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ABSTRACT

A recent line of work in the machine learning community addresses the problem
of predicting high-dimensional spatiotemporal phenomena by leveraging specific
tools from the differential equations theory. Following this direction, we propose in
this article a novel and general paradigm for this task based on a resolution method
for partial differential equations: the separation of variables. This inspiration allows
us to introduce a dynamical interpretation of spatiotemporal disentanglement. It
induces a principled model based on learning disentangled spatial and temporal
representations of a phenomenon to accurately predict future observations. We
experimentally demonstrate the performance and broad applicability of our method
against prior state-of-the-art models on physical and synthetic video datasets.

1 INTRODUCTION

The interest of the machine learning community in physical phenomena has substantially grown for the
last few years (Shi et al., 2015; Long et al., 2018; Greydanus et al., 2019). In particular, an increasing
amount of works studies the challenging problem of modeling the evolution of dynamical systems,
with applications in sensible domains like climate or health science, making the understanding of
physical phenomena a key challenge in machine learning. To this end, the community has successfully
leveraged the formalism of dynamical systems and their associated differential formulation as
powerful tools to specifically design efficient prediction models. In this work, we aim at studying this
prediction problem with a principled and general approach, through the prism of Partial Differential
Equations (PDEs), with a focus on learning spatiotemporal disentangled representations.

Prediction via spatiotemporal disentanglement was first studied in video prediction works, in order to
separate static and dynamic information (Denton & Birodkar, 2017) for prediction and interpretability
purposes. Existing models are particularly complex, involving either adversarial losses or variational
inference. Furthermore, their reliance on Recurrent Neural Networks (RNNs) hinders their ability
to model spatiotemporal phenomena (Yıldız et al., 2019; Ayed et al., 2020; Franceschi et al., 2020).
Our proposition addresses these shortcomings with a simplified and improved model by grounding
spatiotemporal disentanglement in the PDE formalism.

Spatiotemporal phenomena obey physical laws such as the conservation of energy, that lead to describe
the evolution of the system through PDEs. Practical examples include the conservation of energy for
physical systems (Hamilton, 1835), or the equation describing constant illumination in a scene (Horn
& Schunck, 1981) for videos that has had a longstanding impact in computer vision with optical flow
methods (Dosovitskiy et al., 2015; Finn et al., 2016). We propose to model the evolution of partially
observed spatiotemporal phenomena with unknown dynamics by leveraging a formal method for the
analytical resolution of PDEs: the functional separation of variables (Miller, 1988). Our framework
formulates spatiotemporal disentanglement for prediction as learning a separable solution, where
spatial and dynamic information are represented in separate variables. Besides offering a novel
interpretation of spatiotemporal disentanglement, it confers simplicity and performance compared to
existing methods: disentanglement is achieved through the sole combination of a prediction objective
and regularization penalties, and the temporal dynamics is defined by a learned Ordinary Differential
Equation (ODE). We experimentally demonstrate the applicability, disentanglement capacity and
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forecasting performance of the proposed model on various spatiotemporal phenomena involving
standard physical processes and synthetic video datasets against prior state-of-the-art models.

2 RELATED WORK

Our contribution deals with two main directions of research: spatiotemporal disentanglement and the
coupling of neural networks and PDEs.

Spatiotemporal disentanglement. Disentangling factors of variations is an essential representation
learning problem (Bengio et al., 2013). Its cardinal formulation for static data has been extensively
studied, with state-of-the-art solutions (Locatello et al., 2019) being essentially based on Variational
Autoencoders (VAEs; Kingma & Welling, 2014; Rezende et al., 2014). As for sequential data, several
disentanglement notions have been formulated, ranging from distinguishing objects in a video (Hsieh
et al., 2018; van Steenkiste et al., 2018) to separating and modeling multi-scale dynamics (Hsu et al.,
2017; Yingzhen & Mandt, 2018).

We focus in this work on the dissociation of the dynamics and visual aspects for spatiotemporal data.
Even in this case, dissociation can take multiple forms. Examples in the video generation community
include decoupling the foreground and background (Vondrick et al., 2016), constructing structured
frame representations (Villegas et al., 2017b; Minderer et al., 2019; Liu et al., 2019), extracting
physical dynamics (Le Guen & Thome, 2020), or latent modeling of dynamics in a state-space
manner (Fraccaro et al., 2017; Franceschi et al., 2020). Closer to our work, Denton & Birodkar
(2017), Villegas et al. (2017a) and Hsieh et al. (2018) introduced in their video prediction models
explicit latent disentanglement of static and dynamic information obtained using adversarial losses
(Goodfellow et al., 2014) or VAEs. Disentanglement has also been introduced in more restrictive
models relying on data-specific assumptions (Kosiorek et al., 2018; Jaques et al., 2020), and in video
generation (Tulyakov et al., 2018). We aim in this work at grounding and improving spatiotemporal
disentanglement with more adapted inductive biases by introducing a paradigm leveraging the
functional separation of variables resolution method for PDEs.

Spatiotemporal prediction and PDE-based neural network models. An increasing number of
works combining neural networks and differential equations for spatiotemporal forecasting have been
produced for the last few years. Some of them show substantial improvements for the prediction of
dynamical systems or videos compared to standard RNNs by defining the dynamics using learned
ODEs (Rubanova et al., 2019; Yıldız et al., 2019; Ayed et al., 2020; Le Guen & Thome, 2020),
following Chen et al. (2018), or adapting them to stochastic data (Ryder et al., 2018; Li et al.,
2020; Franceschi et al., 2020). Most PDE-based spatiotemporal models exploit some prior physical
knowledge. It can induce the structure of the prediction function (Brunton et al., 2016; de Avila
Belbute-Peres et al., 2018) or specific cost functions, thereby improving model performances. For
instance, de Bézenac et al. (2018) shape their prediction function with an advection-diffusion
mechanism, and Long et al. (2018; 2019) estimate PDEs and their solutions by learning convolutional
filters proven to approximate differential operators. Greydanus et al. (2019), Chen et al. (2020) and
Toth et al. (2020) introduce non-regression losses by taking advantage of Hamiltonian mechanics
(Hamilton, 1835), while Tompson et al. (2017) and Raissi et al. (2020) combine physically inspired
constraints and structural priors for fluid dynamic prediction. Our work deepens this literature by
establishing a novel link between a resolution method for PDEs and spatiotemporal disentanglement,
thereby introducing a data-agnostic model leveraging any static information in observed phenomena.

3 BACKGROUND: SEPARATION OF VARIABLES

Solving high-dimensional PDEs is a difficult analytical and numerical problem (Bungartz & Griebel,
2004). Variable separation aims at simplifying it by decomposing the solution, e.g., as a simple
combination of lower-dimensional functions, thus reducing the PDE to simpler differential equations.

3.1 SIMPLE CASE STUDY

Let us introduce this technique through a standard application, with proofs in Appendix A.1, on
the one-dimensional heat diffusion problem (Fourier, 1822), consisting in a bar of length L, whose
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temperature at time t and position x is denoted by u(x, t) and satisfies:

∂u

∂t
= c2

∂2u

∂x2
, u(0, t) = u(L, t) = 0, u(x, 0) = f(x). (1)

Suppose that a solution u is product-separable, i.e., it can be decomposed as: u(x, t) = u1(x) · u2(t).
Combined with Equation (1), it leads to c2u′′1(x)/u1(x) = u′2(t)/u2(t). The left- and right-hand
sides of this equation are respectively independent from t and x. Therefore, both sides are constant,
and solving both resulting ODEs gives solutions of the form, with µ ∈ R and n ∈ N:

u(x, t) = µ sin
(
nπx/L

)
× exp

(
−
(
cnπ/L

)2
t
)
. (2)

The superposition principle and the uniqueness of solutions under smoothness constraints allow then
to build the set of solutions of Equation (1) with linear combinations of separable solutions (Le Dret
& Lucquin, 2016). Besides this simple example, separation of variables can be more elaborate.

3.2 FUNCTIONAL SEPARATION OF VARIABLES

The functional separation of variables (Miller, 1988) generalizes this method. Let u be a function
obeying a given arbitrary PDE. The functional variable separation method amounts to finding a
parameterization z, a functional U , an entangling function ξ, and representations φ and ψ such that:

z = ξ
(
φ(x), ψ(t)

)
, u(x, t) = U(z). (3)

Trivial choices ξ = u and identity function as U , φ and ψ ensure the validity of this reformulation.
Finding suitable φ, ψ, U , and ξ with regards to the initial PDE can facilitate its resolution by inducing
separate simpler PDEs on φ, ψ, and U . For instance, product-separability is retrieved with U = exp.
General results on the existence of separable solutions have been proven (Miller, 1983), though their
uniqueness depends on the initial conditions and the choice of functional separation (Polyanin, 2020).

Functional separation of variables finds broad applications. It helps to solve refinements of the
heat equation, such as generalizations with an advection term (see Appendix A.2) or with complex
diffusion and source terms forming a general transport equation (Jia et al., 2008). Besides the heat
equation, functional separation of PDEs is also applicable in various physics fields like reaction-
diffusion with non-linear sources or convection-diffusion phenomena (Polyanin, 2019; Polyanin &
Zhurov, 2020), Hamiltonian physics (Benenti, 1997), or even general relativity (Kalnins et al., 1992).

Reparameterizations such as Equation (3) implement a separation of spatial and temporal factors of
variations, i.e., spatiotemporal disentanglement. We introduce in the following a learning framework
based on this general method.

4 PROPOSED METHOD

We propose to model spatiotemporal phenomena using the functional variable separation formalism.
We first describe our notations and then derive a principled model and constraints from this method.

4.1 PROBLEM FORMULATION THROUGH SEPARATION OF VARIABLES

We consider a distribution P of observed spatiotemporal trajectories and corresponding observation
samples v = (vt0 , vt0+∆t, . . . , vt1), with vt ∈ V ⊆ Rm and t1 = t0 + ν∆t. Each sequence v ∼ P
corresponds to an observation of a dynamical phenomenon, assumed to be described by a hidden
functional uv (also denoted by u for the sake of simplicity) of space coordinates x ∈ X ⊆ Rs
and time t ∈ R that characterizes the trajectories. More precisely, uv describes an unobserved
continuous dynamics and v corresponds to instantaneous discrete spatial measurements associated
to this dynamics. Therefore, we consider that vt results from a time-independent function ζ of the
mapping uv(·, t). For example, v might consist in temperatures measured at some points of the sea
surface, while uv would be the complete ocean circulation model. In other words, v provides a partial
information about uv and is a projection of the full dynamics. We seek to learn a model which, when
conditioned on prior observations, can predict future observations.

To this end, we posit that the state u of each observed trajectory v is driven by a hidden PDE, shared
among all trajectories; we discuss this assumption in details in Appendix C.1. Learning such a PDE
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Figure 1: Computational graph of the proposed model. ES and ET take contiguous observations
as input; time invariance is enforced on S; the evolution of Tt is modeled with an ODE and is
constrained to coincide with ET ; Tt0 is regularized; forecasting amounts to decoding from S and Tt.

and its solutions would then allow us to model observed trajectories v. However, directly learning
solutions to high-dimensional unknown PDEs is a complex task (Bungartz & Griebel, 2004; Sirignano
& Spiliopoulos, 2018). We aim in this work at simplifying this resolution. We propose to do so by
relying on the functional separation of variables of Equation (3), in order to leverage a potential
separability of the hidden PDE. Therefore, analogously to Equation (3), we propose to formulate the
problem as learning observation-constrained φ, ψ and U , as well as ξ and ζ, such that:

z = ξ
(
φ(x), ψ(t)

)
, u(x, t) = U(z), vt = ζ

(
u(·, t)

)
, (4)

with φ and ψ allowing to disentangle the prediction problem. In the formalism of the functional
separation of variables, this amounts to decomposing the full solution u, thereby learning a spatial
PDE on φ, a temporal ODE on ψ, and a PDE on U , as well as their respective solutions.

4.2 FUNDAMENTAL LIMITS AND RELAXATION

Directly learning u is, however, a restrictive choice. Indeed, when formulating PDEs such as in
Equation (1), spatial coordinates (x, y, etc.) and time t appear as variables of the solution. Yet, unlike
in fully observable phenomena studied by Sirignano & Spiliopoulos (2018) and Raissi (2018), directly
accessing theses variables in practice can be costly or infeasible in our partially observed setting. In
other words, the nature and number of these variables are unknown. For example, the dynamic of
the observed sea surface temperature is highly dependent on numerous unobserved variables such
as temperature at deeper levels or wind intensity. Explicitly taking into account these unobserved
variables can only be done with prior domain knowledge. To maintain the generality of the proposed
approach, we choose not to make any data-specific assumption on these unknown variables.

We overcome these issues by eliminating the explicit modeling of spatial coordinates by learning
dynamic and time-invariant representations accounting respectively for the time-dependent and space-
dependent parts of the solution. Indeed, Equation (4) induces that these spatial coordinates, hence the
explicit resolution of PDEs on u or U , can be ignored, as it amounts to learning φ, ψ and D such that:

vt = (ζ ◦ U ◦ ξ)
(
φ(·), ψ(t)

)
= D

(
φ, ψ(t)

)
. (5)

In order to manipulate functionals φ and ψ in practice, we respectively introduce learnable time-
invariant and time-dependent representations of φ and ψ, denoted by S and T , such that:

φ ≡ S ∈ S ⊆ Rd, ψ ≡ T : t 7→ Tt ∈ T ⊆ Rp, (6)
where the dependence of ψ ≡ T on time t will be modeled using a temporal ODE following the
separation of variables, and the function φ, and consequently its spatial PDE, are encoded into a
vectorial representation S. Besides their separation of variables basis, the purpose of S and T is to
capture spatial and motion information of the data. For instance, S could encode static information
such as objects appearance, while T typically contains motion variables.

S and Tt0 , because of their dependence on v in Equations (5) and (6), are inferred from an observation
history, or conditioning frames, Vτ (t0), where Vτ (t) = (vt, vt+∆t, . . . , vt+τ∆t), using respectively
encoder networks ES and ET . We parameterize D of Equation (5) as a neural network that acts on
both S and Tt, and outputs the estimated observation v̂t = D(S, Tt). Unless specified otherwise, S
and Tt are fed concatenated into D, which then learns the parameterization ξ of their combination.
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4.3 TEMPORAL ODE

The separation of variables allows us to partly reduce the complex task of learning and integrating
PDEs to learning and integrating an ODE on ψ, which has been extensively studied in the literature,
as explained in Section 2. We therefore model the evolution of Tt, thereby the dynamics of our
system, with a first-order ODE:

∂Tt
∂t

= f(Tt) ⇔ Tt = Tt0 +

∫ t

t0

f(Tt′) dt′ (7)

Note that the first-order ODE assumption can be taken without loss of generality since any ODE is
equivalent to a higher-dimensional first-order ODE. Following Chen et al. (2018), f is implemented
by a neural network and Equation (7) is solved with an ODE resolution scheme. Suppose initial
ODE conditions S and Tt0 have been computed with ES and ET . This leads to the following simple
forecasting scheme, enforced by the corresponding regression loss:

v̂t = D

(
S, Tt0 +

∫ t

t0

f(Tt′) dt′

)
, Lpred =

1

ν + 1

ν∑
i=0

1

m
‖v̂t0+i∆t − vt0+i∆t‖22, (8)

where ν + 1 is the number of observations, and m is the dimension of the observed variables v.

Equation (8) ensures that the evolution of T is coherent with the observations; we should enforce its
consistency with ET . Indeed, the dynamics of Tt is modeled by Equation (7), while only its initial
condition Tt0 is computed with ET . However, there is no guaranty that Tt, computed via integration,
matches ET

(
Vτ (t)

)
at any other time t, while they should in principle coincide. We introduce the

following autoencoding constraint mitigating their divergence, thereby stabilizing the evolution of T :

LAE =
1

m

∥∥∥∥D(S,ET (Vτ (t0 + i∆t)
))
− vt0+i∆t

∥∥∥∥2

2

, with i ∼ U
(
J0, ν − τK

)
. (9)

4.4 SPATIOTEMPORAL DISENTANGLEMENT

As indicated hereinabove, the spatial PDE on φ is assumed to be encoded into S. Nonetheless, since
S is inferred from an observation history, we need to explicitly enforce its time independence. In the
PDE formalism, this is equivalent to:

∂ES
(
Vτ (t)

)
∂t

= 0 ⇔
∫ t1−τ∆t

t0

∥∥∥∥∥∂ES
(
Vτ (t)

)
∂t

∥∥∥∥∥
2

2

dt = 0. (10)

However, enforcing Equation (10) raises two crucial issues. Firstly, in our partially observed setting,
there can be variations of observable content, for instance when an object conceals another one.
Therefore, strictly enforcing a null time derivative is not desirable as it prevents ES to extract
accessible information that could be obfuscated in the sequence. Secondly, estimating this derivative
in practice in our setting is unfeasible and costly because of the coarse temporal discretization of the
data and the computational cost of ES ; see Appendix B for more details. We instead introduce a
discretized penalty in our minimization objective, discouraging variations of content between two
distant time steps, with d being the dimension of S:

LSreg =
1

d

∥∥∥ES(Vτ (t0)
)
− ES

(
Vτ (t1 − τ∆t)

)∥∥∥2

2
. (11)

It allows us to overcome the previously stated issues by not enforcing a strict invariance of S and
removing the need to estimate any time derivative. Note that this formulation actually originates from
Equation (10) using the Cauchy-Schwarz inequality (see Appendix B for a more general derivation).

Abstracting the spatial ODE on φ from Equation (4) into a generic representation S leads, without
additional constraints, to an underconstrained problem where spatiotemporal disentanglement cannot
be guaranteed. Indeed, ES can be set to zero to satisfy Equation (11) without breaking any prior
constraint, because static information is not prevented to be encoded into T . Accordingly, information
in S and T needs to be segmented.

Thanks to the design of our model, it suffices to ensure that S and T are disentangled at initial time
t0 for them be to be disentangled at all t. Indeed, the mutual information between two variables
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is preserved by invertible transformations. Equation (7) is an ODE and f , as a neural network, is
Lipschitz-continuous, so the ODE flow Tt 7→ Tt′ is invertible. Therefore, disentanglement between
S and Tt, characterized by a low mutual information between both variables, is preserved through
time; see Appendix C for a detailed discussion. We thus only constrain the information quantity in
Tt0 by using a Gaussian prior to encourage it to exclusively contain necessary dynamic information:

LTreg =
1

p
‖Tt0‖

2
2 =

1

p

∥∥∥ET (Vτ (t0)
)∥∥∥2

2
. (12)

4.5 LOSS FUNCTION

The minimized loss is a linear combination of Equations (8), (9), (11) and (12):

L(v) = Ev∼P
[
λpredLpred + λAE · LAE + λSreg · LSreg + λTreg · LTreg

]
, (13)

as illustrated in Figure 1. In the following, we conventionally set ∆t = 1. Note that the presented
approach could be generalized to irregularly sampled observation times thanks to the dedicated
literature (Rubanova et al., 2019), but this is out of the scope of this paper.

5 EXPERIMENTS
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Figure 2: Example of predictions of
compared models on SST. Content swap
preserves the location of extreme temper-
ature regions which determine the move-
ment while modifying the magnitude of
all regions, especially in temperate areas.

We study in this section the experimental results of our
model on various spatiotemporal phenomena with phys-
ical, synthetic video and real-world datasets, which are
briefly presented in this section and in more details in
Appendix D. We demonstrate the relevance of our model
with ablation studies and its performance by comparing
it with more complex state-of-the-art models. Perfor-
mances are assessed thanks to standard metrics (Den-
ton & Fergus, 2018; Le Guen & Thome, 2020) Mean
Squared Error (MSE, lower is better) or its alternative
Peak Signal-to-Noise Ratio (PSNR, higher is better), and
Structured Similarity (SSIM, higher is better). We refer
to Appendix F for more experiments and prediction ex-
amples, to Appendix E for training information and to
the supplementary material for the corresponding code1

and datasets.

5.1 PHYSICAL DATASETS:
WAVE EQUATION AND SEA SURFACE TEMPERATURE

We first investigate two synthetic dynamical systems and
a real-world dataset in order to show the advantage of
PDE-driven spatiotemporal disentanglement for forecast-
ing physical phenomena. To analyze our model, we first
lean on the wave equation, occurring for example in
acoustic or electromagnetism, with source term like Saha
et al. (2020), to produce the WaveEq dataset consisting
in 64 × 64 normalized images of the phenomenon. We
additionally build the WaveEq-100 dataset by extracting 100 pixels, chosen uniformly at random
and shared among sequences, from WaveEq frames; this experimental setting can be thought of as
measurements from sensors partially observing the phenomenon. We also test and compare our model
on the real-world dataset SST, derived from the data assimilation engine NEMO (Madec & Team)
and introduced by de Bézenac et al. (2018), consisting in 64× 64 frames showing the evolution of the
sea surface temperature. Modeling its evolution is particularly challenging as its dynamic is highly
non-linear, chaotic, and involves several unobserved quantities (e.g., forcing terms).

1Our source code is also publicly released at the following URL: https://github.com/JeremDona/
spatiotemporal_variable_separation.
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Table 1: Forecasting performance on WaveEq-100, WaveEq and SST of compared models with
respect to indicated prediction horizons. Bold scores indicate the best performing method.

Models

WaveEq-100 WaveEq SST

MSE MSE SSIM

t+ 40 t+ 40 t+ 6 t+ 10 t+ 6 t+ 10

PKnl — — 1.28 2.03 0.6686 0.5844
PhyDNet — — 1.27 1.91 0.5782 0.4645
SVG — — 1.51 2.06 0.6259 0.5595
MIM — — 0.91 1.45 0.7406 0.6525

Ours 4.33× 10−5 1.44× 10−4 0.86 1.43 0.7466 0.6577
Ours (without S) 1.33× 10−4 5.09× 10−4 0.95 1.50 0.7204 0.6446

Table 2: Prediction and content swap scores of all compared models on Moving MNIST. Bold
scores indicate the best performing method.

Models
Pred. (t+ 10) Pred. (t+ 95) Swap (t+ 10) Swap (t+ 95)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SVG 18.18 0.8329 12.85 0.6185 — — — —
MIM 24.16 0.9113 16.50 0.6529 — — — —
DrNet 14.94 0.6596 12.91 0.5379 14.12 0.6206 12.80 0.5306
DDPAE 21.17 0.8814 13.56 0.6446 18.44 0.8256 13.25 0.6378
PhyDNet 23.12 0.9128 16.46 0.3878 12.04 0.5572 13.49 0.2839
Ours 21.70 0.9088 17.50 0.7990 18.42 0.8368 16.50 0.7713

We compare our model on these three datasets to its alternative version with S removed and integrated
into T , thus also removing LSreg and LTreg. We also include the state-of-the-art PhyDNet (Le Guen &
Thome, 2020), MIM (Wang et al., 2019b), SVG (Denton & Fergus, 2018) and SST-specific PKnl
(de Bézenac et al., 2018) in the comparison on SST; only PhyDNet and PKnl were originally tested
on this dataset by their authors. Results are compiled in Table 1 and an example of prediction is
depicted in Figure 2.

On these three datasets, our model produces more accurate long-term predictions with S than without
it. This indicates that learning an invariant component facilitates training and improves generalization.
The influence of S can be observed by replacing the S of a sequence by another one extracted from
another sequence, changing the aspect of the prediction, as shown in Figure 2 (swap row). We provide
in Appendix F further samples showing the influence of S in the prediction. Even though there is no
evidence of intrinsic separability in SST, our trained algorithm takes advantage of its time-invariant
component. Indeed, our model outperforms PKnl despite the data-specific structure of the latter,
the stochastic SVG and the high-capacities PhyDNet and MIM model, whereas removing its static
component suppresses our advantage.

We highlight that MIM is a computationally-heavy model that manipulates in an autoregressive
way 64 times larger latent states than ours, hence its better reconstruction ability at the first time
step. However, its sharpness and movement gradually vanish, explaining its lower performance than
ours. We refer to Appendix F.3 for additional discussion on the application of our method and its
performance on SST.

5.2 A SYNTHETIC VIDEO DATASET: MOVING MNIST

We also assess the prediction and disentanglement performance of our model on the Moving MNIST
dataset (Srivastava et al., 2015) involving MNIST digits (LeCun et al., 1998) bouncing over frame
borders. This dataset is particularly challenging in the literature for long-term prediction tasks. We
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Figure 3: Predictions of compared models on Moving
MNIST, and content swap experiment for our model.

Figure 4: Fusion of content (first column)
and dynamic (first row) variables in our
model on 3D Warehouse Chairs.

compare our model to competitive baselines: the non-disentangled SVG (Denton & Fergus, 2018)
and MIM (Wang et al., 2019b), as well as forecasting models with spatiotemporal disentanglement
ablities DrNet (Denton & Birodkar, 2017), DDPAE (Hsieh et al., 2018) and PhyDNet. We highlight
that all these models leverage powerful machine learning tools such as adversarial losses, VAEs and
high-capacity temporal architectures, whereas ours is solely trained using regression penalties and
small-size latent representations. We perform as well a full ablation study of our model to confirm
the relevance of the introduced method.

Results reported in Table 2 and illustrated in Figure 3 correspond to two tasks: prediction and
disentanglement, at both short and long-term horizons. Disentanglement is evaluated via content
swapping, which consists in replacing the content representation of a sequence by the one of another
sequence, which should result for a perfectly disentangled model in swapping digits of both sequences.
This is done by taking advantage of the synthetic nature of this dataset that allows us to implement
the ground truth content swap and compare it to the generated swaps of the model.

Reported results show the advantage of our model against all baselines. Long-term prediction
challenges them as their performance and predictions collapse in the long run. This shows that the
baselines, including high-capacity models MIM and PhyDNet that leverage powerful ConvLTSMs
(Shi et al., 2015), have difficulties separating content and motion. Indeed, a model separating correctly
content and motion should maintain digits appearance even when it miscalculates their trajectories,
like DDPAE which alters only marginally the digits in Figure 3. In contrast, ours manages to produce
consistent samples even at t + 95, making it reach state-of-the-art performance. Moreover, we
significantly outperform all baselines in the content swap experiment, showing the clear advantage of
the proposed PDE-inspired simple model for spatiotemporally disentangled prediction.

Ablation studies developed in Table 4 confirm that this advantage is due to the constraints motivated by
the separation of variables. Indeed, the model without S fails at long-term forecasting, and removing
any non-prediction penalty of the training loss substantially harms performances. In particular, the
invariance loss on the static component and the regularization of initial condition Tt0 are essential,
as their absence hinders both prediction and disentanglement. The auto-encoding constraint makes
predictions more stable, allowing accurate long-term forecasting and disentanglement. This ablation
study also confirms the necessity to constrain the `2 norm of the dynamic variable (see Equation (12))
for the model to disentangle. Comparisons of Table 2 actually show that enforcing this loss on the
first time step only is sufficient to ensure state-of-the-art disentanglement, as advocated in Section 4.4.

Finally, we assess whether the temporal ODE of Equation (7) induced by the separation of variables is
advantageous by replacing the dynamic model with a standard GRU RNN (Cho et al., 2014). Results
reported in Table 4 show substantially better prediction and disentanglement performance for the
original model grounded on the separation of variables, indicating the relevance of our approach.
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Table 3: Prediction MSE (×100× 32× 32× 2) of compared models on TaxiBJ, with best MSE
highlighted in bold.

Ours Ours (without S) PhyDNet MIM E3D C. LSTM PredRNN ConvLSTM

39.5 43.7 41.9 42.9 43.2 44.8 46.4 48.5

5.3 A MULTI-VIEW DATASET: 3D WAREHOUSE CHAIRS

We perform an additional disentanglement experiment on the 3D Warehouse Chairs dataset introduced
by Aubry et al. (2014). This dataset contains 1393 three-dimensional models of chairs seen under
various angles. Since all chairs are observed from the same set of angles, this constitutes a multi-view
dataset enabling quantitative disentanglement experiments. We create sequences from this dataset for
our model by assembling adjacent views of each chair to simulate its rotation from right to left. We
then evaluate the disentanglement properties of our model with the same content swap experiments as
for Moving MNIST. It is similar to one of Denton & Birodkar (2017)’s experiments who qualitatively
tested their model on a similar, but smaller, multi-view chairs dataset. We achieve 18.70 PSNR and
0.7746 SSIM on this task, outperforming DrNet which only reaches 16.35 PSNR and 0.6992 SSIM.
This is corroborated by qualitative experiments in Figures 4 and 11. We highlight that the encoder
and decoder architectures of both competitors are identical, validating our PDE-grounded framework
for spatiotemporal disentanglement of complex three-dimensional shapes.

5.4 A CROWD FLOW DATASET: TAXIBJ

Figure 5: Example of ground truth and pre-
diction of our model on TaxiBJ. The middle
row shows the scaled difference between
our predictions and the ground truth.

We finally study the performance of our spatiotemporal
model on the real-world TaxiBJ dataset (Zhang et al.,
2017), consisting in taxi traffic flow in Beijing moni-
tored on a 32× 32 grid with an observation every thirty
minutes. It is highly structured as the flows are de-
pendent on the infrastructures of the city, and complex
since methods have to account for non-local dependen-
cies and model subtle changes in the evolution of the
flows. It is a standard benchmark in the spatiotemporal
prediction community (Wang et al., 2019b; Le Guen &
Thome, 2020).

We compare our model in Table 3 against PhyDNet
and MIM, as well as powerful baselines E3D-LSTM
(E3D, Wang et al., 2019a), Causal LSTM (C. LSTM,
Wang et al., 2018), PredRNN (Wang et al., 2017) and
ConvLTSM (Shi et al., 2015), using results reported by Wang et al. (2019b) and Le Guen & Thome
(2020). An example of prediction is given in Figure 5. We observe that we significantly overcome the
state of the art on this complex spatiotemporal dataset. This improvement is notably driven by the
disentanglement abilities of our model, as we observe in Table 3 that the alternative version of our
model without S achieves results comparable to E3D and worse than PhyDNet and MIM.

6 CONCLUSION

We introduce a novel method for spatiotemporal prediction inspired by the separation of variables
PDE resolution technique that induces time invariance and regression penalties only. These constraints
ensure the separation of spatial and temporal information. We experimentally demonstrate the benefits
of the proposed model, which outperforms prior state-of-the-art methods on physical and synthetic
video datasets. We believe that this work, by providing a dynamical interpretation of spatiotemporal
disentanglement, could serve as the basis of more complex models further leveraging the PDE
formalism. Another direction for future work could be extending the model with more involved tools
such as VAEs to improve its performance, or adapt it to the prediction of natural stochastic videos
(Denton & Fergus, 2018).
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A PROOFS

A.1 RESOLUTION OF THE HEAT EQUATION

In this section, we succinctly detail a proof for the existence and uniqueness for the solution to the
two-dimensional heat equation. It shows that product-separable solutions allow to build the entire
solution space for this problem, highlighting our interest in the research of separable solutions.

Existence through separation of variables. Consider the heat equation problem:

∂u

∂t
= c2

∂2u

∂x2
, u(0, t) = u(L, t) = 0, u(x, 0) = f(x). (14)

Assuming product separability of u with u(x, t) = u1(x)u2(t) in Equation (14) gives:

c2
u′′1(x)

u1(x)
=
u′2(t)

u2(t)
. (15)

Both sides being independent of each other variables, they are equal to a constant denoted by−α. If α
is negative, solving the right side of Equation (15) results to non-physical solutions with exponentially
increasing temperatures, and imposing border condition of Equation (14) makes this solution collapse
to the null trivial solution. Therefore, we consider that α > 0.

Both sides of Equation (15) being equal to a constant leads to a second-order ODE on u1 and a
first-order ODE on u2, giving the solution shapes, with constants A, B and D:{

u1(x) = A cos
(√
αx
)

+B sin
(√
αx
)

u2(t) = De−αc
2t . (16)

Link with initial and boundary conditions. We now link the above equation to the boundary
conditions of the problem. Because our separation is multiplicative, we can omit D for non-trivial
solutions and set it without loss of generality to 1, as it only scales the values of A and B.

Boundary condition u(0, t) = u(L, t) = 0, along with the fact that for all t > 0, u2(t) 6= 0, give:

A = 0, Be−αc
2t sin

(√
αL
)

= 0, (17)

which means that, for a non-trivial solution (i.e., B 6= 0), we have for some n ∈ N:
√
α = nπ/L. We

can finally express our product-separable solution to the heat equation without initial conditions as:

u(x, t) = B sin

(
nπ

L
x

)
exp

(
−
(
cnπ

L

)2

t

)
. (18)

Considering the superposition principle, because the initial problem is homogeneous, all linear
combinations of Equation (18) are solutions of the heat equation without initial conditions. Therefore,
any following function is a solution of the heat equation without initial conditions.

u(x, t) =

+∞∑
n=0

Bn sin

(
nπ

L
x

)
exp

(
−
(
cnπ

L

)2

t

)
. (19)

Finally, considering the initial condition u(x, 0) = f(x), a Fourier decomposition of f allows to
choose appropriate values for all coefficients Bn, showing that, for any initial condition f , there
exists a solution to Equation (14) of the form of Equation (19).
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Uniqueness. We present here elements of proof for establishing the uniqueness of the solutions of
Equation (14) that belong to C2

(
[0, 1]× R+

)
. Detailed and rigorous proofs are given by Le Dret &

Lucquin (2016).

The key element consists in establishing the so-called Maximum Principle which states that, consid-
ering a sufficiently smooth solution, the minimum value of the solution is reached on the boundary of
the space and time domains.

For null border condition as in our case, this means that the norm of the solution u is given by
the norm of the initial condition f . Finally, let us consider two smooth solutions U1 and U2 of
Equation (14). Then, their difference v = U1 − U2 follows the heat equation with null border and
initial conditions (i.e, v(x, 0) = 0). Because v is as regular as U1 and U2, it satisfies the previous fact
about the norm of the solutions, i.e, the norm of v equals the norm of its initial condition: ‖v‖ = 0.
Therefore, v is null and so is U1 − U2 = 0, showing the uniqueness of the solutions.

Therefore, this shows that solutions of the form of Equation (19) shape the whole set of smooth
solutions of Equation (14).

A.2 HEAT EQUATION WITH ADVECTION TERM

Consider the heat equation with a complementary advection term, for x ∈ (−1, 1), t ∈ (0, T ) and a
constant c ∈ R+.

∂u

∂t
+ c

∂u

∂x
= χ

∂2u

∂x2
, . (20)

We give here details for the existence of product-separable solutions of Equation (20). To this end, let
us choose real constants α and β, and consider the following change of variables for u:

u(x, t) = v(x, t)eαx+βt. (21)

The partial derivatives from Equation (20) can be rewritten as functions of the new variable v:

∂u

∂t
=
∂v

∂t
eαx+βt + βveαx+βt (22)

∂u

∂x
=
∂v

∂x
eαx+βt + αveαx+βt (23)

∂2u

∂x2
=
∂2v

∂x2
eαx+βt + 2α

∂v

∂x
eαx+βt + α2veαx+βt (24)

Using these expressions in Equation (20) and dividing it by eαx+βt lead to:

∂v

∂t
+
(
β + cα− α2χ

)
v + (c− 2αχ)

∂v

∂x
= ν

∂2v

∂x2
. (25)

α and β can then be set such that:

β + cα− α2χ = 0 c− 2αχ = 0, (26)

to retrieve the standard two-dimensional heat equation of Equation (14) given by:

∂v

∂t
= χ

∂2v

∂x2
, (27)

which is known to have product-separable solutions as explained in the previous section. This more
generally shows that all solutions of Equation (20) can be retrieved from solutions to Equation (14).

B ACCESSING TIME DERIVATIVES OF S AND DERIVING A FEASIBLE
WEAKER CONSTRAINT

Explicitly constraining the time derivative of ES
(
Vτ (t)

)
as explained in Section 4.4 is a difficult

matter in practice. Indeed, ES does not take as input neither the time coordinate t nor spatial
coordinates x and y as done by Raissi (2018) and Sirignano & Spiliopoulos (2018), which allows
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them to directly estimate the networks derivative thanks to automatic differentiation. In our case, ES
rather takes as input a finite number of observations, making this derivative impractical to compute.

To discretize Equation (10) and find a weaker constraint, we chose to leverage the Cauchy-Schwarz
inequality. We presented and used a version where we applied this inequality on the whole integration
domain, i.e., from t0 to t1− τ∆t. We highlight that this inequality can also be applied on subintervals
of the integration domain, generalizing our proposition. Indeed, let p ∈ N∗ and consider a sequence
of t(k) for k ∈ J0, pK such that t0 = t(0) ≤ t(1) ≤ . . . ≤ t(p) = t1 − τ∆t. Then, using the
Cauchy-Schwarz inequality, we obtain:∫ t1−τ∆t

t0

∥∥∥∥∥∂ES
(
Vτ (t)

)
∂t

∥∥∥∥∥
2

2

dt =

k=p∑
k=0

∫ t(k)

t(k−1)

∥∥∥∥∥∂ES
(
Vτ (t)

)
∂t

∥∥∥∥∥
2

2

dt

≥
k=p∑
k=0

1

t(k) − t(k−1)

∥∥∥∥∥∥
∫ t(k)

t(k−1)

∂ES
(
Vτ (t)

)
∂t

dt

∥∥∥∥∥∥
2

2

≥
k=p∑
k=0

1

t(k) − t(k−1)

∥∥∥∥∥ES
(
Vτ

(
t(k)
))
− ES

(
Vτ

(
t(k−1)

))∥∥∥∥∥
2

2

.

(28)
Our constraint is a special case of this development, with p = 1. Nevertheless, we experimentally
found that our simple penalty is sufficient to achieve state-of-the-art performance at a substantially
reduced computational cost. We notice that other invariance constraints such as the one of Denton &
Birodkar (2017) can also be derived thanks to framework, showing the generality of our approach.

C OF SPATIOTEMPORAL DISENTANGLEMENT

C.1 MODELING SPATIOTEMPORAL PHENOMENA WITH DIFFERENTIAL EQUATIONS

Besides their increasing popularity to model spatiotemporal phenomena (see Section 2), the ability
of residual networks to facilitate learning (Haber & Ruthotto, 2017) as well as the success of their
continuous counterpart (Chen et al., 2018) motivate our choice. Indeed, learning ODEs or discrete
approximations as residual networks has become standard for a variety of tasks such as classification,
inpainting, and generative models. Consequently, their application to forecasting physical processes
and videos is only a natural extension of its already broad applicability discussed in Section 2.
Furthermore, they present interesting properties, as detailed below.

C.2 SEPARATION OF VARIABLES PRESERVES THE MUTUAL INFORMATION OF S AND T
THROUGH TIME

C.2.1 INVERTIBLE FLOW OF AN ODE

We first highlight that the general ODE Equation (7) admits, according to the Cauchy–Lipschitz
theorem, exactly one solution for a given initial condition, since f is implemented with a standard
neural network (see Appendix E), making it Lipschitz-continuous. Consequently, the flow of this
ODE, denoted by Φt and defined as:

Φ:R× Rp → Rp

(t0, Tt0) 7→ Φt(Tt0) = Tt0+t

is a bijection for all t. Indeed, let Tt0 be fixed and t0, t1 be two timesteps; thanks to the existence
and unicity of the solution to the ODE with this initial condition: Φt0+t1 = Φt0 ◦ Φt1 = Φt1 ◦ Φt0 .
Therefore, Φt is a bijection and Φ−1

t = Φ−t. Moreover, the flow is differentiable if f is continuously
differentiable as well, which is not a restrictive assumption if it is implemented by a neural network
with differentiable activation functions.

C.2.2 PRESERVATION OF MUTUAL INFORMATION BY INVERTIBLE MAPPINGS

A proof of the following result is given by Kraskov et al. (2004). We indicate below the major steps
of the proof. Let X and Y be two random variables with marginal densities µX , µY . Let F be a
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diffeomorphism acting on Y , Y ′ = F (Y ). If JF is the determinant of the Jacobian of F , we have:

µ′
(
x, y′

)
= µ(x, y)JF

(
y′
)
.

Then, expressing the mutual information I in integral form, with the change of variables y′ = F (y)
(F being a diffeomorphism), results in:

I
(
X,Y ′

)
=

∫∫
x,y′

µ′
(
x, y′

)
log

µ′
(
x, y′

)
µX(x)× µY ′(y′)

dxdy′

=

∫∫
x,y

µ(x, y) log
µ(x, y)

µX(x)× µY (y)
dx dy

I
(
X,Y ′

)
= I(X,Y ).

C.3 ENSURING DISENTANGLEMENT AT ANY TIME

As noted by Chen et al. (2016) and Achille & Soatto (2018), mutual information I is a key metric
to evaluate disentanglement. We show that our model logically preserves the mutual information
between S and T through time thanks to the flow of the learned ODE on T . Indeed, with the
result of mutual information preservation by diffeomorphisms, and Φt being a diffeomorphism as
demonstrated above, we have, for all t and t′:

I(S, Tt) = I
(
X,Φt′−t(Tt)

)
= I(S, Tt′). (29)

Hence, if S and Tt are disentangled, then so are S and Tt′ .

The flow Φt being dicretized in practice, its invertibility can no longer be guaranteed in general.
Some numerical schemes (Chen et al., 2020) or residual networks with Lipschitz-constrained residual
blocks (Behrmann et al., 2019) provide sufficient conditions to concretely reach this invertibility. In
our case, we did not observe the need to enforce invertibility. We can also leverage the data processing
inequality to show that, for any t ≥ t0:

I(S, Tt0) ≥ I(S, Tt), (30)

since Tt is a deterministic function of Tt0 . Since we constrain the very first T value Tt0 (i.e., we
do not need to go back in time), there is no imperative need to enforce the invertibility of Φt in
practice: the inequality also implies that, if S and Tt0 are disentangled, then so are S and Tt for
t ≥ t0. Nevertheless, should the need to disentangle for t < t0 appear, the aforementioned mutual
information conservation properties could allow, with further practical work to ensure the effective
invertibility of Φt, to still regularize Tt0 only. This is, however, out of the scope of this paper.

D DATASETS

D.1 WAVEEQ AND WAVEEQ-100

These datasets are based on the two-dimensional wave equation on a functional w(x, y, t):

∂2w

∂t2
= c2∇2w + f(x, y, t), (31)

where∇2 is the Laplacian operator, c denotes the wave celerity, and f is an arbitrary time-dependent
source term. It has several application in physics, modeling a wide range of phenomena ranging from
mechanical oscillations to electromagnetism. Note that the homogeneous equation, where f = 0,
admits product-separable solutions.

We build the WaveEq dataset by solving Equation (31) for t ∈ [0, 0.298] and x, y ∈ [0, 63]. Sequences
are generated using c drawn uniformly at random in [300, 400] for each sequence to imitate the
propagation of acoustic waves, with initial and Neumann boundary conditions:

w(x, y, 0) = w(0, 0, t) = w(32, 32, t) = 0, (32)

and, following Saha et al. (2020), we make use of the following source term:

f(x, y, t) =

{
f0e−

t
T0 if (x, y) ∈ B

(
(32, 32), 5

)
0 otherwise

, (33)
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with T0 = 0.05 and f0 ∼ U
(
[1, 30]

)
. The source term is taken non-null in a circular central zone

only in order to avoid numerical differentiation problems in the case of a punctual source.

We generate 300 sequences of 64× 64 frames of length 150 from this setting by assimilating pixel
(i, j) ∈ J0, 63K× J0, 63K to a point (x, y) ∈ [0, 63]× [0, 63] and selecting a frame per time interval
of size 0.002. This discretization is used to solve Equation (31) as its spatial derivatives are estimated
thanks to finite differences; once computed, they are used in an ODE numerical solver to solve
Equation (31) on t. Spatial derivatives are estimated with finite differences of order 5, and the ODE
solver is the fourth-order Runge-Kutta method with the 3/8 rule (Kutta, 1901; Hairer et al., 1993)
and step size 0.001. The data are finally normalized following a min-max [0, 1] scaling per sequence.

The dataset is then split into training (240 sequences) and testing (60 sequences) sets. Sequences
sampled during training are random chuncks of length ν + 1 = 25, including τ + 1 = 5 conditioning
frames, of full-size training sequences. Sequences used during testing are all possible chunks of
length τ + 1 + 40 = 45 from full-size testing sequences.

Finally, WaveEq-100 is created from WaveEq by selecting 100 pixels uniformly at random. The
extracted pixels are selected before training and are fixed for both training and testing. Therefore,
train and test sequences for WaveEq-100 consist of vector of size 100 extracted from WaveEq frames.
Training and testing sequences are chosen to be the same as those of WaveEq.

D.2 SEA SURFACE TEMPERATURE

SST is composed of sea surface temperatures of the Atlantic ocean generated using E.U. Copernicus
Marine Service Information thanks to the state-of-the-art simulation engine NEMO. The use of a
so-called reanalysis procedure implies that these data accurately represent the actual temperature
measures. For more information, we refer to the complete description of the data by de Bézenac et al.
(2018). The data history of this engine is available online.2 Unfortunately, due to recent maintenance,
data history is limited to the last three years; prior histories should be manually requested.

The dataset uses daily temperature acquisitions from Thursday 28th December, 2006 to Wednesday
5th April, 2017 of a 481× 781 zone, from which 29 zones of size 64× 64 zones are extracted. We
follow the same setting as de Bézenac et al. (2018) by training all models with τ +1 = 4 conditioning
steps and ν − τ = 6 steps to predict, and evaluating them only on zones 17 to 20. These zones are
particularly interesting since they are the places where cold waters meet warm waters, inducing more
pronounced motion.

We normalize the data in the same manner as de Bézenac et al. (2018). Each daily acquisition of
a zone is first normalized using the mean and standard deviation of measured temperatures in this
zone computed for all days with the same date of the year from the available data (daily history
climatological normalization). Each zone is then normalized so that the mean and variance over all
acquisitions correspond to those of a standard Gaussian distribution. These normalized data are finally
fed to the model; MSE scores reported in Table 1 are computed once the performed normalization of
the data and model prediction is reverted to the original temperature measurement space, in order to
compute physically meaningful scores.

Training sequences correspond to randomly selected chunks of length ν = 10 in the first 2987
acquisitions (corresponding to 80% of total acquisitions), and testing sequences to all possible chunks
of length ν = 10 in the remaining 747 acquisitions.

D.3 MOVING MNIST

This dataset involves two MNIST digits (LeCun et al., 1998) of size 28×28 that linearly move within
64× 64 frames and deterministically bounce against frame borders following reflection laws. We
use the modified version of the dataset proposed by Franceschi et al. (2020) instead of the original
one (Srivastava et al., 2015). We train all models in the same setting as Denton & Birodkar (2017),
with τ + 1 = 5 conditioning frames and ν − τ = 10 frames to predict, and test them to predict either
10 or 95 frames ahead. Training data consist in trajectories of digits from the MNIST training set,
randomly generated on the fly during training. Test data are produced by computing a trajectory for

2https://resources.marine.copernicus.eu/?option=com_csw&view=details&
product_id=GLOBAL_ANALYSIS_FORECAST_PHY_001_024.
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each digit of the MNIST testing set, and randomly pairwise combining them, thus producing 5000
sequences.

To evaluate disentanglement with content swapping, we report PSNR and SSIM metrics between
the swapped sequence produced by our model and a ground truth. However, having two digits in
the image, there is an ambiguity as to in which order target digits should be swapped in the ground
truth. To account for this ambiguity and thanks to the synthetic nature of the dataset, we instead build
two ground truth sequences for both possible digit swap permutations, and report the lowest metric
between the generated sequence and both ground truths (i.e., we choose the closest ground truth to
compare to with respect to the considered metric).

D.4 3D WAREHOUSE CHAIRS

This multi-view dataset introduced by Aubry et al. (2014) contains 1393 three-dimensional models
of chairs seen under the same periodic angles. We resize the original 600× 600 images by center-
cropping them to 400 × 400 images, and downsample them to 64 × 64 frames using the Lanczos
filter of the Pillow library.3

We create sequences from this dataset for our model by assembling the views of each chair to simulate
its rotation from right to left until it reaches its initial position. This process is repeated for each
existing angle to serve as initial position for all chairs. We chose this dataset instead of Denton
& Birodkar (2017)’s multi-view chairs dataset because the latter contains too few objects to allow
both tested methods to generalize on the testing set, preventing us to draw any conclusion from the
experiment. We train models on this dataset with τ + 1 = 5 conditioning frames and ν − τ = 10
frames to predict, and test them to predict 15 frames within the content swap experiment. Training
and testing data are constituted by randomly selecting 85% of the chairs for training and 15% of the
remaining ones for testing. Disentanglement metrics are computed similarly to the ones on Moving
MNIST, but with only one reference ground truth corresponding to the chair given as content input at
the position of the chair given as dynamic input.

D.5 TAXIBJ

This crowd flow dataset provided by Zhang et al. (2017) consists in two-channel 32 × 32 frames
representing the inflow and outflow of taxis in Beijing, each pixel corresponding to a square region
of the city. Observations are registered every thirty minutes. It is highly structured as the flows are
dependent on the infrastructure of the city, and complex since methods have to account for non-local
dependencies and model subtle changes in the evolution of the flows.

We follow the preprocessing steps of Wang et al. (2018) and Le Guen & Thome (2020) by performing
a min-max normalization of the data to the [0, 1] range. We train models on this dataset with τ+1 = 4
conditioning frames and ν − τ = 4 frames to predict, and test them to predict 4 frames like our
competitors on the last four weeks of data which are excluded from the training set. MSE on this
dataset is reported in the [0, 1]-normalized space and multiplied by a hundred times the dimensionality
of a frame, i.e. by 100× 32× 32× 2.

E TRAINING DETAILS

Along with the code in the supplementary material, we provide in this section sufficient details in
order to replicate our results.

E.1 REPRODUCTION OF BASELINES

PKnl. We retrained PKnl (de Bézenac et al., 2018) on SST using the official implementation and
the indicated hyperparameters.

SVG, MIM and DDPAE. We trained SVG (Denton & Fergus, 2018), MIM (Wang et al., 2019b)
and DDPAE (Hsieh et al., 2018) on our version of Moving MNIST using the official implementation
and the same hyperparameters that the authors used for the original version of Moving MNIST.

3https://pillow.readthedocs.io/
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We trained MIM on SST using the recommended hyperparameters of the authors, and SVG by
retaining the same hyperparameters as those used on KTH.

DrNet. We trained DrNet (Denton & Birodkar, 2017) on our version of Moving MNIST using
the same hyperparameters originally used for the alternative version of the dataset on which it was
originally trained (with digits of different colors). To this end, we reimplemented the official Lua
implementation into a Python code in order to train it with a more recent infrastucture. We also
trained DrNet on 3D Warehouse Chairs using the same hyperparameters used by its authors on the
smaller multi-view chairs dataset on which they trained their method.

PhyDNet. We trained PhyDNet (Le Guen & Thome, 2020) on SST and our version of Moving
MNIST using the official implementation and the same hyperparameters that the authors used for SST
and the original version of Moving MNIST. We removed the skip connections used by the authors on
the Moving MNIST dataset in order to perform a fairer comparison with other models, such as ours,
in our experimental study that do not incorporate skip connections on this dataset.

E.2 MODEL SPECIFICATIONS

E.2.1 IMPLEMENTATION

We used Python 3.8.1 and PyTorch 1.4.0 (Paszke et al., 2019) to implement our model. Each model
was trained on an Nvidia GPU with CUDA 10.1. Training is done with mixed-precision training
(Micikevicius et al., 2018) thanks to the Apex library.4

E.2.2 ARCHITECTURE

Combination of S and T . As explained in Section 4, the default choice of combination of S and
T as decoder inputs is the concatenation of both vectorial variables: it is generic, and allows the
decoder to learn an appropriate combination function ζ as in Equation (4).

Nonetheless, further knowledge of the studied dataset can help to narrow the choices of combination
functions. Indeed, we choose to multiply S and T before giving them as input to the decoder for
both datasets WaveEq and WaveEq-100, given the knowledge of the existence of product-separable
solutions to the homogeneous version of equation (i.e., without source). This shows that it is possible
to change the combination function of S and T , and that existing combination functions in the PDE
literature could be leveraged for other datasets.

Encoders ES and ET , and decoder D. For WaveEq, the encoder and decoder outputs are consid-
ered to be vectors; images are thus flattened before encoding and reshaped after decoding to 64× 64
frames. The encoder is a MultiLayer Perceptron (MLP) with two hidden layers of size 1200 and
internal ReLU activation functions. The decoder is an MLP with three hidden layers of size 1200,
internal ReLU activation functions, and a final sigmoid activation function for the decoder. The
encoder and decoder used for WaveEq-100 are similar to those used for WaveEq, but with two hidden
layers each, of respective sizes 2400 and 150.

We used for SST a VGG16 architecture (Simonyan & Zisserman, 2015), mirrored between the encoder
and the decoder, complemented with skip connections integrated into S (Ronneberger et al., 2015)
from all internal layers of the encoder to corresponding decoder layers, also leveraged by de Bézenac
et al. (2018) in their PKnl model. We adapted this VGG16 architecture without skip connections for
the 32× 32 frames of TaxiBJ by removing the shallowest upsampling and downsampling operations
in the VGG encoder and decoder. For Moving MNIST, the encoder and its mirrored decoder are
shaped with the DCGAN discriminator and generator architecture (Radford et al., 2016), with an
additional sigmoid activation after the very last layer of the decoder; this encoder and decoder
DCGAN architecture is also used by DrNet and DDPAE. We highlight that we leveraged in both SST
and Moving MNIST architectural choices that are also used in compared baselines, enabling fair
comparisons.

For the two-dimensional latent space experiments on SST (see Appendix F.3), we use a modified
version of the VGG encoder / decoder network by removing the two deepest maximum pooling layers,

4https://github.com/nvidia/apex.
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thus preserving the two-dimensional latent structures. The decoder mirrors the encoder complemented
with skip connections.

Regarding 3D Warehouse Chairs, we also followed the same architectural choices as DrNet with
a ResNet18-like architecture for the encoders and a DCGAN architecture, followed by a sigmoid
activation after the last layer for the decoder.

Encoders ES and ET taking as input multiple observations, we combine them by either concatenating
them for the vectorial observations of WaveEq-100, or grouping them on the color channel dimensions
for the other datasets where observations are frames. Each encoder and decoder layer was initialized
from a normal distribution with standard deviation 0.02 (except for biases initialized to 0, and batch
normalizations weights drawn from a Gaussian distribution with unit mean and a standard deviation
of 0.02).

ODE solver. Following the recent line of work assimilating residual networks (He et al., 2016)
with ODE solvers (Lu et al., 2018; Chen et al., 2018), we use a residual network as an integrator for
Equation (7). This residual network is composed of a given number K of residual blocks, each block
i ∈ J1,KK implementing the application id + gi, where gi is an MLP with a two hidden layers of
size H and internal ReLU activation functions. The parameter values for each dataset are:

• WaveEq and WaveEq-100: K = 3 and H = 512;
• SST (with linear latent states): K = 3 and H = 1024;
• Moving MNIST, 3D Warehouse Chairs and TaxiBJ: K = 1 and H = 512.

Each MLP is orthogonally initialized with the following gain for each dataset:

• WaveEq, WaveEq-100, SST (with linear latent states), 3D Warehouse Chairs and TaxiBJ:
0.71;
• Moving MNIST: 1.41.

For SST with two-dimensional states, the MLPs are replaced by convolutional layers with kernel size
3, padding 1 and a number of hidden channels equal to H = 128. We set K = 2 and an orthogonal
initialization gain of 0.2. ReLU activations are replaced by Leaky ReLU activations and preceded by
batch normalization layers.

Latent variable sizes. S and T have the following vectorial dimensions for each dataset:

• WaveEq and WaveEq-100: 32;
• SST, respectively 196× 16× 16 and 64× 16× 16; for the linear version, both are set to

256.
• Moving MNIST and TaxiBJ: respectively, 128 and 20;
• 3D Warehouse Chairs: respectively, 128 and 10.

Note that, in order to perform fair comparisons, the size of T for baselines without static component
S is chosen to be the sum of the vectorial sizes of S and T in the full model. The skip connections of
S for SST cannot, however, be integrated into T , as its evolution is only modeled in the latent space,
and it is out of the scope of this paper to leverage low-level dynamics.

E.3 OPTIMIZATION

Optimization is performed using the Adam optimizer (Kingma & Ba, 2015) with initial learning rate
4× 10−4 for WaveEq, WaveEq-100, Moving MNIST, 3D Warehouse Chairs and SST and 4× 10−5

for TaxiBJ, and with decay rates β1 = 0.9 (except for the experiments on Moving MNIST where we
choose β1 = 0.5) and β2 = 0.99.

Loss function. Chosen coefficients values of λpred, λAE, λSreg, and λTreg are the following:

• λpred = 45;
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Table 4: Prediction and content swap PSNR and SSIM scores of variants of our model.

Models
Pred. (t+ 10) Pred. (t+ 95) Swap (t+ 10) Swap (t+ 95)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Ours 21.70 0.9088 17.50 0.7990 18.42 0.8368 16.50 0.7713
Ours (without S) 20.46 0.8867 14.95 0.6707 — — — —
Ours (λAE = 0) 21.61 0.9058 16.58 0.7611 18.21 0.8309 15.79 0.7399
Ours (λSreg = 0) 15.99 0.6900 12.31 0.5702 13.73 0.5476 12.07 0.5556
Ours (λTreg = 0) 15.63 0.7369 14.02 0.7253 14.91 0.7154 13.95 0.7234
Ours (GRU) 21.66 0.9088 15.45 0.4888 17.70 0.8178 14.77 0.4718

• λAE = 45 for TaxiBJ; 10 for SST (linear)and Moving MNIST; 1 for WaveEq, WaveEq-100
and 3D Warehouse Chairs; 0.1 for SST;

• λSreg = 100 for SST; λSreg = 45 for WaveEq, WaveEq-100, SST (linear) and Moving MNIST;
1 for 3D Warehouse Chairs; 0.0001 for TaxiBJ;

• λTreg = 1
2p× 10−3 for WaveEq, WaveEq-100, Moving MNIST, 3D Warehouse Chairs and

TaxiBJ (where p is the dimension of T ); 1
2p× 10−2 for SST (linear); 5× 10−6 for SST.

The batch size is chosen to be 128 for WaveEq, WaveEq-100, Moving MNIST and 3D Warehouse
Chairs, and 100 for SST and TaxiBJ.

Training length. The number of training epochs for each dataset is:

• WaveEq and WaveEq-100: 250 epochs;

• SST: 30 epochs; SST (linear): 80 epochs;

• Moving MNIST: 800 epochs, with an epoch corresponding to 200 000 trajectories (the
dataset being infinite), and with the learning rate successively divided by 2 at epochs 300,
400, 500, 600, and 700;

• 3D Warehouse Chairs: 120 epochs;

• TaxiBJ: 550 epochs, with the learning rate divided by 5 at epochs 250, 300, 350, 400 and
450.

E.4 PREDICTION OFFSET FOR SST

Using the formalism of our work, our algorithm trains to reconstruct v = (vt0 , . . . , vt1) from
conditioning frames Vτ (t0). Therefore, it first learns to reconstruct Vτ (t0).

However, the evolution of SST data is chaotic and predicting above an horizon of 6 with coherent
and sharp estimations is challenging. Therefore, for the SST dataset only, we chose to supervise the
prediction from t = t0 + (τ + 1)∆t, i.e, our algorithm trains to forecast vt0+(τ+1)∆t, . . . , vt1 from
Vτ (t0). It simply consists in making the temporal representation ET

(
Vτ (t0)

)
match the observation

vt0+(τ+1)∆t instead of vt0 . This index offset does not change our interpretation of spatiotemporal
disentanglement through separation of variables.

F ADDITIONAL RESULTS AND SAMPLES

F.1 ABLATION STUDY ON MOVING MNIST

We report in Table 4 the results of an ablation study of our model on Moving MNIST, that we
comment in Section 5.2.
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Table 5: FVD score of compared models on KTH. The bold score indicates the best performing
method.

Ours PhyDNet SVG DrNet

330 384 375 383

F.2 PRELIMINARY RESULTS ON KTH

The application of our method to natural videos is an interesting perspective, but would motivate
further adaptation of the model (see perspectives in the conclusion), in particular regarding the
integration of stochastic dynamics. Indeed, there is a consensus in the literature (e.g.: Denton &
Fergus (2018); Villegas et al. (2019); Weissenborn et al. (2020)) indicating that human motion datasets
require stochastic modeling because of the inherently highly random events occurring in these videos.
Tackling this issue would require to incorporate stochasticity in our model, for example leveraging
variational autoencoders like Denton & Fergus (2018), or supplement it with adversarial losses on the
image space, for instance like Mathieu et al. (2016) and Lee et al. (2018). These changes are feasible,
but are out of the scope of this paper.

Nonetheless, we investigate the realistic video dataset KTH (Schüldt et al., 2004), which is an
action recognition video database featuring various subjects performing actions in front of different
backgrounds. We trained our model, SVG, DrNet and PhyDNet on this dataset. DrNet and PhyDNet
are powerful deterministic approaches, while SVG is a standard stochastic video prediction model.
We compare all models in terms of FVD (Unterthiner et al., 2018, lower is better), which is a metric
based on deep features that evaluates the realism of the generated videos.

Results are reported in Table 5. We observe that our model substantially outperforms the considered
baselines. These significant results against powerful deterministic baselines, and even the standard
stochastic method SVG, confirm our advantage at modeling complex dynamics and support our claim
that our model lays the foundations for domain-specific methods, such as a stochastic version for
natural videos.

Reproductibility. We use the following training parameters for KTH:

• we follow the same dataset processing and evaluation procedure as Denton & Fergus (2018);

• we train our model on 125 epochs with batch size 100, with an epoch being defined as
100 000 training sequences;

• we set the learning rate to 2× 10−4 and the same optimizer parameters as for SST;

• λpred = 45, λAE = 10 = λSreg = 10, λTreg = p× 10−4;

• the size of S and T are respectively 128 and 50;

• the ODE is solved with a flat latent architecture and parameters K = 1 and H = 512;

• the encoder and decoder architecture is VGG16 with skip connections integrated into S
from ES to D, and with the decoder output being given to a final sigmoid activation.

We reproduced SVG, DrNet and PhyDNet using the recommended hyperparameters of their authors.
We trained PhyDNet for 125 epochs, like our model, to obtain a fair evaluation despite its low
efficiency (six times slower than ours).

F.3 MODELING SST WITH SEPARATION OF VARIABLES

We present in Table 6 results of Table 1 for SST, complemented with an alternative version of our
model obtained using vectorial representation for S and T and MLPs to compute the derivative of
T . The latter setting corresponds to a strictly enforced separation of spatial and dynamical variables,
with results significantly outperforming powerful methods PhyDNet, PKnl and SVG thanks to this
separation, as attested by the corresponding ablation without a static component.
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Table 6: Forecasting performance on SST of PKnl, PhyDNet and our model with respect to indicated
prediction horizons. Bold scores indicate the best performing method.

Models
MSE SSIM

t+ 6 t+ 10 t+ 6 t+ 10

PKnl 1.28 2.03 0.6686 0.5844
PhyDNet 1.27 1.91 0.5782 0.4645
SVG 1.51 2.06 0.6259 0.5595
MIM 0.91 1.45 0.7406 0.6525

Ours 0.86 1.43 0.7466 0.6577
Ours (without S) 0.95 1.50 0.7204 0.6446

Ours (linear) 1.15 1.80 0.6837 0.5984
Ours (linear, without S) 1.46 2.19 0.6200 0.5456

Figure 6: Example of predictions of our model on WaveEq.

However, sea surface temperature exhibits highly local structure that can be assimilated to a flow
in a coarse approximation. For example, there is transport of large bodies of hot and cold water.
Accordingly, performances may be enhanced by considering local dependencies in the dynamics, as
also implemented by MIM and PhyDNet. We propose to do so by considering like the latter methods
two-dimensional latent states for the static S and the dynamical T , and convolutional networks to
model the derivative of T .

Accounting for such locality in the dynamics amounts to implementing another separation than the
usual separation between t and spatial variables. Indeed, it rather excludes unknown content variables
from the dynamics. The resulting dynamics is then a PDE over time t and the observation coordinates
x and y that we implement using convolutional neural networks, following Long et al. (2018) and
Ayed et al. (2020). This different kind of separation of variables simplifies learning by estimating a
PDE that is simpler than the original one, since it acts on fewer variables. It highlights the generality
of our intuition of using the separation of variables, which may be used in other settings that strict
spatiotemporal disentanglement. This approach, while still maintaining disentangling properties,
significantly improves prediction performances.

Note that our proposition remains computationally much lighter than the alternatives MIM, PhyDNet
and SVG.

F.4 ADDITIONAL SAMPLES

F.4.1 WAVEEQ

We provide in Figure 6 a sample for the WaveEq dataset, highlighting the long-term consistency in
the forecasts of our algorithm.

We also show in Figure 7 the effect in forecasting of changing the spatial code S from the one of
another sequence.
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Figure 7: Evolution of the scaled difference between the forecast of a sequence and the same forecast
with a spatial code coming from another sequence for the WaveEq dataset.
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Figure 8: Example of predictions of compared models on SST.
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Figure 9: Example of predictions of compared models on Moving MNIST.

Figure 10: Example of predictions of compared models on Moving MNIST.

F.4.2 SST

We provide an additional sample for SST in Figure 8.

F.4.3 MOVING MNIST

We provide two additional samples for Moving MNIST in Figures 9 and 10.
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(a) DrNet. (b) Ours.

Figure 11: Fusion of content (first column) and dynamic (first row) variables in DrNet and our model
on 3D Warehouse Chairs.

F.4.4 3D WAREHOUSE CHAIRS

We provide a qualitative comparison for the content swap experiment between our model and DrNet
for 3D Warehouse Chairs in Figure 11. We notice that DrNet produces substantially more blurry
samples than our model and has difficulties to capture the exact dynamic of the chairs.
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