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Abstract

Renewable energy such as solar is key to ensuring access to affordable and sus-1

tainable energy generation. Surveying its adoption patterns globally is pivotal to2

measuring and evaluating renewable energy access and creating a more efficient and3

equitable grid. Leveraging high-resolution imagery to detect solar PVs has proven4

to be a more exhaustive way of covering all PVs, including residential PVs that can5

be very challenging to track via conventional surveying methods. While the litera-6

ture has developed models to classify and segment PV installations, residential PV7

is still challenging to identify using medium resolution (≈ 30 cm/pixel or above)8

remote-sensing products. This work explores different fine-tuning (FT) strategies9

of pre-trained ViT models for classification tasks in smaller dataset settings. While10

FT offers an opportunity for fast and computationally efficient model deployment,11

practitioners have to be cautious about the effects of fine-tuning on OOD classifi-12

cation and how advances in text attention mechanisms do not necessarily map to13

image architectures. Moreover, the LoRA technique (Low-Rank Adaptation) is14

identified as an efficient method for fine-tuning, enhancing the model’s adaptability15

to specific tasks while preserving its generalizability. Despite these advancements,16

achieving robust OOD classification in a foundational model context remains a17

challenging task.18

1 Introduction19

PV adoption deployment and access are crucial for achieving affordable and clean energy access20

and meeting decarbonization goals across the globe. Understanding the distribution of solar PV21

allows governments, businesses, and individuals to identify regions with the greatest potential for22

solar energy generation and efficiently integrate solar PV into the electrical grid. This is particularly23

relevant as annual growth in the solar industry will average 15% [NREL, 2023]. Hence, there is a24

need to explore more efficient ways of tracking and monitoring it .25

Furthermore, PV adoption is not uniform often showcasing underlying race and income inequalities26

[Sunter et al., 2019, Lukanov and Krieger, 2019, Kwan, 2012]. Measuring adoption helps to alleviate27

the deepening of “energy privileges” [Stokes et al., 2023] and the misallocation of tax benefits that28

lead to inequitable adoption of renewable energy. While field surveying is available1, its time and29

spatial coverage is often inadequate to capture longitudinal changes in solar adoption, especially in30

fast-adopting markets like the United States.31

Existing projects in the literature have built longitudinal PV adoption data with significant spatial32

and time coverage (i.e. DeepSolar [Wang et al., 2022, Yu et al., 2018]). Nonetheless, some of33

1The US Department of Energy’s OpenPV is the largest database of PV installation in the US using crowd-
sourced data, but it was discontinued in 2019.
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these projects have some limitations such as high-resolution (≤ 20 cm spatial resolution) data34

requirements that are not publicly available. Second, given the sparsity of PV adoption, there are35

no country-wide datasets, leading to urban biases [Wang et al., 2022]. Lastly, deploying these36

models can be cumbersome and prohibiting for researchers and policy-makers in the developing37

world, where computing resources and labels are limited. Although DeepSolar[Yu et al., 2018] and38

DeepSolar++[Wang et al., 2022] models have achieved high performances in tasks such detecting39

solar PVs (precision (recall) of 93.1% (87.5%) in residential areas) and predicting installation years40

(rate of 93.9± 1.0 over a random sample of 23 counties), their coverage is still limited to the US and41

dependency on high-resolution satellite/aerial imagery.42

Fine-tuning pre-trained models for downstream tasks has demonstrated superior performance when43

compared to training from scratch in the context of language models. This approach has emerged as44

the prevailing and widely accepted strategy for addressing downstream classification and generation45

tasks within the domain of language modeling, as supported by relevant scholarly works [Wei46

et al., 2021, Zhang and Bowman, 2018]. Recent advances in fine-tuning, such as LoRa [Hu et al.,47

2021], have also streamlined the fine-tuning process by reducing the parameter space allowing48

faster inferences and task adaptation. This, combined with different optimization techniques such as49

contrastive learning [Chen et al., 2020] and self-supervised learning [Chen et al., 2021], have boosted50

accuracy on different vision classification benchmarks: a ResNet-50 pre-trained with ImageNet,51

improves CIFAR-10 classification from 95% to 98% [Chen et al., 2020]. Fine-tuning also alleviates52

some of the financial and environmental limitations related to training from scratch. Patterson et al.53

[2021], Schwartz et al. [2019]. These are particularly relevant in the developing world where access54

to GPU computing is limited and cloud-based options can be burdensome. Fine-tuning can achieve55

competing performances with fewer training labels and shorter computation times.56

Intuitively, fine-tuning all the layers of a neural network can adapt a pre-trained model faster to a new57

task and obtain better results than training only a few layers or reducing its training parameters’ feature58

space. Nonetheless, previous work in language models (BERT [Devlin et al., 2019] and RoBERTa59

[Liu et al., 2019]) have shown that only a fourth of the last layers are required to keep similar levels of60

accuracy [Lee et al., 2019], other experiments have shown that linear-probing and freezing might be61

better alternatives to naïve transfer and Out-of Distribution (OOD) performance[Kumar et al., 2022]62

in contrastive model settings . Nonetheless, there is no evidence of recommendations on supervised63

fine-tuning examples and in OOD settings where data sources vary in terms of resolution and color64

space. Moreover, while ViT architectures have brought new gains, some of the previous rules for65

fine-tuning and transfer learning cannot be adopted from the CNN architectures [Chen et al., 2021].66

Figure 1: Labeled datasets for PV classi-
fication. Both image sets were collected
around the same time: 2017 - 2019. The
first high-resolution set corresponds to the
Google Maps aerial imagery. The second set,
Sentinel-2, has 10 times coarser resolution,
but a higher revisit time, (better representa-
tion of the changes over time). The Sentinel-
2 data is aggregated in time and cleaned to
remove “bad” pixels and clouds. We have
4179 positive labels and 3966 negative labels
across datasets.

In this paper, we test the ability of different fine-tuning67

strategies to adapt pre-trained vision transformer (ViT)68

models to a PV classification downstream task. Addition-69

ally, we also evaluate our best models for their ability to70

generalize in a OOD setting – geographical and spatial71

resolution domains. For this, we use two solar PV datasets72

in two areas of interest (AoI), China and the state of Cal-73

ifornia (US), in different resolutions. While some recent74

literature [He et al., 2022, Goyal et al., 2022] have done75

similar experiments to the ones we present in this paper,76

this work inscribes into an open problem in Earth Obser-77

vation (EO) and uses an applied example that differs in78

complexity from vision benchmarks in the literature. We79

show that (...)80

2 Methodology81

2.1 Data82

Experiments will use two in-house remote-sensing83

datasets from different resolutions. On one hand, we col-84

lected GoogleMaps aerial data imagery for our two AoI,85

California (CA), and several Northern provinces of China86

(CN). These images have an approximate resolution of 0.287
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m/pixel with three visible channels (RGB). On the other88

hand, we collected Sentinel-2 scenes with 10 m/pixel res-89

olution (50 times coarser than the Google images) for the90

same locations in CN. While the Google imagery is static91

in time (latest), the Sentinel-2 data has an average revisit duration of 8 days for our AoI, thus we92

build a cloud-free median composite image by combining all the 2, 560 images collected from 201793

to 2019. We adopt ’80-20-20’ split policy for training, validation and testing sets.94

The PVs labels for commercial and utility-scale installations come from two sources. For Califor-95

nia, we used data from the DeepSolar database [Yu et al., 2018]. For China, we used data from96

Kruitwagen et al. [2021], a novel database with more than 60, 000 global PV installations. For97

both data sources, we extracted an image patch of 224 × 224 pixels around each of the labeled98

points and fed it to one of the most widely used ViT for image classification model pre-trained on99

google/vit-base-patch16-224 that uses ImageNet-21K.100

2.2 Experiments101

To test the best fine-tuning strategy for adaptation to the PV classification downstream task, we run102

the following experiments:103

1. Full network retraining (FT): The most intuitive way of fine-tuning is retraining all the104

layers of the model with the downstream dataset. It is well known that this approach leads105

to better in-distribution accuracies. However, for OOD datasets when the shift is large, these106

may not perform very well. We use this as a benchmark to compare again other fine-tuning107

strategies. [∼ 85M parameters]108

2. Layer freezing (Lk): Freezing the first or last layers has become a common practice for109

fine-tuning in CNN vision models and other language tasks now. In our case, we freeze110

everything but the first two transformer blocks (L2) for one set of experiments and similarly111

for the last two blocks (Ln). [∼ 14M parameters]112

3. Linear probing (LP): Following some of the literature Kumar et al. [2022], Chen et al.113

[2021] that posits larger gains from linear probing over fine-tuning in the presence of114

distribution shifts, we perform fine-tuning only the last MLP linear layer of each of the115

attention heads. [∼ 28M parameters]116

4. Low-rank Matrix Factorization (LoRA): The above fine-tuning methods still pose compu-117

tational challenges. Approaches in NLP have shown that large-scale pre-trained models used118

for fine-tuning on different tasks rely on a small intrinsic dimension. In particular, we used119

LoRA Hu et al. [2021], which uses a low-rank decomposition where gradient updates are120

represented by h = W0x+∆Wx = W0 +BAx, where B and A are matrices in a reduced121

matrix space: Rd×r × Rr×k, which can project the full original parameter space Rd×k. We122

use rank 4 for our experiments. We expect that we can achieve comparable performance by123

reducing the trainable parameters by more than 99%. [∼ 300K parameters]124

Each strategy will use a ViT (google/vit-base-patch16-224) with an Adam optimizer with the125

learning rate 1 × 10−5 with a linear-schedule and weight decay (L2 regularization) 1 × 10−3 to126

minimize over-fitting. All models are trained for 20 epochs.127

3 Results128

To compare the experiment results, we use a fine-tuned ResNet50 (pre-trained on ImageNet-21K)129

with our dataset as a baseline. This CNN achieved a F1 score of 75%. However, the score improved130

by 20% with the ViT model. The initial set of experiments indicated some overfitting so we added131

regularization to minimize that.132

We summarize the experiment results in Table 1. We observe that LoRA generally performs better133

with the best trade-off in terms of computational cost. The F1 scores for high-resolution datasets are134

higher than Sentinel as expected. The performance on the California HR dataset is lower than that135

of China’s HR dataset even though the former has more samples. The reason is California’s dataset136

includes commercial and utility-scale PVs that are harder to detect as compared to China’s dataset137

which has only utility-scale (commercial-scale PVs are smaller in size than utility-scale PVs).138

3



FT L2 Ln LoRA LP

CA [HR] 0.90 0.84 0.89 0.89 0.92
CN [HR] 0.96 0.95 0.96 0.97 0.95

CN [S2] 0.83 0.84 0.79 0.85 0.75

Table 1: F1 Scores of fine-tuning experiments. Each
column corresponds to a different fine-tuning strategy:
FT (full fine-tuning), L2 (First two attention blocks), Ln

(Last two attention blocks), LoRA (Low-rank adaptation),
and LP Linear Probing.

Trained OOD Acc F1
CN-S2 [LoRa] CN HR 0.64 0.75
CN-S2 [LoRa] CA HR 0.46 0.46
CN-HR [LoRa] CN S2 0.48 0.29
CN-HR [LoRa] CA HR 0.51 0.33
CA-HR [Linear] CN S2 0.44 0.17
CA-HR [Linear] CN HR 0.51 0.37

Table 2: OOD inference performance for different fine-
tuned models. Each row corresponds to a different com-
bination of fine-tuned model and OOD dataset.

Another interesting observation is the compar-139

ison of L1 and Ln for China HR and S2. L1140

for China S2 performs better as opposed to high141

resolution datasets. This is because the data dis-142

tribution domain of Sentinel 2 is significantly143

different than the high-resolution aerial imagery.144

3.1 OOD evaluation145

We also evaluated our best models on OOD146

datasets. The results are shown in Table 1.147

The model trained on China Sentinel 2 dataset148

(the best being LoRA) is used to test the other149

two datasets (China HR and Cal HR) and so150

on. China S2 trained model performs better on151

China HR than California HR by ∼ 30% F1152

score. This is because the PVs are more simi-153

lar in China HR and S2 than PVs in China and154

California.155

4 Discussion156

We have analyzed various fine-tuning strategies157

for ViT architectures and found that full param-158

eter retraining is often not required to achieve159

baseline performance. We also find that dif-160

fering datasets and image characteristics (i.e.161

resolution, color space, etc.) call for different162

transfer learning methods, with LoRA being the163

best-performing strategy across datasets in our experiments. These results line up with some of the164

findings in the literature [Kumar et al., 2022, Chen et al., 2021]. As suggested by other papers [Goyal165

et al., 2022, Raghunathan et al., 2020], it is also relevant to think in terms of OOD examples and how166

different optimization processes between pre-training and fine-tuning can lead to different results167

(i.e. contrastive loss in pre-training, and cross-entropy during fine-tuning leads to sub-optimal results168

Goyal et al. [2022]). We would like to work towards improving the OOD evaluations as this can169

help us translate our PV classification parameters across different geographical regions, a especially170

crucial in the sustainability domain.171

While other works have explored the use of few-shot meta-learners to achieve OOD performance in172

remote-sensing scenarios [Wang et al., 2020], this works differs from those approaches by caring173

solely about domain adaptation and wanting to explore a streamlined way of fine-tuning strategy174

for a common problem in PV detection. In this work, we have posed the opportunity of FT as a175

computationally simpler and less data-greedy alternative to training from scratch. We have shown176

that we can achieve comparable performance to our baselines, with a comparably smaller set of labels177

(6,200 labels). Despite our experiments combining different resolutions, we find that detecting small178

PV installations is still challenging, and fine-tuned pre-trained models are still not able to outperform179

models trained exclusively on high-resolution imagery.180
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