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Abstract

Gradient-based optimization methods have shown remarkable empirical success,
yet their theoretical generalization properties remain only partially understood. In
this paper, we establish a generalization bound for gradient flow that aligns with
the classical Rademacher complexity bounds for kernel methods-specifically those
based on the RKHS norm and kernel trace-through a data-dependent kernel called
the loss path kernel (LPK). Unlike static kernels such as NTK, the LPK captures
the entire training trajectory, adapting to both data and optimization dynamics,
leading to tighter and more informative generalization guarantees. Moreover, the
bound highlights how the norm of the training loss gradients along the optimization
trajectory influences the final generalization performance. The key technical
ingredients in our proof combine stability analysis of gradient flow with uniform
convergence via Rademacher complexity. Our bound recovers existing kernel
regression bounds for overparameterized neural networks and shows the feature
learning capability of neural networks compared to kernel methods. Numerical
experiments on real-world datasets validate that our bounds correlate well with the
true generalization gap.

1 Introduction

Gradient-based optimization lies at the heart of modern deep learning, yet the theoretical under-
standing of why these methods generalize so well is still incomplete. Classical bounds attribute the
generalization of machine learning (ML) models to the complexity of the hypothesis class [62], which
fails to explain the power of deep neural networks (NNs) with billions of parameters [31, 14]. Recent
studies reveal that the training algorithm, data distribution, and network architecture together impose
an implicit inductive bias, effectively restricting the vast parameter space to a much smaller “effective
region” that improves the generalization ability [33, 48, 60, 28, 59, 21]. This observation motivates
the need for algorithm-dependent generalization bounds—ones that capture how gradient-based
dynamics carve out the truly relevant portion of the hypothesis class during training.

A variety of theoretical frameworks have been proposed to address this challenge. Algorithmic
stability [16] bounds the generalization error by the stability of the learning algorithm. Hardt
et al. [29] first proved the stability of stochastic gradient descent (SGD) for both convex and non-
convex functions. However, these bounds are often data-independent, require decaying step sizes for
non-convex objectives, and grow linearly with training time. Moreover, for non-convex functions,
full-batch gradient descent (GD) is typically considered not uniformly stable [29, 18].
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Figure 1: ResNet 18 trained by SGD on full CIFAR-10. (a) NN’s training loss, test loss, and test error. (b) The
generalization bound Γ we derive in Theorem 5.4 correlates well with the true generalization gap.

Information-theoretic (IT) approaches [58, 66, 30] bound the expected generalization error with
the mutual information between training data and learned parameters. To control this, researchers
introduce noise into the learning process, employing techniques like stochastic gradient Langevin
dynamics (SGLD) [57, 46, 64] or perturb parameters [47]. The PAC-Bayesian framework [39, 26]
bounds the expected generalization error by the KL divergence between the model’s posterior and
prior distributions. To establish algorithm-dependent bounds, they also consider gradient descent with
continuous noise like SGLD [45, 36], similar to the IT approach. But these noise-based approaches
can diverge from SGD and their bounds can grow large when the noise variance is small.

In this work, we propose a novel perspective that combines stability analysis of gradient flow with
uniform convergence tools grounded in Rademacher complexity. Specifically, we utilize a connection
between loss dynamics and loss path kernel (LPK) proposed by Chen et al. [20]. By studying the
stability of gradient flow, we show the concentration of LPKs trained with different datasets. This
allows us to construct a function class explored by gradient flow with high probability while being
substantially smaller than the full function class, leading to a tighter generalization bound. We
summarize our main contributions as follows.

• We prove O(1/n) stability for gradient flow on convex, strongly-convex, and non-convex losses,
where n is the number of training samples, and show that, as a result, LPKs concentrate tightly.
This localization dramatically shrinks the effective hypothesis class and leads to a tighter bound
than the previous result of Chen et al. [20].

• Using the above results, we derive a generalization bound for gradient flow that parallels classical
Rademacher complexity bounds for kernel methods—specifically those involving the RKHS norm
and kernel trace [10]—but adapts to the actual training trajectory. The generalization gap is
controlled by an explicit term Γ, determined by the norm of the training loss gradients along the
optimization trajectory. A similar bound is also proved for stochastic gradient flow.

• Our bound recovers known results in the NTK regime and kernel ridge regression, and exposes the
feature-learning advantage of NNs. Extensive experiments on real-world datasets show that our
bound Γ correlates tightly with the true generalization gap (Fig. 1).

2 Related Work

Generalization theory in deep learning. Generalization has long been a central theme in deep
learning theory, and various techniques have been proposed to study it. Beyond the algorithmic
stability, PAC-Bayesian, and IT frameworks discussed earlier, Bartlett et al. [12] obtained tight bounds
for the VC dimension of ReLU networks. Other works measure network capacity via norms, margins
[10, 49, 11, 52], or sharpness-based metrics [50, 51, 4] to explain why deep NNs can generalize
despite their large parameter counts.

Algorithm-dependent generalization bound. PAC-Bayesian, stability-based, and IT approaches can
all yield algorithm-dependent bounds. Li et al. [36] combine PAC-Bayesian theory with algorithmic
stability to derive an expected bound for SGLD that depends on the expected norm of the training loss
gradient along the trajectory, which is similar to our bound, yet the bound blows up as the injected
noise vanishes. Neu et al. [47] use mutual-information arguments to control the expected gap by
the local gradient variance. Nikolakakis et al. [54] analyze the expected output stability to get an
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expected generalization bound for full-batch GD on smooth loss that depends on the training loss
gradient norm along the trajectory and the expected optimization error. In contrast, our result is
a high-probability uniform-convergence bound whose leading term is not only tighter but is also
straightforward to compute. Amir et al. [3] study generalization bounds for linear models trained
by gradient descent on convex losses by constructing a function class centered around the expected
trajectory, whereas our approach handles more general losses and models.

Neural tangent kernel (NTK) and feature learning. There is a line of work showing that over-
parameterized NNs trained by GD converge to a global minimum and the trained parameters are
close to their initialization [32, 25, 24, 2, 6] — so-called NTK regime. Arora et al. [5] study the
generalization capacity of ultra-wide, two-layer NNs trained by GD and square loss, while Cao &
Gu [17] examine the generalization of deep, ultra-wide NNs trained by SGD and logistic loss. Both
establish generalization bounds of trained NNs, but NNs perform like a fixed kernel machine in
this case. Going beyond the NTK regime, recent works [7, 15, 27, 9, 23, 43] have explored feature
learning of NNs trained by GD for efficiently learning low-dimensional features which outperform
the fixed kernel. Our approach is considerably more general and not restricted to overparameterized
NNs. We present our bound in these two regimes as case studies in Sec. 6.

3 Notation and Preliminaries

Consider a supervised learning problem where the task is to predict an output variable in Y ⊆ Rk

using a vector of input variables in X ⊆ Rd. Let Z ≜ X × Y . Denote the training set by
S ≜ {zi}ni=1 with zi ≜ (xi,yi) ∈ Z . Assume each point is drawn i.i.d. from a distribution µ. Let
X = [x1, · · · ,xn] ∈ Rd×n, Y = [y1, · · · ,yn] ∈ Rk×n, and Z = [X;Y] ∈ R(d+k)×n.

We express a NN as f(w,x) : Rp × Rd → Rk, where w are its trainable parameters and x is
an input data. A learning algorithm A : Zn 7→ Rp takes a training set S and returns trained
parameters w. The ultimate goal is to minimize the population risk Lµ(w) ≜ Ez∼µ [ℓ(w, z)]

where ℓ(w, z) ≜ ℓ(f(w,x),y) is a loss function. We assume ℓ(w, z) ∈ [0, 1]. In practice,
since the distribution µ is unknown, we instead minimize the empirical risk on the training set S:
LS(w) ≜ 1

n

∑n
i=1 ℓ(w, zi). The generalization gap is defined as Lµ(w)− LS(w).

Below, we recall the definition of Rademacher complexity and a generalization upper bound.

Definition 3.1 (Empirical Rademacher complexity R̂S(G)). Let F be a hypothesis class of functions
from X to Rk. Let G be the set of loss functions associated with functions in F , defined by
G = {g : (x,y) → ℓ(f(x),y), f ∈ F}. The empirical Rademacher complexity of G with respect
to sample S = {z1, . . . ,zn} is defined as R̂S(G) = 1

n Eσ

[
supg∈G

∑n
i=1 σig(zi)

]
, where σ =

(σ1, . . . , σn) is a sample of independent uniform random variables taking values in {+1,−1}, and
Eσ is the expectation over σ conditioned on all other random variables.
Theorem 3.2 (Theorem 3.3 in [41]). Let G be a family of functions mapping from Z to [0, 1]. Then for
any δ ∈ (0, 1), with probability at least 1− δ over the draw of an i.i.d. sample set S = {z1, . . . ,zn},

the following holds for all g ∈ G: Ez [g(z)]− 1
n

∑n
i=1 g(zi) ≤ 2R̂S(G) + 3

√
log(2/δ)

2n .

3.1 Kernel Method and Loss Path Kernel

Recall that a kernel is a function K : X × X → R for which there exists a mapping Φ : X → H
into a reproducing kernel Hilbert space (RKHS) H such that K(x,x′) = ⟨Φ(x),Φ(x′)⟩H for all
x,x′ ∈ X , where ⟨·, ·⟩H denotes the inner product in H. A function K is a kernel if and only if
it is symmetric and positive definite (Chapter 4 in [61]). A kernel machine g : X → R is a linear
function in H,and can be written as g(x) = ⟨β,Φ(x)⟩ + b, where its weight vector β is a linear
combination of the training points β =

∑n
i=1 aiΦ(xi) and b is a constant bias. The RKHS norm of

g is ∥g∥H = ∥
∑n

i=1 aiΦ(xi)∥ =
√∑

i,j aiajK(xi,xj). The kernel machine with bounded RKHS
norm has a classic Rademacher complexity bound as follows:
Lemma 3.3 (Lemma 22 in [10]). Denote a function class F = {g(x) =

∑n
i=1 aiK(x,xi) : n ∈

N,xi ∈ X ,
∑

i,j aiajK(xi,xj) ≤ B2} for a constant B > 0. Then its Rademacher complexity is
bounded by R̂S(F) ≤ B

n

√∑n
i=1 K(xi,xi).
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Next we introduce the loss path kernel, which calculates the inner product of loss gradients and
integrates along a given parameter path governed by (stochastic) gradient flows. Previous NTK theory
cannot fully capture the training dynamics of NNs since trained parameters could move far away from
initialization. The loss path kernel addresses this limitation by capturing the entire training trajectory.

Definition 3.4 (Loss Path Kernel (LPK) KT in [20]). Suppose the weights follow a continuous path
w(t) : [0, T ] → Rp in their domain with a starting point w(0) = w0, where T is a predetermined
constant. This path is determined by the learning algorithm A, the training set S, and the training
time T , i.e. w(t) = At(S). We define the loss path kernel associated with the loss function ℓ(w, z)
along the path as

KT (z, z
′;S) ≜

∫ T

0

⟨∇wℓ(At(S), z),∇wℓ(At(S), z′)⟩ dt.

LPK is a valid kernel by definition. Intuitively, it measures the similarity between data points z and
z′ by comparing their loss gradients and accumulating over the training trajectory.

3.2 Loss Dynamics of Gradient Flow (GF) and Its Equivalence with Kernel Machine

Consider the GF dynamics (gradient descent with infinitesimal step size):

dw(t)

dt
= −∇wLS(w(t)) = − 1

n

n∑
i=1

∇wℓ(w(t), zi).

Chen et al. [20] showed that the loss of the NN at a certain fixed time is a kernel machine with LPK
plus the loss function at initialization: ℓ(wT , z) =

∑n
i=1 −

1
nKT (z, zi;S) + ℓ(w0, z). Here, the

LPK is a data-dependent kernel that depends on the training set S . Using this equivalence, define the
following set of LPKs and the function class of the loss function

KT ≜ {KT (·, ·;S ′) : S ′ ∈ supp(µ⊗n),
1

n2

∑
i,j

KT (z
′
i,z

′
j ;S ′) ≤ B2},

GT ≜
{
ℓ(AT (S ′),z) =

n∑
i=1

− 1

n
K(z,z′

i;S ′) + ℓ(w0,z) : K(·, ·;S ′) ∈ KT

}
, (1)

where B > 0 is some constant, S ′ = {z′
1, . . . ,z

′
n}, µ⊗n is the joint distribution of n i.i.d. samples

drawn from µ, supp(µ⊗n) is the support set of µ⊗n, and AT (S ′) is the parameters obtained by GF
algorithm at time T and trained with S ′. Then Chen et al. [20] derived the following generalization
bound:

R̂S(GT ) ≤
B

n

√
sup

K(·,·;S′)∈KT

Tr(K(Z,Z;S ′)) +
∑
i̸=j

∆(zi,zj),

where ∆(zi, zj) =
1
2

[
supK(·,·;S′)∈KT

K(zi, zj ;S ′) − infK(·,·;S′)∈KT
K(zi, zj ;S ′)

]
. However, the

above bound suffers from several limitations: 1) It involves a supremum over an infinite family of
LPKs, making it intractable to compute in practice; 2) The term

∑
i̸=j ∆(zi, zj) can be as large

as O(n2) in the worst case, leading to a loose bound; 3) The bound must be evaluated on datasets
distinct from the training set, limiting its practical applicability. In this paper, we use the stability
property of GF to substantially reduce the size of the function class, resulting in a significantly tighter
generalization bound that depends only on the training set. Our new bound matches the classical
kernel method bound in Lemma 3.3, but instead of relying on a fixed kernel, it utilizes the data-
dependent loss path kernel. Adapting to the data and algorithm, this learned kernel can outperform
static kernels in traditional methods, thereby achieving improved generalization performance.

4 Uniform Stability of Gradient Flow and Concentration of LPKs

In this section, we show that the GF is uniformly stable. This uniform stability property implies
the LPK concentration and connects LPKs trained from different datasets. Instead of transforming
the stability to a generalization bound directly, we then combine the stability analysis with uniform
convergence via Rademacher complexity to get a data-dependent bound in Sec. 5.
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4.1 Uniform Stability of Gradient Flow

Definition 4.1 (Uniform argument stability [16, 13]). A randomized algorithm A is ϵn-uniformly
argument stable if for all datasets S,S(i) ∈ Zn such that they differ by at most one data point, we
have EA

[∥∥A(S)−A(S(i))
∥∥] ≤ ϵn, where the expectation is taken over the randomness of A.

Here we consider the uniform argument stability, which can be easily transformed to uniform stability
with respect to loss if the loss function is Lipschitz. In this paper, we mainly consider full-batch GF
so there is no randomness in A. To analyze the GF dynamics and LPKs, we make the following
standard assumptions.

Assumption 4.2. Assume ℓ(w, ·) is L-Lipschitz and β-smooth with respect to w, that is,
∥ℓ(w, ·)− ℓ(w′, ·)∥ ≤ L ∥w −w′∥ and ∥∇wℓ(w, ·)−∇wℓ(w′, ·)∥ ≤ β ∥w −w′∥.

Let S and S(i) be two datasets that differ only in the i-th data point. We prove the following stability
results of GF for convex, strongly convex (S.C.), and non-convex losses. Similar stability results of
GD (for convex case) and SGD were proved in [13, 29].

Lemma 4.3. Under Assumption 4.2, for any two data sets S and S(i), let wt = At(S) and
w′

t = At(S(i))) be the parameters trained from same initialization w0 = w′
0, then

∥wt −w′
t∥ ≤


2L
γn , LS(w) is γ-S.C.,
2Lt
n , LS(w) is convex,

2L
βn (e

βt − 1), LS(w) is non-convex.

For convex losses, uniform stability increases linearly with T . For strongly convex losses, it holds
without increasing with training time. Unfortunately, for non-convex losses, the bound exponentially
increases with time T in the worst case, leading to an exponential stability generalization bound. Our
Theorem 5.2 avoids this case by combining stability analysis with Rademacher complexity.

For non-convex loss, Hardt et al. [29] obtain O(T/n) stability bound of SGD with decayed learning
rate η = c/t, which is equivalent to training c lnT time in our case since

∑
t c/t ≈ c lnT . In our

case, using a learning rate of η = 1/β(t+ 1) will allow us to have ∥wT −w′
T ∥ = 2LT

βn
1.

4.2 Concentration of LPKs under Stability

We now derive useful concentration properties of LPKs using uniform stability. These properties will
be used when defining the function class explored by GF and proving the generalization bound. First
of all, one can show that the LPK concentrates for a fixed pair of z, z′.

Lemma 4.4. Under Assumption 4.2, for any fixed z, z′, with probability at least 1 − δ over the
randomness of S ′,

∣∣∣∣KT (z, z
′;S ′)− E

S′
KT (z, z

′;S ′)

∣∣∣∣ ≤


4L2βT
γ

√
ln 2

δ

2n , LS(w) is γ-S.C.,

2L2βT 2

√
ln 2

δ

2n , LS(w) is convex,
4L2

β (eβT − βT − 1)

√
ln 2

δ

2n , LS(w) is non-convex.

Next, using a stability argument and Chernoff bound, we are able to bound the difference between∑n
i=1 KT (zi, zi;S ′) and

∑n
i=1 KT (zi, zi;S).

Lemma 4.5. Under Assumption 4.2, for two datasets S and S ′, with probability at least 1− δ over
the randomness of S and S ′,∣∣∣∣∣

n∑
i=1

KT (zi, zi;S)−
n∑

i=1

KT (zi, zi;S ′)

∣∣∣∣∣ ≤

Õ(T

√
n), LS(w) is γ-S.C.,

Õ(T 2
√
n), LS(w) is convex,

Õ(eT
√
n), LS(w) is non-convex.

1However, training with a decayed learning rate may not converge and requires to change the definition of
the LPK. Therefore, we stick to the constant learning rate.
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Table 1: The rate of ϵ in Theorem 5.2 under different training time T scales. Boldface indicates the
cases where Γ computed by (3) is the dominant term compared with ϵ.

T O(1) O(ln
√
n) O(

√
n) O(n)

S.C. Õ(n−3/4) Õ(n−3/4) Õ(n−1/2) Õ(n−1/4)

Convex Õ(n−3/4) Õ(n−3/4) O(n−1/4) O(1)

Non-convex Õ(n−3/4) Õ(n−1/2) O(n−1/4) O(1)

5 Main Results

5.1 Generalization Bound of Gradient Flow (GF)

With the above preparations, we are ready to prove our generalization bound. We define the loss
function class GT as in (1) at time T by constraining the LPK class KT as follows

KT ≜
{
KT (·, ·;S ′) :

1

n2

∑
i,j

KT (z
′
i, z

′
j ;S ′) ≤ B2,S ′ ∈ S′ ⊆ supp(µ⊗n), sup

z,z′
|KT (z, z

′;S ′)| ≤ ∆
}
.

where B,∆ > 0 are some constants and S′ is a subset of supp(µ⊗n). Note this function class
includes ℓ(AT (S), z) if the conditions are satisfied on S . For example, the first condition is satisfied
if 1

n2

∑
i,j KT (zi, zj ;S) ≤ B2. For this function class, we can improve the Rademacher complexity

below since the conditions in KT significantly reduce the size of the function class.

Lemma 5.1. Recall Definition 3.1 for R̂S(GT ), we have

R̂S(GT ) ≤
B

n

√√√√ sup
KT (·,·;S′)∈KT

n∑
i=1

KT (zi, zi;S ′) + 4∆
√
6n ln 2n+ 8∆.

As we have shown above, the conditions in the function class are satisfied with B being some data-
dependent quantity, and the trace term can be bounded as in Lemma 4.5. With a covering argument,
we can prove our main result of the generalization bound for GF dynamics.

Theorem 5.2. Denote by Γ ≜ 2
n2

√∑n
i=1

∑n
j=1 KT (zi, zj ;S)

√∑n
i=1 KT (zi, zi;S). Under As-

sumption 4.2, with probability at least 1− δ over the randomness of S,

Lµ(AT (S))− LS(AT (S)) ≤ Γ + ϵ+ 3

√
ln(4n/δ)

2n
, (2)

where ϵ =


Õ
(√

T

n
3
4

)
, S.C.,

min
{
Õ
(

T

n
3
4

)
, O
(√

T
n

)}
, convex,

min

{
Õ

(
e
T
2

n
3
4

)
, O
(√

T
n

)}
, non-convex.

We now study which term in (2) dominates the bound in Theorem 5.2. We summarize the rate of ϵ
for different training scaling of T in Table 1. A rough analysis implies that the first term Γ in the
bound can be upper bounded by O

(
L
√
T/n

)
. In many cases, Γ may not achieve this upper bound;

Sec. 6 shows Γ typically grows sub-linearly for T if the training loss converges sufficiently fast.
Remark 5.3 (Leading order for non-convex case). For the non-convex case, when T = O(1),
ϵ = Õ(n−3/4) and when T = O(ln

√
n), ϵ = Õ(n−1/2). In these cases, ϵ has a faster-decreasing

rate compared with other terms. When T = Ω(ln
√
n), ϵ = O(

√
T/n) which has a rate similar to

Γ. Especially, when the loss is non-convex but satisfies the Polyak-Łojasiewicz (PL) condition with
parameter α, LS(wt) − LS(w

∗) ≤ e−αt (LS(w0)− LS(w
∗)), T = O( 1

α ln
√
n) is sufficient to

achieve O(1/
√
n) optimization error.
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Our results show that the generalization ability of GF is mainly affected by the first term Γ, which
can also be rewritten as

Γ =
2

n

√
LS(w0)− LS(wT )

√√√√ n∑
i=1

∫ T

0

∥∇wℓ(wt, zi)∥2 dt, (3)

due to the definition of LPK and dLS(wt)
dt = ∇wLS(wt)

⊤ dwt

dt = −∥∇wLS(wt)∥2. This
bound matches the Radamecher bound of the classic kernel methods in Lemma 3.3. In Γ,√

1
n2

∑n
i=1

∑n
j=1 KT (zi, zj ;S) serves as the RKHS norm of the kernel, while

∑n
i=1 KT (zi, zi;S)

is the trace of the kernel. The RKHS norm in our setting remains below 1 due to the bounded loss.

Unlike a kernel method with a fixed kernel, GF learns a data-dependent kernel LPK, thus adapting
the underlying feature map to the training set. Consequently, our bound can surpass the fixed-kernel
scenario because the gradient norms ∥∇wLS(wt)∥ , ∥∇wℓ(wt, zi)∥ shrink during training—whereas
a fixed kernel’s bound remains static. Moreover, the RKHS norm here stays below 1, in contrast to
fixed-kernel methods, whose RKHS norm may grow with the sample size or dimensionality (see
Corollary 6.2). Overall, our bound highlights that a more favorable optimization landscape and faster
convergence can promote stronger generalization.

5.2 Generalization Bound of Stochastic Gradient Flow (SGF)

Above, we derived a generalization bound for NNs trained from full-batch GF. Here we extend
our analysis to SGF and derive a corresponding generalization bound. To start with, we recall the
dynamics of SGF (SGD with infinitesimal step size):

dwt

dt
= −∇wLSt(wt) = − 1

m

∑
i∈St

∇wℓ(wt, zi) (4)

where St ⊆ {1, . . . , n} is the indices of batch data used in time interval [t, t+ 1] and |St| = m is the
batch size. Define Kt,t+1(z, z

′;S) =
∫ t+1

t
⟨∇wℓ(wt, z),∇wℓ(wt, z

′)⟩ dt to be the LPK over time
interval [t, t+ 1].
Theorem 5.4. Under Assumption 4.2, for a fixed sequence S0, . . . ,ST−1, with probability at least
1− δ over the randomness of S, the generalization gap of SGF defined by (4) is upper bounded by

Lµ(AT (S))− LS(AT (S)) ≤
2

n

T−1∑
t=0

√
1

m2

∑
i,j∈St

Kt,t+1(zi, zj ;S)

√√√√ n∑
i=1

Kt,t+1(zi, zi;S) + Õ(
T√
n
).

Similarly, we define the first term as Γ for the SGF case. When St = S, SGF becomes GF and the
bound becomes similar to (2). This bound can be extended to any random sampling algorithm by
taking the expectation over the randomness of the algorithm.

6 Case Study

6.1 Overparameterized Neural Network under NTK Regime

The NTK associated with the NN f(w,x) at w is defined by Θ̂(w;x,x′) =
∇wf(w,x)∇wf(w,x′)⊤ ∈ Rk×k. Since the LPK has a natural connection with
NTK, our bound Γ in (3) can be calculated using the NTK during the training: Γ =
2
n

√
LS(w0)− LS(wT )

√∑n
i=1

∫ T

0
∇f ℓ(wt, zi)Θ̂(wt;xi,xi)∇f ℓ(wt, zi)dt. When the output di-

mension k = 1 and using a mean-square loss LS(wt) =
1
2n ∥f(wt,X)− y∥2, as previous work

[25, 24] showed, as long as the smallest eigenvalue of NTK is lower bounded from 0, the training loss
enjoys an exponential convergence, ∥f(wt,X)− y∥2 ≤ e−

2λmin
n t ∥f(w0,X)− y∥2. In this setting,

the generalization can be upper bounded by the condition number of the NTK as follows.
Corollary 6.1. Suppose that λmax(Θ̂(wt;X,X)) ≤ λmax and λmin(Θ̂(wt;X,X)) ≥ λmin > 0 for
t ∈ [0, T ]. Then

Γ ≤

√
2λmax · ∥f(w0,X)− y∥2

λmin · n
(1− e−

2λmin
n T ).
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This bound shows that the generalization of overparameterized NNs depends on the condition number
of the NTK. With a smaller condition number, the network converges faster and generalizes better.
This bound is always upper-bounded even when T → ∞. As n/T increases, the bound decreases.
Since ∥f(w0,X)− y∥2 = O(n) for NTK initialization [25] and 1− e−

2λminT
n ≤ 2λminT

n , our bound

has a faster rate than O(
√
λmaxT/n). When λmax

λmin
= O(1), our bound has a rate of O(

√
1− e−

2λminT
n ).

For overparameterized NNs, NTK does not change much from initialization, hence λmax and λmin

can be specified using the λmax(Θ̂(w0;X,X)) and λmin(Θ̂(w0;X,X)), see [25, 24, 53, 44, 65].

6.2 Kernel Ridge Regression

Given a kernel K(x,x′) = ⟨ϕ(x), ϕ(x′)⟩, where ϕ : Rd 7→ Rp, consider kernel ridge re-
gression f(w,x) = w⊤ϕ(x) with LS(w) = 1

2n

∥∥ϕ(X)⊤w − y
∥∥2 + λ

2 ∥w∥2 and ℓ(w, z) =
1
2 (w

⊤ϕ(x) − y)2 + λ
2 ∥w∥2, where ϕ(X) ∈ Rp×n and w ∈ Rp. Denote the optimal solution as

w∗ = 1
nϕ(X)

(
1
nK(X,X) + λIn

)−1
y. Then we have the following bound for the kernel regression.

Corollary 6.2. Suppose K(xi,xi) ≤ Kmax for all i ∈ [n] and K(X,X) is full-rank. We have that

Γ ≤

{
1
n

√
Kmax ∥w0 −w∗∥

∥∥ϕ(X)⊤ (w0 −w∗)
∥∥ , when λ = 0,

1
n

√
Kmax

√
y⊤ (K(X,X))

−1
y ∥y∥ , when λ = 0, w0 = 0.

(5)

Here (5) recovers the Rademacher complexity bound for kernel regression [5]. Compared with
the classic bound in Lemma 3.3, when ∥y∥ ≤

√
n, (5) is tighter since Kmax ≤

∑
i K(xi,xi). In

the high-dimensional regime, if w∗ is standard Gaussian and w0 = 0, (5) has a rate of O(
√

p/n).
Similar rates can be found in [37, 38] for fixed kernel regression.

6.3 Feature Learning

Consider a single-index model y = f∗(⟨θ∗,x⟩)+ ξ, where θ∗ ∈ Sd−1 is a fixed unit vector, data x ∼
N (0, Id), f∗ is an unknown link function, and ξ ∼ N (0, σ2) is an independent Gaussian noise. The
sample complexity of this problem is usually O(ds) [7, 15] or O(ds/2) [23], where s is the information
exponent of f∗, defined as the smallest nonzero coefficient of the Hermite expansion of f∗. Bietti
et al. [15] trained a two-layer NN with gradient flow to learn this single-index model. Specifically, the
NN is f(θ, c;x) = 1√

N

∑N
i=1 ciϕ(σi ⟨θ,x⟩+ bi), where θ ∈ Sd−1, ϕ(u) = max{0, u} is the ReLU

activation function, bi ∼ N (0, τ2) with τ > 1 are random biases that are frozen during training,
and σi are random Rademacher variables. Let LS(θ, c) =

1
n

∑n
i=1(f(θ, c;xi)− yi)

2 + λ ∥c∥2 be a
regularized squared loss. The NN is trained by a two-stage gradient flow:

dθt
dt

= −∇Sd−1

θ LS(θt, ct),
dct
dt

= −1(t > T0)∇cLS(θt, ct),

where ∇Sd−1

θ is the Riemannian gradient on the unit sphere, T0 = Θ̃(d
s
2−1) and s is the information

exponent. They show that n = Ω̃( (d+N)ds−1

λ4 ) is sufficient to guarantee weakly recovering the feature
vector θ∗. Here we compute our bound in their setting.
Corollary 6.3. Under the settings of Theorem 6.1 in Bietti et al. [15] (provided in Theorem G.2),

Γ ≤ Õ

(√
d

s
2+1

nλ2
+ λ2d

)
,

with high probability as n, d → ∞. As long as λ = od(1/
√
d) and n = Ω̃(d

s
2+2), Γ = on,d(1).

Taking λ = Θ(d
s
2

n )
1
4 , we have Γ ≤ Õ

((
d

s
2+2/n

) 1
4

)
.

Our bound is compatible with the requirements of n = Ω̃((d+N)ds−1/λ4) in Bietti et al. [15]. The
sample complexity of n = Ω̃(d

s
2+2) almost matches the correlational statistical query (CSQ) lower

bound n = Ω̃(d
s
2 ) [22, 1] and outperforms the kernel methods that require n = Ω̃(dp) where p is the

degree of the polynomial of f∗ (s ≤ p). Compared with Corollary 6.2, the bound of Γ in the feature
learning case is vanishing, while the bound in (5) is Θ(1), indicating the benefits of feature learning
from the generalization gap bound.
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Figure 2: Experiment (I). Two-layer NN trained by gradient descent on CIFAR-10 cat and dog. (a) shows
NN’s training loss, test loss, and test error. (b) shows that the complexity bound Γ in Theorem 5.2 captures the
generalization gap Lµ(wT )− LS(wT ) well. It first increases and then converges after sufficient training time.

7 Numerical Experiments

We conduct comprehensive numerical experiments to demonstrate that our generalization bounds
correlate well with the true generalization gap. For more simulations and details, see the Appendix.

(I) Generalization bound of gradient flow in Theorem 5.2. In Fig. 2, we use logistic loss to train a
two-layer NN of 400 hidden nodes and Softplus activation function for binary classification on 4000
CIFAR-10 cat and dog [35] data by full-batch gradient descent and compute Γ, the main term in our
bound. The integration in Γ (3) is estimated with a Riemann sum. After training, the norm-based
bound in Bartlett et al. [11] is 12557.3, which is much larger than our bound, as shown in the figure.

Figure 3: Generalization gap and our bound Γ with
label noise.

(II) Generalization bound of SGF in Theo-
rem 5.4. In Fig. 1, we train a randomly initial-
ized ResNet 18 by SGD on full CIFAR-10 [35]
and estimate Γ in our bound. Fig. 4, 5, and 6 in
the Appendix show more experiments on ResNet
34 and two-layer NNs. Our generalization bound
characterizes the overfitting and feature unlearn-
ing behavior [43] of overparameterized NNs af-
ter long-term training (when T = O(n) in Theo-
rem 5.2).

(III) Generalization bound with label noise. We
corrupt the labels in the experiment (I) with ran-
dom labels and plot the generalization gap and Γ
in Fig. 3. Γ captures the generalization gap well
and increases with the portion of label noise, ex-
plaining the random label phenomenon [67]. This behavior follows naturally: noisier labels force
larger norm of loss gradients during training, which directly inflates Γ and generalization gap.

8 Conclusion and Future Work

In this paper, by combining the stability analysis and uniform convergence via Rademacher com-
plexity, we derive a generalization bound for GF that parallels classical Rademacher complexity
bounds for kernel methods by leveraging the data-dependent kernel LPK. Our results show that
NNs trained by GF may outperform a fixed kernel by learning data-dependent kernels. Our bound
also shows how the norm of the training loss gradients along the optimization trajectory affects the
generalization. Recently, Montanari & Urbani [43] applied dynamical mean–field theory (DMFT) to
two-layer NNs and showed that GF exhibits three distinct phases—an initial feature-learning regime
(T = O(1)), a prolonged generalization plateau, and a late overfitting phase (T = O(n)) (Fig.2). Our
bound (Theorem 5.2) reproduces similar qualitative behavior. Unlike the mean–field analysis, our
approach applies to general architectures and data distributions. A promising direction is to integrate
the DMFT’s phase-wise insights with our LPK framework to obtain finer generalization guarantees.
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For practice-relevant applications, by monitoring the evolution of our bound Γ during training, one
can predict the overfitting for overparameterized NNs and identify optimal stopping time for training
without access test data [3]. Our Γ can also serve as a proxy to compare model architectures in Neural
Architecture Search (NAS) [55, 40, 19, 42, 20].

For future directions, extending the analysis to GD and SGD with large learning rates can bring the
bound closer to practice. Second, our analysis uses a function class larger than GT when bounding
the Rademacher complexity. Refining this step could further tighten the bound.
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Appendices
Limitations and Impact Statement

Our analysis focuses on the generalization bound of the gradient flow algorithm. The behaviors of
other algorithms, such as gradient descent (GD), stochastic gradient descent (SGD), and Adam, are
still unclear. Extending the analysis to GD and SGD with large learning rates can bring the bound
closer to practice.

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted
here.

A Additional Experiments

In experiment (I), we train the two-layer NN with a learning rate of η = 0.01 for 8000 steps. The
training time is calculated by T = η×steps. The integration in Γ (3) is estimated by computing the
gradient norm at each training step and summing over the steps. For experiment (II) and Fig. 4, we
train Resnet 18 and Resnet 34 with a learning rate of 0.001 and batch size of 128 for 50 epochs. For
Fig. 5, we train a two-layer NN of 1000 hidden nodes with a learning rate of 0.01 and batch size 128
for 100 epochs. For Fig. 6, we train a two-layer NN of 1000 hidden nodes with a learning rate of 0.1
and batch size 200 for 10 epochs. Experiments are implemented with PyTorch [56] on 24G A5000
and V100 GPUs.

Fig. 4 and Fig. 5 have similar behavior with Fig. 1. The models first learn the features, then overfit.
Fig. 6 has less overfitting. Our bound correlates well with the true generalization gap in both cases
and for all models.

Figure 4: Experiment (II). ResNet 34 trained by SGD on full CIFAR-10.

Figure 5: Experiment (II). Two-layer NN trained by SGD on full CIFAR-10.
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Figure 6: Experiment (II). Two-layer NN trained by SGD on full MNIST.

B Uniform Stability of Gradient Flow

Lemma 4.3. Under Assumption 4.2, for any two data sets S and S(i), let wt = At(S) and
w′

t = At(S(i))) be the parameters trained from same initialization w0 = w′
0, then

∥wt −w′
t∥ ≤


2L
γn , LS(w) is γ-S.C.,
2Lt
n , LS(w) is convex,

2L
βn (e

βt − 1), LS(w) is non-convex.

Proof. Convex Case. Notice that

d ∥wt −w′
t∥

2

dt

=

〈
∂ ∥wt −w′

t∥
2

∂(wt −w′
t)

,
d (wt −w′

t)

dt

〉

= 2 (wt −w′
t)

⊤ d (wt −w′
t)

dt

= 2 (wt −w′
t)

⊤
(−∇wLS(wt) +∇wLS(i)(w′

t))

= 2 (wt −w′
t)

⊤
(−∇wLS(wt) +∇wLS(i)(wt)−∇wLS(i)(wt) +∇wLS(i)(w′

t))

=
2

n
(wt −w′

t)
⊤
(∇wℓ(wt, z

′
i)−∇wℓ(wt, zi))− 2 (wt −w′

t)
⊤
(∇wLS(i)(wt)−∇wLS(i)(w′

t))

≤ 2

n
(wt −w′

t)
⊤
(∇wℓ(wt, z

′
i)−∇wℓ(wt, zi)) (convexity)

≤ 4L

n
∥wt −w′

t∥ .

Since also
d∥wt−w′

t∥2

dt = 2 ∥wt −w′
t∥

d∥wt−w′
t∥

dt , we have

2 ∥wt −w′
t∥

d ∥wt −w′
t∥

dt
≤ 4L

n
∥wt −w′

t∥ .

When ∥wt −w′
t∥ = 0, the result already hold. When ∥wt −w′

t∥ > 0,

d ∥wt −w′
t∥

dt
≤ 2L

n
.

Solve the differential equation, we have

∥wt −w′
t∥ ≤ 2Lt

n
.

Thus, we complete the proof of the convex case.
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γ-Strongly Convex Case. Notice that

d ∥wt −w′
t∥

2

dt

= 2 (wt −w′
t)

⊤ d (wt −w′
t)

dt

= 2 (wt −w′
t)

⊤
(−∇wLS(wt) +∇wLS(i)(w′

t))

= 2 (wt −w′
t)

⊤
(−∇wLS(wt) +∇wLS(i)(wt)−∇wLS(i)(wt) +∇wLS(i)(w′

t))

=
2

n
(wt −w′

t)
⊤
(∇wℓ(wt, z

′
i)−∇wℓ(wt, zi))− 2 (wt −w′

t)
⊤
(∇wLS(i)(wt)−∇wLS(i)(w′

t))

≤ 4L

n
∥wt −w′

t∥ − 2γ ∥wt −w′
t∥

2

= 2 ∥wt −w′
t∥
(
2L

n
− γ ∥wt −w′

t∥
)
. (6)

Now we prove ∥wt −w′
t∥ ≤ 2L

γn by contradition. Recall ∥w0 −w′
0∥ = 0. Suppose that there is some

time T such that ∥wT −w′
T ∥ > 2L

γn , then there must be some T ′ < T such that ∥wT ′ −w′
T ′∥ = 2L

γn

and ∥wt −w′
t∥ is increasing at some point between [T ′, T ]. However, when ∥wt −w′

t∥ > 2L
γn ,

by (6),
d∥wt−w′

t∥2

dt < 0 and ∥wt −w′
t∥ must decrease. Therefore contradict and we must have

∥wt −w′
t∥ ≤ 2L

γn .

Non-Convex Case. First of all, we have that

d ∥wt −w′
t∥

2

dt

= 2 (wt −w′
t)

⊤ d (wt −w′
t)

dt

= 2 (wt −w′
t)

⊤
(−∇wLS(wt) +∇wLS(i)(w′

t))

= 2 (wt −w′
t)

⊤
(−∇wLS(wt) +∇wLS(i)(wt)−∇wLS(i)(wt) +∇wLS(i)(w′

t))

=
2

n
(wt −w′

t)
⊤
(∇wℓ(wt, z

′
i)−∇wℓ(wt, zi))− 2 (wt −w′

t)
⊤
(∇wLS(i)(wt)−∇wLS(i)(w′

t))

≤ 2

n
∥wt −w′

t∥ ∥∇wℓ(wt, z
′
i)−∇wℓ(wt, zi)∥+ 2 ∥wt −w′

t∥ ∥∇wLS(i)(wt)−∇wLS(i)(w′
t)∥

≤ 4L

n
∥wt −w′

t∥+ 2β ∥wt −w′
t∥

2
.

Since also
d∥wt−w′

t∥2

dt = 2 ∥wt −w′
t∥

d∥wt−w′
t∥

dt , we have

2 ∥wt −w′
t∥

d ∥wt −w′
t∥

dt
≤ 4L

n
∥wt −w′

t∥+ 2β ∥wt −w′
t∥

2
.

When ∥wt −w′
t∥ = 0, the result already hold. When ∥wt −w′

t∥ > 0,

d ∥wt −w′
t∥

dt
≤ 2L

n
+ β ∥wt −w′

t∥ .

From this we have
d ∥wt −w′

t∥
2L
nβ + ∥wt −w′

t∥
≤ βdt.

Solve the differential equation, we have

∥wt −w′
t∥ ≤ 2L

βn
(eβt − 1).
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C Concentration of Loss Path Kernels under Stability

In the following, we will only show the proofs for the convex case. The proofs for strongly convex
and non-convex cases are similar.
Lemma C.1. Let S and S(i) be two datasets that only differ in i-th data point. Under Assumption 4.2,
for any z, z′,

∣∣∣KT (z, z
′;S)− KT (z, z

′;S(i))
∣∣∣ ≤


4L2βT

γn , when LS(w) is γ-strongly convex,
2L2βT 2

n , when LS(w) is convex,
4L2

βn (eβT − βT − 1), when LS(w) is non-convex.

Proof. For convex loss, by the smoothness and Lemma 4.3, we have∥∥∇wℓ(At(S), z)−∇wℓ(At(S(i)), z)
∥∥ ≤ β

∥∥At(S)−At(S(i))
∥∥ ≤ β 2Lt

n for all z. Then

KT (z, z
′;S)− KT (z, z

′;S(i))

=

∫ T

0

⟨∇wℓ(At(S), z),∇wℓ(At(S), z′)⟩ −
〈
∇wℓ(At(S(i)), z),∇wℓ(At(S(i)), z′)

〉
dt

=

∫ T

0

⟨∇wℓ(At(S), z),∇wℓ(At(S), z′)⟩ −
〈
∇wℓ(At(S), z),∇wℓ(At(S(i)), z′)

〉
+
〈
∇wℓ(At(S), z),∇wℓ(At(S(i)), z′)

〉
−
〈
∇wℓ(At(S(i)), z),∇wℓ(At(S(i)), z′)

〉
dt

=

∫ T

0

〈
∇wℓ(At(S), z),∇wℓ(At(S), z′)−∇wℓ(At(S(i)), z′)

〉
+
〈
∇wℓ(At(S), z)−∇wℓ(At(S(i)), z),∇wℓ(At(S(i)), z′)

〉
dt

≤
∫ T

0

∥∇wℓ(At(S), z)∥
∥∥∥∇wℓ(At(S), z′)−∇wℓ(At(S(i)), z′)

∥∥∥
+
∥∥∥∇wℓ(At(S), z)−∇wℓ(At(S(i)), z)

∥∥∥∥∥∥∇wℓ(At(S(i)), z′)
∥∥∥ dt

≤
∫ T

0

Lβ
2Lt

n
+ β

2Lt

n
Ldt

=
2L2βT 2

n

Similarly KT (z, z
′;S(i)) − KT (z, z

′;S) ≤ 2L2βT 2

n . Thus
∣∣KT (z, z

′;S)− KT (z, z
′;S(i))

∣∣ ≤
2L2βT 2

n .

With this, we can show that KT (z, z
′;S ′) concentrate to its expectation.

Lemma 4.4. Under Assumption 4.2, for any fixed z, z′, with probability at least 1 − δ over the
randomness of S ′,

∣∣∣∣KT (z, z
′;S ′)− E

S′
KT (z, z

′;S ′)

∣∣∣∣ ≤


4L2βT
γ

√
ln 2

δ

2n , LS(w) is γ-S.C.,

2L2βT 2

√
ln 2

δ

2n , LS(w) is convex,
4L2

β (eβT − βT − 1)

√
ln 2

δ

2n , LS(w) is non-convex.

Proof. We prove for the convex case. Strongly convex and non-convex cases are similar.
Let S ′ and S ′(i) be two datasets that differ only in the i-th data point. By Lemma C.1,∣∣KT (z, z

′,S ′)− KT (z, z
′,S ′(i))

∣∣ ≤ 2L2βT 2

n . Then by McDiarmid’s inequality, for any δ ∈ (0, 1),
with probability at least 1− δ,∣∣∣∣KT (z, z

′;S ′)− E
S′
KT (z, z

′;S ′)

∣∣∣∣ ≤ 2L2βT 2

√
ln 2

δ

2n
.
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Similarly, we show that LPK on the training set concentrates to its expectation.
Lemma C.2. Under Assumption 4.2, with probability at least 1− δ over the randomness of S,∣∣∣∣∣

n∑
i=1

KT (zi, zi;S)− E
S

[
n∑

i=1

KT (zi, zi;S)

]∣∣∣∣∣
≤


(
L2T + 2L2βT

γ

)√
2n log 2

δ , LS(w) is γ-strongly convex,(
L2T + L2βT 2

)√
2n log 2

δ , LS(w) is convex,(
L2T + 2L2

β (eβT − βT − 1)
)√

2n log 2
δ , LS(w) is non-convex.

Proof. For any fixed j ∈ [n], let S and S(j) be two datasets that only differ in j-th data point.∣∣∣∣∣
n∑

i=1

KT (zi, zi,S)−
n∑

i=1

KT (zi, zi,S(j))

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i ̸=j

(
KT (zi, zi,S)− KT (zi, zi,S(j))

)
+ KT (zj , zj ,S)− KT (z

′
j , z

′
j ,S(j))

∣∣∣∣∣∣
≤
∑
i ̸=j

∣∣∣KT (zi, zi,S)− KT (zi, zi,S(j))
∣∣∣+ ∣∣∣KT (zj , zj ,S)− KT (z

′
j , z

′
j ,S(j))

∣∣∣
When j ̸= i, by Lemma C.1, for convex loss,∣∣∣KT (zi, zi,S)− KT (zi, zi,S(j))

∣∣∣ ≤ 2L2βT 2

n
.

When j = i, by the definition of LPK, it can be bound by the Lipschitz constant,∣∣∣KT (zj , zj ,S)− KT (z
′
j , z

′
j ,S(j))

∣∣∣ ≤ 2L2T.

Therefore ∣∣∣∣∣
n∑

i=1

KT (zi, zi,S)−
n∑

i=1

KT (zi, zi,S(j))

∣∣∣∣∣ ≤ (n− 1)
2L2βT 2

n
+ 2L2T

≤ 2L2βT 2 + 2L2T.

Then by McDiarmid’s inequality, for any δ ∈ (0, 1), with probability at least 1−δ over the randomness
of S , ∣∣∣∣∣

n∑
i=1

KT (zi, zi;S)− E
S

[
n∑

i=1

KT (zi, zi;S)

]∣∣∣∣∣ ≤ (L2T + L2βT 2
)√

2n log
2

δ
.

C.1 Bound the Trace Term

With the above results, we are able to bound the difference between
∑n

i=1 KT (zi, zi;S ′) and∑n
i=1 KT (zi, zi;S).

Lemma 4.5. Under Assumption 4.2, for two datasets S and S ′, with probability at least 1− δ over
the randomness of S and S ′,∣∣∣∣∣

n∑
i=1

KT (zi, zi;S)−
n∑

i=1

KT (zi, zi;S ′)

∣∣∣∣∣ ≤

Õ(T

√
n), when LS(w) is γ-strongly convex,

Õ(T 2
√
n), when LS(w) is convex,

Õ(eT
√
n), when LS(w) is non-convex.
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Proof. For any λ > 0,

E
S
eλ

∑
i KT (zi,zi;S) = E

S
E
S′
eλ

∑
i KT (z′

i,z
′
i;S

(i)) (replace zi with z′
i)

= E
S
E
S′
eλ

∑
i(KT (z′

i,z
′
i;S)+KT (z′

i,z
′
i;S

(i))−KT (z′
i,z

′
i;S))

If z′
i = zi, KT (z

′
i, z

′
i;S(i)) − KT (z

′
i, z

′
i;S) = 0. If z′

i ̸= zi, by Lemma C.1, for convex loss,∣∣KT (z
′
i, z

′
i;S(i))− KT (z

′
i, z

′
i;S)

∣∣ ≤ 2L2βT 2

n . Therefore,

E
S
eλ

∑
i KT (zi,zi;S) ≥ E

S
E
S′
eλ

∑
i KT (z′

i,z
′
i;S)−2λL2βT 2

= E
S
E
S′
eλ

∑
i KT (zi,zi;S′)−2λL2βT 2

. (exchange the name of S and S ′)

Hence, we have
E
S
E
S′
eλ

∑
i KT (zi,zi;S′) ≤ e2λL

2βT 2

E
S
eλ

∑
i KT (zi,zi;S).

By Markov’s inequality,

P

(
n∑

i=1

KT (zi, zi;S ′) ≥ t

)
= P

(
eλ

∑
i KT (zi,zi;S′) ≥ eλt

)
≤ ES ES′ eλ

∑
i KT (zi,zi;S′)

eλt

≤ e2λL
2βT 2

ES eλ
∑

i KT (zi,zi;S)

eλt
.

Set the RHS as δ, we have at least 1− δ over the randomness of S and S ′,
n∑

i=1

KT (zi, zi;S ′) ≤ 1

λ

(
lnE

S
eλ

∑n
i=1 KT (zi,zi;S) + ln

1

δ

)
+ 2L2βT 2

Take λ = 1, we have
n∑

i=1

KT (zi, zi;S ′) ≤ lnE
S
e
∑n

i=1 KT (zi,zi;S) + 2L2βT 2 + ln
1

δ
.

By Lemma C.2 and KT (zi, zi;S) ≤ L2T in worst case, for any δ′ ∈ (0, 1),

lnE
S
e
∑n

i=1 KT (zi,zi;S) ≤ ln e(1−δ′)(ES [
∑n

i=1 KT (zi,zi;S)]+(L2T+L2βT 2)
√

2n log 2
δ′ )+δ′nL2T

= (1− δ′)

(
E
S

[
n∑

i=1

KT (zi, zi;S)

]
+
(
L2T + L2βT 2

)√
2n log

2

δ′

)
+ δ′nL2T

Take δ′ = 1
n ,

lnE
S
e
∑n

i=1 KT (zi,zi;S) ≤ E
S

[
n∑

i=1

KT (zi, zi;S)

]
+
(
L2T + L2βT 2

)√
2n log 2n+ L2T

Combing with the above, with probability at least 1− δ,
n∑

i=1

KT (zi, zi;S ′) ≤ E
S

[
n∑

i=1

KT (zi, zi;S)

]
+
(
L2T + L2βT 2

)√
2n log 2n+ L2T + 2L2βT 2 + ln

1

δ

By Lemma C.2 and a union bound, with probability at least 1− δ,
n∑

i=1

KT (zi, zi;S ′) ≤
n∑

i=1

KT (zi, zi;S) +
(
L2T + L2βT 2

)(√
2n log 2n+

√
2n log

4

δ

)
+ L2T

+ 2L2βT 2 + ln
2

δ

=

n∑
i=1

KT (zi, zi;S) + Õ(T 2
√
n).
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Because of the symmetry between S and S ′, we also have with probability at least 1− δ,
n∑

i=1

KT (zi, zi;S) ≤
n∑

i=1

KT (zi, zi;S ′) + Õ(T 2
√
n).

D Proofs for the Generalization Bound

The following decoupling inequality is a slight variation of a result found for instance in Vershynin
[63].
Lemma D.1 (Decoupling (Theorem 2.4 in [34])). Let F be a convex function, D a collection of
matrices and σ′ be an independent copy of σ, then

E sup
D∈D

F

∑
i ̸=j

σiσjDij

 ≤ E sup
D∈D

F

4
∑
i ̸=j

σiσ
′
jDij

 .

Lemma D.2 (Hoeffding’s inequality for Rademacher random variables (Theorem 2.2.5 in [63])). Let
σ1, . . . , σn be independent Rademacher random variables, and a = (a1, . . . , an) ∈ Rn, then

P

(∣∣∣∣∣
n∑

i=1

aiσi

∣∣∣∣∣ ≥ t

)
≤ 2e

− t2

2∥a∥22 .

Lemma 5.1. Recalling the Rademacher complexity in Definition 3.1, we have

R̂S(GT ) ≤
B

n

√√√√ sup
KT (·,·;S′)∈KT

n∑
i=1

KT (zi, zi;S ′) + 4∆
√
6n ln 2n+ 8∆,

where GT and KT are defined by (1) and Section 5 respectively.

Proof. Recall

GT =
{
ℓ(AT (S ′), z) =

n∑
i=1

− 1

n
KT (z, z

′
i;S ′) + ℓ(w0, z) : KT (·, ·;S ′) ∈ KT

}
,

KT =
{
KT (·, ·;S ′) :

1

n2

∑
i,j

KT (z
′
i, z

′
j ;S ′) ≤ B2,S ′ ∈ S′ ⊆ supp(µ⊗n), sup

z,z′
|KT (z, z

′;S ′)| ≤ ∆
}
.

Suppose KT (z, z
′;S ′) = ⟨ΦS′(z),ΦS′(z′)⟩. Define

G′
T = {g(z) = ⟨β,ΦS′(z)⟩+ ℓ(w0, z) : ∥β∥ ≤ B,KT (·, ·;S ′) ∈ KT }. (7)

We first show GT ⊆ G′
T . For ∀g(z) ∈ GT ,

g(z) =

n∑
i=1

− 1

n
KT (z, z

′
i;S ′) + ℓ(w0, z)

=

n∑
i=1

− 1

n
⟨ΦS′(z),ΦS′(z′

i)⟩+ ℓ(w0, z)

=

〈
ΦS′(z),

n∑
i=1

− 1

n
ΦS′(z′

i)

〉
+ ℓ(w0, z)

= ⟨βS′ ,ΦS′(z)⟩+ ℓ(w0, z),

where we denote βS′ =
∑n

i=1 −
1
nΦS′(z′

i). By definition of GT , ∥βS′∥2 =
1
n2

∑
i,j KT (z

′
i, z

′
j ;S ′) ≤ B2. Thus g(z) ∈ G′

T . Since ∀g(z) ∈ GT , g(z) ∈ G′
T , GT ⊆ G′

T .
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G′
T is strictly larger than GT because βS′ is a fixed vector for a fixed KT (·, ·;S ′) while β in G′

T is a
vector of any direction. Then by the property of Rademacher complexity,

R̂S(GT ) ≤ R̂S(G′
T )

=
1

n
E
σ

[
sup
g∈G′

T

n∑
i=1

σig(zi)

]

=
1

n
E
σ

[
sup

KT (·,·;S′)∈KT

n∑
i=1

σi (⟨β,ΦS′(zi)⟩+ ℓ(w0, zi))

]

=
1

n
E
σ

[
sup

KT (·,·;S′)∈KT

n∑
i=1

σi ⟨β,ΦS′(zi)⟩

]
+

1

n
E
σ

[
sup

KT (·,·;S′)∈KT

n∑
i=1

σiℓ(w0, zi)

]

=
1

n
E
σ

[
sup

KT (·,·;S′)∈KT

〈
β,

n∑
i=1

σiΦS′(zi)

〉]
.

By the dual norm property, we have

1

n
E
σ

[
sup

KT (·,·;S′)∈KT

〈
β,

n∑
i=1

σiΦS′(zi)

〉]

=
B

n
E
σ

[
sup

KT (·,·;S′)∈KT

∥∥∥∥∥
n∑

i=1

σiΦS′(zi)

∥∥∥∥∥
]

=
B

n
E
σ

 sup
KT (·,·;S′)∈KT

 n∑
i=1

n∑
j=1

σiσjKT (zi, zj ;S ′)

 1
2


=

B

n
E
σ


 sup

KT (·,·;S′)∈KT

n∑
i=1

n∑
j=1

σiσjKT (zi, zj ;S ′)

 1
2

 .

Then by Jensen’s inequality,

B

n
E
σ


 sup

KT (·,·;S′)∈KT

n∑
i=1

n∑
j=1

σiσjKT (zi, zj ;S ′)

 1
2


≤ B

n

E
σ

 sup
KT (·,·;S′)∈KT

n∑
i=1

n∑
j=1

σiσjKT (zi, zj ;S ′)

 1
2

(Jensen’s inequality)

=
B

n

E
σ

 sup
KT (·,·;S′)∈KT

 n∑
i=1

KT (zi, zi;S ′) +
∑
i ̸=j

σiσjKT (zi, zj ;S ′)

 1
2

≤ B

n

E
σ

 sup
KT (·,·;S′)∈KT

n∑
i=1

KT (zi, zi;S ′) + sup
KT (·,·;S′)∈KT

∑
i ̸=j

σiσjKT (zi, zj ;S ′)

 1
2

=
B

n

 sup
KT (·,·;S′)∈KT

n∑
i=1

KT (zi, zi;S ′) + E
σ

 sup
KT (·,·;S′)∈KT

∑
i ̸=j

σiσjKT (zi, zj ;S ′)

 1
2

.

For the second term above, by the decoupling in Lemma D.1, we can obtain that

E
σ

 sup
KT (·,·;S′)∈KT

∑
i ̸=j

σiσjKT (zi, zj ;S ′)

 ≤ E
σ,σ′

 sup
KT (·,·;S′)∈KT

4

n∑
i=1

σi

∑
j ̸=i

σ′
jKT (zi, zj ;S ′)

 .
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Since |KT (zi, zj ;S ′)| ≤ ∆, by Lemma D.2, for any fixed i, with probability at least 1− δ′,∣∣∣∣∣∣
∑
j ̸=i

σ′
jKT (zi, zj ;S ′)

∣∣∣∣∣∣ ≤ ∆

√
2n ln

2

δ′
.

By a union bound, for all i ∈ [n], we know that∣∣∣∣∣∣
∑
j ̸=i

σ′
jKT (zi, zj ;S ′)

∣∣∣∣∣∣ ≤ ∆

√
2n ln

2n

δ′
.

Conditioned on this, by Lemma D.2, with probability at least (1− δ′′)(1− δ′),
n∑

i=1

σi

∑
j ̸=i

σ′
jKT (zi, zj ;S ′) ≤ 2∆n

√
ln

2n

δ′
ln

2

δ′′
.

For the left 1− (1− δ′′)(1− δ′) portion, in the worst case we have
n∑

i=1

σi

∑
j ̸=i

σ′
jKT (zi, zj ;S ′) ≤ n(n− 1)∆.

Combining these two cases, we can bound the expectation as

E
σ

 sup
KT (·,·;S′)∈KT

∑
i ̸=j

σiσjKT (zi, zj ;S ′)


≤ E

σ,σ′

 sup
KT (·,·;S′)∈KT

4

n∑
i=1

σi

∑
j ̸=i

σ′
jKT (zi, zj ;S ′)


≤ (1− δ′′)(1− δ′)4∆

√
2n ln

2n

δ′
+ (δ′ + δ′′ − δ′δ′′)4n(n− 1)∆

≤ 4∆
√
6n ln 2n+ 8∆ (take δ′ = δ′′ = 1

n2 )

Therefore, in total we have

R̂S(GT ) ≤ R̂S(G′
T ) ≤

B

n

√√√√ sup
KT (·,·;S′)∈KT

n∑
i=1

KT (zi, zi;S ′) + 4∆
√
6n ln 2n+ 8∆.

Theorem 5.2. Under Assumption 4.2, with probability at least 1− δ over the randomness of S,

Lµ(AT (S))−LS(AT (S)) ≤
2

n2

√√√√ n∑
i=1

n∑
j=1

KT (zi, zj ;S)

√√√√ n∑
i=1

KT (zi, zi;S)+3

√
ln(4n/δ)

2n
+ ϵ,

where ϵ =


Õ(

√
T

n
3
4
), S.C.,

min
{
Õ( T

n
3
4
), O(

√
T
n )
}
, convex,

min

{
Õ( e

T
2

n
3
4
), O(

√
T
n )

}
, non-convex.

Proof. Since |KT (z, z;S)| ≤ L2T by the Lipschitz assumption, we can take ∆ = L2T such that for
all S ′ ∈ supp(µ⊗n),

sup
z,z′

|KT (z, z
′;S ′)| ≤ ∆.
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By Lemma 4.5, we know with probability at least 1− δ over the randomness of S and S ′,
n∑

i=1

KT (zi, zi;S ′) ≤ κ ≜
n∑

i=1

KT (zi, zi;S) + Õ(T 2
√
n),

for convex loss. Conditioned on this, we can find a set S′ ⊆ supp(µ⊗n) for dataset S ′ such that

sup
KT (·,·;S′)∈KT

n∑
i=1

KT (zi, zi;S ′) ≤ κ.

Also, take B2 = 1
n2

∑
i,j KT (zi, zj ;S). Therefore, with probability at least 1 − δ, we have

ℓ(AT (S), z) ∈ GB
T , where GB

T denotes GT taking values of B,∆, and S′.

Note B2 = 1
n2

∑
i,j KT (zi, zj ;S) =

∫ T

0
∥∇wLS(wt)∥2 dt = LS(w0) − LS(wT ) ≤ 1. Since

0 ≤ B ≤ 1, let Bi =
1
n ,

2
n , . . . , 1. We have simultaneously for every Bi that

R̂S(GBi

T ) ≤ Bi

n

√
κ+ 4∆

√
6n ln 2n+ 8∆.

Let B∗
i be the number such that

1

n

√√√√ n∑
i=1

n∑
j=1

KT (zi, zj ;S) ≤ B∗
i ≤ 1

n

√√√√ n∑
i=1

n∑
j=1

KT (zi, zj ;S) +
1

n
.

We have

R̂S(G
B∗

i

T )

≤ B∗
i

n

√
κ+ 4∆

√
6n ln 2n+ 8∆

≤ 1

n

 1

n

√√√√ n∑
i=1

n∑
j=1

KT (zi, zj ;S) +
1

n

√√√√ n∑
i=1

KT (zi, zi;S) + Õ(T 2
√
n) + Õ(T

√
n)

≤ 1

n

 1

n

√√√√ n∑
i=1

n∑
j=1

KT (zi, zj ;S) +
1

n

√√√√ n∑
i=1

KT (zi, zi;S) + Õ(Tn
1
4 )


≤ 1

n2

√√√√ n∑
i=1

n∑
j=1

KT (zi, zj ;S)

√√√√ n∑
i=1

KT (zi, zi;S) + Õ(
T

n
3
4

).

Since KT (z, z;S) ≤ L2T by the Lipschitz assumption, we also have

sup
KT (·,·;S′)∈KT

n∑
i=1

KT (zi, zi;S ′) ≤
n∑

i=1

KT (zi, zi;S) + L2Tn.

From this, we can conclude that

R̂S(G
B∗

i

T ) ≤ 1

n2

√√√√ n∑
i=1

n∑
j=1

KT (zi, zj ;S)

√√√√ n∑
i=1

KT (zi, zi;S) +O(

√
T

n
).

Therefore,

R̂S(G
B∗

i

T ) ≤ 1

n2

√√√√ n∑
i=1

n∑
j=1

KT (zi, zj ;S)

√√√√ n∑
i=1

KT (zi, zi;S) + min

{
Õ(

T

n
3
4

), O(

√
T

n
)

}
.
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By Theorem 3.2 and applying a union bound over Bi =
1
n ,

2
n , . . . , 1, with probability at least 1− δ

over the randomness of S, for all Bi,

sup
g∈GBi

T

{Lµ(g)− LS(g)} ≤ 2R̂S(GBi

T ) + 3

√
ln(2n/δ)

2n
.

Finally, taking a union bound, we know that with probability at least 1 − 2δ, for some B∗
i , the

following three conditions hold:

ℓ(AT (S), z) ∈ GB∗
i

T ,

R̂S(G
B∗

i

T ) ≤ 1

n2

√√√√ n∑
i=1

n∑
j=1

KT (zi, zj ;S)

√√√√ n∑
i=1

KT (zi, zi;S) + min

{
Õ(

T

n
3
4

), O(

√
T

n
)

}
,

sup

g∈G
B∗

i
T

{Lµ(g)− LS(g)} ≤ 2R̂S(G
B∗

i

T ) + 3

√
ln(2n/δ)

2n
.

These together imply that with probability at least 1− δ, we have

Lµ(AT (S))− LS(AT (S)) ≤
2

n2

√√√√ n∑
i=1

n∑
j=1

KT (zi, zj ;S)

√√√√ n∑
i=1

KT (zi, zi;S)

+ 3

√
ln(4n/δ)

2n
+min

{
Õ(

T

n
3
4

), O(

√
T

n
)

}
.

E A lower bound of R̂S(G ′
T )

Here we give a lower bound of R̂S(G′
T ). Similar lower bounds for a linear model were proved in

[8, 11] without the supremum. Our lower bound matches the upper bound, which shows the bound is
nearly optimal for R̂S(G′

T ).
Theorem E.1. Recall the function class G′

T defined in (7). We have

R̂S(G′
T ) ≥

B√
2n

sup
KT (·,·;S′)∈KT

√√√√ n∑
i=1

KT (zi, zi;S ′).

Proof. Recall
G′
T = {g(z) = ⟨β,ΦS′(z)⟩+ ℓ(w0, z) : ∥β∥ ≤ B,KT (·, ·;S ′) ∈ KT }.

The Rademacher complexity of G′
T is

R̂S(G′
T ) =

1

n
E
σ

[
sup
g∈G′

T

n∑
i=1

σig(zi)

]

=
1

n
E
σ

[
sup

KT (·,·;S′)∈KT

sup
∥β∥≤B

n∑
i=1

σi (⟨β,ΦS′(zi)⟩+ ℓ(w0, zi))

]

=
1

n
E
σ

[
sup

KT (·,·;S′)∈KT

sup
∥β∥≤B

〈
β,

n∑
i=1

σiΦS′(zi)

〉]
+ E

σ

[
n∑

i=1

σiℓ(w0, zi)

]

=
1

n
E
σ

[
sup

KT (·,·;S′)∈KT

sup
∥β∥≤B

〈
β,

n∑
i=1

σiΦS′(zi)

〉]

=
B

n
E
σ

[
sup

KT (·,·;S′)∈KT

∥∥∥∥∥
n∑

i=1

σiΦS′(zi)

∥∥∥∥∥
]
,
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where in the last line we apply the dual norm property. Then by the subadditivity of the supremum,
we have

R̂S(G′
T ) ≥

B

n
sup

KT (·,·;S′)∈KT

E
σ

[∥∥∥∥∥
n∑

i=1

σiΦS′(zi)

∥∥∥∥∥
]

≥ B

n
sup

KT (·,·;S′)∈KT

∥∥∥∥∥Eσ
[∣∣∣∣∣

n∑
i=1

σiΦS′(zi)

∣∣∣∣∣
]∥∥∥∥∥ (norm sub-additivity)

=
B

n
sup

KT (·,·;S′)∈KT

∑
j∈N+

(
E
σ

[∣∣∣∣∣
n∑

i=1

σi[ΦS′(zi)]j

∣∣∣∣∣
])2

 1
2

(by the definition of 2-norm)

≥ B

n
sup

KT (·,·;S′)∈KT

∑
j∈N+

 1√
2

∣∣∣∣∣
n∑

i=1

[ΦS′(zi)]
2
j

∣∣∣∣∣
1
2

2


1
2

(Khintchine-Kahane inequality)

=
B√
2n

sup
KT (·,·;S′)∈KT

∑
j∈N+

∣∣∣∣∣
n∑

i=1

[ΦS′(zi)]
2
j

∣∣∣∣∣
 1

2

=
B√
2n

sup
KT (·,·;S′)∈KT

 n∑
i=1

∑
j∈N+

[ΦS′(zi)]
2
j

 1
2

(rearrange the summations)

=
B√
2n

sup
KT (·,·;S′)∈KT

(
n∑

i=1

∥ΦS′(zi)∥2
) 1

2

=
B√
2n

sup
KT (·,·;S′)∈KT

√√√√ n∑
i=1

KT (zi, zi;S ′).

Hence, we complete the proof of this theorem.
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F Stochastic Gradient Flow

In the previous section, we derived a generalization bound for NNs trained from full-batch gradient
flow. Here we extend our analysis to stochastic gradient flow and derive a corresponding generalization
bound. To start with, we recall the dynamics of stochastic gradient flow (SGD with infinitesimal step
size).

dwt

dt
= −∇wLSt

(wt) = − 1

m

∑
i∈St

∇wℓ(wt, zi)

where St ⊆ {1, . . . , n} be the indices of batch data used in time interval [t, t+ 1] and |St| = m be
the batch size. Suppose each St is uniformly sampled without replacement from {1, . . . , n}. We
recall the connection between the loss dynamics of stochastic gradient flow and a general kernel
machine in [20].

Theorem F.1 (Theorem 4 in [20]). Suppose w(T ) = wT is a solution of stochastic gradient flow at
time T ∈ N with initialization w(0) = w0. Then for any z ∈ Z ,

ℓ(wT , z) =

T−1∑
t=0

∑
i∈St

− 1

m
Kt,t+1(z, zi;S) + ℓ(w0, z),

where Kt,t+1(z, zi;S) =
∫ t+1

t
⟨∇wℓ(wt, z),∇wℓ(wt, zi)⟩ dt is the LPK over time interval [t, t+1].

F.1 Stability of Stochastic Gradient Flow (SGF)

Lemma F.2. Suppose LS(w) is convex for any S and Assumption 4.2 holds. For any two data sets
S and S(i), let wt = At(S) and w′

t = At(S(i))) be the parameters trained with SGF from same
initialization w0 = w′

0, then

E
At

∥wt −w′
t∥ ≤ 2Lt

n
.

where the expectation is taken over the randomness of sampling the data batches St.

Proof. Notice that

d ∥wt −w′
t∥

2

dt

=

〈
∂ ∥wt −w′

t∥
2

∂(wt −w′
t)

,
d (wt −w′

t)

dt

〉

= 2 (wt −w′
t)

⊤ d (wt −w′
t)

dt

= 2 (wt −w′
t)

⊤
(
−∇wLSt

(wt) +∇wLS(i)
t
(w′

t)
)

Since St and S(i)
t are uniformly sampled without replacement, the probability that St and S(i)

t are
different is m

n . When St = S(i)
t , by convexity,

2 (wt −w′
t)

⊤
(−∇wLSt(wt) +∇wLSt(w

′
t)) ≤ 0.

Since also
d∥wt−w′

t∥2

dt = 2 ∥wt −w′
t∥

d∥wt−w′
t∥

dt , we have

2 ∥wt −w′
t∥

d ∥wt −w′
t∥

dt
≤ 0.

Solve the differential equation for [T − 1, T ], we have

∥wT −w′
T ∥ ≤

∥∥wT−1 −w′
T−1

∥∥ .
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When St and S ′
t differ with one data point,

2 (wt −w′
t)

⊤
(
−∇wLSt(wt) +∇wLS(i)

t
(w′

t)
)

= 2 (wt −w′
t)

⊤
(
−∇wLSt(wt) +∇wLS(i)

t
(wt)−∇wLS(i)

t
(wt) +∇wLS(i)

t
(w′

t)
)

=
2

m
(wt −w′

t)
⊤
(∇wℓ(wt, z

′
i)−∇wℓ(wt, zi))− 2 (wt −w′

t)
⊤
(
∇wLS(i)

t
(wt)−∇wLS(i)

t
(w′

t)
)

≤ 2

m
(wt −w′

t)
⊤
(∇wℓ(wt, z

′
i)−∇wℓ(wt, zi)) (convexity)

≤ 4L

m
∥wt −w′

t∥ .

Since also
d∥wt−w′

t∥2

dt = 2 ∥wt −w′
t∥

d∥wt−w′
t∥

dt , we have

2 ∥wt −w′
t∥

d ∥wt −w′
t∥

dt
≤ 4L

m
∥wt −w′

t∥ .

When ∥wt −w′
t∥ = 0, the result already hold. When ∥wt −w′

t∥ > 0,

d ∥wt −w′
t∥

dt
≤ 2L

m
.

Solve the differential equation for [T − 1, T ], we have

∥wT −w′
T ∥ ≤ 2L

m
+
∥∥wT−1 −w′

T−1

∥∥ .
Therefore, considering the two cases that whether St = S(i)

t ,

E
AT

∥wT −w′
T ∥ ≤ m

n
· 2L
m

+ (1− m

n
) · 0 + E

AT

∥∥wT−1 −w′
T−1

∥∥
=

2L

n
+ E

AT

∥∥wT−1 −w′
T−1

∥∥
=

2LT

n
.

Thus, we complete the proof of this lemma.

The proofs for strongly convex and nonconvex cases are analogous to those of full-batch gradient
flow. Consequently, we omit the proof for strongly convex and proceed directly with the proof for the
nonconvex case.
Lemma F.3. Suppose LS(w) is γ-strongly convex for any S and Assumption 4.2 holds. For any two
data sets S and S(i), let wt = At(S) and w′

t = At(S(i))) be the parameters trained with SGF from
same initialization w0 = w′

0, then

E
At

∥wt −w′
t∥ ≤ 2L

γn
.

where the expectation is taken over the randomness of sampling the data batches St.

Lemma F.4. Suppose LS(w) is non-convex for any S and Assumption 4.2 holds. For any two data
sets S and S(i), let wt = At(S) and w′

t = At(S(i))) be the parameters trained with SGF from same
initialization w0 = w′

0, then

E
At

∥wt −w′
t∥ ≤ 2L

βn
(eβt − 1).

where the expectation is taken over the randomness of sampling the data batches St.
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Proof. Notice that

d ∥wt −w′
t∥

2

dt

=

〈
∂ ∥wt −w′

t∥
2

∂(wt −w′
t)

,
d (wt −w′

t)

dt

〉

= 2 (wt −w′
t)

⊤ d (wt −w′
t)

dt

= 2 (wt −w′
t)

⊤
(
−∇wLSt(wt) +∇wLS(i)

t
(w′

t)
)
.

When St = S(i)
t , by the smoothness,

2 (wt −w′
t)

⊤
(−∇wLSt

(wt) +∇wLSt
(w′

t))

≤ 2 ∥wt −w′
t∥ ∥−∇wLSt(wt) +∇wLSt(w

′
t)∥

≤ 2β ∥wt −w′
t∥

2
.

Again, because of
d∥wt−w′

t∥2

dt = 2 ∥wt −w′
t∥

d∥wt−w′
t∥

dt , we have

d ∥wt −w′
t∥

dt
≤ β ∥wt −w′

t∥ .

When St and S ′
t differ with one data point, by a similar argument as the full-batch gradient flow, we

have
d ∥wt −w′

t∥
dt

≤ 4L

m
+ 2β ∥wt −w′

t∥ .

Combining the two cases, we get
dEAT

∥wt −w′
t∥

dt
= E

AT

d ∥wt −w′
t∥

dt

≤ m

n

(
4L

m
+ 2β E

AT

∥wt −w′
t∥
)
+ (1− m

n
) · β E

AT

∥wt −w′
t∥

=
4L

n
+ 2β E

AT

∥wt −w′
t∥ .

Solving the ODE, we get the result.

F.2 Concentrations of LPKs under SGF

For SGF, we can prove similar concentrations of LPKs as Lemma C.1, Lemma 4.4, Lemma C.2,
and Lemma 4.5. The proofs are basically the same by simply replacing KT (z, z

′;S) with
EAT

Kt,t+1(z, z
′;S). Hence, we only present the lemmas below. Note here we consider Kt,t+1

instead of KT (z, z
′;S).

Lemma F.5. Let S and S(i) be two datasets that only differ in i-th data point. Under Assumption 4.2,
for any z, z′,∣∣∣∣ EAT

[
Kt,t+1(z, z

′;S)− Kt,t+1(z, z
′;S(i))

]∣∣∣∣ ≤


4L2β
γn , γ-strongly convex,

2L2β(2t+1)
n , convex,

4L2

βn (eβ(t+1) − eβt − β), non-convex.

Lemma F.6. Under Assumption 4.2, for any fixed z, z′, with probability at least 1 − δ over the
randomness of S ′,

∣∣∣∣ EAT

[
Kt,t+1(z, z

′;S ′)− E
S′
Kt,t+1(z, z

′;S ′)

]∣∣∣∣ ≤


4L2β
γ

√
ln 2

δ

2n , γ-strongly convex,

2L2β(2t+ 1)

√
ln 2

δ

2n , convex,
4L2

β (eβ(t+1) − eβt − β)

√
ln 2

δ

2n , non-convex.
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Lemma F.7. Under Assumption 4.2, with probability at least 1− δ over the randomness of S,∣∣∣∣∣ EAT

[
n∑

i=1

Kt,t+1(zi, zi;S)− E
S

[
n∑

i=1

Kt,t+1(zi, zi;S)

]]∣∣∣∣∣
≤


(
L2 + 2L2β

γ

)√
2n log 2

δ , LS(w) is γ-strongly convex,(
L2 + L2β(2t+ 1)

)√
2n log 2

δ , LS(w) is convex,(
L2 + 2L2

β (eβ(t+1) − eβt − β)
)√

2n log 2
δ , LS(w) is non-convex.

Lemma F.8. Under Assumption 4.2, for two datasets S and S ′, with probability at least 1− δ over
the randomness of S and S ′,∣∣∣∣∣ EAT

[
n∑

i=1

Kt,t+1(zi, zi;S)−
n∑

i=1

Kt,t+1(zi, zi;S ′)

]∣∣∣∣∣ ≤

Õ(

√
n), γ-strongly convex,

Õ(t
√
n), convex,

Õ(et
√
n), non-convex.

F.3 Generalization bound of SGF

Given a sequence of S0, . . . ,ST−1, define the function class of SGF by

GT ≜
{
ℓ(AT (S ′), z) =

T−1∑
t=0

∑
i∈St

− 1

m
Kt,t+1(z, z

′
i;S ′) + ℓ(w0, z) : K(·, ·;S ′) ∈ KT

}
where

KT =
{
(K0,1(·, ·;S ′), · · · ,KT−1,T (·, ·;S ′)) :S ′ ∈ supp(µ⊗n),

1

m2

∑
i,j∈St

Kt,t+1(z
′
i, z

′
j ;S ′) ≤ B2

t , |Kt,t+1(·, ·;S ′)| ≤ ∆
}
.

Lemma F.9. Given a sequence of S0, . . . ,ST−1, we have

R̂S(GT ) ≤
T−1∑
t=0

Bt

n

(
sup

K(·,·;S′)∈KT

n∑
i=1

Kt,t+1(zi, zi;S ′) + 4∆
√
6n ln 2n+ 8∆

) 1
2

.

Proof. For t = 0, 1, · · · , T − 1, let

Gt = {g(z) =
∑
i∈St

− 1

m
Kt,t+1(z, z

′
i;S ′) : K(·, ·;S ′) ∈ KT },

Then we have
GT ⊆ G0 ⊕ G1 ⊕ · · · ⊕ GT−1 ⊕ {ℓ(w0, z)} .

Since the set on the RHS involves combinations of kernels induced from distinct training set S ′, it is
a strictly larger set than the LHS. Apply Lemma 5.1 bound for each Gt on S,

R̂S(Gt) ≤
Bt

n

(
sup

K(·,·;S′)∈St

n∑
i=1

Kt,t+1(zi, zi;S ′) + 4∆
√
6n ln 2n+ 8∆

) 1
2

. (8)

By the monotonicity and linear combination of Rademacher complexity [41] and take in (8),

R̂S(GT ) ≤ R̂S(G0 ⊕ G1 ⊕ · · · ⊕ GT−1 ⊕ {ℓ(w0, z)})

=

T−1∑
t=0

R̂S(Gt) + R̂S({ℓ(w0, z)})

≤
T−1∑
t=0

Bt

n

(
sup

K(·,·;S′)∈KT

n∑
i=1

Kt,t+1(zi, zi;S ′) + 4∆
√
6n ln 2n+ 8∆

) 1
2

.
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Theorem 5.4. Under Assumption 4.2, for a fixed sequence S0, . . . ,ST−1, with probability at least
1− δ over the randomness of S, the generalization gap of SGF defined by (4) is upper bounded by

Lµ(AT (S))− LS(AT (S)) ≤
2

n

T−1∑
t=0

√
1

m2

∑
i,j∈St

Kt,t+1(zi, zj ;S)

√√√√ n∑
i=1

Kt,t+1(zi, zi;S) + Õ(
T√
n
).

Proof. Let ∆ = L2 in Lemma F.9. Take B2
t = 1

m2

∑
i,j∈St

Kt,t+1(zi, zj ;S) = LS(wt) −
LS(wt+1). Then ℓ(AT (S), z) ∈ GB0,...,BT−1

T , where GB0,...,BT−1

T denotes GT taking values of
B0, . . . , BT−1.

By Lipchitz assumption,

sup
K(·,·;S′)∈KT

n∑
i=1

Kt,t+1(zi, zi;S ′) ≤
n∑

i=1

Kt,t+1(zi, zi;S) + L2n.

Since 0 ≤ Bt ≤ 1, let Bi
t = 1

n ,
2
n , . . . , 1, t = 0, . . . , T − 1. We have simultaneously for every

Bi
0, . . . , B

i
T−1 that

R̂S(G
Bi

0,...,B
i
T−1

T ) ≤
T−1∑
t=0

Bi
t

n

√√√√ n∑
i=1

Kt,t+1(zi, zi;S) + L2n+ 4L2
√
6n ln 2n+ 8L2.

Let Bi∗
t be the number such that√

1

m2

∑
i,j∈St

Kt,t+1(zi, zj ;S) ≤ Bi∗
t ≤

√
1

m2

∑
i,j∈St

Kt,t+1(zi, zj ;S) +
1

n
.

We have

R̂S(G
Bi∗

0 ,...,Bi∗
T−1

T )

≤
T−1∑
t=0

Bi∗
t

n

√√√√ n∑
i=1

Kt,t+1(zi, zi;S) +O(L2n)

≤
T−1∑
t=0

1

n

√ 1

m2

∑
i,j∈St

Kt,t+1(zi, zj ;S) +
1

n

√√√√ n∑
i=1

Kt,t+1(zi, zi;S) +O(L2n)

=

T−1∑
t=0

1

n

√ 1

m2

∑
i,j∈St

Kt,t+1(zi, zj ;S)

√√√√ n∑
i=1

Kt,t+1(zi, zi;S) +O(
T√
n
).

By Theorem 3.2 and applying a union bound over Bi
t = 1

n ,
2
n , . . . , 1, t = 0, . . . , T − 1, with

probability at least 1− δ, for all Bt
i ,

sup

g∈G
Bi

0,...,Bi
T−1

T

{Lµ(g)− LS(g)} ≤ 2R̂S(G
Bi

0,...,B
i
T−1

T ) + 3

√
T lnn+ ln(2/δ)

2n
.

These together imply that with probability at least 1− δ,

Lµ(AT (S))− LS(AT (S)) ≤
2

n

T−1∑
t=0

√
1

m2

∑
i,j∈St

Kt,t+1(zi, zj ;S)

√√√√ n∑
i=1

Kt,t+1(zi, zi;S) + Õ(
T√
n
).
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G Proofs for Case Study

G.1 Overparameterized neural network under NTK regime

Recall the definition of NTK Θ̂(w;x,x′) = ∇wf(w,x)∇wf(w,x′)⊤ ∈ Rk×k for a neural network
function f(w,x). We now prove our bound for the NTK case.
Corollary 6.1. Suppose that λmax(Θ̂(wt;X,X)) ≤ λmax and λmin(Θ̂(wt;X,X)) ≥ λmin > 0 for
t ∈ [0, T ]. Then

Γ ≤

√
2λmax · ∥f(w0,X)− y∥2

λmin · n
(1− e−

2λmin
n T ).

Proof. Notice by the chain rule,
n∑

i=1

∥∇wℓ(wt, zi)∥2 =

n∑
i=1

∇f ℓ(wt, zi)
⊤Θ̂(wt;xi,xi)∇f ℓ(wt, zi).

Therefore,

Γ =
2

n

√
LS(w0)− LS(wT )

√√√√ n∑
i=1

∫ T

0

∇f ℓ(wt, zi)⊤Θ̂(wt;xi,xi)∇f ℓ(wt, zi)dt

Since the loss is bounded in [0, 1], LS(w0) − LS(wT ) ≤ 1. When using a mean squre loss
LS(wt) =

1
2n ∥f(wt,X)− y∥2 and ℓ(w, z) = 1

2 (f(w,x)− y)2,
n∑

i=1

∥∇wℓ(wt, zi)∥2 =

n∑
i=1

Θ̂(wt;xi,xi) (f(wt,xi)− yi)
2

≤ max
i∈[n]

Θ̂(wt;xi,xi) ∥f(wt,X)− y∥2

≤ λmax(Θ̂(wt;X,X)) ∥f(wt,X)− y∥2 .

In the case that the smallest eigenvalue of NTK λmin(Θ̂(wt;X,X)) ≥ λmin > 0 over the training,
the loss converges exponentially ∥f(wt,X)− y∥2 ≤ e−

2λmin
n t ∥f(w0,X)− y∥2. We can see from

d ∥f(wt,X)− y∥2

dt
= 2 (f(wt,X)− y)

⊤ df(wt,X)

dt

= 2 (f(wt,X)− y)
⊤ ∇wf(wt,X)

dwt

dt

= −2 (f(wt,X)− y)
⊤ ∇wf(wt,X)∇wLS(wt)

= −2 (f(wt,X)− y)
⊤ ∇wf(wt,X)∇wf(wt,X)⊤

1

n
(f(wt,X)− y)

= − 2

n
(f(wt,X)− y)

⊤
Θ̂(wt;X,X) (f(wt,X)− y)

≤ −2λmin

n
∥f(wt,X)− y∥2 .

Solving the ODE, we get

∥f(wt,X)− y∥2 ≤ e−
2λmin

n t ∥f(w0,X)− y∥2 .
Then we have

n∑
i=1

∫ T

0

∥∇wℓ(wt, zi)∥2 dt ≤
∫ T

0

λmax ∥f(wt,X)− y∥2 dt

≤
∫ T

0

λmaxe
− 2λmin

n t ∥f(w0,X)− y∥2 dt

=
nλmax ∥f(w0,X)− y∥2

2λmin
(1− e−

2λmin
n T ).
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Plugging this into our bound, we get

Γ ≤

√
2λmax ∥f(w0,X)− y∥2

λminn
(1− e−

2λmin
n T ).

G.2 Kernel Ridge Regression Case

Corollary 6.2. Suppose K(xi,xi) ≤ Kmax for i ∈ [n] and K(X,X) is full-rank,

Γ ≤
√
Kmax ∥w0 −w∗∥

∥∥ϕ(X)⊤ (w0 −w∗)
∥∥

n
.

When w0 = 0, the bound simplifies to

Γ ≤
√
Kmax

√
y⊤ (K(X,X))

−1
y ∥y∥

n
. (9)

Proof. The training loss gradient is

∇wLS(wt) =
1

n
ϕ(X)

(
ϕ(X)⊤wt − y

)
+ λwt

=
1

n
ϕ(X)ϕ(X)⊤wt −

1

n
ϕ(X)y + λwt

=

(
1

n
ϕ(X)ϕ(X)⊤ + λI

)
wt −

1

n
ϕ(X)y

from where we can calculate

w∗ =
1

n

(
1

n
ϕ(X)ϕ(X)⊤ + λIp

)−1

ϕ(X)y =
1

n
ϕ(X)

(
1

n
ϕ(X)⊤ϕ(X) + λIn

)−1

y.

Thus, we have

dwt

dt
= −∇wLS(wt)

= −
(
1

n
ϕ(X)ϕ(X)⊤ + λI

)
wt +

1

n
ϕ(X)y

= −
(
1

n
ϕ(X)ϕ(X)⊤ + λI

)(
wt −

1

n

(
1

n
ϕ(X)ϕ(X)⊤ + λI

)−1

ϕ(X)y

)

= −
(
1

n
ϕ(X)ϕ(X)⊤ + λI

)
(wt −w∗) .

Therefore,

wt = w∗ + e−(
1
nϕ(X)ϕ(X)⊤+λI)t (w0 −w∗) .

Calculate the norm of the gradient,

∥∇wLS(wt)∥2 =

∥∥∥∥( 1

n
ϕ(X)ϕ(X)⊤ + λI

)
wt −

1

n
ϕ(X)y

∥∥∥∥2
=

∥∥∥∥( 1

n
ϕ(X)ϕ(X)⊤ + λI

)(
w∗ + e−(

1
nϕ(X)ϕ(X)⊤+λI)t (w0 −w∗)

)
− 1

n
ϕ(X)y

∥∥∥∥2
=

∥∥∥∥( 1

n
ϕ(X)ϕ(X)⊤ + λI

)
e−(

1
nϕ(X)ϕ(X)⊤+λI)t (w0 −w∗)

∥∥∥∥2 .
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Suppose the eigen-decomposition of ϕ(X)ϕ(X)⊤ =
∑p

i=1 λiuiu
⊤
i , then

∥∇wLS(wt)∥2 =

∥∥∥∥∥
(

p∑
i=1

(
λi

n
+ λ

)
uiu

⊤
i

)(
p∑

i=1

e
−
(

λi
n +λ

)
t
uiu

⊤
i

)
(w0 −w∗)

∥∥∥∥∥
2

=

∥∥∥∥∥
(

p∑
i=1

(
λi

n
+ λ

)
e
−
(

λi
n +λ

)
t
uiu

⊤
i

)
(w0 −w∗)

∥∥∥∥∥
2

= (w0 −w∗)
⊤

(
p∑

i=1

(
λi

n
+ λ

)2

e
−2

(
λi
n +λ

)
t
uiu

⊤
i

)
(w0 −w∗)

=

p∑
i=1

(
λi

n
+ λ

)2

e
−2

(
λi
n +λ

)
t (
u⊤
i (w0 −w∗)

)2
.

Integrate the training loss gradient norm,∫ T

0

∥∇wLS(wt)∥2 dt =
∫ T

0

p∑
i=1

(
λi

n
+ λ

)2

e
−2

(
λi
n +λ

)
t (
u⊤
i (w0 −w∗)

)2
dt

=
1

2

p∑
i=1

(
λi

n
+ λ

)(
1− e

−2
(

λi
n +λ

)
T
)(

u⊤
i (w0 −w∗)

)2
≤ 1

2

p∑
i=1

(
λi

n
+ λ

)(
u⊤
i (w0 −w∗)

)2
=

1

2
(w0 −w∗)

⊤
p∑

i=1

(
λi

n
+ λ

)
uiu

⊤
i (w0 −w∗)

=
1

2
(w0 −w∗)

⊤
(
1

n
ϕ(X)ϕ(X)⊤ + λI

)
(w0 −w∗) .

The individual gradient is

∇wℓ(wt, zi) =
(
ϕ(xi)

⊤wt − yi
)
ϕ(xi) + λwt =

(
ϕ(xi)ϕ(xi)

⊤ + λI
)
wt − yiϕ(xi).

Assume K(xi,xi) ≤ Kmax. When λ = 0,
n∑

i=1

∥∇wℓ(wt, zi)∥2 =

n∑
i=1

∥∥ϕ(xi)ϕ(xi)
⊤wt − yiϕ(xi)

∥∥2
=

n∑
i=1

∥∥∥ϕ(xi)ϕ(xi)
⊤
(
w∗ + e−

1
nϕ(X)ϕ(X)⊤t (w0 −w∗)

)
− yiϕ(xi)

∥∥∥2
=

n∑
i=1

∥∥∥yiϕ(xi) + ϕ(xi)ϕ(xi)
⊤e−

1
nϕ(X)ϕ(X)⊤t (w0 −w∗)− yiϕ(xi)

∥∥∥2
=

n∑
i=1

∥∥∥ϕ(xi)ϕ(xi)
⊤e−

1
nϕ(X)ϕ(X)⊤t (w0 −w∗)

∥∥∥2
≤ Kmax

n∑
i=1

(w0 −w∗)
⊤
e−

1
nϕ(X)ϕ(X)⊤tϕ(xi)ϕ(xi)

⊤e−
1
nϕ(X)ϕ(X)⊤t (w0 −w∗)

= Kmax (w0 −w∗)
⊤
e−

1
nϕ(X)ϕ(X)⊤tϕ(X)ϕ(X)⊤e−

1
nϕ(X)ϕ(X)⊤t (w0 −w∗)

= Kmax (w0 −w∗)
⊤

p∑
i=1

λie
− 2

nλituiu
⊤
i (w0 −w∗)

= Kmax

p∑
i=1

λie
− 2

nλit
(
u⊤
i (w0 −w∗)

)2
.
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Hence, we can obtain that∫ T

0

n∑
i=1

∥∇wℓ(wt, zi)∥2 dt ≤
∫ T

0

Kmax

p∑
i=1

λie
− 2

nλit
(
u⊤
i (w0 −w∗)

)2
dt

= Kmax

p∑
i=1

n

2

(
1− e−

2λi
n T
) (

u⊤
i (w0 −w∗)

)2
≤ Kmaxn

2
∥w0 −w∗∥2 .

Therefore when λ = 0,

Γ ≤
√
Kmax ∥w0 −w∗∥

∥∥ϕ(X)⊤ (w0 −w∗)
∥∥

n
.

When w0 = 0, plunging in the expression of w∗, the bound simplifies to

Γ ≤
√
Kmax

√
y⊤ (K(X,X))

−1
y ∥y∥

n
.

G.3 Feature Learning Case

We state the assumptions and results of Bietti et al. [15] below.
Assumption G.1 (Regularity of f∗). We consider f∗ ∈ L2(γ) with Hermite expansion f∗ =∑

j αjhj , where γ := N (0, 1). Assume

1. f∗ is Lipschitz,

2.
∑

j j
4 |αj |2 < ∞,

3. f ′′
∗ (z) :=

∑
j

√
(j + 2)(j + 1)αj+2hj(z) is in L4(γ).

Theorem G.2 (Theorem 6.1 in Bietti et al. [15]). For δ ∈ (0, 1/4) and f∗ satisfying Assump-
tion G.1, suppose the following are true: (i) λ = O(1) and λ = Ω(

√
∆crit), where ∆crit :=

max{
√

d+N
n , (d

2

n )2s/(2s−1)}, (ii) n = Ω̃(max{ (d+N)ds−1

λ4 , d(s+3)/2

λ2 }), (iii) N = Ω( 1
λ log 1

λδ

) and

N = Õ(λ∆−1
crit), (iv) N0 = Θ(log 1

δ ), (v) ρ = Θ(
√
NN

−(2+s)/2
0 (τ2 + λN/N0)

−1), (vi)
T0 = Θ̃(ds/2−1), and (vii) T1 = Θ̃( λ4n

d+N ). Then, if we run Algorithm 1 for T = T0 + T1 time steps
with the above parameters, with probability at least 1

2 − δ we have

1− |⟨θ,θ∗⟩| = Õ

(
λ−4 max

{
d+N

n
,
d4

n2

})
.

Algorithm 1 Gradient Flow

Require: N0, ρ, T0, T1, N , and λ.
Initialize θ(0) ∼ Unif(Sd−1), c(0) ∼ Unif(

{
c ∈ RN : ∥c∥2 = ρ, ∥c∥0 = N0

}
).

Run gradient flow (6.3) up to time T = T0 + T1.
Return θ(T ), c(T ).

We recall the basic concentration properties of Gaussian random variables.
Lemma G.3 (Concentrations of Gaussian random variables). Let δ ∈ (0, 1/4), N ∈ N, and
b1, . . . , bN be i.i.d. random variables drawn from N (0, τ2). Then there exists a universal constant
C ′ > 0 such that the following two events hold simultaneously with probability at least 1− δ:

max
j

|bj | ≤ C ′τ
√
log(N/δ),∑

j

b2j ≤ Nτ2 + C ′τ2 max
{
log(1/δ),

√
N log(1/δ)

}
.
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Recall f(θ, c;x) = 1√
N

∑N
i=1 ciϕ(σi ⟨θ,x⟩ + bi) = c⊤Φ(⟨θ,x⟩), where we denote the feature

vector of first layer as Φ(⟨θ,x⟩) = ( 1√
N
ϕ(σi ⟨θ,x⟩+ bi))

N
i=1. We have the following bound for the

feature vector.
Lemma G.4 (ℓ2-norm of random features, Corollary D.5 in Bietti et al. [15]). Let δ ∈ (0, 1/4) and
b1, . . . , bN be i.i.d. random variables drawn from N (0, τ2). Then there exists a universal constant
C ′ > 0 such that the following holds for all z ∈ R with probability at least 1− δ over the random
features,

∥Φ(z)∥ ≤ |z|+ C ′τ(1 +
√
log(1/δ)/N) ≤ |z|+ 2C ′τ

√
log(1/δ).

We restate and prove our bound below.
Corollary 6.3. Under the settings of Theorem 6.1 in Bietti et al. [15] (provided in Theorem G.2),

Γ ≤ Õ

(√
d

s
2+1

nλ2
+ λ2d

)
,

with high probability as n, d → ∞. As long as λ = od(1/
√
d) and n = Ω̃(d

s
2+2), Γ = on,d(1).

Taking λ = Θ(d
s
2

n )
1
4 , we have

Γ ≤ Õ

((
d

s
2+2

n

) 1
4

)
.

Proof. Recall

Γ =
2

n

√
LS(θ0, c0)− LS(θT , cT )

√√√√ n∑
i=1

∫ T

0

∥∇wℓ(wt, zi)∥2 dt.

We first calculate the order of the
√
LS(θ0, c0)− LS(θT , cT ). Recall

LS(θ, c) =
1

n

n∑
i=1

(f(θ, c;xi)− yi)
2 + λ ∥c∥2 .

Then one can claim that

LS(θ0, c0) =
1

n

n∑
i=1

(f(θ0, c0;xi)− yi)
2 + λ ∥c0∥2

=
1

n

n∑
i=1

(
f(θ0, c0;xi)

2 + y2i − 2yif(θ0, c0;xi)
)
+ λ ∥c0∥2 .

By Lemma G.3 ϕ(σi ⟨θ0,xi⟩ + bi) = ϕ(Õ(1) + Õ(1)) = Õ(1). Since Ec0

[
f(θ0, c0;xi)

2
]
=

Ec0

[
1
N

∑N
i=1 c

2
iϕ(σi ⟨θ0,xi⟩+ bi)

2
]
= Õ(∥c0∥2

N ) = Õ(ρ
2

N ) = Õ(1), by Chebyshev’s inequality

f(θ0, c0;xi) = Õ(1). Since also yi = Õ(1) and λ ∥c0∥2 = Õ(1), one can verify LS(θ0, c0) =

Õ(1). Therefore LS(θ0, c0)−LS(θT , cT ) = Õ(1). Since LS(θT , cT ) is non-increasing in gradient
flow, λ ∥ct∥2 = Õ(1) during training.

Then we calculate the
∑n

i=1

∫ T

0
∥∇wℓ(wt, zi)∥2 dt. By Lemma G.4, the sample gradient for θ and

an upper bound for its ℓ2 norm is given by

∇θℓ(θ, c;xi, yi) = − c⊤Φ′(⟨θ,xi⟩)(yi − c⊤Φ(⟨θ,xi⟩))xi

∥∇θℓ(θ, c;xi, yi)∥ = ∥c∥ (Lip(f)∗ ∥xi∥+ ∥ξi∥+ ∥c∥ (∥xi∥+ C ′τ
√
log(1/δ))) ∥xi∥

= Õ(∥c∥2 ∥xi∥2).
Similarly, the sample gradient for c is

∇cℓ(θ, c;xi, yi) = 2Φ(⟨θ,xi⟩)(c⊤Φ(⟨θ,xi⟩)− f∗(⟨θ,xi⟩ − ξi)

∥∇cℓ(θ, c;xi, yi)∥ = 2(∥xi∥+ C ′τ
√

log(1/δ))(∥c∥ (∥xi∥+ C ′τ
√
log(1/δ))

+ Lip(f)∗ ∥xi∥+ ∥ξi∥) = Õ(∥c∥ ∥xi∥2).
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As we have shown, ∥c∥2 = O( 1λ ) and by Lemma G.3, maxi ∥xi∥ = O(
√

d log(n/δ)). Therefore,

∥∇wℓ(wt, zi)∥2 = ∥∇θℓ(θ, c;xi, yi)∥2 + ∥∇cℓ(θ, c;xi, yi)∥2 = Õ
(d2
λ2

)
.

Then take T = T0 + T1, we have
n∑

i=1

∫ T

0

∥∇wℓ(wt, zi)∥2 dt ≤ n · Õ
(d2
λ2

)
· (T0 + T1)

≤ n · Õ(
d2

λ2
) ·
(
Θ̃(d

s
2−1) + Θ̃(

λ4n

d+N
)

)
= n · Õ

(
d

s
2+1

λ2
+ λ2dn

)
.

Combining the results, we have

Γ ≤ 2

n

√
Õ(1) · n · Õ

(
d

s
2+1

λ2
+ λ2dn

)

= Õ

(√
d

s
2+1

nλ2
+ λ2d

)
.

As long as λ = od(1/d) and n = Ω̃(d
s
2+2), Γ = on,d(1). Optimizing the choice of λ = (d

s
2

n )
1
4 , we

have

Γ ≤ Õ

((
d

s
2+2

n

) 1
4

)
.

Hence, we complete the proof.
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Answer: [Yes]
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these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
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honesty concerning limitations.
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complete (and correct) proof?
Answer: [Yes]
Justification: We provide the full set of assumptions in each theorem and complete proofs in the
appendix.
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Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the details of the experiment setup.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
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access to the model. In general. releasing code and data is often one good way to accomplish
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results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: We provide sufficient details to reproduce the experiments.
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• The answer NA means that paper does not include experiments requiring code.
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guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
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applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: We provide the training details in the experiment section.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: There is no randomness in full-batch gradient descent. For SGD, we want to show
the bound for one run.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.
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8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification: We provide the information on the computer resources in the appendix.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine Learning.
There are many potential societal consequences of our work, none of which we feel must be
specifically highlighted here.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: We properly credited the datasets and library used in the paper.

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.
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• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:
• The answer NA means that the core method development in this research does not involve LLMs

as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what

should or should not be described.
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