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Abstract

Federated learning aims to train models for data that is distributed across clients, under
the orchestration of a server. However, participating clients typically each hold data from a
di�erent distribution, which can yield catastrophic generalization on data from a di�erent
client, which represents a new domain. In this work, we argue that in order to generalize
better across non-i.i.d. clients, it is imperative to only learn correlations that are stable and
invariant across domains. We propose FL Games, a game-theoretic framework for feder-
ated learning that learns causal features that are invariant across clients. While training
to achieve the Nash equilibrium, the traditional best response strategy su�ers from high-
frequency oscillations. We demonstrate that FL Games e�ectively resolves this challenge
and exhibits smooth performance curves. Further, FL Games scales well in the number
of clients, requires significantly fewer communication rounds, and is agnostic to device het-
erogeneity. Through empirical evaluation, we demonstrate that FL Games achieves high
out-of-distribution performance on various benchmarks.

1 Introduction

With the rapid advance in technology and growing prevalence of smart devices, Federated Learning (FL)
has emerged as an attractive distributed learning paradigm for machine learning models over networks of
computers (Kairouz et al., 2019; Li et al., 2020; Bonawitz et al., 2019). In FL, multiple sites with local data,
often known as clients, collaborate to jointly train a shared model under the orchestration of a central hub
called the server while keeping their data private.

While FL serves as an attractive alternative to centralized training because the client data does not need to
move to the server, there are several challenges associated with its optimization: 1) statistical heterogeneity

across clients; 2) massively distributed with limited communication i.e., a large number of client devices with
only a small subset of active clients at any given time (McMahan et al., 2017; Li et al., 2020). One of
the most popular algorithms in this setup, Federated Averaging (FedAVG) (McMahan et al., 2017), allows
multiple updates at each site prior to communicating updates with the server. While this technique delivers
huge communication gains in i.i.d. (independent and identically distributed) settings, its performance on
non-i.i.d. clients is an active area of research. As shown by Karimireddy et al. (2020), client heterogeneity
has direct implications on the convergence of FedAVG since it introduces a drift in the updates of each
client with respect to the server model. Yao et al. (2019) describes the same phenomena by arguing that
multiple steps of updates at each client cause gradient bias towards model aggregation. While recent works
including Li et al. (2019); Karimireddy et al. (2020); Yu et al. (2019); Wang et al. (2020); Li et al. (2020);
Lin et al. (2020); Li & Wang (2019); Zhu et al. (2021) have tried to address client heterogeneity through
constrained gradient optimization and knowledge distillation, most did not tackle the underlying distribution
shift. These methods mostly adapt variance reduction techniques such as Stochastic Variance Reduction
Gradients (SVRG) (Johnson & Zhang, 2013) to FL. The bias among clients is reduced by constraining the
updates of each client with respect to the aggregated gradients of all other clients. These methods can at
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best generalize to interpolated domains and fail to extrapolate well, i.e., generalize to newly extrapolated
domains 1.

According to Pearl (2018) and Schölkopf (2019), in order to build robust systems that generalize well outside
of their training environment, learning algorithms should be equipped with causal reasoning tools. Over the
past year, there has been a surge in interest in bringing the machinery of causality into machine learning
(Arjovsky et al., 2019; Ahuja et al., 2020; Schölkopf, 2019; Ahuja et al., 2021b; Parascandolo et al., 2020;
Robey et al., 2021; Krueger et al., 2021; Rahimian & Mehrotra, 2019). All these approaches have focused
on learning causal dependencies, which are stable across training environments and further estimate a truly
invariant and causal predictor. However, despite their success, they su�er from several key limitations
rendering them unsuitable for deployment in a real-world setup.

Since FL typically consists of a large number of clients, it is natural for data at each client to represent
di�erent annotation tools, measuring circumstances, experimental environments, and external interventions.
Predictive models trained on such datasets could simply rely on spurious correlations to improve their in-
distribution, i.i.d. performance. Inspired by this idea and by the recent progress in causal machine learning,
we draw connections between OOD generalization and robustness across heterogeneous clients in FL. In
particular, we consider IRM Games (Ahuja et al., 2020) from the OOD generalization literature since its
formulation shows resemblance to the standard FL setup. However, as discussed above, IRM Games too
encounters a few fundamental challenges not just specific to FL but also in a generic ML framework.

• Sequential dependency. The underlying game theoretic algorithm in IRM Games is inherently
sequential i.e. at any instance, exactly one player chooses their optimal action. This causes the time
complexity of the algorithm to scale linearly with the number of environments.

• Oscillations. IRM Games exhibits large oscillations in the performance metrics as the training
progresses. The high frequency of these oscillations makes it di�cult to define a valid stopping
criterion.

• Convergence speed. The convergence rate of IRM Games is slow and hence directly impacts
systems with speed or communication cost as a primary bottleneck.

In this study, we take a step towards fixing these limitations and addressing the challenge of client hetero-
geneity under distribution shifts in FL from a causal viewpoint. Specifically, drawing inspiration from IRM

Games, we propose Federated Learning Games (FL Games) for learning causal representations which are
stable across clients and further enhancing the generalizability of the trained model across unseen testing
domains. Apart from e�ectively learning causal features across clients, our algorithm FL Games also ad-
dresses each of the above challenges, hence providing a robust, e�cient, and scalable solution. We summarize
our main contributions below.

• We propose a new framework called FL Games for learning causal representations that are invariant
across clients in a federated learning setup.

• Inspired by the game theory literature, we equip our algorithm to allow parallel updates across
clients, further resulting in superior scalability.

• Using ensembles over the client’s historical actions, we demonstrate that FL Games appreciably
smoothens the observed oscillations.

• By increasing the local computation at each client, we show that FL Games exhibits high commu-
nication e�ciency.

• Empirically, we show that the performance of the invariant predictors found by our approach on
unseen OOD clients improves significantly over state-of-art prior work.

1Similar to Krueger et al. (2021), we define interpolated domains as the domains which fall within the convex hull of training
domains and extrapolated domains as those that fall outside of that convex hull.
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2 Related work

Federated learning (FL). A major challenge in federated learning is data heterogeneity across clients
where the local optima at each client may be far from that of the global optima in the parameter space. This
causes a drift in the local updates of each client with respect to the server aggregated parameters and further
results in slow and unstable convergence (Karimireddy et al., 2020). Recent works have shown FedAVG

to be vulnerable in such heterogeneous settings (Zhao et al., 2018). A subset of these works that explicitly
constrains gradients for bias removal are called extra gradient methods. Among these methods, FedProx

(Li et al., 2020) imposes a quadratic penalty over the distance between server and client parameters which
impedes model plasticity. Others use a form of variance reduction techniques such as SVRG (Johnson &
Zhang, 2013) to regularize the client updates with respect to the gradients of other clients (Acar et al.,
2021; Li et al., 2019; Karimireddy et al., 2020; Liang et al., 2019; Zhang et al., 2020; Kone�nỳ et al., 2016).
Karimireddy et al. (2020) communicates to the server an additional set of variables known as control variates
which contain the estimate of the update direction for both the server and the clients. Using these control
variates, the drift at each client is estimated and used to correct the local updates. On the other hand,
Acar et al. (2021) estimates the drift for each client on the server and corrects the server updates. By doing
so, they avoid using control variates and consume less communication bandwidth. The general strategy for
variance reduction methods is to estimate client drift using gradients of other clients, and then constrain the
learning objective to reduce the drift. The extra gradient methods are not explicitly optimized to discover
causal features and thus may fail with out-of-distribution examples outside the aggregated distribution of
clients.

To date, only two scientific works, Francis et al. (2021); Tenison et al. (2021) have incorporated the learning
of invariant predictors in order to achieve strong generalization in FL. The former adapts masked gradients
as in Parascandolo et al. (2020) and the latter builds on IRM to exploit invariance and improve leakage
protection in FL. While IRM lacks theoretical convergence guarantees, failure modes of Parascandolo et al.
(2020) like the formation of dead zones and high sensitivity to small perturbations (Shahtalebi et al., 2021)
are also issues when it is applied in FL, rendering it unreliable.

Out-of-distribution (OOD) generalization. Generalization under distributional shift is one of the major
challenges faced by machine learning systems, limiting their application in the real world. Recent research
including Arjovsky et al. (2019); Ahuja et al. (2020); Schölkopf (2019); Ahuja et al. (2021b); Parascandolo
et al. (2020); Robey et al. (2021); Krueger et al. (2021); Rahimian & Mehrotra (2019); Xie et al. (2020); Yao
et al. (2022); Ahuja et al. (2021a) have tried to address this challenge by proposing alternative objectives for
training mechanisms that are invariant across training environments. IRM (Arjovsky et al., 2019) proposes
finding a representation „(X) that has good prediction abilities and also elicits an invariant predictor across
environments. Works like Krueger et al. (2021); Xie et al. (2020) propose a penalty that is a function
of the variance of training risks. Ahuja et al. (2020) reformulates IRM as finding the Nash equilibrium
of an ensemble game played among environments. Mahajan et al. (2021) argues that learning invariant
representations for inputs derived from the same object. Recently, Robey et al. (2021) proposed Model-
Based Domain Generalization, which enforces invariance to the underlying transformations of data. Another
line of work (Rosenfeld et al., 2020; Kamath et al., 2021; Ahuja et al., 2021a) has theoretically analyzed
failures of IRM.

3 Background

3.1 Federated Learning

Federated learning methods involve a cloud server coordinating among multiple client devices to jointly train
a global model without sharing data across clients. Denote S as the set of client devices where |S| = m.
Let Nk denote the number of data samples at client device k, and Dk = {(xk

i , yk
i )}Nk

i=1 as the corresponding
labelled dataset. Mathematically, the objective of an FL is to approximately minimize the global loss
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F (w) :=
mÿ

k=1

1
m

Nkÿ

i=1

1
Nk

¸(xk
i , yk

i , w), (1)

where ¸ is the loss function and w is the model parameter.

One of the most popular methods in FL is Federated Averaging (FedAVG), where each client performs E
local updates before communicating its weights with the server. FedAVG becomes equivalent to FedSGD

for E = 1 wherein weights are communicated after every local update. For each client device k, Fe-

dAVGinitializes its corresponding device model w0
k. Consequently, in round t, each device undergoes a local

update on its dataset according to the following wt+1
k Ω wt

k ≠ ÷kÒ¸(Bk
i , wt

k), ’Bk
i ™ Dk where Bk

i is a
sampled mini-batch from Dk at the ith step. All clients’ model parameters {wt+1

k }kœS are then sent to the
cloud server which performs a weighted average to update the global model wt+1 as

wt+1 Ω 1
|S|

ÿ

kœS

Nk

N
wt

k,

where Nk is the number of samples at client device k and N is the total number of samples from all clients
(N =

qm
k=1 Nk). This aggregated global model is broadcasted with all clients and the above process is

repeated till convergence.

3.2 Invariant Risk Minimization Games

Consider a setup comprising datasets Dk = {(xk
i , yk

i )}Nk
i=1 from multiple training environments, k œ Etr with

Nk being the number of samples at environment k and Etr as the index set of training environments. The aim
of Invariant Risk Minimization (IRM) (Arjovsky et al., 2019) is to jointly train across all these environments
and learn a robust set of parameters ◊ that generalize well to unseen (test) environments Eall ∏ Etr. The risk
of a predictor f at each environment can be mathematically represented as Rk(w ¶ „) = E(x,y)≥Dk

f◊(x, y)
where f◊ = w ¶ „ is the composition of a feature extraction function „ : X æ Z ™ Rd and a predictor
network, w : Z æ Rk where X denotes the input space, Z denotes the representation space and, k is the
number of classes.

Empirical Risk Minimization (ERM) aims to minimize the average of the losses across all environments.
Mathematically, the ERM objective can be formulated as RERM(◊) = E(x,y)≥fikœEtr Dk

fk
◊ (x, y), where fk

◊ is
the composition of feature extractor „ and the predictor network for environment k i.e. wk. As shown in
Arjovsky et al. (2019), ERM fails to generalize to novel domains, which have significant distribution shifts
as compared to the training environments.

Invariant Risk Minimization (IRM) instead aims to capture invariant representations „ such that the
optimal predictor w given „ is the same across all training environments. Mathematically, they formulate
the objective as a bi-level optimization problem

min
„œH„,wœHw

ÿ

kœEtr

Rk(w ¶ „) s.t. w œ arg min
wœHw

Rk(w ¶ „), ’k œ Etr (2)

where H„, Hw are the hypothesis sets for feature extractors and predictors, respectively. Since each
constraint calls an inner optimization routine, IRM approximates this challenging optimization problem by
fixing the predictor w to a scalar.

Invariant Risk Minimization Games (IRM Games) is an algorithm based on an alternate game
theoretic reformulation of the optimization objective in equation 2. It endows each environment with its
own predictor wk œ Hw and aims to train an ensemble model wav(z) = 1

|Etr|

q|Etr|

k=1 wk(z) for each z œ Z s.t.
wav satisfies the following optimization problem
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min
wav,„œH„

ÿ

k

Rk(wav ¶ „)

s.t. wk œ arg min
wÕ

k
œHw

Rk

A
1

|Etr| (w
Õ

k +
ÿ

qœEtr,q ”=k

wq) ¶ „

B
, ’k œ Etr

(3)

The constraint in equation 3 is equivalent to the Nash equilibrium of a game with each environment k as
a player with action wk, playing to maximize its utility Rk(wav, „). While there are di�erent algorithms in
the game-theoretic literature to compute the Nash equilibrium, the resultant non-zero sum continuous game
is solved using the best response dynamics (BRD) with clockwise updates and is referred to as V-IRM

Games. In this training paradigm, players take turns according to a fixed cyclic order, and only one player
is allowed to change its action at any given time (for more details, refer to the supplement). Fixing „ to an
identity map in V-IRM Games is also shown to be very e�ective and is called F-IRM Games.

4 Federated Learning Games (FL Games)

OOD generalization is often typified using the notion of data-generating environments. Arjovsky et al. (2019)
formalizes an environment as a data-generating distribution representing a particular location, time, context,
circumstances, and so forth. Distinct environments are assumed to share some overlapping causal features
such that the corresponding causal mechanisms are invariant across environments, but the distribution of
some of the causal variables may vary. Spurious variables denote the unstable features which vary across
environments. This concept of data-generating environments can be related to FL by considering each client
as producing data generated from a di�erent environment. However, despite this equivalence, existing OOD
generalization techniques can not be directly applied to FL. Apart from the FL-specific challenges, these
approaches also su�er from several key limitations in non-FL domains (Rosenfeld et al., 2020; Nagarajan
et al., 2020), further rendering them unfit for practical deployment. As a consequence, developing causal
inference models for FL that are inspired by invariant prediction in OOD generalization, are bound to inherit
the failures of the latter.

In this work, we consider one such popular OOD generalization technique, IRM Games, as its formulation
bears a close resemblance to a standard FL setup. However, as discussed, IRM Games, too, su�ers from
various challenges, which impede its deployment in a generic ML framework, specifically in FL. In the
following section, we elaborate on each of these limitations and discuss the corresponding modifications
required to overcome them. Further, inspired by the game theoretic formulation of IRM Games, we propose
FL Games which forfeits its failures and can recover the causal mechanisms of the targets, while also
providing robustness to changes in the distribution across clients.

4.1 Challenges in Federated Learning

Data Privacy. Consider a FL system with m client devices, S = {1, 2, ..., m}. Let Nk denote the number
of data samples at client device k, and Dk = {(xk

i , yk
i )}Nk

i=1 as the corresponding labelled dataset. The
constraint of each environment in IRM Games can be used to formulate the local objective of each client.
In particular, each client k œ S now serves as a player, competing to learn wk œ Hw by optimizing its local
objective, i.e.

wk œ arg min
wÕ

k
œHw

Rk

A
1

|S| (w
Õ

k +
ÿ

qœS

q ”=k

wq) ¶ „

B
, ’wÕ

k œ Hw (4)

However, the upper-level objective of IRM Games requires optimization over the dataset pooled together
from all environments. Centrally hosting the data on the server or sharing it across clients contradicts the
objective of FL. Hence, we propose using FedSGD (McMahan et al., 2017) to optimize „. Specifically, each
client k computes and broadcasts gradients with respect to „

gk = ÒRk
1 1

|S| (w
Õ

k +
ÿ

q ”=k

wk) ¶ „
2
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to the server, which then aggregates these gradients and applies the update rule „t+1 = „t ≠ ÷
q

kœS

Nk
N gk

where gk is computed over C% batches locally and N =
q

kœS Nk.

Similar to IRM Games, we call this approach V-FL Games. The variant with „ = I is called F-FL Games.

Sequential dependency As discussed, IRM Games poses IRM objective as finding the Nash equilibrium
of an ensemble game across environments and adopting the classic best response dynamics (BRD) algorithm
to compute it. This approach is based on playing clockwise sequences wherein players take turns in a fixed
cyclic order, with only one player being allowed to change their action at any given time t (Details in the
supplement). In order to choose its optimal action for the first time, the last scheduled player N has to wait
for all the remaining players from 1, 2, ...N ≠1 to play their strategies. This linear scaling of time complexity
with the number of players poses a major challenge in solving the game in FL.

By definition, in classic BRD, the best responses of any player determine the best responses of the remaining
players. Thus, in a distributed learning paradigm, the best responses of each client (player) need to be
transmitted to all the other clients. This is infeasible from a practical standpoint as clients are usually
based on slow or expensive connections, and message transmissions can frequently get delayed or result in
information loss. As shown on lines 20 and 26 (green) of Algorithm 1, we modify the classic BRD algorithm
by allowing simultaneous updates at any given round t. However, a client now best responds to the optimal
actions played by its opponent clients in round t ≠ 1 instead of t. We refer to this approximation of BRD
in F-FL Games and V-FL Games as parallelized F-FL Games and, parallelized V-FL Games respectively.

Oscillations. As demonstrated in Ahuja et al. (2020), when a neural network is trained using the IRM

Games objective (equation 3), the training accuracy initially stabilizes at a high value and eventually starts
to oscillate. The setup, over which these observations are made, involves two training environments with
varying degrees of spurious correlation. The environments are constructed so that the degree of correlation
of color with the target label is very high. The explanation for these oscillations attributes to the significant
di�erence among the data of the training environments. In particular, after a few steps of training, the
individual model of the environment with higher spurious correlation (say E1) is positively correlated with
the color while the other is negatively correlated. When it is the turn of the former environment to play
its optimal strategy, it tries to exploit the spurious correlation in its data and increase the weights of the
neurons which are indicative of color. On the contrary, the latter tries to decrease the weights of features
associated with color since the errors that backpropagate are computed over the data for which exploiting
spurious correlation does not work (say E2). This continuous swing and sway among individual models result
in oscillations.
Despite the promising results, with the model’s performance metrics oscillating to and from at each step,
defining a reasonable stopping criterion becomes challenging. As shown in various game theoretic literature
including Herings & Predtetchinski (2017); Barron et al. (2010); Fudenberg et al. (1998); Ge et al. (2018),
BRD can often oscillate. Computing the Nash equilibrium for general games is non-trivial and is only
possible for a certain class of games (e.g., concave games) (Zhou et al., 2017). Thus, rather than alleviating
oscillations completely, we propose solutions to reduce them significantly to better target valid stopping
points. We propose a two-way ensemble approach wherein apart from maintaining an ensemble across
clients (wav), each client k also responds to the ensemble of historical models (memory) of its opponents.
Intuitively, a moving ensemble over the historical models acts as a smoothing filter, which helps to reduce
drastic variations in strategies.
Based on the above motivation, we reformulate the optimization objective of each client (Equation 4) to
adapt the two-way ensemble learning mechanism (refer to line 4 (red) in Algorithm 1). Formally, we maintain
queues (a.k.a. bu�er) at each client, which stores its historically played actions. In each iteration, a client
best responds to a uniform distribution over the past strategies of its opponents. The global objective at the
server remains unchanged. Mathematically, the new local objective of each client k œ Etr can be stated as
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wk œ arg min

wÕ
k

œHw

Rk

A
1

|S| (w
Õ

k +

ÿ

qœS

q ”=k

wq
+

ÿ

pœS

p ”=k

1

|Bp|

|Bp|ÿ

j=1

wp
j ) ¶ „

B
(5)

where Bq denotes the bu�er at client q and wq
j denotes the jth historical model of client q. We use the

same bu�er size for all clients. Moreover, as the bu�er reaches its capacity, it is renewed based on a first in
first out (FIFO) manner. Note that this approach does not result in any communication overhead since a
running sum over historical strategies can be calculated in O(1) time by maintaining a prefix sum. This
variant is called F-FL Games (Smooth) or V-FL Games (Smooth) based on the constraint on „.

Algorithm 1 Parallelized FL Games (Smooth+Fast)

1: Notations: S is the set of N clients; Bk and Pk denote the bu�er and information set containing copies of

Bi, ’i ”= k œ S at client, k respectively.

2: PredictorUpdate(k):
3: /* Two-way ensemble game to update predictor at each client k */

4: wk Ω SGD

Ë
¸k

Ó
1

|S|
(wÕ

k +
q

qœS

q ”=k
wq

+
q

pœS

p ”=k

1
|Bp|

q
|Bp|

j=1 wp
j ) ¶ „

ÔÈ

5: Insert wk to Bk, discard oldest model in Bk if full

6: return wk

7: RepresentationUpdate(k):
8: /* Gradient Descent (GD) over entire local dataset at client k */
9: for every batch b œ B do

10: Compute Ò¸k(wav
cur ¶ „cur; b); Add in Ò„k

11: return Ò„k

12: Server executes:
13: Initialize wk, ’k œ S, wav

curr and „cur
14: while round Æ max-round do
15: /* Update representation „ at even round parity */
16: if round is even then
17: if Fixed-Phi then
18: „cur = I

19: if Variable-Phi then
20: for each client k œ S in parallel do
21: Ò„k = RepresentationUpdate(k)

22: /* Update representation „ */

23: „next = „cur ≠ ÷
1 q

kœS

Nkq
jœS

Nj
Ò„k

2

24: „cur = „next

25: else
26: for each client k œ S in parallel do
27: wk

curr Ω PredictorUpdate(k)

28: /* Client k updates its information set Pk by updating copies of predictors of other clients */
29: Communicate ’k, Pk Ω {wi, ’i ”= k œ S}
30: round Ω round + 1

31: wav
curr =

1
N

q
kœS

wk
curr

Convergence speed. As discussed, FL Games has two variants: F-FL Games and, V-FL Games, with
the former being an approximation of the latter („ = I, the identity matrix). While both approaches exhibit
superior performance on a variety of benchmarks, the latter has shown its success in a variety of large-scale
tasks like language modeling (Peyrard et al., 2021). Despite being theoretically grounded, V-IRM Games

su�ers from slower convergence due to an additional round for optimization of „.
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Typically, clients (e.g., mobile devices) possess fast processors and computational resources and have datasets
that are much smaller compared to the total dataset size. Hence, utilizing additional local computation is
essentially free compared to communicating with the server. To improve the e�ciency of our algorithm, we
propose replacing the stochastic gradient descent (SGD) over „ by full-batch gradient descent (GD) (line 9
(yellow) of Algorithm 1). This allows „ to be updated according to gradients accumulated across the entire
dataset, as opposed to gradient step over a mini-batch. Intuitively, now at each gradient step, the resultant
„ takes large steps in the direction of its global optimum, resulting in fast and stable training. Note that
the classifiers at each client are still updated over one mini-batch. This variant of FL Games is referred to
V-FL Games (Fast).

5 Experiments and Results

5.1 Datasets

In Ahuja et al. (2020), IRM Games was tested over a variety of benchmarks which were synthetically con-
structed to incorporate color as a spurious feature. These included Colored MNIST, Colored Fashion

MNIST, and Colored Dsprites dataset. We utilize the same datasets for our experiments. Addition-
ally, we create another benchmark, Spurious CIFAR10, with a data generating process resembling that
of Colored MNIST. In this dataset, instead of coloring the images to establish spurious correlation, we
add small black patches at various locations in the image. These locations are spuriously correlated with
the label. Details on each of the datasets can be found in the supplement. In all the results, we report the
mean performance of various baselines over 5 runs. The performance of Oracle on each of these datasets is
75% for train and test sets.

Terminologies: In the following analysis, the terms ‘Sequential’ and ‘Parallel’ denote BRD with clockwise
playing sequences and simultaneous updates, respectively (Lines 20 and 26 of Algorithm 1). We use FL

Games as an umbrella term that constitutes all the discussed algorithmic modifications. F-FL Games

and V-FL Games refer to the variants of FL Games, which abides by the data privacy constraints in FL.
The approach used to smoothen out the oscillations (Line 4 of Algorithm 1) is denoted by F-FL Games

(Smooth) or V-FL Games (Smooth) depending on the constraint on „. The fast variant with high
convergence speed is typified as V-FL Games (Smooth+Fast) (Line 9 of Algorithm 1).

We compare these algorithmic variants across fixed and variable „ separately as shown in the Table ??.
Clearly, across all benchmarks, the FL baselines FedSGD, FedAVG (McMahan et al., 2017), FedBN (Li
et al., 2021) and FedProx (Li et al., 2020) are unable to generalize to the test set, with FedBN exhibiting
superior performance compared to the others. Intuitively, these approaches latch onto the spurious features
to make predictions, hence leading to poor generalization over novel clients. Below, we study the performance
of FL Games and its variants individually across the four benchmark datasets.

Colored MNIST (Table 1). We observe that our baseline approach i.e. sequential F-FL Games and
V-FL Games achieve 66.56 ± 1.58 and 63.78 ± 1.58 percent testing accuracy, respectively. F-FL Games

(Smooth) (Parallel) achieves the highest testing accuracy i.e 67.21 ± 2.98 amongst the fixed („ = I) variants
of FL Games. Similarly, V-FL Games (Parallel) achieves the highest testing accuracy across the variable
variants of FL Games i.e. 68.34 ± 5.24 percent. Clearly, all modifications in FL Games individually achieve
high testing accuracy, hence eliminating the spurious correlations unlike state-of-the-art FL techniques.

Colored Fashion MNIST (Table 1). Similar to the results on Colored MNIST, all modifications in
FL Games achieve high testing accuracy. F-FL Games (Smooth) and V-FL Games achieve the highest
test accuracy of 71.81 ± 1.60 and 69.90 ± 1.31 percent across the fixed and the variable variants, respectively.
While the former was solely designed to smoothen the performance curves, it gives an additional benefit of
higher OOD performance.

Spurious CIFAR10 (Table 2). F-FL Games (Smooth) (Parallel) and V-FL Games (Smooth+Fast)

achieve the highest testing accuracy of 54.71 ± 2.13 and 50.94 ± 3.28 percent in the fixed and the variable
categories respectively. Similar to the results on other datasets, all variants within FL Games achieve high
testing accuracy.
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Table 1: Comparison of methods in terms of training and testing accuracy (mean ± std deviation) across Colored

MNIST and Colored Fashion MNIST. ‘Seq.’ and ‘Par.’ are abbreviations for sequential and parallel, respectively.

Colored MNIST Colored Fashion MNIST

Algorithm Train

Accuracy

Test

Accuracy

Train

Accuracy

Test

Accuracy
B

a
s
e
li

n
e
s

FedSGD 84.88 ± 0.16 10.45 ± 0.60 83.49 ± 1.22 20.13 ± 8.06
FedAVG 84.45 ± 2.69 12.52 ± 4.34 86.23 ± 0.63 13.33 ± 2.07
FedBN 99.75 ± 0.11 47.16 ± 3.76 99.79 ± 0.17 41.24 ± 1.87
FedPROX 99.56 ± 0.38 29.31 ± 0.89 99.87 ± 0.12 29.41 ± 0.36

F
ix

e
d Se
q. F-FL Games 55.76 ± 2.03 66.56 ± 1.58 75.13 ± 1.38 68.40 ± 1.83

F-FL Games (Smooth) 62.83 ± 5.06 66.83 ± 1.83 75.18 ± 0.37 71.81 ± 1.60

Pa
r. F-FL Games 58.03 ± 6.22 67.14 ± 2.95 71.71 ± 8.23 69.73 ± 2.12

F-FL Games (Smooth) 61.07 ± 1.71 67.21 ± 2.98 72.81 ± 4.51 71.36 ± 4.19

V
a
r
ia

b
le

Se
q. V-FL Games 56.40 ± 0.03 63.78 ± 1.58 69.90 ± 4.56 69.90 ± 1.31

V-FL Games (Smooth+Fast) 61.03 ± 3.11 65.81 ± 3.28 75.10 ± 0.48 69.85 ± 1.22

Pa
r. V-FL Games 52.89 ± 8.03 68.34 ± 5.24 66.33 ± 9.39 69.85 ± 3.42

V-FL Games (Smooth+Fast) 63.11 ± 3.02 65.73 ± 1.53 71.89 ± 5.58 69.41 ± 5.49

Optimal 75 75 75 75

Table 2: Comparison of methods in terms of training and testing accuracy (mean ± std deviation) across Spurious

CIFAR10 and Colored Dsprites. ‘Seq.’ and ‘Par.’ are abbreviations for sequential and parallel respectively.

Spurious CIFAR10 Colored Dsprites

Algorithm Train

Accuracy

Test

Accuracy

Train

Accuracy

Test

Accuracy

B
a
s
e
li

n
e
s

FedSGD 84.79 ± 0.17 12.57 ± 0.55 99.15 ± 1.10 24.12 ± 2.00
FedAVG 85.41 ± 1.45 13.11 ± 1.82 99.21 ± 1.35 22.56 ± 2.34
FedBN 95.24 ± 2.34 25.16 ± 4.06 98.09 ± 1.45 25.19 ± 1.78
FedPROX 99.67 ± 0.13 24.76 ± 2.67 85.17 ± 1.95 11.12 ± 0.99

F
ix

e
d Se
q. F-FL Games 50.36 ± 2.78 45.36 ± 4.33 53.98 ± 3.67 52.89 ± 4.41

F-FL Games (Smooth) 64.02 ± 2.08 45.54 ± 1.04 52.87 ± 3.30 61.45 ± 7.11

Pa
r. F-FL Games 55.06 ± 2.04 52.07 ± 1.60 52.88 ± 2.78 56.50 ± 6.23

F-FL Games (Smooth) 56.98 ± 4.09 54.71 ± 2.13 53.65 ± 2.11 62.76 ± 5.97

V
a
r
ia

b
le

Se
q. V-FL Games 61.72 ± 7.39 46.07 ± 6.01 51.36 ± 5.32 62.84 ± 7.20

V-FL Games (Smooth+Fast) 50.37 ± 4.97 50.94 ± 3.28 51.55 ± 3.20 68.23 ± 4.56

Pa
r. V-FL Games 50.41 ± 3.31 50.43 ± 3.04 53.56 ± 4.91 65.87 ± 6.84

V-FL Games (Smooth+Fast) 45.83 ± 2.44 49.89 ±5.66 54.25 ± 2.05 68.91 ± 6.47

Optimal 75 75 75 75

Colored Dsprites (Table 2). F-FL Games (Smooth) (Parallel) and V-FL Games (Smooth+Fast)

achieve the highest testing accuracy of 62.76 ± 5.97 and 68.91 ± 6.47 percent across the fixed and variable
variants of FL Games. Further, we discover that the mean performance of V-FL Games is superior to all
algorithms with fixed representation („ = I). This accentuates the importance of V-FL Games over F-FL

Games, especially over complex and larger datasets where learning „ becomes imperative.

In all the above experiments, both of our end approaches: parallelized V-FL Games (Smooth+Fast) and
parallelized F-FL Games (Smooth) are able to perform better than or at par with the other variants. These

algorithms were primarily designed to overcome the challenges faced by causal FL systems while retaining

their original ability to learn causal features. Hence, the benefits provided by these approaches in terms of 1)
robust predictions; 2) scalability; 3) fewer oscillations and 4) fast convergence are not at cost of performance.
While the former is demonstrated by Tables 1 and 2, the latter three are detailed in Section 5.3.

[Reviewers’ #Y8Gz, #fzQW and #Bwep]: A key observation across variants of FL Games is lower
training accuracy compared to the testing accuracy. This phenomenon may be ascribed to the datasets
utilized in the analysis, rather than an artifact of the algorithm. In particular, the construction of these
datasets is such that the spurious feature captures information about the label, thereby providing additional
insight beyond the predictive capability of the causal features. Consequently, any methodology that attempts
to eliminate the spurious correlation may exhibit a negative correlation with this feature. Even a slight
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negative reliance on such features may result in diminution of training accuracies. The attainment of high
training accuracy under these circumstances is a challenging task and is contingent upon the nature of the
datasets.

5.2 Interpretation of Learned Features

In order to explain the predictions of our parametric model, we use LIME (Ribeiro et al., 2016) to learn an
interpretable model locally around each prediction. Specifically, using LIME, we construct an interpretable
map of our input image whereby all the pixels relevant for prediction are denoted by 1 and the others as
0. Figure 1 shows LIME masks for FedAVG (ii) and our method (iii) on a test image from the Colored

MNIST dataset (i). Clearly, the former focuses solely on the background to make the model prediction.
However, the latter uses causal features in the image (like shape, stroke, edges, and curves) along with some
pixels from the background (noise) to make predictions. This demonstrates the reasoning behind robust
generalization of FL Games as opposed to state-of-the-art FL techniques.

Figure 1: (i) Test image used as input to the interpretable model; (ii) LIME mask corresponding to model prediction

using our method V-FL Games (Smooth+Fast); (iii) LIME mask corresponding to model prediction using FedAVG;

5.3 Ablation Analysis

In this section, we analyze the e�ect of each of our algorithmic modifications using illustrative figures and
computational experiments on the Colored MNIST dataset. The results on other datasets are similar and
are discussed in the supplement.

5.3.1 E�ect of Simultaneous BRD

We examine the e�ect of replacing the classic best response dynamics as in Ahuja et al. (2020) with the
simultaneous best response dynamics. For the same, we use a more practical environment: (a) more clients
are involved, and (b) each client has less data. Similar to Choe et al. (2020), we extended the Colored

MNIST dataset by varying the number of clients between 2 and 10. For each setup, we vary the degree of
spurious correlation between 70% and 90%) for training clients and merely 10% in the testing set. A more
detailed discussion of the dataset is provided in the supplement. For F-FL Games, it can be observed from
Figure 2(a), as the number of clients in the FL system increase, there is a sharp increase in the number of
communication rounds required to reach equilibrium. However, the same does not hold true for parallelized

F-FL Games. Further, parallelized F-FL Games is able to reach a comparable or higher test accuracy as
compared to F-FL Games with significantly lower communication rounds (refer to Figure 2(b)).

5.3.2 E�ect of a memory ensemble

As shown in Figure 3(left), compared to F-FL Games, F-FL Games (Smooth) reduces the oscillations
significantly. In particular, while in the former, performance metrics oscillate at each step, the oscillations
in the latter are observed after an interval of roughly 50 rounds. Further, F-FL Games (Smooth) seems
to envelop the performance curves of F-FL Games. As a result, apart from reducing the frequency of
oscillations, F-FL Games (Smooth) also achieves higher testing accuracy compared to F-FL Games. The

10
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(a)

Type # clients Train Accuracy Test Accuracy

Se
qu

en
tia

l 2 53.81 ± 4.14 65.68 ± 1.89
3 54.9 ± 4.37 66.33 ± 1.24
5 57.20 ± 2.07 66.53 ± 0.55
5 (uneven) 58.09 ± 2.21 65.30 ± 2.08
10 59.39 ± 1.41 66.57 ± 1.02

Pa
ra

lle
l

2 57.95 ± 3.46 66.57 ± 2.99
3 59.67 ± 5.46 65.35 ± 3.73
5 61.82 ± 4.29 65.53 ± 3.85
5 (uneven) 56.96 ± 5.61 66.15 ± 3.95
10 55.24 ± 2.88 67.49 ± 3.02

(b)

Figure 2: Colored MNIST: (a) Number of communication rounds required to achieve Nash equilibrium versus the

number of clients in the FL setup; (b) Comparison of F-FL Games and F-FL Games (Parallel) with increasing

clients in terms of training and testing accuracy (mean ± std deviation).

Table 3: Colored MNIST: Comparison of methods in terms of mean number of rounds required to reach equilibrium.

Algorithm # Rounds

Fi
xe

d Se
q. F-FL Games 224.0

F-FL Games (Smooth) 175.0 (1.3◊)

Pa
r. F-FL Games 195.4 (1.1◊)

F-FL Games (Smooth) 92.2 (2.4◊)

Va
ria

bl
e

Se
q. V-FL Games 544.4

V-FL Games (Smooth+Fast) 292.6 (1.9◊)

Pa
r. V-FL Games 499.1 (1.1◊)

V-FL Games (Smooth+Fast) 225.5 (2.4◊)

observations are consistent across the parallelized variants. Further, as observed from Table 3, F-FL Games

(Smooth) and parallelized F-FL Games (Smooth) significantly reduce the number of communication
rounds required to reach equilibrium, further underscoring the e�cacy of our proposed methodology.

5.3.3 E�ect of using Gradient Descent (GD) for „

Communication costs are the principal constraints in FL setup. Edge devices like mobile phones and sensors
are bandwidth constrained and require more power for transmission and reception as compared to remote
computation. As observed from Figure 3(right), V-FL Games (Smooth+Fast) is able to achieve signif-
icantly higher testing accuracy in fewer communication rounds as compared to V-FL Games. Consistent
results are also reported in Table 3, where both sequential and parallel variants of V-FL Games (Smooth

+Fast) result in a significant improvement (≥ 2◊) in the number of rounds required.

5.3.4 E�ect of exact best response

FedAVG provides the flexibility to train communication e�cient and high-quality models by allowing more
local computation at each client. This is particularly detrimental in scenarios with poor network connectivity,
wherein communicating at every short time span is infeasible.

Inspired by FedAVG, we study the e�ect of increasing the amount of local computation at each client.
Specifically, in F-FL Games, each client updates its predictor based on a step of stochastic gradient descent
over its mini-batch. We modify this setup by allowing each client to run a few steps of stochastic gradient

11
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Figure 3: Colored MNIST: Training accuracy of (left) F-FL Games and F-FL Games (Smooth) for a bu�er

size of 5; (right) V-FL Games and V-FL Games (Smooth+Fast) with bu�er size as 5 versus the number of

communication rounds

(a)

Local steps (in %) Train Accuracy Test Accuracy

1.71% 53.04 ± 1.85 65.05 ± 1.60
4.27% 55.12 ± 4.76 61.37 ± 5.02
6.84% 53.46 ± 3.66 61.64 ± 3.67
8.55% 54.13 ± 5.2 61.07 ± 5.89
19.66% 54.38 ± 6.93 59.17 ± 7.37
29.91% 53.86 ± 8.14 58.40 ± 7.19
49.57% 53.59 ± 8.56 59.22 ± 6.05
70.09% 54.25 ± 8.21 58.66 ± 7.09
80.34% 53.14 ± 9.86 57.93 ± 6.23
89.74% 54.61 ± 7.32 57.76 ± 6.54
100.00% 54.56 ± 6.56 57.02 ± 5.17

(b)

Figure 4: Colored MNIST: (a) E�ect on Training accuracy of doing gradient descent on each client for updating

the predictor versus the standard training paradigm, i.e., F-FL Games; (b) Impact of increasing the number of local

steps (C) for updating the predictor on the training and testing accuracy (mean ± std deviation). When the number

of local steps (C) reaches 100%, it is equivalent to gradient descent as shown in (a)

descent locally (C%). When the number of local steps at each client reaches is maximum (training data
size/ mini-batch size) or C = 100%, the scenario becomes equivalent to gradient descent (GD) over the
training data. [Reviewers’ #Y8Gz, #fzQW and #Bwep]: Since each client’s optimal strategy is
computed over the entirety of their training data at C = 100%, this scenario corresponds to the exact best
response to their opponents. From Table 4(b), it is evident that as the number of local steps increases, the
testing accuracy at equilibrium starts to decrease. [Reviewers’ #Y8Gz and #fzQW]: Since spurious
correlations vary considerably across clients in Colored MNIST, optimal actions for distinct clients di�er
i.e., one client benefits from positively increasing the correlation between the label and spurious features,
while the other benefits from decreasing it. As a result, increasing C in this scenario leads to significant
updates that favor one client over the other, making optimization across multiple clients challenging and
resulting in reduced performance. When the local computation reaches 100%, i.e. each client updates its
local predictor based on a GD over its data, F-FL Games exhibits convergence (as shown in Figure 4(a)).
FL Games is guaranteed to exhibit convergence and good out-of-distribution generalization behavior (Ahuja
et al., 2021b) despite increasing local computations. Although the testing accuracy at convergence is lower
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compared to the standard setup, this approach opens avenues for practical deployment of the approach in
FL.

6 Conclusion

In this work, we develop a novel framework based on the Best Response Dynamics (BRD) training paradigm
to learn invariant predictors across clients in Federated Learning (FL). Inspired from Ahuja et al. (2020),
the proposed method called Federated Learning Games (FL Games) learns causal representations which
have good out-of-distribution generalization on new train clients or test clients unseen during training. We
investigate the high-frequency oscillations observed using BRD and equip our algorithm with a memory of
historical actions. This results in smoother performance metrics with significantly lower oscillations. FL

Games exhibits high communication e�ciency as it allows parallel computation, scales well in the number
of clients, and results in faster convergence. Future directions include theoretically analyzing the smoothed
best response dynamics, which might have potential implications for other game-theoretic machine learning
frameworks.
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