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Abstract

This paper studies the optimistic variant of Fictitious Play for learning in two-
player zero-sum games. While it is known that Optimistic FTRL — a regularized
algorithm with a bounded stepsize parameter — obtains constant regret in this
setting, we show for the first time that similar, optimal rates are also achievable
without regularization: we prove for two-strategy games that Optimistic Fictitious
Play (using any tiebreaking rule) obtains only constant regret, providing surprising
new evidence on the ability of non-no-regret algorithms for fast learning in games.
Our proof technique leverages a geometric view of Optimistic Fictitious Play in
the dual space of payoff vectors, where we show a certain energy function of the
iterates remains bounded over time. Additionally, we also prove a regret lower
bound of Q(/T) for Alternating Fictitious Play. In the unregularized regime, this

separates the ability of optimism and alternation in achieving o(v/T) regret.

1 Introduction

Despite the fact that regularization is essential for no-regret online learning in general adversarial
settings, unregularized algorithms are still able to obtain sublinear regret in the case of two-player
zero-sum games. Fictitious Play (FP), dating back to Brown (1951), is the canonical example of
such an unregularized algorithm, and it results from both players independently running Follow-the-
Leader (FTL).! In the worst case, FTL can have Q(T') regret due to its sensitivity to oscillations in
adversarially-chosen reward sequences (Shalev-Shwartz et al., 2012). However, in zero-sum game
settings, the classic result of Robinson (1951) proved that, under Fictitious Play, the sum of the players’
regrets (henceforth referred to as regret) is indeed sublinear (thus implying time-average convergence
to a Nash equilibrium), albeit at the very slow O(T 1-1/ ™) rate for n x n games (Daskalakis and Pan,
2014).

However, the recent works of Abernethy et al. (2021a) and Lazarsfeld et al. (2025) have established

improved O(\/T) regret guarantees for Fictitious Play on diagonal payoff matrices (using lexico-
graphical tiebreaking) and on generalized Rock-Paper-Scissors matrices (using any tiebreaking rule),
respectively. As a result, there is growing evidence on the robustness of unregularized algorithms like
FP (not a no-regret algorithm in general) for obtaining fast, sublinear regret in zero-sum games.

On the other hand, the past decade has seen regularized learning algorithms exhibit a remarkable
success in providing even better o(+/T') regret guarantees for learning in games. In zero-sum games,

'FTL is a particular instance of Follow-the-Regularized-Leader (FTRL) with unbounded stepsize n — oo.
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optimistic variants of FTRL (including Optimistic Multiplicative Weights and Optimistic Gradient
Descent) obtain only constant regret (with respect to the time horizon T'), implying optimal O(1/T")
time-average convergence to Nash (Rakhlin and Sridharan, 2013; Syrgkanis et al., 2015). While such
guarantees can be obtained using absolute constant stepsizes (with no dependence on 7"), standard
proof techniques (e.g., the RVU bound approach of Syrgkanis et al. (2015)) still crucially require a
finite upper bound on stepsize, corresponding to constant magnitudes of regularization. This raises the
following, fundamental question: Is O(1) regret attainable in zero-sum games without regularization
(equivalently, with unbounded stepsizes)? Can variants of Fictitious Play achieve O(1) regret?

Apart from its theoretical interest, this question admits crucial applications in the context of equilib-
rium computation algorithms for combinatorial games (Beaglehole et al., 2023), as well as during
training via self-play in certain multi-agent reinforcement learning settings (Vinyals et al., 2019).

1.1 Our Contributions

In this work, we establish an affirmative answer to the question above. Our main result establishes
that, in the case of 2x2 zero-sum games, Optimistic Fictitious Play obtains constant regret:

Informal Theorem (See Theorem 3.1). Optimistic Fictitious Play, using any tiebreaking rule, obtains
O(1) regret in all 2x2 zero-sum games with a unique, interior Nash equilibrium.

Our result gives surprising new evidence that, even without regularization, optimism can be used to
obtain an accelerated regret bound, matching the optimal rate obtained by regularized Optimistic
FTRL algorithms (Syrgkanis et al., 2015). While our theorem establishes constant regret only for
the case of two-strategy zero-sum games, our proof techniques offer indication that similar, optimal
regret bounds may further hold in higher-dimensional settings. Apart from our theoretical results,
we also experimentally evaluate Optimistic FP on higher-dimensional zero-sum games, and these
evaluations suggest that, even for much larger games, Optimistic FP still obtains constant regret.

Our proof technique is based on a novel geometric perspective of Optimistic FP in the dual space of
payoff vectors. Our main technical contribution is showing that an energy function of the dual iterates
of the algorithm is upper bounded by a constant. This energy upper bound can then be easily used to
establish constant regret of the primal iterates. The latter comes in contrast to the energy growth of
the iterates of standard FP, which strictly increases over time (Lazarsfeld et al., 2025).

We also consider the alternating variant of Fictitious Play. Recent work has studied the use of
alternation (independently of optimism) as a method for obtaining o(ﬁ) regret guarantees in both
the adversarial (Gidel et al., 2019; Bailey et al., 2020; Cevher et al., 2023; Hait et al., 2025) and the
zero-sum game setting (Wibisono et al., 2022; Katona et al., 2024). Contrary to optimism, we show
in the case of alternation that regularization is necessary to achieve o(v/T') regret:

Informal Theorem (See Theorem 3.2). On the 2x2 Matching Pennies game, Alternating Fictitious
Play, using any tiebreaking rule and for nearly all initializations, has regret at least Q(\/T ).

Together, our results separate the regret guarantees of using optimism and alternation in the regime
of no regularization: while optimism without regularization can obtain optimal O(1) regret (Theo-
rem 3.1), alternation alone is in general insufficient for improving beyond O(\/T ) (Theorem 3.2), the
same rate achievable by standard (non-alternating) FP in the 2 x2 setting. To this latter point, note
that the lower bound of Theorem 3.2 comes in contrast to the improved O(T/%) rate obtainable by
Alternating FTRL under a sufficiently small stepsize (Katona et al., 2024).

Table 1 summarizes our results and the landscape of regret guarantees in the 2 x 2 setting for FTRL and
FP variants, and Figure 1 shows an example of the empirical regret guarantees of standard, Optimistic,
and Alternating FP variants in several games (additional results are presented in Sections 5 and E).

1.2 Other Related Work

Optimistic learning in games. Our work relates to a line of research on the convergence prop-
erties of optimistic and extragradient-type algorithms in both normal-form and extensive-form
games (Daskalakis et al., 2021; Fasoulakis et al., 2022; Anagnostides et al., 2022a; Zhang et al., 2024;
Farina et al., 2022; Hsieh et al., 2022; Anagnostides et al., 2022b; Piliouras et al., 2022; Anagnostides
et al., 2022c). As previously noted, a key difference is that these approaches typically rely on constant
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Figure 1: Empirical regret of standard (FP), Optimistic (OFP), and Alternating (AFP) Fictitious Play in
Matching Pennies (from x§ = (1/3,2/3), 23 = (2/3,1/3)), on the 15x 15 identity matrix (from 29 = e,
:Eg = en), and on 15 x 15 generalized Rock-Paper-Scissors (from :E(l) =e1, xg = en). Each algorithm was run
for T' = 10000 iterations using a lexicographical tiebreaking rule. Each subfigure demonstrates the constant
empirical regret of OFP compared to the roughly v/T" regret growth of standard FP and AFP. More experimental
details and results are given in Section 5 and Section E.

or time-decreasing step sizes, corresponding to some level of regularization. Recent works have also
investigated last-iterate convergence properties of optimistic and extragradient methods (Daskalakis
and Panageas, 2019; Cai et al., 2022; Abernethy et al., 2021b; Hsieh et al., 2020), as well as for
variants of regret-matching, including under alternation (Cai et al., 2025a). Other works have studied
accelerated rates using optimism without regularization in certain Frank-Wolfe-type, convex-concave
saddle-point problems (Wang and Abernethy, 2018; Abernethy et al., 2018).

Learning in 2x2 games. Our work adds to a growing recent literature studying online learning
algorithms in 2x2 games: in two-strategy zero-sum games, Bailey and Piliouras (2019) proved that
Online Gradient Descent obtains O(+/T') regret even with large constant stepsizes. More recent works
of Cai et al. (2024) and Cai et al. (2025b) establish lower-bounds on the last-iterate and random-iterate
convergence rates of Optimistic MWU using a hard 2x2 construction, as well as an O(T"/) upper
bound on best-iterate convergence for 2x2 zero-sum games. Chen and Peng (2020) similarly used a
2x2 construction to establish a general Q(1/T") lower bound on the regret of standard Multiplicative
Weights. In a family of two-strategy congestion games, Chotibut et al. (2021) also showed that the
iterates of Multiplicative Weights can exhibit formally chaotic behavior.

Fictitious Play. We refer the reader to the recent results of Daskalakis and Pan (2014), Abernethy
et al. (2021a), and Lazarsfeld et al. (2025) (and the references therein) for background on standard
Fictitious Play. Abernethy et al. (2021a) also briefly introduced the optimistic variant of Fictitious
Play, and they informally conjecture the algorithm to have constant regret on diagonal payoff matrices.
The convergence behavior of FP has also been studied in potential games (Monderer and Shapley,
1996; Panageas et al., 2023), near-potential games (Candogan et al., 2013), Markov games (Sayin
et al., 2022; Baudin and Laraki, 2022), and extensive-form games (Heinrich et al., 2015).

2 Preliminaries

Let [n] = {1,...,n}, let A,, be the probability simplex in R", and let {e;}, = {e; : i € [n]} C A,
denote the set of standard basis vectors in R™, which correspond to vertices of A,,. For x € A,,, we
say x is interior if x; > 0 for all ¢ € [n].

Standard | Optimistic | Alternating
7 bounded (FTRL) | O(V/T) t o) " O(TY/3) M
n — oo (FP) oWT)* | om)* | QWT)*

Table 1: Regret guarantees for FTRL and Fictitious Play variants in 2 x 2 zero-sum games, with our contributions
shaded in gray. 7: Using the standard setting of n = 1/ VT (Shalev-Shwartz et al., 2012). *: Via the RVU

bounds of Syrgkanis et al. (2015). *": (Katona et al., 2024), extending on the prior O(Tl/ %) bound of Wibisono
et al. (2022). {: Implicit in the proof of Robinson (1951). *: Theorem 3.1. **: Theorem 3.2.




2.1 Online Learning in Zero-Sum Games

Let A € R™*" be the payoff matrix for a two-player zero-sum game, and let 7" be a fixed time
horizon. At round ¢, Players 1 and 2 simultaneously choose mixed strategies =} € A,, and 2, € A,,,
obtain payoffs (x%, Az%) and — (2}, AT 2%), and observe feedback Az} and — AT zt, respectively.

Regret and Convergence to Nash. Each player seeks to maximize their cumulative payoff, and
their performance is measured by the individual regrets Reg, (T") = maxzea,, Z;‘F:l (x — 2}, Axb)
and Reg, (T') = mingen,, Zthl (xh —x, ATx%). From a global perspective, we study the total regret
(henceforth regrer) Reg(T') = Reg, (T) + Reg,(T) given by
T T
_ A T,
Reg(T) = max (z, tho Azh) nin (z, Zt:O Alal). e

TEA,
It is well known that sublinear bounds on Reg(7T") correspond to convergence (in duality gap) of the
players’ time-average iterates to a Nash equilibrium (NE) of A. Recall that the duality gap of a joint
strategy profile (1, 22) is given by DG(x1, 22) = maxys ea,, (2], Azg) — ming ea, (25, AT z1),
and that (27, 23) is an NE of A if and only if DG(z7, 23) = 0. Then the following relationship holds
(see Section A for a proof):

Proposition 2.1. Ler 7] = L(31_ a%) and 75 = L(X]_, «4) denote the time-average iterates of
0

Players 1 and 2, respectively, and suppose Reg(T) = o(T). Then (¥1,73) converges (in duality-gap)
to an NE of A at a rate of Reg(T') /T = o(1).

2.2 Fictitious Play and Optimistic Fictitious Play

We now introduce the Optimistic Fictitious Play (and standard Fictitious Play) algorithms. The primal
update rules for both standard and Optimistic Fictitious Play can be described via the following
a-Optimistic Fictitious Play (a-OFP) expression:

t
aitl = ar%m?x (w, Zk*(} Az + aAxh)
rz€{eitm -

t
25t = argmax (7, E —ATa} —aATal).
l‘e{ei}n k=0

(a-OFP)

When a = 0, then (a-OFP) recovers standard Fictitious Play, where each player’s strategy at time
t 4 1 is a best response to the sum of its feedback vectors through round ¢. Optimistic Fictitious
Play (OFP) is the setting of (a-OFP) with o = 1. Observe this recovers the unregularized variant
of Optimistic FTRL (equivalently, with  — 00) in the zero-sum game setting (c.f., (Rakhlin and
Sridharan, 2013; Syrgkanis et al., 2015)), which adds bias to the most recent feedback vector.

Remark 2.2 (Tiebreaking Rules). Observe that the argmax sets in («-OFP) may contain multiple
vertices. For this, we assume that the argmax operator encodes a tiebreaking rule that returns a
distinct element. Throughout, we make no assumptions on the nature of the tiebreaking rule, and in
general ties can be broken deterministically, randomly, or adaptively/adversarially.

Dual payoff vectors and primal-dual update. Optimistic FP can be equivalently written with
1

respect to the cumulative payoff vectors yi = St Azk € R™ and yh = Y4 —AT 2k € R™.
Specifically, the iterates of the algorithm can be expressed in the following primal-dual form:
Definition 2.3. Let ¢ = 0 € R™ and y§ = 0 € R™, and fix any initial 2§ € A,, and 2§ € A,,.
Then for ¢ > 1, the dual (i.e., (y},4%)) and primal (i.e., (x}, 2%)) iterates of Optimistic FP are:

=y A = g (o Ast)
yi - yifl 72 t—1 and . ze{eitm . o ' (OFP)
y2 = y2 _A (El 252 = arg{m?x <1'7y2—A $1 >

TECifn

3 Regret Bounds for Optimistic and Alternating Fictitious Play

The main result of this paper establishes a constant regret bound for Optimistic Fictitious Play in
two-strategy zero-sum games. Formally we prove the following theorem:



Theorem 3.1. Let A be a 2x2 zero-sum game with a unique interior NE, and let {(x%,x%)} be the
iterates of (OFP) on A using any tiebreaking rule. Then Reg(T) < O(1).

As mentioned, this result establishes the first constant regret bounds for Fictitious Play variants in
the two-player zero-sum game setting, and the result holds regardless of the tiebreaking rule used.
Moreover, this bound matches the optimal rate obtained by Optimistic FTRL variants for zero-sum
games (Syrgkanis et al., 2015), but notably, our proof technique departs significantly from the RVU
bound approach used to obtain those results.

As a consequence of the techniques we develop for proving Theorem 3.1, we also establish a lower
bound on the regret of Alternating Fictitious Play. In particular, for the corresponding alternating
regret Reg"!'(T') (see Definition D.2), we prove on the 2x2 Matching Pennies game the following:

Theorem 3.2. Suppose x1 = (p,1 —p) € A, forirrational p € (3/4,1), and let {x'} be the iterates
of Alternating FP on (Matching Pennies) using any tiebreaking rule. Then Reg(T) > Q(\/T).

To streamline the presentation of the paper, we defer the precise descriptions of the alternating play
model, alternating regret, and the Alternating FP algorithm to Section D, where we also develop the
proof of Theorem 3.2. Instead, in the remainder of the main text, we focus on developing the proof of
Threorem 3.1. To this end, we proceed to give an overview of our techniques.

3.1 Intuition and Overview of Proof Techniques for Theorem 3.1

To prove Theorem 3.1, we leverage a geometric view of Optimistic Fictitious Play in the dual space
of payoff vectors. We give a brief overview of this geometric perspective here:

Energy and regret. First, we show that the regret of the primal iterates {z*} is equivalent to the
growth of an energy function of the dual iterates {1'}. Specifically, define the energy ¥ as follows:

Definition 3.3. Let y* := (y!, %) be the concatenated primal and dual iterates of (OFP) at time
t > 1. Then for y = (y1,y2) € R™"™, the energy function ¥ : R — R is given by

U(y) = _max (z.y). 2

TEA XAy

In other words, ¥ is the support function of A,, X A,,. Then by definition of Reg(T") and the payoff
vectors {y'}, the following relationship holds (see Section A for a proof):

Proposition 3.4. Let {x'} and {y'} be the iterates of (OFP). Then Reg(T) = ¥(yT+1).

Due to Proposition 3.4, it is immediate that a constant upper bound on ¥(y7*1) implies a constant
upper bound on Reg(7T"). To this end, our main technical contribution is to prove the following upper
bound on the energy ¥ under Optimistic Fictitious Play:

Theorem 3.5. Assume the setting of Theorem 3.1. Let aymax = || A|loc denote the largest entry of A,
and let agyy = Ming ;) (x,e) |Ai; — Age| denote the smallest absolute difference between two entries

of A. Let {y'} denote the dual iterates of (OFP) on A. Then ¥ (y" 1) < 8amax (1 + 2 (%))2

gap
In other words, the energy of the dual iterates under Optimistic FP are bounded by an absolute
constant that depends only on the entries of A. In Section 4, we give a technical overview of the proof
of Theorem 3.5, but we first present more introduction and intuition on the geometric perspective of
Optimistic Fictitious Play that is used to prove the result.

Fictitious Play as Skew-Gradient Descent. As shown in Abernethy et al. (2021a) and Lazarsfeld
et al. (2025), in the dual space of payoff vectors, standard Fictitious Play can be viewed as a certain
skew-gradient descent with respect to the energy W. In light of this, we introduce a common geometric
viewpoint that captures both standard and Optimistic FP and gives insight into their differences in
energy growth, as implied by Theorem 3.5.

For this, note that the subgradient set of W aty € R™ " is givenby 0¥ (y) = argmax,ca o a, (T, 9).
Then both standard FP and Optimistic FP can be expressed as a skew-(sub)gradient-descent with
respect to U evaluated at a predicted dual vector 7'+ (see Section A.3 for a full derivation):



Proposition 3.6. Let {y'} denote the dual iterates of either standard Fictitious Play (e.g., (a-OFP)
with a = 0) or Optimistic Fictitious Play. Then for all t > 1, the iterates of each algorithm evolve as

t t—1 t—1
Y=y +J 0 A 1 yt for FP
{xt € axp(wl) where J = (—AT 0) and = = { 2t —y=1  for OFP

and it follows inductively that y' ™ = y* + JOU(y'*1), where 0V (y' ™) denotes a fixed vector in

the subgradient set of U at 5t +1.

3)

One-step energy growth comparison of Fictitious Play variants. For standard FP, due to its
Hamiltonian structure, the analogous skew-gradient flow in continuous-time is known to exactly
conserve U, leading to constant regret (see, e.g., Mertikopoulos et al. (2018); Abernethy et al. (2021a);
Wibisono et al. (2022)). However, due to discretization, this energy conservation does not hold in
general under discrete-time Fictitious Play variants. For example, under each step of standard
Fictitious Play, W is always non-decreasing. To see this, let AU (y!) = U(y!T1) — ¥(y!), and by
slight abuse of notation, let 9¥(y) denote a fixed vector in the subgradient set of ¥ aty € R™*™,
Then by Jensen’s inequality and skew-symmetry of J = —.J 7, it holds for all £ > 1 that

For FP: AU(y") > (0VU(y"), JO¥(gth)) = (0¥(y"), JO¥(y')) = 0. 4)

In fact, the recent upper bounds of Abernethy et al. (2021a) and Lazarsfeld et al. (2025) imply that
under FP, W is strictly increasing by a constant in roughly /7 iterations.

On the other hand, for Optimistic FP using 7't = 2y* —y~!

For Optimistic FP:  AU(y") < (00 (y'™), JOU (7)) = (0¥ (y' ), JOU(g*T)).  (5)

, we instead have by Jensen’s inequality:

Thus by skew-symmetry of .J, expression (5) reveals that for any ¢ where U (y!T1) = 9U(y'+!)
(e.g., true dual vector y**! and predicted dual vector 3**! both “map” to the same primal vertex),
then the one-step energy growth AW(y?) < 0 is non-increasing under Optimistic FP.

Challenges in establishing non-positive energy growth for OFP. Naively, one might in general
hope the invariant 0¥ (y!*1) = OW(y'*™1) holds at every timestep under Optimistic FP. However,
simple experiments reveal that this is not true: in general ¥ can increase during one step of the
algorithm. Thus, understanding when and why such an invariant does hold is still a challenging task
that may require leveraging structural properties of the payoff matrix. In the proof of Theorem 3.5, we
leverage such properties of 2x2 games to establish sufficient conditions for when the above invariant
holds, and this subsequently leads to a constant upper bound on energy.

4 Bounded Energy Under Optimistic Fictitious Play

In this section, we now give a technical overview of the proof of Theorem 3.5. Throughout the proof,
we make the following assumptions on the payoff matrix A:

Assumption 1. Let A € R?*2, Assume that

4 (@ b where (i) detA=ad—bc=0
\c d (i) a,d > max{0,b,c}

As proven by Bailey and Piliouras (2019), who studied online gradient descent in 2x2 games, for
any Fictitious Play or FTRL variant, Assumption | holds without loss of generality:

Proposition 4.1 (Bailey and Piliouras (2019)). Let A € R?*? have a unique, interior NE, and let
{z'} be the iterates of (OFP) on A. Then there exists A e R2X? satisfying Assumption I such that
(1) A and A have the same NE and (2) the iterates {Z'} of running (OFP) on A are identical to {z'}.

For completeness, we include a full proof of this result in Proposition 4.1 of Section B. The key
consequence of the assumption is that, under Optimistic FP, the dual payoff vectors y* = (y%,v%) €
R* all lie in the same two-dimensional subspace. Formally, we have:

Proposition 4.2. Let A satisfy Assumption 1, and let {y}} and {y%} be the dual payoff vectors
of (OFP). Then for every t > 1, it holds that yiy = —p1 - yt, and yby = —pa - v, where
p1:=(d—c)/(a—b)>0and ps = (d—1b)/(a—c) > 0.



The proof of Proposition 4.2 is given in Section C. Importantly, as p1, p2 > 0, observe that y¢, >
0 < ot >yl andyl; >0 < y& > yi, forall times ¢ > 1. Thus, in the 2x 2 setting, the
coordinates !, and y%, encode all information needed to analyze the iterates of Optimistic FP in (3).

With this in mind, the strategy for proving the upper bound on the energy ¥ (y?*1) is as follows:
first, leveraging the observations above, and as in Bailey and Piliouras (2019), we restrict our study
of the dual iterates (y!, y5) € R* to the pair of scalar iterates (y!;,v5;) € R2. For this, we introduce
in Section 4.1 a new set of notation to capture this lower-dimensional subspace dynamics, which
also naturally leads to the definition of an equivalent energy function. For the new, equivalent energy
function, we then prove in Section 4.2 a set of invariants that allow for establishing a uniform, constant
upper bound on the energy of the dual iterates over time.

4.1 Subspace Dynamics of Optimistic Fictitious Play

We now introduce an equivalent set of primal and dual iterates {w'} and {2'} for (OFP), as well as a
new, equivalent energy function ). We will establish in Proposition 4.6 that W (y7 1) = (2! *1).

Primal variables. First, by definition of (OFP), both z! and x% are vertices of Ay. Letting

X = {(1,0),(0,1)} x {(1,0),(0,1)} C R* denote the vertices of the joint simplex Ay x Ag, it

follows for each ¢ > 1 that z* € X. We define new primal iterates w! € R*, where each w? is a

standard basis vector of R*. Let W = {e1,ea,e3,e4} C R* denote this set. Then for ¢ > 1, let:
Wt — {62 <— 2t =1(0,1,1,0) e3 < xz'=(1,0,1,0)

6
€1 <— xt:(O,l,O,l) €4 <— $t:(1,0,0,1) ©)

Dual variables. Foreacht > 0,let 2f =y}, € Rand 2{ =y, € R. Let 2! = (2%, 2) € R2.

Primal-dual map. To aid in the description and analysis of the subspace dynamics, we describe the
following partition of the dual space R?. We then describe a corresponding choice map Q : R? — X
that relates the primal and dual variables {w’} and {z*}.
Definition 4.3. First, let P = {Py, P, P3, P,} C R?, where each P; is the set

P, = {z€R*:z1<0and 22 >0} P3 = {z€R?:2 >0and 22 > 0}

(7
Pi={zeR?:z1<0and 2o <0} Py = {z€R’:2 >0and z < 0}.
Next, let P = {Py2, Pss, Pss, Pio1} C R2, where we define
P2~3:{z€R2:z1:Oandzg>0} P3N4:{z€R2:z1>0andz2:0} (8)

P2 = {2€R22Z1 <Oandz2:0} Py = {Z€R2121 =0 and 22 <0}.
Finally let P= Uiep4] Py, where P, = P, U P;(i+1)- Observe by definition that PU {(0,0)} = R2.

Note that for notational convenience, when us-

ing an index 4 € [4] in the context of the sets of Prs

Definition 4.3, we assume addition and subtrac- P, Py

tion to ¢ are performed (mod 4) in the natural

way that maps to the set {1, 2, 3,4}. For exam- Y
ple, P (i4+1) is the set Py.; when i = 4, and

P,_5 = P,15 is the set P; when i = 1, etc. P; P,
Figure 2 depicts the sets from Definition 4.3.

zz

Moreover, Definition 4.3 allows for defining a

choice map Q : R? — W that encodes the Figure 2: Examples of the sets in P, 73, and P.
primal update rule of (OFP). In particular, Q

maps dual variables z to primal vertices w depending on the membership of z in P or P. Formally:
Definition 4.4. Let Q : R? — W be the map defined as follows: first, let Q((0,0)) = e;. Then

» Forz € P:if z € P, fori € [4], then Q(z) = e;.
«ForzeP:ifze P;(i+1) fori € [4], then Q(2) € {es, €541}

As in the full update rule of (OFP), we assume Q encodes a tiebreaking rule to ensure Q(z) returns a
single element from JV. As in Remark 2.2, we make no assumptions on how such ties are broken.



Primal-dual dynamics. Using the definitions of the primal and dual variables {w'} and {z!} and
the choice map Q, the primal-dual dynamics of (OFP) can be rewritten as follows: for all ¢ > 2, let

2t = 27l 4 Switt b a a b
{wt _ Q(zt—i-Swt’l) where S = (—c —¢ —a —a> . )

Observe that the i’th column of S € R?*4 are the entries (Ay!;, Ayl,) when w! = e; (cf., the
definition of w? from expression (6)). Moreover, expression (9) implies Swt™! = 2zt — z*~! for all
t > 2. Thus, we can further describe the primal-dual dynamics of (9) solely in terms of the sequence

of dual variables {z'}. In particular, for all ¢ > 2, we have

i+l — zt+(ztfzt71)
{Zt—H = 24 SQ(EY) (OFP Dual)

Energy function. Using the new notation and dual variables {2}, we define an energy function
1 : R? — R over the new dual space R?: let 4((0,0)) = 0, and for all other z € R?, let

W(z) = —p1- 21+ 2 ?fzeljz, 21 + 22 1.fzePA3, . (10)
—p1-21—p2-2e ifze Py, 21— p2-2o ifze Py

It is also more expressive to write ¢ using the choice map Q from Definition 4.4. Recall for any
z € R% that Q(z) € W = {e1, €2, €3, e4}. Then we have the following equivalent definition of 1):

Definition 4.5. For z € R?, the function ¢ : R? — R is given by

P(z) = (2,MQ(2))  where M = (:Z; _fl 1 _1/)2) . (11)

Due to the relationship between the coordinates of y! and y4 from Proposition 4.2, the following
relationship between ¥ and v (and by Proposition 3.4, between ¥ and Reg(7")) is immediate:

Proposition 4.6. Forallt > 1, ¥(y') = (). Moreover, Reg(T) = W(yT 1) = (2T+1).

4.2 Bounded Energy of Subspace Dynamics

Leveraging Proposition 4.6, it suffices to derive an upper bound on (27 *!) in order to prove
Theorem 3.5. For this, the key step is to prove a set of invariants on the dual iterates which establish
that, if the magnitude of ¢ ever exceeds some constant threshold, the subsequent one-step change in
1) is non-increasing (thus crystalizing the intuition from expression (5)).

For this, we first define an absolute constant B as follows:
Definition 4.7. Fix A satisfying Assumption 1, and recall a;yax = ||Al|co- Then define B > 0 by

B=min{be R, : forall z € R?, ||z[|; < 6amax = ¥(z) <b} .

In words, B is the smallest constant whose sublevel set ¢)(z) < B contains an ¢; ball of radius 6a -
Moreover, the magnitude of B can be bounded from above as follows (see Section C for the proof):

Proposition 4.8. Let B be the constant from Definition 4.7. Then B < 6amax(1 + p1 + p2).

Worst-case upper bound on energy. Observe that if ¢(z!) < B for all times ¢, then the statement
of Theorem 3.5 trivially holds. On the other hand, if the energy 1) crosses this threshold under one
step of the dynamics, then we have the following constant upper bound on (2t *1):

Lemma 4.9. Suppose 1(2') < B, and let B' = 8amax (1 + p1 + p2)%. Then (z'T1) < B’

Cycling invariants and controlled energy growth. The remaining step is to then control the
energy growth whenever v (z?) > B. For this, we prove the following key lemma:

Lemma 4.10. Suppose 1(z') > B and z* € P, for i € [4]. Then the following hold:

(1) Either (i) 341, 211 € P, or (ii) 341, 211 € Py



(2) Ap(2h) = (") —(zh) < 0.

Part (1) of the lemma establishes invariants relating the true payoff vectors and predicted payoff
vectors whenever energy is above the threshold B. Roughly speaking, when 1 is larger than B, the

dual vectors cycle consecutively through the regions Py, ..., P, (similarly to the iterates of standard
Fictitious Play), and this roughly implies that Q(2*+1) = Q(z!*1).

Importantly, this alignment between z'*! and Z**! is the key step needed to establish a non-increasing
change in energy, as stated in part (2). To see why this is true, observe that using the definition of v

from (11), we can compute the one-step change Aw(z!) = ¢(2!*1) — 9(2?) under (OFP Dual) as
Ag(") = (71, MQ(z"1)) — (2, MQ(2")) (12)
= (z' + SQE"), MQ(z"1)) — (2", MQ(z")) (13)
= (', M(Q(z""") = Q(2"))) +(Q(Z"*"), ST MQ(="")) . (14)

(2) (b)

Here, (14) essentially encodes the expression for AV from (5). In particular, straightforward
calculations show that the matrix ST M is skew-symmetric, and as Part (1) of the lemma roughly
implies Q(z!*1) = Q(2'*1), term (b) of (14) vanishes. Together with the column structure of M,
the invariants of part (1) imply that part (a) of (14) is non-positive, and thus overall A(z%) < 0.

The full proofs of the preceding lemmas are developed in Section C and account more carefully for
boundary conditions and tiebreaking. Figure 3 of Section C.3 also gives more visual intuition for the
invariants and energy-growth behavior of Lemma 4.10. Granting these lemmas as true for now, we
then give the proof of Theorem 3.5:

Proof of Theorem 3.5. Suppose for ¢ > 0 that )(2!~1) < B and ¢(2') > B. By Lemma 4.9,
we must have 1(z') < 8amax(1 + p1 + p2)?. Moreover, Lemmas C.2 and C.6 together imply
that Ay (2t) < 0, and thus also ¥(2!11) < 8amax(l + p1 + p2)?. It follows inductively that
P (2TH) < 8amax(1 + p1 + p2)?. By definition, p1, p2 < (Gmax/agap), and thus we conclude

w(ZT+1) = \D(yT+1) < 8amaux(1 + 2(amax/agap))2 : =

5 Discussion and Conclusion

In this work, we established for the first time that the unregularized Optimistic Fictitious Play algo-
rithm can obtain constant O(1) regret in two-player zero-sum games. Our proof technique leverages
a geometric viewpoint of Fictitious Play algorithms, and we believe the techniques established for the
2x2 regime can be extended to higher dimensions.

Additional experimental results. To this end, in Table 2 we present additional experimental
evidence indicating that constant regret bounds for Optimistic FP (similar to Theorem 3.1) hold more
generally in higher-dimensional settings. The table shows the empirical regret of Optimistic FP and
standard FP (using lexicographical tiebreaking) on three classes of zero-sum games, in three higher
dimensional settings. For each setting, the algorithms were run from 100 random initializations, each
for T' = 10000 iterations, and we report the average regret over all initializations.

Dimension: 15x15 2525 50x50
Payoff Matrix |, FP OFP FP OFP FP OFP
Identity 1551 +39 81+16|161.3+3.1 125+1.7|167.2+25 252+2.1
RPS 2356 +7.6 29+05|2422+63 29+09 [24274+59 25408
Random [0,1] || 1162 £+£58 434+0.8 | 118.6+57 57+09 |177.0+6.5 13.0£1.5

Table 2: Empirical regret of FP and OFP using lexicographical tiebreaking. Each entry reports an average and
standard deviation (over 100 random initializations) of total regret after 7' = 10000 steps.

The results indicate that, in each class of payoff matrix and in each dimension, Opimistic FP has only
constant regret compared to the regret of roughly v/7' &~ 100 obtained by standard FP. In Table 3 of



Section E, we also report results using randomized tiebreaking for both algorithms and find similar
conclusions, thus highlighting the robustness of the constant regret of OFP to tiebreaking rules. In
Section E, we give more details on the experimental setup and additional plots similar to Figure 1.

Limitations. Formally proving whether Optimistic Fictitious Play obtains constant regret in all
Zero-sum games remains an important open question.

Broader impact. We acknowledge that there are many potential societal consequences of our
theoretical results, however none of which we feel must be specifically highlighted.
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A Details on Regret, Energy, and Fictitious Play
A.1 Zero-Sum Games and Convergence to Nash Equilibrium

Proposition 2.1. Let 71 = %(ZtT:o i) and 71 = %(ZtT:o xt) denote the time-average iterates of
0

Players I and 2, respectively, and suppose Reg(T) = o(T). Then (zT, 1) converges (in duality-gap)
to an NE of A at a rate of Reg(T) /T = o(1).

Proof. By definition of Reg(7T) from (1), we have that
T

T Y
B e (o A(7 Y0 ab)) - i (AT (5300 at)) = DGGETH)

where we use the definitions of Z7 and 7%, and of the duality gap DG(-, -). Thus if Reg(T") = o(v/T),
then DG(#],75) = R&T) — o(1). O

A.2  Proof of Proposition 3.4

In this section, we prove Proposition 3.4, which shows the equivalence between energy and regret.
Restated here:

Proposition 3.4. Let {z'} and {y'} be the iterates of (OFP). Then Reg(T) = ¥ (yT*1).

Proof. For convenience, we let d = m + n, and we write X = A,, x A,. Then recall from
Definition 3.3 that for all y € RY, the energy function ¥ : R? — R is given by

U(y) = , 15
(y) pnax (z,y) (15)

for y = (y1,y2) € R% Using the definitions of regret from from (1) and of the dual variables from
Definition 2.3, we have

Reg(T) = max < i:Ax2> — min <x27t§:1ATxt1>

z1€A,
_ T+1 T+1
s (o) + (e, )
T+1
= max T,
x:(zl,z2)€X< y >
_ \I/(yTJrl) . ]

A.3 Details on Fictitious Play Variants as Skew-Gradient Descent

In this section, we give more details on the geometric viewpoint of Optimistic FP and standard FP
introduced in Section 3.

Dual dynamics of fictitious play variants. First, we recall that for a convex function H : R¢ — R
that its subgradient set at 4y € R? is defined as

OH(y) = {geR*:Vze R  H(2) > H(y) + (9.2 —y)} . (16)

Let d = m + n. Then for the energy function ¥ from Definition 3.3, it follows that, for any y € R?,
the subgradient set 0¥ (y) is the set of maximizers O¥(y) = argmax,.n ., (7,¥). The next
proposition (originally stated in Section 3) then follows by (1) using the definition of standard (av = 0)
and Optimistic FP (o = 1) from («-OFP), and (2) by the definition of the dual payoff vectors.

Proposition 3.6. Let {y'} denote the dual iterates of either standard Fictitious Play (e.g., (c-OFP)
with o = 0) or Optimistic Fictitious Play. Then for all t > 1, the iterates of each algorithm evolve as

¢ t—1 t—1
y =Y + Jx 0 A 1 yt for FP
{ zt € ov (g“f“) where J = <AT O) and y { 2t — =1 for OFP 3)

and it follows inductively that y**! = y* + JOU(y'TY), where OU (y'+1) denotes a fixed vector in
the subgradient set of ¥ at y*+1.
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One-step energy growth of FP variants. Using Proposition 3.6, we can then derive the bounds on
the one-step energy growth under FP and Optimistic FP, as stated in expressions (4) and (5).

For standard FP, using the convexity of W and Jensen’s inequality (equivalently, the subgradient
definition from (16)), and letting O (y) denote a fixed vector in the subgradient set of ¥ at y, we
have forall £t > 1

AU(y') = U(y™H) - U(y') = 0¥,y —y")

= (0W(y"), JOU (")) = (8¥(y"),JOv(y")) = 0.
Here, the first two equalities follow by the inductive update rule for FP from Proposition 3.6, and the
final equality follows by skew-symmetry of .J = —.J ' (since (y, Jy) = 0 for all y € R%).
For Optimistic FP, again using the subgradient definition of expression (16), we have for ¢ > 1:

AU(y') = V(Y™ - w(y') < (@)Y —y)
= (0% (y™), Jou(F)),

where the equality uses the update rule from Proposition 3.6 for Optimistic FP. Thus, by the skew-

symmetry of J, and as explained in Section 3, the energy growth AW (y*) for Optimistic FP is
non-positive whenever

oY) = oWy = ow(2y' —y' ).

B Assumptions on Payoff Matrix

Recall from Section 4 that in the proof of Theorem 3.5 for the 2 x2 setting, we make the following
assumption on the entries of the payoff matrix:

Assumption 1. Let A € R?*2, Assume that

4 (@ b where (i) detA=ad—bc=0
o \c d (i) a,d > max{0,b,c}

In this section, we give the proofs of Proposition 4.1 and Proposition 4.2. Proposition 4.1 establishes
that the conditions of Assumption 1 hold without loss of generality, and Proposition 4.2 derives the
resulting subspace invariance property of the payoff vectors under A.

B.1 Proof of Proposition 4.1

We restate the proposition here:

Proposition 4.1 (Bailey and Piliouras (2019)). Let A € R?>*2 have a unique, interior NE, and let
{xt} be the iterates of (OFP) on A. Then there exists A e R2x2 satisfying Assumption 1 such that
(1) A and A have the same NE and (2) the iterates {Z*} of running (OFP) on A are identical to {z'}.

The proof of Proposition 4.1 follows from the arguments in Bailey and Piliouras (2019, Appendix D).
For completeness, we re-derive the full proof here.

Proof. Fix A, and let (z7,23) € As x Ay denote its unique, interior equilibrium. Then the
coordinates of z7 and x5 are given by

N d—c a—b N d—b a—c (17
p— To = .
! at+d—(b+c) a+d—(b+c) 2 a+d—(b+c) a+d—(b+c)
Suppose that A does not satisfy the conditions of Assumption 1. We will then construct A € R2%2
that both satisfies the assumption, and such that the two claims of the proposition statement hold.

For this, suppose that the entries of A are shifted by the same additive constant ¢, and define the best
responses v and v’

v = argmax <ei,Ax> (18)
e;€{e1,ea}

v = argmax (e;,(A+cl)z) = argmax (e;, Az) +c, (19)
e;€{e1,ea} e;€{e1,ex}

16



where 7 € Ay and 1 € R?*? is the matrix of all ones. Thus for a fixed sequence of tiebreaking rules
(e.g., the same adversarially-chosen tiebreak direction that is applied to determine v is also applied to
determine v"), it follows that the primal iterates of running (OFP) on A will be identical to those of
running (OFP) on (A + ¢1) (and note the same argument holds for any FTRL algorithm or variant,
including standard Fictitious Play and Alternating Fictitious Play).

Now suppose det A # 0. Let A be the matrix

AVZA—( det A )

a+d—(b+c)

By straightforward calculations, it follows that det A=0. Moreover, by (17), A has the same un~ique

interior Nash equilibrium as A, and by the arguments above, the iterates of running (OFP) on A are
equivalent to those on A. Thus without loss of generality, we assume det A = 0.

We now establish that we can assume a > max{0, b, c} without loss of generality. First, we show
a # 0 holds: by the assumption that det A = ad — bc = 0, if a = 0, then bec = 0. However, by (17)
and the assumption that (z7, z3) is interior, we must have a — ¢ # 0 = ¢ # 0, which implies
b = 0. This violates the constraint from (17) that a — b = b # 0, and thus without loss of generality,
a # 0. To show without loss of generality that also a > 0, observe that the bilinear objective of the
Zero-sum game is given by

nax wgrg&(ml, Axq) = nax xrzréigz —(x1, —Axs) = — nax xrlréigz@g, —ATx) .
Thus, by switching the maximization or minimization role between the players (via scaling the matrix
by -1), we may assume that a > 0. Finally, to show a > max{b, ¢} holds without loss of generality,
observe from (17) thatif a + d — (b + ¢) > 0, then the interior Nash condition in (17) implies a > ¢
and a > b. If instead a +d — (b+ ¢) < 0, then 0 < a < min{b, ¢}, and we can then rewrite the
bilinear objective of the zero-sum game using a new payoff matrix with relabeled strategies (i.e.,
permuting the columns of A), as

. . b a
,Axg) = JA here A’ = . 20

:zr1n€a§2 wlzrélgz <$1 (L’2> wrfleagz a:rzrggz <$1 1’2> where (d C) ( )
Under A’, we have b + ¢ — (a + d) > 0, which from (17) and the reasoning above implies b >
max{a,d} > 0. As a consequence, by possibly permuting the columns of A and relabeling the
strategies of Player 1, we can assume in either case that ¢ > max{b, c}. Together, we conclude that
the assumption a > max{0, b, ¢} holds without loss of generality.

Similarly, it follows that we may also assume d > max{0, b, ¢} without loss of generality. Specifically,
using the relabeling argument above, we may assume a + d — (b + ¢) > 0. Then under the unique
interior Nash and det A = 0 assumptions, it follows from (17) (using similar arguments as for a # 0)
that d # 0 and d > max{b, c}. Moreover, as a > 0, if also d < 0, then this implies ¢,b < 0,
meaning det A = ab — cd < 0, contradicting the assumption that det A = 0. Thus also d > 0, and
we conclude that the assumption d > max{0, b, ¢} holds without loss of generality. O

B.2 Proof of Proposition 4.2

We restate the proposition here for convenience:

Proposition 4.2. Let A satisfy Assumption 1, and let {yt} and {yL} be the dual payoff vectors
of (OFP). Then for every t > 1, it holds that yiy = —p1 - yt, and yby = —pa - v, where
p1:=(d—c)/(a—b)>0and ps = (d—b)/(a—c) > 0.

Proof. For player 1, let v = (d — ¢,a — b). Then observe that

T a c\ ({d—c ad — ac + ac — be 0
A v = = =
L b d)\a—»> bd — be + ad — bd 0/

where the final equality follows from the assumption that det A = ab— c¢d = 0. Then for any x € A,
we have
0 = (z,ATv) = (v, Ax).
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Asyl = S7Y Axh, this implies

t—1

(v1,91) = Z<U1,A$§> =0.

k=1
Thus for all ¢, we have (vy,yt) = (d — ¢) - yt; + (a — b) - yt, = 0. Rearranging, and recalling that
p1 = (d—c)/(a—b) > 0 (where the inequality follows by Assumption 1), we find y{, = —p; - y!;.

For the second player, let v = (d — b, a — ¢). Using a similar argument and calculation, we have
Avy = 0 € R? and thus

t—1 t—1

<’U2’y£> = Z<U25_ATxll€> = Z@:lfv_AU?) =0.

k=1 k=1

For all ¢, it then follows that (v, y) = (d—b)-yb, + (a—c)-yby = 0, meaning yb, = —p2-yb,. O

C Proofs for Optimistic Fictitious Play Regret Upper Bound

In this section, we develop the omitted proofs from Section 4 that are needed to establish the main
technical result of Theorem 3.5 (showing Optimistic FP has bounded energy in 2 x2 games).

C.1 Properties of the Energy Threshold B

In this section, we prove several properties related to the threshold B that is used in the proof of
Theorem 3.5: Recall that B is defined as follows:

Definition 4.7. Fix A satisfying Assumption 1, and recall ayax = || A]|oo. Then define B > 0 by

B=min{be R, : forall z € R?, ||z[|1 < 6amax = ¥(2) <b}.

First, we prove the following upper bound on the magnitude of B with respect to the constants
Gmax; P1, and pa:

Proposition 4.8. Let B be the constant from Definition 4.7. Then B < 6amax(1 + p1 + p2).

Proof. By definition of B, the level set £L = {z € R? : 1)(z) = B} must intersect the boundary of
the ball B = {z € R? : ||z||; < B} on at least one of the boundaries P;(; 1) in the set P from

Definition 4.3. Let Z = P N B N L be the intersection of these three sets. Using the definition of i
from (10) it follows that for z € 7
p1-|21] = p1-6amax  if 2 € Proo
|22‘ = 6amax if z € P2N3
B = =
) 21| = 6amax ifzePyy
p2 - |22 = p2 - 6amax  if 2 € Pis

where in each case the equality comes from the fact that if z € Z then ||z||; = 6amax. It follows that

B < 6amax'max{1apl7p2} < 6amax(1+p1 +p2)a

where the final inequality comes from the fact that p;, p3 > 0. O

Next, we establish the following invariant:

Proposition C.1. Ler B be the constant from Definition 4.3. Suppose 1 (z) > B and suppose
z € P;U Py_yy ; for some i € [4]. Assume either Z = z + Sj or Z = z + S + Sy for j, k € [4] and
S as in (OFP Dual). Then

¢ PiaU Plit1y~(it2) - (21)
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Proof. We prove the claim for the case that 2 = z 4+ S; + Sj,, which by the same argument implies
the result when z = z + §;. Without loss of generality, assume ¢ = 1. Under the assumptions of
the proposition, we will show that if z € P1 U P41, then Z ¢ P3 U Py3. For thls observe first by
definition of B that if ¢)(z) > B then ||z||; > 6amax. By definition of the sets P1 and P3 U Ps3,
this implies that

o fe= 2 felle 2 el > T dag @)
On the other hand, by construction of z, and using the fact that ||S||2 < 2amax, we have
Iz =2l < [ISjll2 + [1Skll2 < 2(20max) = 4amax - (23)
Then combining expressions (22) and (23), we find
lz=Z2ll2 < min [z =22,
2’ €P3UPs. 3
and thus z ¢ ﬁg U Pos. O

C.2 Energy Upper Bound: Proof of Lemma 4.9

This section gives the proof of Lemma 4.9, which derives an upper bound on the energy v (z'*1)
when v (z!) < B. Restated here:

Lemma 4.9. Suppose 1)(2') < B, and let B' = 8amax (1 + p1 + p2)%. Then (z'T1) < B’

Proof. Using the definition of 1) from (10), observe that
Gz < max {max(pr, po) - |21 12 LY < (L4 pr+po) - 127 L. @4

Now recall by definition of the constant B that )(2*) < B = ||2!||; < B. Thenas |2'T![|; =
[|z* + S;||1 for some j € [4], we have that

12l < 121+ 20max < B + 2max

6amax(1 4+ p1 + p2) + 2amax

8amax (1 + p1 + p2) - (25)
Here, the penultimate inequality follows from the upper bound on B from Proposition 4.8, and the
final inequality follows from the positivity of p1, ps.

ININIA

Combining expressions (24) and (25), we conclude that

ZZJ(Zt—H) S Samax(l + P1 + 02)2 . O

C.3 Cycling Invariants and Non-Increasing Energy Growth: Proof of Lemma 4.10

In this section, we develop the proof of Lemma 4.10, restated here:
Lemma 4.10. Suppose 1(z) > B and z' € P, for i € [4]. Then the following hold:

(1) Either (i) 241, 2t+1 € P, or (ii) 111, 211 € Py
(2) Ap(2") = (") —(2") < 0.

We give the proof of Lemma 4.10 in two parts: first in Lemma C.2 (Section C.3.1), we prove the
invariants from Part (1). Then, in Lemma C.6 (Section C.3.2), we prove the non-positive energy
growth bounds from Part (2).

In Figure 3, we also give visual intuition for the two claims of Lemma 4.10. In the figure, each
subfigure shows the dual space R?, and the green region denotes the sublevel set ¢)(z) < B. The left
subfigure illustrates that for (2" ) > B, the vectors 2**1 and Z'! will lie in the same region of P,
and thus A (z?) < 0 (the latter point is captured by the fact that 2™ lies within the sublevel set
1(z) < B). In contrast, as illustrated in the right subfigure, when 1(z?) < B, then in general the
invariants of Part (1) of the lemma may not hold, and A (z?) can be strictly positive.
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Z2

Figure 3: Visual intuition for the claims and proof of Lemma 4.10.

C.3.1 Cycling Invariants: Part 1 of Lemma 4.10

9

In this section, we state and prove the following lemma, which establishes certain “cycling invariants
on the relationship between the predicted cost vector Z'*! and true cost vector z'*+! that hold when
the energy 1 (2?) is sufficiently large.

Lemma C.2. Suppose )(z') > B and z* € P, fori € [4]. Then either
(i) Zttt ¢ ﬁl and z*t ¢ ﬁi, or

(ii) A= PiJrl and ztt1 € Pi+1.

Proof of Lemma C.2. The proof of Lemma C.2 proceeds using three separate propositions, which
we state and prove as follows:

First, we establish regions in which Z**! and 2**! cannot lie when the energy 1 is sufficiently large.

Proposition C.3. Suppose 1(z') > B and z' € P, for some i € [4]. Then

22 ¢ Pio U Pygym(ivey U P

Proof. We first show that 2011, z¢+1 ¢ P, UP(i41)~(i+2)- For this, recall that both 2" ! = 2* 4 5;
and 2!t = 2t + S, for some j, k € [4]. As ¢(z?) > B, then applying Proposition C.1 implies that
both Zt+1, Et+1 ¢ Pi+2 U P(i+1)N(’i+2)'

Next, we establish that z/*1 ¢ P,_,. For this, as 2t € P, then either (a) 2**! € P,_; or (b)
2l ¢ 13¢+2 U Pliy1)~(i+2)- We have already established case (b) cannot hold. Similarly, as
¥(z') > B implies ||2![1 > 3amax, then case (a) implies that either ¢ (2!) < B or 2t ¢ P_y,
which is a contradiction. So z*1 ¢ P;_;.

Similarly, to have Z*1 € P,_1, then by definition of S we must have either (a) 2t — 2t=1 = S5

or (b) 2! — 271 = S, ;. Case (a) implies z* € ﬁi+2 U P(; 1)~ (i+2)» Which cannot hold due to
Proposition C.1. Case (b) implies z! € 131’+1 U P (i+1), which again due to the definition of B
contradicts that either ¥)(2*) > B or that 2'*1 € P,_. Thus we conclude 7t+1 ¢ P, O

Proposition C.3 establishes that if 1)(z?) > B, then we must have z/T1 2!+ ¢ P, U P,y Thus to

conclude the proof of Lemma C.2, it suffices to establish that 2!*! ¢ P, = 2+ ¢ P, and that
Z*l e Py = 2z'*! € Pi,1. We prove these claims in the following two propositions:

Proposition C.4. Suppose 1(z') > B and 2 € P, for some i € [4]. Then:

~

?HEPZ» — Zt+1€Pi.
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Proof. We distinguish the cases when Z*1 € P; and /! € P;_(; ;1. In the first case, if 27! € P,
then by definition 2! = 2! + S, If w( 1) = 4h(2t), then 2!+ = 21 € P, If instead
P(2tH) £ 4h(2h), then 2071 = 2t — = S; for some j # i € [4]. However, by definition of the
constant B, we must have 2/*1 ¢ Pz+1, as 0therw1se the assumption ¢ (z*) > B would be violated.
Then Proposition C.3 implies z*! € P,. Thus if 3+! € P, then 2!*! € P;.

For the second case, suppose 2'*! € P, 11). Then we must have 2'*! — 2t € {S;,S;11}.
Moreover, recall that Q(2'*1) € {e;, e;11}. In either case, using the structure of adjacent columns i

and i + 1 of S, it follows that 2/ *1 € P, _;11) C P,. Thus if 3+ € P (i+1), then also ' € B,
which concludes the proof. O

Proposition C.5. Suppose 1)(z') > B and 2 € P; for some i € [4]. Then:

t+1

?+1 S Pi+1 - Zz S Pi+1 .

Proof. Suppose z' € P If 21+ € Pi41, then Q(2'1) = e;41, and also 2! — 2t € {S;, S;41}.
Using the structure of adjacent columns i and i+ 1 of S, it then follows that 2! = 2! +S,,, € Py;.

Similarly, if instead 2z € P (i11), then 21 = 2t + S;,1 € P,y by definition of S. Thus in either
case, if 2'T1 € P, 1, then also 2!t € P ;. O

C.3.2 Non-Increasing Energy Growth: Part (2) of Lemma 4.10

In this section we state and prove the following lemma, which gives non-positive bounds on the
energy growth under the two cases in Part (1) of Lemma 4.10:

Lemma C.6. Fixi € [4], and suppose z' € P;. Suppose that either (i) 71 € P; and 2+ € P, or
(ii) 2Pt € Pyy and 21 € Py . Then Av(zt) < 0.

Proof. To start, we rederive the one-step change in energy growth under (OFP Dual).

One-step change in energy: Using (OFP Dual) and Definition 4.5, we have for any ¢ > 1:

Ap(2') = () — (2" (26)
= (" MQ(")) — (2", MQ(2")) @7
= (2! + SQ(E'"), MQ("1)) — (', MQ(2")) (28)
= (', M(Q(z") = Q(z")) + (QE"), ST MQ(=")) . (29)

(a) (b)

By the definitions of .S and M from expressions (OFP Dual) and (11), respectively, recalling that
p1 = (d—c)/(a—10)and po = (d —b)/(a — ¢), and using the fact from Assumption I that
det A = ab — ¢d = 0, we can compute

b —c 0 d—c b—c b-—d
T e —c -1 —p1 1 1 | ec—d 0 a—c a—d
S M = a —a <—p2 1 1 —p2> b—c c—a 0 a—>b) - (30)
b —a d—b d—a b—a 0

Thus, expression (30) shows ST M is skew-symmetric.

Proof for Case (i): To prove the claim for case (i) of the lemma, we start with the case that 2! € P,
and also z'T1, 2+l € P,. Then by definition of Q, we have Q(2?) = Q(z'*!) = Q(z') = e;. By
skew-symmetry of ST M, observe in part (b) of expression (29) that

<Q(Zt+1), STMQ(th)) = <Q(zt+1), STMQ(zt+1)> =0.
Moreover, in part (a) of expression (29), we also have

<Zt,M(Q(Zt+1)—Q(Zt))> — <Zt,M(Q(Zt)—Q(Zt))> — O,

21



and thus At(z%) = 0. In the case that 2 € P, and Z*' € P, _(;11), then observe from the structure
of S that we must also have z'** € P;_(;11). Then by definition of v, for any z € P;_(;11), we
have ¢(z) = (z, Me;). Thus we can rewrite expression (26) as

Ap(2h) = (2" + SQ(Z'), Me;) — (2%, MQ(z")) (31)
= (", M(e; — Q(z")) + (QZ"*), 8" Me;) . (32)

As 2t € P, = Q(z") = e;, the first term above vanishes. Moreover, as 2't! € P;_(;11), we
have Q(Z**1) € {e;, ei11}. By skew-symmetry of ST M, if Q(Z**1) = e;, then the second term of
(32) also vanishes. On the other hand, if Q(Zt“) = e;+1, then the second term is negative, which
follows from the fact that, under Assumption 1, each entry (S ™™ )i+1,: < 0. In either case, we find
Ay(zt) <0.

Finally, observe that if 2% € P, (i+1), then by definition of (OFP Dual), we cannot have both

2L 2t ¢ P,. Thus the conditions of case (i) do not apply, which concludes the proof of the
lemma under case (i).

Proof for Case (ii): To prove the claim for case (ii), suppose first that 2* € P; and thus Q(z!) = e;.
By the assumptions of claim (i), we also have Q(Z'*!) = Q(z!*!) = e;,1. Thus it again follows by
skew-symmetry of ST M that for part (b) of expression (29)

(Q(E"),STMQ(")) = 0. (33)

For part (a) of (29), by case analyis on the columns of M, it follows that when Q(2?) = ¢; and
Q(2!*1) = e;41, then
(L+p2) 25 ifQ(
1+ p1) - 2 if Q(
2 M(Q(=Y) — Q1)) = ( ro
o) A QG = e
Given the definition of Q, it follows that Q(z!) = ¢; = 2§ <0, that Q(z!) = e; = 2! <0,
that Q(z') = e3 = 2% > 0, and that Q(z*) = e, = 2! > 0. Together with the fact that
p1, p2 > 0 by definition, in each case of expression (34), we find (2!, M (Q(2"!) — Q(z"))) < 0.
Together with (33), this means At (2*) < 0.

In the case that z* € P, (;11), then either Q(z") = e; or Q(z") = e;41. If the latter holds, given
that also Q(2'*1) = ¢, 1 by assumption, then part (a) of (29) is trivially 0. If the former holds, we
recover the cases of expression (34), and thus part (a) of (29) is non-positive. In either case, part
(b) of (29) remains 0 as in expression (33), and thus we conclude that A)(z?) < 0. This proves the
lemma under case (ii). O]

) =e
2t) = eq
i (34)
2Y=e

D Proofs for Alternating Fictitious Play Regret Lower Bound

In this section, we develop the proof of Theorem 3.2, which gives a lower bound of Q(\/T) on the
regret of Alternating Fictitious Play. Restated here:

Theorem 3.2. Suppose x1 = (p,1 —p) € A, forirrational p € (3/4,1), and let {x'} be the iterates
of Alternating FP on (Matching Pennies) using any tiebreaking rule. Then Reg(T) > Q(\/T).

The organization of this section is as follows: in Section D.1 we recall the setup of alternating play in
zero-sum games, as well as on the notion of alternating regret. In Section D.2, we formally define the
Alternating Fictitious Play algorithm. Finally, in Section D.3, we give the proof of Theorem 3.2.

D.1 Details on Alternating Play and Alternating Regret

Alternating play. We consider the model of alternating online learning in two-player zero-sum
games as in Bailey et al. (2020); Wibisono et al. (2022); Katona et al. (2024). Defined formally:

Definition D.1 (Alternating Play). Fix a payoff matrix A € R™*™. Over 1" rounds, Players 1 and 2
alternate updating their strategies x} € A,, and 2t € A,, as follows:
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* (Initialization) Assume without loss of generality 7" is even. At time ¢ = 1, Player 1 chooses
an initial z} € A,,,, and Player 2 observes —A " 1.
¢ (Even rounds — Player 2 updates) When ¢t = 2k (for k > 1):
Player 1 sets 2f = 2! € A, Player 2 updates =5, € A,,.

Player 1 observes Ax} Player 2 observes — A"z b= 1

¢ (Odd rounds - Player 1 updates) When ¢t = 2k + 1 (for k > 1):
Player 1 updates 2t € A,, Player 2 sets xb = 257! € A,,.

Player 1 observes Az} ! Player 2 observes — Az}

Alternating regret. Under alternating play, we now measure the performance of each player by its
alternating regret (Wibisono et al., 2022; Cevher et al., 2023; Hait et al., 2025). For this, first observe
under alternating play that each player’s cumulative payoff can be written as:
T/2
Player 1 cumulative payoff: Z (xPF1 A3k + 2357%))
k=1
T/2
Player 2 cumulative payoff: Z <x2 AT (23T 4 g2k H) .
k=1

(35)

Here and throughout, we assume for notational convenience that 9 = 0 € R™ and xT+1 =0eR™
Then alternating regret is defined as follows:

Definition D.2 (Alternating Regret). Let T be even. Define Reg?"(T') and Regi'(T') as

T/2

Reg(T) = Iax Z<x—aﬁ%k U A(x2F 4 o2k 2)>
T/2

Regalt(T) _ rHEnAn <£L'2 —r AT( 2k+1 +$%k71)>.
" k=1

Then define Reg?'(T') = Reg?(T') + Regd'(T).

Similar to standard (simultaneous) play, sublinear regret bounds for Regah( ) correspond to conver-
gence of the time-average iterates under alternating play to a Nash equilibrium of A. For this, define
the time-average iterates 71 € A,, and 73 € A,, by

T/2 T/2

(Zx% Do) and 7 = (Zx% 24 ati?) (36)

Then we have the following proposition (analogous to Proposition 2.1 for simultaneous play):
Proposition D.3. Fix A € R™*", Let 71 € A, and 3L € A,, denote the time-average iterates

under the alternating play of Definition D.2, as in expression (36). Suppose Reg"'(T) < a = o(T).
Then (21,21 converges in duality gap to an NE of A at a rate of o/ T = o(1).

Proof. By definition of the player-wise cumulative costs from (35) (and recalling that we set 29 =
0 € R™ and xT+1 = 0 € R™ for notational convenience), observe that

T/2 T/2
Z <x%k 1 A( 2 +x§k 2)> + Z <$2 , AT( 2k+1 +x%k71)> - 0.
k=1 k=1

It follows from the Definition D.2 that
Reg(T) = Reg‘ﬂt(T) + Regah(T )

T/2 T/2
— 2k— 2 T 2k+1 2k—1
= g o (n AGE ) - i 5 (e A )
~T . T T
= max (2, A(T-33)) - min (2, A1(T-2])) < «,
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where in the final line we use the definition of 7 and ZZ from (36) and the assumption that

Reg(T') < «. Then dividing by T gives

@
DG(zT,7) = max (z, AZL) — min (2, ATZT) < =
( Lo 2) $EA'm < ’ 2> xeAn < ’ 1> - T’
which yields the statement of the proposition. O

D.2 Details on Alternating Fictitious Play

Under the alternating play setup of Definition D.1, we now specify the Alternating Fictitious Play
algorithm. For any even t > 2, the primal iterates of Players 1 and 2 at times ¢ + 1 and ¢ 4 2 update
according to

t/2
i = argmax (z, E A(z3F +23"?)) and 2bt =2
ZDE{Ei}m k=1
t/2
x5 = argmax (z, E —AT (@ 4 22 ) and i =2l
ZEE{Gi}n k=1

In other words, as in standard Fictitious Play (c.f., (a-OFP) for a = 0), in Alternating Fictitious Play
each player (in an alternating fashion), selects the best-response to the cumulative observed payoff
vectors over all prior rounds.

Primal-Dual update for Alternating FP. Similar to the analysis for Optimistic FP, define the
dual payoff vectors i = S"—" Azk € R™ and yb = 31" —ATz} € R™. Then the iterates of
Alternating FP can be equivalently expressed as follows:

Definition D.4. Assume the alternating play setting of Definition D.1. Let 4?2 = 0 € R™, and let
y? = —ATz} € R". Then for t > 2, the dual (i.e., (%, %)) and primal (i.e., (z¢, z})) iterates of
Alternating FP are given by

t_ i1 1t o At
(t even) Ii o t and {y%H y% i f’z t—1
TH = argmax,c ..y (z,y5) Yo =y —Ala

i1 " (AFP)
xt =argmax ., (x, 1} =yl + Azl
(t Odd) 2 B t%l z€{ei}m < y1> and {yle»l yi _|_2 .
zh =2} yo =yt — ATal .

Moreover, recall the energy function ¥ from Definition 3.3 and Reg™"'(T") from Definition D.2. Then,
analogously to Proposition 3.4, following equivalence between energy and alternating regret holds:

Proposition D.5. Ler {x'} and {y'} be iterates of (AFP). Then Reg™(T) = W(yT+1).

D.3 Proof of Theorem 3.2: Regret Lower Bound on Matching Pennies

We now prove the lower bound on the regret of (AFP) on Matching Pennies. For this, recall that the
Matching Pennies payoff matrix is given by

A = (_11 _11) . (Matching Pennies)

Subspace Dynamics of AFP for Matching Pennies. It is straightforward to check that
(Matching Pennies) satisfies the conditions of Assumption 1. Moreover, this also implies Proposi-
tion 4.2 holds for the dual iterates of (AFP), in particular for p; = py = 1.

Thus, to prove the theorem, we reuse the components of the subspace dynamics introduced in
Section 4. Specfically, we reuse the notation of the primal and dual iterates {w’} and {z'}, as well as
the choice map Q from Definition 4.4, and the energy v from Definition 4.5.

Under (Matching Pennies), it is then straightforward to check that the matrix .S from (9) and the
energy 1 from Definition 4.5 are given by:

-1 1 1 -1
S:(l 1 _1) and for all z € R%: 9(z) = ||2|1 .
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Similarly to Proposition 4.6, and using the definition of ¢ and the iterates {z'}, we also have the
following relationship between ¥ and :

Proposition D.6. Let {y'} be the iterates of (AFP) on (Matching Pennies), and let {z'} be the
corresponding subspace iterates. Then W (yTT1) = ¢(2111).

Moreover, under the primal-dual definition of (9) it follows inductively (and using the definition of
{w'}, {z'}, and Q) that for all ¢ > 3:

¢ JQ((z471,28))  fort even
v {Q((%,zé‘l)) fortodd (37)

Then for ¢ > 3 that the dual iterates {2} can be further rewritten as

(2471, 28) forteven

AFP Dual
(24, 2871) fortodd ( val)

AT = 2t 4 8Q(Z'TY)  where ' = {

Thus, similar to (AFP Dual), the subspace iterates of Alterating Fictitious Play can be expressed with
respect to a predicted payoff vector 21, Now, due to the alternating play setting, the position of this
predicted vector depends on the parity of ¢.

Overall proof strategy. Given the equivalence between Reg"'(T’) and ¥ (y”*!) from Proposi-
tion D.5, and on the equivalence between ¥ (y” 1) and (27 *1) from D.6, to prove Theorem 3.2, it
suffices to establish the following lower bound on the energy (27 1):

Lemma D.7. Assume the setting of Theorem 3.2, and let {z'} be the dual iterates of (AFP Dual).

Then ¢(2T+1) > Q(VT).

To prove Lemma D.7, we introduce a phase structure (in similar spirit to the analysis of Lazarsfeld
et al. (2025)), where each phase tracks a subsequence of consecutive time steps where the iterates
{w'} are at the same primal vertex. Formally, we define:

Definition D.8. Let {w'} be the primal iterates from (37), and fix ¢y = 2. For k > 1, let t;, :=
min{t > t5_; : w' # w'-1}. Then define Phase k as the subsequence of iterates from times
t =1k, tx +1...,tkp1 — 1, and let 7, = £ 1 — ti be the length of the phase. Let K > 0 denote

the total number of phases in 7" rounds such that 7' = ZZ:O Tk

Using the phase setup of Definition D.8, the core technical component of proving Lemma D.7 is to
establish the following proposition:

Proposition D.9. Assume the setting of Theorem 3.2. Then for each Phase k = 1,..., K, the
following hold:

(i) P(z") < p(a"1) + 2

(ii) 7 = O(h(2")).
Moreover, for at least K /2 phases k, it holds that (iii) 1 (z'*) > (2"-1) 4 1.

The proof of Proposition D.9 is developed in Section D.3.1. Granting the claims of the proposition as
true for now, we give the proof of Lemma D.7 (and thus also of Theorem 3.2):

Proof (of Lemma D.7). By claim (iii) of Proposition D.9, the energy v is strictly increasing in at
least K'/2 phases, and thus

K
YT > 5 (38)
To prove the statement of the lemma, it then suffices to derive a lower bound on K. For this, recall by

Definition D.8 that T" = ZkK:% Ti. Moreover, combining claims (i) and (ii) of Proposition D.9, we
find for all k that 7, = O((2"*)) < O(y(2*~1) + 2) < O(k). Combining these pieces, we have

K K
T => 7<) 6k < OK?. (39)
k=1 k=1
Thus K2 > Q(T) = K > Q(+/T). Substituting into (38), we conclude (27 *') > Q(v/T). O
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D.3.1 Proof of Proposition D.9

We now prove the claims of Proposition D.9. For this, we start by establishing the following invariant
between the dual iterates z' !, z¢, 21 and the predicted vector Z/*1.

Analysis of initial phases. We begin by computing the dual iterates during the first two phases,
which helps to both give intuition for the energy growth behavior of Alternating FP, as well as to
streamline the remainder of the proof. For this, recall that initially 23 = (p, 1 —p) € A, for irrational
p € (3/4,1), and that y = 0 € R%.

It follows by definition of (AFP) at time t = 2 that 42 = y? = 0 € R? and ¢ = —ATz} =
(—(2p —1),(2p — 1)), and that 27 = x} € Ay and 2% = (0,1) € A,. Then, at t = 3, we further
have yf = yf + Az = (~1,1) and y3 = y3 — ATag =2 43.

Then for ¢ > 3, switching to the equivalent, lower-dimensional iterates {w’} and {2}, we can further
directly compute (by definition of (AFP Dual)):

o= (LGS en Wt =QE) =

e=n (SIS v
e

=5 A5 (e mimen W)=

SCIR O T b 0 S G

Observe by Definition D.8 and the calculations above that Phase 1 begins at step ¢; = 3, and Phase 2
begins at phase t5 = 6. Moreover, A(2°) = A(25) = 1, meaning 1(2'2) — 1 (211) =2 > 0.

This strictly increasing energy growth between phases stems from the geometry of the predicted
payoff vectors: in this instance, under Alternating Fictitious Play, when 2%, z~! € P; and 2! is near
the boundary P, the predicted vector zt+! always remains in P, and fails to “predict” the next
region P. This results in strictly increasing energy growth when z/*! € P,. This positive energy
growth behavior near the boundary regions is the key difference between Alternating and Optimistic
Fictitious Play (c.f., the invariants and energy growth claims of Lemma 4.10).

Cycling invariants. By continuing to compute the dual iterates {z¢}, we arrive at the following

invariants, which establish a certain cycling behavior through the regions of P. Specifically, it
follows inductively that z'~! and z* must fall under one of the following cases (which subsequently
determines z'T1, 2!T1, and the energy growth Ay (z)):

e Casel: /71 2t € Pjand 2t — 2071 = S,
Then z'*! € P, and either 2/ ™! € P,y with Ay(2t) = 1, or 2* € P; with Ap(2?) = 0.
e Case 2: Ztil S PZ‘, 2t € Pi—i—ls and 2! = Ztil + Sl
Then 2!+ € P, 4, and either 2!+ € P; and At (z!) = 1, 0r 2! € Py and Ay(2t) = 0.
e Case 3: Zt71 S Pi, Zt S PiN(i+1) and Zt = Zt71 + Sz
IfZ'*1 € Pj then 2'™! € Py and Ayp(2") = 1 If 2" € P, ;41). thenalso 2*! € Py,
with A (2") € {0, 1} depending on the tiebreaking of Q.
« Case 4: z'"! € P, 1) and 2" € Piyy. If 2" € Py (;1q), then 2'*! € Piyy, and

Av(z%) € {0, 1} depending on the tiebreaking of Q. If 2'*1 € P, 1, then 2!*! € P, and
Ay(zt) = 0.

Note that the cases above account for (a) the variability of Z'*! depending on the parity of ¢, and (b)

any variability in z**! depending on the tiebreaking decision encoded in Q. In summary, we deduce
from the four cases above the following consequences:
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1. Between phases, energy strictly increases in at most 2 iterations. By definition of the energy
function 1) under Matching Pennies, each one-step increase has magnitude 1, and thus (2t ) —
(2 -1) < 2, which proves claim (i) of the proposition.

2. Again using the definition of ) under Matching Pennies, we have 1(z?) = ||2?||;. The cases
above then imply that each 7, = ||2¢||1 + ¢, (for some aboslute constant cy,), and it follows that
T = ©(1p(2")), which proves claim (ii) of the proposition.

3. Finally, using the definition of S under Matching Pennies, along with the fact that initially
22 = 0, it holds that each 2! is integral. Thus between regions P, and P3, and between P,
and P, one dual iterate will always lie on the boundary Ps..3 or Ps. 4, respectively. In these
cases, depending on the tiebreaking rule of Q, the change in energy may be zero when crossing
between regions of P. On the other hand, due to the initialization x} = (p, 1 — p) for irrational
p € (3/4,1), it follows for ¢ > 2 that all 2} are irrational. Thus no tiebreaking occurs when
the dual iterates transition between regions P; and P, and between Ps and P,. Thus under
transitions between these phases (which by symmetry amount for at least (% /2) total phases),
we have by the cases above that energy is strictly increasing by at least 1. This proves claim (iii)
of the proposition. O

E Additional Experimental Results

In this section, we provide more details on the experimental evaluations from Figure 1 and Section 5,
and we also present additional experimental results. The goal of these experiments is to give further
empirical evidence that the constant regret guarantee of Theorem 3.5 for two-strategy games also
holds in higher dimensions.

E.1 Details on Experimental Setup

First, we note that all code used to run experiments can be found in the supplementary material. In
this paper, all experiments were run locally on a single personal computer.

Families of payoff matrices. Aside from the (Matching Pennies) game, our experimental evalua-
tions of Fictitious Play variants are performed on three high-dimensional families of payoff matrices:

 Identity matrices: Here, the payoff matrix is the n x n identity matrix I,, (i.e., the diagonal
matrix with diagonal entries all 1). Recall that for standard FP, Abernethy et al. (2021a)

established an O(/T) regret bound using fixed lexicographical tiebreaking.
* Generalized Rock-Paper-Scissors (RPS) matrices: Here, the payoff matrix is the n x n

generalization of the classic three-strategy Rock-Paper-Scissors game. Specifically, A is the
matrix with entries A; ; given by

-1 ifj=1441 (modn)
Aij = 1 ifj=1i—1 (modn) foralli,j € [n] . (40)
0 otherwise

For standard FP, Lazarsfeld et al. (2025) established an O(+/T) regret bound for all such RPS
matrices (using any tiebreaking rule), including when A is scaled by a constant, and when the
non-zero entries have non-uniform weights.

¢ Random [0,1] matrices: We also consider n x n payoff matrices with uniformly random

entries in [0, 1]. For these payoff matrices, there are no existing O(+/T)) regret bounds for
standard FP.

Tiebreaking rules. To evaluate the robustness of regret guarantees to the tiebreaking method,
we run the FP variants using both (a) fixed lexicographical tiebreaking (e.g., as in Abernethy et al.
(2021a)) and (b) uniformly random tiebreaking (e.g., over the entries of the argmax set).

Random initializations. To evaluate the robustness of regret guarantees to the players’ initial

strategies, we evaluated the Fictitious Play variants over multiple random initializations of 29, 9 €
A,, (for the Alternating FP initialization from Figure 1, note that the stated initialization is for
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x% € A, as in the notation of Definition D.1). To generate a random initialization x € A,,, we
sample v € [0, 1]" with independent, uniformly random entries, and normalize = := v/||v||;.

E.2 Empirical Regret Comparisons of Fictitious Play and Optimistic Fictitious Play

Regret comparisons under randomized tiebreaking. In Table 2 of Section 5, we presented regret
comparisons of Optimistic FP and standard FP on the three families of payoff matrices described
above in Section E.1, using fixed lexicographical tiebreaking. In Table 3, we show the results of an
identical experimental setup, now using randomized tiebreaking. As in Table 2, the entries of Table 3
report average empirical regrets (and standard deviations) over 100 random initializations, where for
each initialization, each algorithm was run for 7' = 10000 iterations.

Dimension: 15x15 2525 50x50
Payoff Matrix FP OFP FP OFP FP OFP
Identity 1544442 84+17]1623+34 129+1.6|1669+22 250423
RPS 23524+6.6 28+05(2415+6.1 32+09 [24294+56 26+0.8
Random [0,1] || 934 +50 274+0.6|137.1+£6.1 7.0+£1.1 |1762+63 122+14

Table 3: Empirical regret of FP and OFP using randomized tiebreaking. Each entry reports an average and
standard deviation (over 100 random initializations) of total regret after 7" = 10000 steps.

As in Table 2, the results of Table 3 similarly show that Optimistic FP empirically obtains bounded
regret compared to the roughly O(\/T ) regret of standard FP for each payoff matrix and dimension.

Additional plots from fixed initializations. To further compare the empirical regrets of standard
FP and Optimistic FP, we present plots of the two algorithms run from fixed initializations, similar to
Figure | from Section 1 (which also included a comparison with AFP). In each plot, we consider
the three families of identity, RPS, and random matrices described earlier in Section E.1. Note in
particular that for the RPS game (including in Figure 1 of Section 1), for better visual comparison
with the other games, we use the payoff matrix specified in (40), but scaled by the constant 2/3.

Figures 4, 5, and 6 show these comparisons for 15 x 15 and 25 x 25 matrices, using both randomized
and lexicographical tiebreaking. In each instance, we again observe that Optimistic FP has bounded
empirical regret compared to the v/7T regret of standard FP.

15x15 Identity 15x15 RPS 15x15 Random [0,1]
1501 — rp 1—FP 1—FpP
125 4 —— OFP | —— OFP J —— OFP

100 A b 9

75 . :

Total Regret

50 - . :
25 1 8 .

0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000
T T T

Figure 4: Empirical regret of standard FP and Optimistic FP (OFP) using randomized tiebreaking on three
15 x 15 payoff matrices. For each payoff matrix, each algorithm was initialized from = = e;, 3 = e,, and run
for T' = 10000 iterations.
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25x25 Identity 25x25 RPS 25x25 Random [0,1]

— P — P — FP
1501 — OFP | — oFp | — oFp
-
@
53
2 100 . .
=
(=}
F 50 i )
AT , |£
0 2500 5000 7500 10000 O 2500 5000 7500 10000 O 2500 5000 7500 10000
T T T

Figure 5: Empirical regret of standard FP and Optimistic FP (OFP) using lexicographical tiebreaking on three
25 x 25 payoff matrices. For each payoff matrix, each algorithm was initialized from 29 = e;, 23 = e,, and run
for T' = 10000 iterations.

25x25 Identity 25x25 RPS 25x25 Random [0,1]

150 1 — FP 1 —FP 11— FP
125 — OFP | — oFp | — oFp
100 - - .
75 - — .
50 — .
251 : 1

Total Regret

0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000
T T T

Figure 6: Empirical regret of standard FP and Optimistic FP (OFP) using randomized tiebreaking on three
25 x 25 payoff matrices. For each payoff matrix, each algorithm was initialized from 29 = e1, 23 = e,, and run
for T' = 10000 iterations.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:
[Yes]
Justification:

Our abstract and introduction introduce the new regret bounds of our work and also mention
the limitations of the low-dimensional setting.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:
[Yes]
Justification:

Yes, throughout the Introduction (Section 1) and Discussion (Section 5), we mention and
discuss the limitation of the low-dimensional nature of our main theoretical guarantees.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:
[Yes]
Justification:

Yes, the full proofs of all our theoretical results are developed in the appendix sections of
our paper. We also give proof sketches of main results in the main body of the paper.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:

Yes, we describe the full details of our experimental evaluation in Section E. We provide the
scripts used to run the experiments in the supplemental material.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification:

Yes,

we include the code used to perform our experimental evaluation in the supplemental

material.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:
[Yes]
Justification:

Yes,

we specify all details related to our experimental evaluation in Section E.

Guidelines:

The answer NA means that the paper does not include experiments.

The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
[Yes]
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Justification:

Yes, in the tables report empirical regret (e.g., Table 2 and Table 3), we report averages and
standard deviations over the 100 random initializations.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

[Yes]

Justification:

Yes, in Section E we provide full details on the computer resources needed to reproduce the
experiment (which are minimal).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:
[Yes]
Justification:

Yes, the research conducted in this paper conforms, in every respect, with the NeurIPS Code
of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
[Yes]

Justification:
Yes, in Section 5 we mention potential impacts of our work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

[NA]

Justification:

Our paper poses no such risks.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:

[NA]

Justification:

Our paper does not use existing assets.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

[NA]

Justification:

This paper does not release new assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:

[NA]

Justification:

The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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15.

16.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:
[NA]
Justification:
This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer:
[NA]
Justification:
The research in this paper does not involve LLMs as any important, original, or non-standard
component.
Guidelines:

* The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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