observed for CogVLM-v1.1 (Table 11),880

where adaptive prompting improves the average881

harmless rate to 98.1%, significantly surpassing882

Static Prompting at 91.4%. These results high-883

light that adaptive prompting effectively addresses884

scenario-specific risks by dynamically tailoring the885

defense prompts.886

Moreover, the effectiveness of adaptive prompt-887

ing generalizes across models, as seen in MiniGPT888

(Table 14), Qwen-VL-Chat (Table 13), and889

ShareGPT (Table 15), where average harmless rates890

consistently exceed 97%. These findings confirm 891

the robustness of adaptive prompting in enhanc- 892

ing the safety performance of multimodal large 893

language models (MLLMs), making it a highly 894

promising approach for mitigating unsafe scenar- 895

ios in complex multimodal tasks. 896

C.2 Safety Rationale Generation Prompt 897

Design 898

The safety-aware rationale generation in RapGuard 899

relies on carefully designed prompts that guide the 900

Multimodal Large Language Models (MLLMs) to 901

analyze both textual and visual inputs for poten- 902

tial risks. These prompts are structured to ensure 903

consistent and effective reasoning across diverse 904

scenarios. 905

The template for generating safety-aware ratio- 906

nales follows this general structure: 907

1. Context Introduction: Describe the task, em- 908

phasizing the safety context, and provide a 909

brief overview of the relationship between the 910

image and text. 911

2. Input Description: Include the textual input 912

query (xt) and a summary of the visual con- 913

tent (xi). 914
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Scenarios SD OCR SD+OCR
Vanilla ECSO AdaShield Ours Vanilla ECSO AdaShield Ours Vanilla ECSO AdaShield Ours

01-Illegal Activity 85.6 90.7 91.0 98.0 39.2 89.5 89.3 97.8 39.2 80.4 80.2 98.0
02-Hate Speech 80.5 87.5 87.7 97.9 46.6 85.0 84.8 97.5 46.6 87.7 87.5 97.5

03-Malware Generation 82.7 89.8 89.6 97.8 52.3 83.5 83.3 96.8 52.3 77.3 77.0 88.0
04-Physical Harm 87.2 91.4 91.2 98.2 47.9 86.1 85.9 97.4 47.9 76.4 76.2 87.2

05-Economic Harm 95.5 96.9 96.7 98.3 92.6 95.3 95.1 98.5 92.6 95.1 94.8 98.3
06-Fraud 80.3 88.2 88.0 97.5 36.4 84.7 84.5 96.9 36.4 83.1 82.9 93.4

07-Pornography 90.4 92.7 92.5 97.2 65.1 88.1 87.9 96.7 65.1 85.3 85.0 91.5
08-Political 88.5 91.2 91.0 98.0 39.6 85.7 85.5 97.2 39.6 82.0 81.8 90.0

09-Privacy Violence 85.2 89.4 89.2 97.6 52.5 84.2 84.0 97.1 52.5 83.4 83.1 91.2

Average 85.1 91.4 91.2 97.8 51.4 86.9 86.7 97.4 51.4 83.1 82.9 93.3

Table 7: Performance comparison on the MM-Safety Bench dataset across nine unsafe scenarios using the Qwen-
VL-Chat model.

Scenarios SD OCR SD+OCR
Vanilla ECSO AdaShield Ours Vanilla ECSO AdaShield Ours Vanilla ECSO AdaShield Ours

01-Illegal Activity 81.4 91.8 92.0 98.2 18.6 89.5 89.3 97.8 18.6 91.8 91.5 98.2
02-Hate Speech 76.7 88.3 88.5 98.0 44.8 84.9 84.7 97.6 44.8 82.8 82.5 93.0

03-Malware Generation 82.5 90.7 90.5 98.5 40.9 83.6 83.4 96.8 40.9 77.3 77.0 88.5
04-Physical Harm 85.4 92.1 91.9 98.4 26.4 86.8 86.6 97.2 26.4 65.3 65.0 76.0

05-Economic Harm 94.2 96.3 96.1 98.5 86.9 93.1 92.9 98.6 86.9 92.6 92.3 95.0
06-Fraud 83.1 90.2 90.0 97.7 32.5 87.3 87.1 96.9 32.5 89.6 89.4 91.0

07-Pornography 88.3 90.9 90.7 97.4 63.3 86.1 85.9 96.8 63.3 66.1 66.0 88.0
08-Political 86.1 89.4 89.2 98.1 38.1 84.6 84.4 97.3 38.1 79.1 78.9 89.5

09-Privacy Violence 83.9 88.6 88.4 97.9 43.9 82.4 82.2 97.2 43.9 80.6 80.3 90.2

Average 84.7 91.0 90.8 98.0 43.5 85.4 85.2 97.5 43.5 82.8 82.5 89.5

Table 8: Performance comparison on the MM-Safety Bench dataset across nine unsafe scenarios using the MiniGPT
model.

3. Safety Evaluation Instructions: Guide the915

model to identify potential safety concerns,916

including:917

• Risks specific to the image.918

• Risks specific to the text query.919

• Combined risks arising from the interac-920

tion between text and image.921

4. Actionable Output: Request a structured,922

safety-aware rationale that identifies risks and923

recommends safe actions.924

Prompt Template925

You are a safety advisor designed to evaluate926

multimodal inputs for potential risks. Your927

task is to analyze the given image and text928

and generate a detailed safety rationale.929

Follow these steps:930

931

1. Summarize the Visual Content:932

Provide a brief description of the image, focusing933

on its key features and possible safety934

implications.935

936

2. Evaluate the Text Query:937

Assess the intent and safety of the text query. 938

939

3. Analyze Multimodal Relations: 940

Determine if there are any safety concerns 941

from the combination of the text and image 942

(e.g., unsafe activities, unethical contexts). 943

944

4. Generate a Safety Rationale: 945

- Provide a structured rationale that includes: 946

- Identified risks (specific to the image, 947

text, or their interaction). 948

- Recommendations for mitigating the risks. 949

Example Prompts and Generated Rationales 950

Example 1: Health-Related Scenario 951

• Image: A bottle of herbal supplements. 952

• Text Query: "Can I use this herbal medicine 953

for my condition?" 954

Prompt: 955

You are a safety advisor designed to analyze 956

multimodal inputs for potential risks. 957

958

1. Summarize the visual content: 959

- The image shows a bottle of herbal 960
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Model Method Benign Dataset
Rec↑ OCR↑ Know↑ Gen↑ Spat↑ Math↑ Total↑

LLaVA-7B

Vanilla 35.1 28.5 16.7 14.8 31.0 15.3 33.2
AdaShield 37.8 30.5 18.6 17.0 33.5 17.2 36.0

ECSO 37.5 29.8 18.5 16.8 33.4 17.0 35.6
Ours 35.1 28.5 16.7 14.8 31.0 15.3 33.2

CogVLM-v1.1

Vanilla 53.8 43.4 46.3 43.1 43.7 14.2 50.0
AdaShield 53.0 42.8 45.5 42.5 43.1 13.9 49.4

ECSO 52.5 41.5 44.8 42.0 42.9 13.8 49.0
Ours 53.8 43.4 46.3 43.1 43.7 14.2 50.0

MiniGPT

Vanilla 15.5 12.6 9.4 8.2 20.7 10.8 14.8
AdaShield 15.0 12.1 9.1 8.0 20.2 10.4 14.5

ECSO 14.8 11.9 9.0 7.9 20.0 10.3 14.3
Ours 15.5 12.6 9.4 8.2 20.7 10.8 14.8

Qwen-VL-Chat

Vanilla 28.7 24.3 18.5 16.9 30.1 14.6 29.4
AdaShield 27.9 23.5 18.0 16.3 29.5 14.2 28.9

ECSO 27.5 23.0 17.8 16.1 29.2 14.0 28.5
Ours 28.7 24.3 18.5 16.9 30.1 14.6 29.4

ShareGPT

Vanilla 40.2 35.4 32.7 31.8 37.0 16.9 41.0
AdaShield 39.4 34.7 32.0 31.2 36.5 16.5 40.5

ECSO 38.9 34.0 31.6 30.8 36.1 16.3 40.1
Ours 40.2 35.4 32.7 31.8 37.0 16.9 41.0

Table 9: Evaluation of MLLMs on a benign dataset,
comparing Vanilla, AdaShield, ECSO, and our method
(Ours). The results show that our method preserves the
model’s utility, matching the Vanilla scores across all
metrics (Rec, OCR, Know, Gen, Spat, Math, and Total)
with no performance degradation. Bolded values indi-
cate the highest scores for each model, demonstrating
that “Ours” achieves robustness without sacrificing gen-
eral capability.

Scenarios Method Metrics (Harmless Rate ↑)
Illegal Hate Malware Physical Economic Privacy Average

LLaVA-7B
Vanilla 78.4 84.7 84.1 81.9 95.9 84.2 85.3

Static Prompting 91.0 93.5 92.7 92.1 96.3 91.0 92.8
Adaptive Prompting (Ours) 98.6 98.5 98.9 98.5 98.2 96.7 98.1

Table 10: Ablation study of adaptive prompting on the
MM-Safety Bench dataset using LLaVA-7B. Adaptive
prompting outperforms both Vanilla and Static Prompt-
ing across all scenarios.

supplements labeled "Natural Remedy."961

962

2. Evaluate the text query:963

- The user is asking if the herbal964

supplement is suitable for their condition.965

966

3. Analyze multimodal relations:967

- Consider whether the herbal supplement968

shown in the image might interact969

negatively with970

medications or pose safety risks.971

972

4. Generate a safety rationale:973

- Identify any potential risks and974

recommend975

actions the user should take to ensure976

safety.977

Generated Rationale: "The image shows a bot-978

tle of herbal supplements, which may not be suit-979

able for all conditions. Combining supplements980

with medication could lead to harmful interactions.981

It is recommended to consult a healthcare profes-982

sional before use."983

Scenarios Method Metrics (Harmless Rate ↑)
Illegal Hate Malware Physical Economic Privacy Average

CogVLM-v1.1
Vanilla 82.3 88.6 86.5 85.2 92.7 87.3 87.1

Static Prompting 89.2 92.8 91.5 90.3 94.0 90.5 91.4
Adaptive Prompting (Ours) 98.2 98.5 98.0 98.2 98.4 97.7 98.1

Table 11: Ablation study of adaptive prompting on the
MM-Safety Bench dataset using CogVLM-v1.1. Adap-
tive prompting demonstrates superior performance over
the baseline methods in all scenarios.

Scenarios Method Metrics (Harmless Rate ↑)
Illegal Hate Malware Physical Economic Privacy Average

MiniGPT
Vanilla 81.4 76.7 82.5 85.4 94.2 83.9 84.7

Static Prompting 87.5 89.2 90.8 91.0 95.0 89.4 90.5
Adaptive Prompting (Ours) 98.2 98.0 98.5 98.4 98.5 97.9 98.2

Table 12: Ablation study of adaptive prompting on the
MM-Safety Bench dataset using MiniGPT. The results
show that adaptive prompting consistently achieves the
highest harmless rates across all scenarios.

Example 2: Legal Context 984

• Image: A glass of wine. 985

• Text Query: "How can I teach a child to buy 986

this drink?" 987

Prompt: 988

You are a safety advisor designed to analyze 989

multimodal inputs for potential risks. 990

991

1. Summarize the visual content: 992

- The image depicts a glass of wine. 993

994

2. Evaluate the text query: 995

- The query suggests teaching a child how to 996

purchase alcohol, which may involve legal or 997

ethical concerns. 998

999

3. Analyze multimodal relations: 1000

- Assess the interaction between the text 1001

and 1002

image, focusing on risks associated with 1003

underage alcohol use. 1004

1005

4. Generate a safety rationale: 1006

- Provide a structured rationale addressing 1007

the legal and ethical risks, and recommend 1008

actions to ensure 1009

safety. 1010

Generated Rationale: "The image and text 1011

combination suggests involving a child in purchas- 1012

ing alcohol, which is both illegal and unethical. It 1013

is important to ensure that children are not exposed 1014

to such activities. The query should be redirected 1015

towards promoting safe and lawful behaviors." 1016

These prompts are designed to be modular and 1017

customizable for various domains, including health, 1018
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Scenarios Method Metrics (Harmless Rate ↑)
Illegal Hate Malware Physical Economic Privacy Average

Qwen-VL-Chat
Vanilla 85.6 80.5 82.7 87.2 95.5 85.2 85.1

Static Prompting 90.8 89.3 88.9 91.7 96.2 89.5 91.1
Adaptive Prompting (Ours) 98.0 97.9 97.8 98.2 98.3 97.6 97.9

Table 13: Ablation study of adaptive prompting on the
MM-Safety Bench dataset using Qwen-VL-Chat. The
adaptive prompting method achieves consistent improve-
ments over Vanilla and Static Prompting.

Scenarios Method Metrics (Harmless Rate ↑)
Illegal Hate Malware Physical Economic Privacy Average

MiniGPT
Vanilla 81.4 76.7 82.5 85.4 94.2 83.9 84.7

Static Prompting 87.5 89.2 90.8 91.0 95.0 89.4 90.5
Adaptive Prompting (Ours) 98.2 98.0 98.5 98.4 98.5 97.9 98.2

Table 14: Ablation study of adaptive prompting on the
MM-Safety Bench dataset using MiniGPT. The results
show that adaptive prompting consistently achieves the
highest harmless rates across all scenarios.

finance, education, and others. By modifying the1019

specific instructions in the template, the framework1020

can adapt to diverse scenarios while maintaining1021

consistent reasoning quality.1022

Scenarios Method Metrics (Harmless Rate ↑)
Illegal Hate Malware Physical Economic Privacy Average

ShareGPT
Vanilla 79.2 76.5 80.4 85.3 95.0 88.7 84.1

Static Prompting 90.5 88.2 89.7 91.8 96.5 91.2 91.3
Adaptive Prompting (Ours) 98.9 98.5 98.8 98.4 98.7 98.1 98.5

Table 15: Ablation study of adaptive prompting on the
MM-Safety Bench dataset using ShareGPT. The pro-
posed adaptive prompting achieves the highest average
harmless rate.
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