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Abstract

Spatio-temporal event data—such as crime incidents or shared-mobility usage—are
generated by human decisions in urban environment. Yet most existing models
focus on statistical dependencies in time and space, overlooking cognitive and
social factors that shape behavior. We argue that uncovering underlying preferences
is essential, as they provide a structured link between observed event data and
decision processes. We introduce a preference-driven framework that models
event distributions through a two-stage “consider—then—choose” process: sparse
gating captures limited attention, and utility functions guide selection within the
consideration set. To capture heterogeneity, we employ a mixture-of-experts design
that reveals distinct preference patterns across groups and contexts. The framework
incorporates sparse structural design, and we analyze its theoretical properties by
establishing approximation and generalization guarantees. Empirical studies on
crime and bike-sharing datasets demonstrate competitive predictive accuracy while
providing interpretable insights into behavioral drivers. By shifting focus from
counts to preferences, our approach offers a behaviorally grounded and socially
meaningful perspective for modeling event data, especially useful in urban life.

1 Introduction

Many real-world counting processes in urban environment, such as criminal incidents or bike-sharing
usage, represent aggregate macro-level patterns that emerge from micro-level human decision-
making. Traditional spatial-temporal models, such as those using Gaussian processes in the Log-Cox
Gaussian Process model [[19} [10] or incorporating triggering kernel functions in spatial-temporal
point processes [21]], focus primarily on capturing spatial-temporal dependencies. However, these
models often fall short in addressing the underlying human decision-making processes and social
influences that shape urban events [25 [11]. To truly understand these processes, we must model the
human mechanisms behind the counts—not just their spatial-temporal correlations.

To bridge this gap, we propose a novel approach that models these urban counting processes through
the lens of human choice behavior. Our key insight is twofold: i) Human choices in urban settings
inherently involve a “consider-then-choose” process—individuals first narrow down options to a
manageable consideration set (e.g., “Which areas are feasible for biking?”’) and then make refined
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Figure 1: Model framework of GLANCE, from left to right: Input, Embedding Module, Stage I:
sparse gates g" filter options; Stage IIL: utilities U determine final choice probabilities, and Output.

selections within this subset. ii) Population-level counts in cities aggregate diverse preference patterns,
where distinct subgroups (e.g., commuters vs. recreational cyclists) exhibit systematically different
utilities for time-location pairs.

2 Preference-Driven Model for Spatio-Temporal Events

We view spatio-temporal event counts as macro-level aggregates of many micro-level human choices.
Each decision corresponds to selecting a time—location pair from a vast universe of possibilities,
shaped by cognitive limits and contextual cues. Inspired by the classical consider—then—choose
paradigm [13]], we model this process in two stages: first, a sparse attention mechanism filters and
ranks feasible options; second, a utility function refines the final choice. At the population level,
heterogeneity is captured by a mixture of latent decision-making patterns.

Shown in Fig. |1} we introduce the Gated Latent Class ChoiE model, GLANCE, which integrates
sparse attention, preference refinement, and population heterogeneity into a coherent framework.

2.1 Consider—-Then—Choose Framework

LetU = {(tm, $m)}M_, denote the universe of all discretized time-location pairs. For any individual,
the effective choice set C C U is unknown: people do not evaluate all M possibilities, but instead
attend to a sparse subset shaped by context and cognitive limits. Our goal is to learn these latent
consideration sets and the utilities guiding the final selection.

Stage I: Consideration via Sparse Attention. We introduce a gating vector g € RM, where
gm € [0,1] is the probability that option m enters the consideration set. Gates are generated from
contextual features and learned end-to-end.

A key component is the a-entmax mapping [7]], defined as

g = a-entmax(z) = |(a — 1)z — 7(2)1 ot

+
where 7(z) ensures normalization. At o = 1, this reduces to softmax (dense attention), while o > 1
induces sparsity. Since it is convex and differentiable, the model can learn sparse attention patterns
directly from data. Nonzero entries of g correspond to options predicted to belong to the consideration
set, giving an interpretable representation of limited attention.
To generate scores z, we embed each time—location pair into a d-dimensional vector. Let X € R4
be the shared embedding matrix. User- or event-specific features can be concatenated with these

embeddings. We then apply two projection matrices W,, W, € R%*4" and form
E = XW,(XWy)" € RM*M,

Because W, # W, the interaction matrix £ is generally asymmetric. Diagonal entries encode
intrinsic salience, while off-diagonal terms capture how the presence of one option influences another
(e.g., nearby stations competing for attention). Aggregating across rows,

z=0(E)1, zeRM,



where o(+) is a nonlinear activation (e.g., ReLU, tanh) and 1 € RM is the all-ones vector. This
produces a score vector summarizing both intrinsic and contextual influences before sparsification.
Passing z through a-entmax yields g, a data-driven estimate of the consideration set.

Stage II: Choosing via Utility. Within the sparse set, selection is refined by a utility function. The
utility of option m may be feature-free (a learnable scalar U,,,) or feature-dependent, e.g.,

Um = BT-rmv

where x,,, may reuse or extend embeddings from X to encode socio-economic, temporal, or environ-
mental attributes. The final choice probability is

9m €XP Um
fm(z7 U) = M ( ) :
Zm’:l gm’ exp(Um’)

This mirrors human decision-making: people first prune the vast universe into a manageable consid-
eration set, then carefully choose among the survivors.

2.2 Capturing Population Heterogeneity

Human populations are rarely homogeneous. To model diverse decision rules, we introduce a mixture
of H latent classes, each with its own sparse attention and utility functions.

Formally, class h € [H] defines a gating distribution g" = a-entmax(z") and utility U". The
probability of selecting option m within class h is

h h
fm(zh, Uh) _ 1\4gm eip(Um) —
Zm’:l gm’ eXp(Um/)

At the population level,
H
h h 77h
P(m) = _a" (2", U"), )
h=1
where 7" are nonnegative mixture weights summing to one. This structure uncovers interpretable

subgroups—e.g., commuters who prioritize proximity versus recreational users who prefer socially
vibrant options.

2.3 Likelihood and Training Objective

Suppose we observe N events. Each event is a realized time—location pair (¢;, s;), encoded as a
one-hot vector y; € RM with yim = 1 if the i-th event occurred at option m and y;,,, = 0 otherwise.

Let P;,, = P(m) denote the predicted probability of option m for event i. The log-likelihood is

N M

L£(0) = Z Z Yim 108 Py

i=1m=1

The model parameters are
0= {Xa {ﬂ-h7 ah7 th7 WI?» ﬁh}hH:1}7

where X is a learnable embedding matrix for time—location alternatives. User or event-level covariates
can be concatenated with X, so that both attention and utility adapt to context. Class-specific
parameters (th', Wl?, 1) govern sparse attention and preferences, while 7/ are mixture weights.

Maximizing £(6) aligns the model with observed event data, and the differentiability of c-entmax
enables efficient, end-to-end gradient-based training.

3 Theoretical Analysis

In Theorem |1} we analyze the approximation error of our proposed model, which states that our finite
latent class model can approximate any distribution of human preference parameters with arbitrary
accuracy by increasing the number of latent classes H, and the maximum number of latent classes
required is inversely proportional to the desired accuracy, in terms of the expected squared error. This
bound holds for any underlying distribution of human preference parameters and event occurrences,



and does not depend on the feature dimensions. This result resembles the universal approximation
theorem for neural networks in a Barron space [5]]. Details and proofs can be found in Appendix [B.3]
In Theorem 2] we analyze our proposed model’s generalization capability when trained on a finite
data set. It demonstrates that the generalization bound is of order O(1/+v/N), which implies stable
performance improvements as the sample size [N grows. Notably, this bound is independent of the
number of latent classes H, regardless of the mixture distribution 7, which is a desirable feature of
the proposed model. The factor (M) that depends on the number of time-location pairs is included
due to fact that the utility for each pair is treated separately. In practice, these pairs often have a
lower-dimensional parameterization. In this case, it is easy to obtain a more favorable constant using
such dimension reduction. Details and proofs can be found in Appendix

4 Experiments
4.1 Experimental Setup

Datasets We considered three real-world spatial-temporal datasets: i) New York Crim ii) Chicago
Crimd'} iii) Shanghai Mobikd’}

Baselines To evaluate the capability of our proposed models, we compare against commonly used
baselines and state-of-the-art models. i) ARMA [41], ii) CSI [8l, iii) LGCP [10, (18], iv) NSTPP [6],
v) DSTPP 241, vi) ST-HSL [15l], vii) HintNet 3], viii) STNSCM [9], ix) UniST [23]], and x) MNL
(Multinomial Logic Choice Model) [17,12].

Evaluation Metrics. For evaluation, we group events into aggregate units ¢ (e.g., one day or one
week). For each unit, we form the empirical distribution P; = (P;1,. .., P;as) € Ay by normalizing
the observed counts across the M time—location options. Our model produces a corresponding
predicted probability vector 151 = (]51-1, S ,]52- M) € Ay We use two metrics: (i) KL divergence,
which measures the discrepancy between predicted and empirical distributions, and (i) RMSE, which
captures numerical prediction error across options [25]:

(i) KL; = Dk, (Pi

Mo p Mo 2
Pi) = ;Pim 1og#:7and (i) RMSE; = | & > (Pim - Pz’m) :

m=1

NYC Crime Chicago Crime Shanghai Mobike

Model KL RMSE | KL{ RMSE | KL | RMSE

AMAR 0.65+/-0.06 0.62+/-0.08 0.70+/-0.10 0.68 +/-0.06 0.46 +/- 0.08  0.42 +/- 0.04
CSI 0.67 +/-0.08 0.66+/-0.03 0.68 +/-0.12 0.65+/-0.09 0.47 +/-0.04 0.43 +/- 0.05
LGCP 0.67 +/-0.11  0.67+/-0.09 0.69+/-0.09 0.68+/-0.08 0.45+/-0.10 0.43 +/- 0.09
NSTPP 0.51+/-0.06 0.49+/-0.05 042+/-0.07 0.44+/-0.10 0.32+/-0.02 0.33 +/- 0.05
DSTPP 047 +/-0.04 045+4/-0.05 047 +/-0.04 0.46+/-0.08 0.37+/-0.03 0.40 +/- 0.02
ST-HSL  0.56 +/-0.06 0.52+/-0.05 0.49+/-0.04 0.52+/-0.06 038 +/-0.05 0.43 +/- 0.03

HintNet 0.38 +/-0.03  0.37+4/-0.03  0.26 +/- 0.04 0.19 +/-0.01  0.17 +/- 0.02
STNSCM 038 +/-0.02 0.38+/-0.04 0.27+/-0.01 0.31+/-0.02 0.11+/-0.00 0.15+/-0.01
UniST 0.27+4/-0.05 0.30+/-0.04 0.23+/-0.04 0.25+/- 0.06
MNL 0.38 +/-0.01  0.38 +/- 0.01 029 +/-0.02 0.13+4/-0.01 0.17 +/-0.01

GLANCE 036+/-0.02 0.35+4/-0.01 0.24+/-0.02 0.27 +/- 0.02

Table 1: Comparison of our model with baselines for prediction tasks, conducting using training data
comprising 16,847 samples for NYC, 23,545 samples for Chicago, and 20,883 samples for Shanghai.
Purple signifies the best result, while text indicates the second-best result. Performance
metrics are averaged across three different runs, which reported as (Mean +/— SD).

4.2 Results and Analysis

Analysis 1: Prediction Performance For prediction tasks, we utilize data from the final day as
testing data, reserving remaining data as training data for all three datasets. The results in Tab. [I]
demonstrate that GLANCE consistently surpasses the majority baseline methods or at least achieves
competitive prediction accuracy.

3https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Current- Year-To-Date-/Suac-w243
*https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
>https://github.com/Andrehinh/Interesting-python/tree/master/Mobike
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Figure 2: Mixing coefficient 7" (Left bar plots) and mixture pattern adjusted by utility score (g™ exp(U™)) for
different latent class-h and different crime types, including theft and battery (Right heatmaps) from July 1 to
July 31, 2024, in Chicago City. The selection of the number of experts is based on empirical experiments.

Analysis 2: Explain Human Decision Process Beyond raw accuracy, GLANCE uncovers latent
behavioral structures that shed light on heterogeneous decision-making. Model selection via negative
log-likelihood, training cost, and efficiency consistently suggests two latent classes for Chicago
(Tab. 2] Appendix. [C.3), striking a balance between parsimony and expressiveness. These latent
classes reveal distinct crime decision patterns (Fig. 2):

- Theft. Class 1 (33%): Smaller subgroup operating in the West and Far Southwest (Communities-30,
-72, -74), with notable evening surges in Community-27. Class 2 (67%): Larger subgroup centered
on the South and West (Communities-41, -30), avoiding North/Central areas, but showing strong
morning activity in Community-30.

- Battery. Class 1 (42%): Spread across North and Far Southwest (Communities-7, -70, -72),
generally avoiding Far North and South. Class 2 (58%): Dominated by West Side activity, especially
Community-24, with consistent high risk and nighttime surges in Community-41.

These findings highlight a key discovery: different crime types are not only clustered in space and time
but are also driven by distinct offender subgroups with different choice logics. Unlike hotspot maps
that aggregate over populations, GLANCE disentangles these heterogeneous behavioral strategies,
enabling more precise and actionable interventions (e.g., tailoring patrols to theft vs. battery patterns).

5 Conclusion

We introduced GLANCE, a preference-driven framework for modeling spatio-temporal events in
urban environments, which interprets aggregate counts as the macro-level outcome of numerous micro-
level consider—-then—choose decisions. By integrating sparse attention, flexible utility representations,
and a mixture-of-experts architecture, our model effectively captures cognitive constraints and
heterogeneous preferences across urban populations, all while maintaining interpretability. This
approach not only enhances behavioral realism in urban event modeling but also provides a structured
understanding of how human decisions shape complex urban phenomena.
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In Appendix. D] we report the needed information on the computer resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Sec. [E} we discuss both potential positive societal impacts and negative
societal impacts of the work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We pose no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: In Sec. ] and Appendix [C| we provide the licenses.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix Overview

In the following, we will provide supplementary materials to better illustrate our methods and
experiments.

* Section. [A]provides the algorithm details of our proposed choice-driven spatial-temporal
counting process model.

 Section. |B|derives theoretical guarantees for approximation error and generalization error.
* Section. [C| provides more detailed analysis about experiments on real-world datasets.

* Section. [D] reports the reproducibility analysis, including computing infrastructure and
hyper-parameter selection.

e Section. E] states the limitation, future research direction, and broader impacts of this work.

A Algorithm Details

A.1 Spatial-temporal embedding

We adopt a spatial-temporal embedding method akin to that described in [2} [1]]. Initially, the region is
segmented into distinct blocks. To encode block order, we introduce sinusoidal positional encoding for
area position embedding. Subsequently, linear embedding is utilized for spatial information, typically
latitude and longitude. Temporal information is encoded using sinusoidal positional encoding as
described in [26]. In the context of decision-making, relevant static features can be encoded using
one-hot semantic encoding, while dynamic features are encoded linearly. The embeddings for spatial,
temporal, and relevant feature information are then combined via element-wise addition to generate
the comprehensive embedding.

First, we divide the area into disjoint blocks. To inject a notation of block ordering we add sinusoidal
positional encoding for these area position embedding. Then considering the spatial information
which are usually latitude and longitude, we apply linear embedding. For encoding temporal
information, we also adopt sinusoidal positional encoding a [26]]. Considering other relevant features
related to the decision-making process, we can apply one-hot semantic encoding for static feature
and linear encoding for dynamic features. Finally, the embedding for spatial information, temporal
information, and relevant feature information then directly element-wise addition together to obtain
the overall embedding.

This approach is similar to the use of positional embeddings and feature embeddings in attention
mechanisms, where initial embeddings are transformed through linear projections to capture more
nuanced information. By combining the base embeddings A and B with these flexible projections, our
model can more accurately represent and adapt to diverse preference patterns and social influences,
enriching the overall decision-making framework.

A.2 Overall algorithm

The overall algorithm is shown in Alg. [T} which illustrates the learning process of all the model
parameters for our proposed model in detail.

B Theoretical Details

B.1 Details of c-entmax

a-entmax (z) := argmax p' z + HE(p), )
peAZ\l
where AM .= {p € RM . >iDi= 1} is the probability simplex, and, for o > 1, HY is the Tsallis
continuous family of entropies [22]:

H, (p) = ata—n 2 (05 —7f), a#1
“ —>_;pjlogp;, a=1

This family contains the well-known Shannon and Gini entropies, corresponding to the cases o = 1
and o = 2, respectively.
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Algorithm 1 Learning the Model Parameters for the Mixture-of-Experts Model

Input: Observed data {y; ., }~ ,, initial parameters

0= {Wa Av Bv {[ahv Wz» ng Uh]}hE[H]}

Output: Optimized model parameters 0™
Initialization: Initialize @ randomly or heuristically.
Description: A and B serve as shared feature embeddings that encode the positional and contextual
information necessary for understanding the preference distribution in generating the events.
repeat
for each expert h € [H] do
Compute gating function:

g" = a-entmax (J(AWX(BWE)T)l) .

end for
for each expert h € [H] do
Compute probability:
H h h
exp (U,
P, = th Mgm i(p( m) P
h=1 Zm’:l grﬁz/ exp (Um’)

end for

Optimize: Maximize the likelihood function:

£®) =L I] o)

1=1m=1

to update 6 using gradient descent or a similar optimization method.
until The likelihood is converged

B.2 Preliminaries and Assumptions for Theorems

Model recap (single class). For an alternative m € [M], let z,), denote the m-th row of the
shared embedding matrix X € R *?. Given class-specific projections W, Wy, € R4’ define the
Interaction matrix
E = XW,(XW;)" € RM*M,

Let o(-) be an elementwise nonlinearity (assumed 1-Lipschitz, e.g., ReLU or tanh), and let 1 €
RM be the all-ones vector. Define scores z = o(E)1 € RM and a sparse gating distribution
g = Entmax,(z) for some « € [1 + §,2] with 6 > 0. Utilities can be feature-free (U,, € R) or
feature-dependent (U,,, = BT x,,). The class-wise choice probability is

Im eXp(Um)
Zm/ gm’ eXp(Um/) ’

With H classes, mixture weights 7, and parameters {W )", W, 8, " }/__,, the population proba-
bility is

fm(Z7U) = mE[M]

H
P(m) = Zﬂ'h fm (2 UM

h=1
Assumptions used in proofs. Throughout the proofs we assume:

1. Bounded embeddings: || X | r < Cx. (If X is learned, the optimization is regularized so
that this holds at the solution; if X is fixed features, this is immediate.)

2. Bounded projections: ||W) (W})T||p < Cy forall h.

3. Bounded utilities: ||3;,||» < Cy (feature-dependent case) or |U"| < Oy (feature-free
case).
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4. Sparse gating parameter: o € [1 + 6, 2] for some fixed § > 0 to avoid the softmax limit
and ensure Lipschitz constants below remain finite.

5. Lipschitz nonlinearity: o is 1-Lipschitz and monotone (true for ReLU, tanh).

A useful Lipschitz property of Entmax,. We use that for « € [1 + 4, 2] the mapping z +—
Entmax, (2) is globally Lipschitz on R with a constant L., (6) = O(1/6) (see, e.g., properties
derived via strong convexity of the Tsallis-entropy regularizer; cf. [20,[7]). Formally, there exists
Lent (8) > 0 such that

|[Entmaxq(z) — Entmaxa (2)|], < Lent(6) ||z — 2']l2, Vz, 2 € RM. 3)

Mixture reduction. For any function class F that is convex in parameters, the empirical
Rademacher complexity of mixtures satisfies
N

Sup Z €; Z"Thf x’L < Sup % Zﬁf(l'z)v “)
i=1 h=1

because Y, 7" f" lies in the convex hull of F and the supremum over a convex hull is attained at an
extreme point.

We now prove the two theorems.
B.3 Theorem 1

B.3.1 Details and Corresponding Analysis

Let gf € Ay denote the true choice probability distribution over M time-location pairs for event 1,
induced by an unknown distribution over latent preference parameters. Our H-class GLANCE model
produces an approximation qj;.

Theorem 1 (Universal Approximation). For any € > 0, there exists a finite mixture with H < 2/

classes such that
1L
v 2 llai — P <e
i=1

This shows that enlarging H increases model capacity, and a sufficiently rich mixture can approximate
any distribution of human preference parameters with arbitrary precision. The dependence H =
O(1/¢) resembles classical universal approximation results [3].

B.3.2 Proofs

Setup. Let p, be the (unknown) distribution over latent parameters ¢ = (7, o, Wy, Wy, ). For a
fixed context (here suppressed in notation; if contexts vary across events ¢, interpret all maps below
pointwise in 7), define the measurable map

H
C:prq(d) €Ay, gml(0) = 7" fm(2"(6), UM(9)).

The true choice distribution is the pushforward mean
g = Egp, [‘I(¢) ] € Ay

(If the context changes with ¢, define g;(¢) and ¢] = E|[g;(¢)]; the argument below applies to each 4
separately and then we average over 7.)

Finite-support approximation via sampling (probabilistic method). Draw i.i.d. parameters

oW, ..., ") ~ i, and form the empirical mixture
1z
— h
= 5 hE_lq(Gﬁ( ).

Because ¢(¢) € Ay for all ¢, we have [|q(¢)]|3 < ||¢(¢)]|1 = 1 (since all coordinates are nonnega-
tive and sum to 1). Hence

H
Elan—a" |, =E]| %Z (a(6™) ~Ela(o)]) ||

T H



Therefore E||qrr — ¢*||2 < 1/H. By the probabilistic method, there exists a realization of {¢(")}1_,
such that ||¢z — ¢*||3 < 1/H.

High-probability and multi-: averaging. A standard vector Bernstein (or Hoeffding) inequality
yields that, with probability at least 1 — 7,

c1 + ¢z log(1/n)
H

for universal constants c1, co. When contexts vary across ¢ = 1,..., N, repeat the argument pointwise
to get, with the same H,

g — ¢*|13 <

N
1 i 112 c1 + calog(1/n)
N;HQH_%HQ < - g

Choosing H > 2(c; + c2log(1/n))/€ yields the stated O(1/€) rate. Absorbing constants gives the
main-text statement “H < 2/¢” up to universal multiplicative factors.

Conclusion. Thus a finite mixture with H = O(1/¢) atoms suffices to approximate the population
distribution arbitrarily well in average squared /5 error.

O
B.4 Theorem 2
B.4.1 Details and Corresponding Analysis
Suppose we observe N events {(¢;,s;)}¥ ,, each encoded as a one-hot y; € R. We fit GLANCE

parameters 6 by maximizing the log-likelihood L (8). Let Lp, (8) denote the population loss
under the true distribution D,.. We analyze the generalization gap

Lp.(0) — Ly, (6).
Assumptions. We assume: (i) the shared embedding X of time—location pairs has bounded Frobe-
nius norm; (ii) projections satisfy ||W;(W,?)T|| r < Cy; (iii) utilities are bounded || 8|2 < Cu;
(iv) a" € [1 + 6, 2] for some § > 0 to avoid degeneracy.

Theorem 2 (Generalization Bound). Under the above assumptions, the empirical Rademacher
complexity of the GLANCE model class satisfies

Rp, (W) = @(
Consequently, with high probability,

~ eCU
Lo, (8) — Ly (0) < (9<M§\/N¢W) :

The bound decays at the standard O(1/+/N) rate, showing stable improvement with more data.
Notably, it is independent of the number of latent classes H, so adding mixture components to capture
heterogeneity does not compromise generalization. The dependence on M reflects the size of the
time—location universe, though in practice low-dimensional embeddings in X yield smaller constants.
B.4.2 Proofs

We bound the generalization gap via the empirical Rademacher complexity of the probability outputs.
Let F be the class of vector-valued functions mapping an input index i to P;(0) = (P;1, ..., Pip) €
A M-

M GCUCW)
VN '

H
F = {z s Pi(0) =Y 7" f(=0(0),UM0)) : 0 ¢ w},
h=1
where WV is the constrained parameter set described below.

Step 1: Symmetrization and vector contraction. Let {(y, P) = — En]\le Ym log P, be the
log-loss. By standard symmetrization and the vector contraction inequality [16], if £ is L,-Lipschitz
in P on the domain of interest, then with high probability

Lp.(0) = L5, (0) S Le-Rw(F) + O/ %)
Since the probabilities are bounded away from 0 due to bounded utilities and the gating normalization
(see below), Ly is finite and can be absorbed into the final constant. It remains to bound SR (F).
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Step 2: Rademacher complexity of mixture reduces to single class. Let ¢;,,, be i.i.d. Rademacher
variables. Then

M
Ry (F) =E.| sup %Z Z eimZﬂhfm(z?,Uh)

H
< E. sup Zﬂ'h . %Zeim fm(zzhaUh)
h= ,m

<E = RAn(F), &)

™

1
st;p N Z €im [m (zi(ﬁ), U(G))

i,m

where F7 is the single-class function class and we used the convexity bound ). Thus the mixture
does not increase the complexity beyond that of one class, explaining the independence of H in the
final bound.

Step 3: Lipschitzness of f(-) in (z,U). Fix an index 7 and suppress it in notation. Consider two
parameter settings inducing (z,U) and (2, U’), and their corresponding gates ¢ = Entmax, (2),
¢’ = Entmax, (z’) with the same o € [1 + 4, 2]. Write the class-wise probability as

ety = IS,
n(2U) = Sl T A om =g A=)
A direct Jacobian calculation (softmax-like) yields that, on the domain where ||U||oc < Cy and
g € Ay, the mapping (g, U) — f is L;-Lipschitz in the norm ||(g, U)|| := ||lg|l2 + |U]|2 with
Ly < coe, ©6)

for an absolute constant ¢y > OE] By the chain rule and @]) we obtain

eCu
1z 0)=f (U < Ly (Lenil®) 2= 12 + 1U=U'l2) < er = (=2 la+U-U2).

@)

for a constant ¢ absorbing ¢y and the entmax Lipschitz factor.

Step 4: Bounding changes in z by parameter norms. Recall E = XW (X W) T. Using
sub-multiplicativity and ||o(A)||r < ||Al|| ¢ for 1-Lipschitz o, we have

1Bl < IXWllr I XWillr < 1XIF [Wellr [Wellr.
Bounding the product with ||W,(W) " ||r < Cw and | X ||r < Cx, we get||[E||r < C% Cyy. Then
lzllz = llo(E)1llz < llo(B)r 1l < [Ellr VM < C% Cw VM. ®)

Similarly, for two parameter settings,

Iz = Z'll2 = lo(E)1 = o(EN1]l2 < [o(E) = o(E)|r 1l < |E = E'|lrvM

VAT (X7, — Wil Wil + X0 L |~ W)
e Cx VM |[Wy(Wi) T =W (W) ||, < e2Cx VM - 20w, ©9)

INIA

where in the last step we used a standard bilinear difference bound and the norm constraints (the
constant cy absorbs the bilinear inequality constants). This shows z is Lipschitz in the projected

interaction with constant O(C% v/ M).

SSketch: 8 f,, /AUy is bounded by €U times a probability-difference term; similarly & f,, /&gs, is bounded
by e“V. Summing over m and using Cauchy—Schwarz gives the stated Lipschitz bound in £s.

19



Step 5: Putting it together for 7;. Using (7) and (9), the single-class mapping 6 — f(z(0),U(0))
is Lipschitz in the parameter block

w = (W,(Wi)", B)
with constant
eCu 9
Ly, S T(CX\/M + 1).

Therefore, applying the vector Rademacher contraction inequality to the coordinate-wise linear forms
Zi}m ei’mf’m () y131dS
eCu

Lr )
< L < £
Ry (F1) < N (;élg/chllp) N 5\/N(CX\/M+1> (Cw + Cy).

<Cw+Cu

Absorbing additive constants and C'x into @() and recalling (5), we obtain the advertised form

Step 6: From complexity to generalization. Combining the symmetrization step with the above
complexity bound, and absorbing the Lipschitz constant of the log-loss into the polylog factors, gives

with high probability
~ (M eCv Cw)
Lp (0)—Lsy (0) < O ———— |,
0.(6) £, (0) = O
which matches Theorem [2]in the main text (up to polylogarithmic factors in M and confidence 1 — ).
O

B.5 Remarks on Constants and Independence of H

Independence of H. The mixture-to-single-class reduction (3 explains why H does not appear
in the bound: Rademacher complexity is convex, and the convex combination of classes does not
expand the extremal envelope.

On the M factor. The M dependence enters through §)—(9) (aggregating across M alternatives)
and the vector contraction. In practice, alternatives are encoded in low-dimensional embeddings
(d <« M), and spatial/temporal structure further reduces effective capacity, improving constants.

On a € [1+4,2]. The lower margin § > 0 ensures the entmax mapping remains Lipschitz with
constant Le,:(6) = O(1/6); taking o | 1 (softmax) makes this constant blow up. Our bound
explicitly reflects this via the 1/6 factor.

C Experimental Details

C.1 Baseline Descriptions

We consider following commonly-used baselines and state- of-the-art models: i) ARMA [4]]: Auto-
Regression-Moving-Average is well known for predicting time series data. ARMA predicts the
event number of a region solely based on the historical event records of the region, considering
the recent time slots for a moving average. ii) CSI [8]: Cubic Spline Interpolation trains piecewise
third-order polynomials which pass through event points of recent time slots, and then predicts the
event number in the near future by the trained polynomials. iii) LGCP [10,18]]: Log-Gaussian Cox
Process is a kind of Poisson process with varying intensity, where the log-intensity is assumed to
be drawn from a Gaussian process. iv) NSTPP [6]: It applies neural ODEs as the backbone, which
parameterized the temporal intensity with neural jump SDEs and the spatial PDF with continuous-
time normalizing flows. v) DSTPP [24]: it leverages diffusion models to learn complex spatial-
temporal joint distributions. vi) ST-HSL [15]: It proposes a Spatial-Temporal Self-Supervised
Hypergraph Learning framework for crime prediction. vii) HintNet [3]: It performs a multi-level
spatial partitioning to separate sub-regions with different risks and learns a deep network model
for each level using spatial-temporal and graph convolutions viii) STNSCM [9]: A causality-based
interpretation model for the bike flow prediction. ix) UniST [23]]: A universal model designed for
general urban spatial-temporal prediction across a wide range of scenarios. x) MNL (Multinomial
Logic Choice Model) [12]: Degenerate the feature embedding of our method to time-location index
embedding, while maintaining the consistent choice model framework.
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C.2 How to explain results of other spatial-temporal models (e.g., LGCP)

NME GLANCE (Ours*)
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Figure 3: Comparison of the learned expert pattern of our choice model and the basis of non-negative
matrix factorization (NMF) on Chicago City crime dataset. To align with the setting of LGCP-NMF,
we partition the Chicago area into 10 x 10 area blocks. Left: NMF basis, Right: expert patterns
learned by our model.

Consider a Log-Gaussian Cox Process (LGCP) [10]], which is a doubly-stochastic Poisson process
with a spatially varying intensity function modeled as an exponentiated Gaussian Process

A() ~ exp(Z()), 21, ~ PPOA() (1)

where G P(+) refer to a Gaussian Process, PP(-) refer to a Poisson process. k(-, -) represents the
squared exponential covariance function and x; represents a countable collection of independent
Poisson process with measure );. It can be used to estimate the intensity surface of a spatial point
process and therefore capture spatial patterns of data. LGCP-NMF [18]] was proposed to use non-
negative matrix decomposition [14]] of Poisson process intensity surfaces to provide an interpretable
feature space that parsimoniously describes the learned intensity matrix A € RT*“ from LGCP.

A~WB (12)

where W € RT*H g the weight matrix, and B € HT*S is the basis matrix. S is the number of
spatial grids, and 7" is the number of temporal intervals. H is the number of mixtures, which is set to
be the same as our model.

Our model provides a refined alternative perspective to explain existing spatial-temporal models.
Unlike LGCP-NMEF, alter LGCP model being well-trained, we fit our model using a new objective
function based on the least squared error between estimated probability of our model and the
probability from the LGCP. This approach allows us to interpret the expert patterns learned by
our model to explain the already fitted LGCP model and encompass more spatial-temporal details.
Fig. |3|for Chicago exhibit two ways to explain the results from LGCP. LGCP-NMF captures few
information in different bases while our model offers a more granular explanation at the same level
of time-location pairs, thus better interpreting the results learned by LGCP.

C.3 More Experiments — Chicago Dataset

Selection of Latent Classes We first elucidate the number of latent classes selection process.
Selecting an excessive number of classes can decrease training efficiency and lead to similar patterns
across classes, reducing interpretability. Conversely, too few classes may fail to capture all event
patterns. Therefore, during training, we empirically utilize the converged negative log-likelihood,
time efficiency, and number of learnable parameters as selection criteria. Based on the experimental
findings shown in Tab.[2] we choose two latent classes for Chicago datasets.

In Fig.[2] we have examined different crime patterns in Chicago based on the crime types, that align
with perpetrators’ anticipatory decision-making patterns. More analysis can be found in the main
text.
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# Expert Neg. LL | Time Cost (h) | # Params

H=1 5.64 +/- 0.03 0.58 +/- 0.02 1.369K
H=2 5.38 +/- 0.01 2.732K
H=3 5.46 +/- 0.02 0.68 +/- 0.01 4.063K
H=4 0.71 4+/- 0.01 5.396K

Table 2: Selection of the number of latent classes for Chicago crime dataset. Current selection of
modules are highlighted in blue. Performance metrics are averaged across three different runs, which
reported as (Mean +/— SD).

Embedding Expert Utility | Metric

(w/prod.) (w/feat.) (w/multi.) (w/feat.) \ Neg. LL| KL| RMSE| Time (h)] # Params

X X X X 5.94 0.41 0.38 0.46 0.879K

X 5.67 0.32 0.34 0.75 4.019K

X X 5.63 0.35 0.35 1.703K

X 5.38 0.24 0.65 2.732K

X 5.54 0.33 0.34 0.62 2.328K

X 5.60 0.30 0.29 0.70 4.734K

0.24 1.06 5.636K

Table 3: Ablation study using Chicago crime dataset with 23545 samples for different modules in
embedding approach, number of experts, and construction of utility function. We use converged
negative log-likelihood, prediction KL, prediction RMSE, and training time cost as metrics. “(w/
prod)”: Use the product of two embeddings as the overall embedding. If “(w/o prod)”, we only
use a single embedding as the overall embedding. “(w/ feat)”: Use the individual features in the
construction of embeddings or utility function. “(w/ multi)”: Indicate we use multiple experts or
single expert.

Efficiency, Scalability, and Ablation Study For Chicago dataset, the results depicted in Fig.[4]
affirm the high efficiency and good adaptability of our model for handling large-scale datasets and
outperformance compared with deep neural network models. The ablation study in Tab. 3| further
demonstrates that under our current modules combination, our model strikes a balance between model
performance and efficiency. More analysis can be found in the main text.

D Reproducibility Analysis
D.1 Computing Infrastructure

All the real-world data experiments, including the comparison experiments with baselines, are
performed on Ubuntu 20.04.3 LTS system with Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz, 227
Gigabyte memory.

D.2 Hyper-Parameter Selection

We present the selected hyper-parameters on three real-world datasets in Tab.[d The hyper-parameter
selection metric is a trade-off between training converged log-likelihood, prediction performance,
and time efficiency.

E Limitation & Broader Impacts

Limitation While the current methodological framework effectively incorporates spatial-temporal
dynamics and individual attributes, it may inadequately account for critical external or unobservable
confounders that could systematically bias model performance, especifically degrade the interpretabil-
ity advantage. In future research, we can consider a deep consideration set choice model, attempting
to focus on integrating attention mechanisms into the gating function of choice model. It has the
potential to enhance the model’s flexibility and enables the model to capture a broader range of
information through neural networks.

Broader Impacts By explicitly modeling human decision-making in spatial-temporal events (e.g.,
crime, bike-sharing), our model provides actionable insights for policymakers to optimize resource
allocation, improve public safety, and design human-centric urban infrastructure. The integration
of choice theory with interpretable neural architectures advances transparent Al systems that align
with human reasoning, benefiting domains like transportation (e.g., ride-sharing demand prediction)
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Figure 4: Scalability experiments for Chicago crime datasets with varying training samples and time
slots. (a) Time cost v.s. training samples for all methods with fixed 4 time slots, and (b) Time cost v.s.
training samples for our proposed method with varying time slots. All the experiments are conducted
over 5 random runs and the standard error is reflected in the shaded areas.

Value Used
Hyper-Parameters
NYC Crime Chicago Crime Shanghai Mobike
Maximum Epochs 1000 1000 800
Batch Size 64 128 64
# Time Slot 4 4 6
# Area Block 77 77 100
# Latent Class 2 2 3
Embedding Dimension 32 32 32
Initial o 1.5 1.5 1.5
Learning Rate le-3 le-3 Se-4
Optimizer Adam Adam Adam

Table 4: Descriptions and values of hyper-parameters used for models trained on the three real-world
datasets.

and public health (e.g., disease spread modeling). Moreover, the two-stage "consider-then-choose"
paradigm offers a computational tool to test behavioral theories at scale, enabling new interdisciplinary
collaborations between machine learning and social sciences. It is also should be noted that the
theoretical guarantees (approximation/generalization) ensure robust performance across diverse
populations, reducing biases in event prediction compared to traditional models.

In contrast, modeling individual choice behavior at high fidelity may inadvertently expose sensitive
patterns in human mobility or preferences, requiring strict data anonymization protocols. And
policymakers might prioritize model outputs over community engagement, marginalizing local
knowledge in urban decision-making.
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